
 User’s Guide
CMU/SEI-91-UG-1

May 1991

Serpent Overview

User Interface Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

The Software Engineering Institute is not responsible for any
errors contained in these files or in their printed versions, nor
for any problems incurred by subsequent versions of this
documentation.

 i

Preface1

Introduction3

What Is a User Interface Management System?3
What Is Serpent?4
Serpent Features5
Serpent Documentation5

System Description9
Presentation Layer11
Dialogue Layer12
Application Layer13
Serpent Components14

Using Serpent for Prototyping15

Objects15
Methods18
Variables18
Dependencies Between Variables and Attributes20

How to Control the Existence of Objects21
View Controllers21
Creation Conditions22
Nesting View Controllers22
Control Within Dialogues22

Using Serpent with an Application23
Shared Data23
Shared Data Definition File25
Description Mechanism26
The Application Perspective26
Using Slang with an Application27

 ii

Dialogue Editor29

Visual Presentation of Displays30
Structure Editor30

Integrating New Input/Output Toolkits35

Glossary37

Example Programs41
Example 1: Creating Widgets41
Example 2: Invoking a Method43
Example 3: Creating a Menu Bar47
Example 4: Combining Serpent Concepts53

Preface

 Serpent Overview 1

Preface
This document provides an overview of the Serpent system. It is intended
for software engineers involved in user interface development and as-
sumes no previous knowledge of Serpent.

Preface

2 Serpent Overview

Introduction

 Serpent Overview 3

Introduction
Serpent is a user interface management system (UIMS) being developed
at the Software Engineering Institute (SEI). Serpent supports the devel-
opment and implementation of user interfaces, providing an editor to
specify the user interface and a runtime system that enables communica-
tion between the application and the end user.

What Is a User
Interface Management System?

A UIMS is a set of tools for the specification and execution of the user
interface portion of the system. A UIMS provides tools for the specifica-
tion of the static, layout portion of the user interface, for the specification
of the dynamic portion, and for the execution of the specifications. A
UIMS also separates the user interface portion of a system from the func-
tional portion, allowing for modifications to the user interface with min-
imal impact on the remainder of the system.

The user interface is a major concern of most computing systems and,
generally, is distinct from the concerns of the application. Separating the
user interface from the application leads to a three-part division of a soft-
ware system: the presentation of the user interface, the functionality of
the application, and the mapping between the user interface and the ap-
plication.

The advantages of this division are that:

• It allows modifications of the user interface to be done with minimal
modification to the functional portion and vice versa. It does this by
isolating the functional portion of the application from the details of
the user interface. For example, whether a command is specified
through a menu choice or through a textual string is not relevant to the
functional portion of an application. Removing these concerns from
the functional portion of the application allows the type of interface to
be modified dramatically without any modifications to the applica-
tion.

Introduction

4 Serpent Overview

• It allows the development of tools that are specialized for the design,
specification, and execution of the user interface. For example, a lay-
out editor, a dynamic specification language, and a runtime to support
them can be included.

What Is Serpent?
Serpent is a UIMS that supports the incremental development of the user
interface from prototyping through production and maintenance. It does
this by providing an interactive layout editor for prototyping, by integrat-
ing the layout editor with a dynamic specification language for produc-
tion and maintenance, and by having an open architecture so that new
user interface functionality can be added during the maintenance phase.

The basic features of Serpent are simple enough for use during the pro-
totyping phase, yet sophisticated enough for use in developing the proto-
type into an operational system. Serpent is designed to be extensible in
the user interface toolkits that can be supported. Hence, a system devel-
oped using Serpent can be migrated to new technologies without time-
consuming and expensive re-engineering of the application portion.

Serpent consists of:

• A language designed for the specification of user interfaces.
• A language to define the interface between the application and Ser-

pent.
• A transaction processing library.
• An interactive editor for the specification of dialogues and for the con-

struction and previewing of displays.
• Input/output (I/O) technologies.

Introduction

 Serpent Overview 5

Serpent Features
Serpent provides many features to address the requirements, develop-
ment, and maintenance phases of a project. For the requirements phase,
Serpent provides a language and an editor to define the user interface.
For the development phase, Serpent provides a set of tools that simplify
the development of the user interface. For the maintenance phase, Ser-
pent allows integration of new technologies as well as the ability to mod-
ify the user interface. Specifically, Serpent:

• Provides generality in supporting a wide range of both applications
and I/O toolkits through its use of database-like schemas.

• Provides a set of tools that simplify the user interface implementation
process.

• Encourages the separation of software systems into user interface and
“core” application portions, a separation which will decrease the cost
of subsequent modifications to the system.

• Supports rapid prototyping and incremental development of user in-
terfaces.

• Facilitates the integration of new user interface toolkits into the user
interface portion of a system.

• Supports both synchronous and asynchronous communication. This
allows real-time applications to satisfy timing constraints without
waiting for user input.

Serpent Documentation
The following documents provide information about the Serpent system.

Serpent Overview
Introduces the Serpent system.

Serpent: System Guide
Describes installation procedures, specific input/output file descriptions
for intermediate sites and other information necessary to set up a Serpent
application.

Serpent: Saddle User’s Guide
Describes the language that is used to specify interfaces between an ap-
plication and Serpent.

Introduction

6 Serpent Overview

Serpent: Dialogue Editor User’s Guide
Describes how to use the editor to develop and maintain a dialogue.

Serpent: Slang Reference Manual
Provides a complete reference to Slang, the language used to specify a
dialogue.

Serpent: C Application Developer’s Guide
Serpent: Ada Application Developer’s Guide
Describe how the application interacts with Serpent. These guides de-
scribe the runtime interface library, which includes routines that manage
such functions as timing, notification of actions, and identification of
specific instances of the data.

Serpent: Guide to Adding Toolkits
Describes how to add user interface toolkits, such as various Xt-based
widget sets, to Serpent or to an existing Serpent application. Currently,
Serpent includes bindings to the Athena Widget Set and the Motif Wid-
get Set.

Introduction

 Serpent Overview 7

The following figure shows Serpent documentation in relation to the Ser-
pent system:

Serpent Documents

Dialogue
Editor

Saddle
Processor

Slang
Compiler

Slang
Program

application
program

Transaction
Processing

Library
application

layer
I / O

Toolkits
presentation

layer
dialogue

layer

. .
 .

. .

. .
 .

. .
 . .

 .
. .

. .
 .

. .

Saddle
User’s Guide

Serpent
 Overview

Serpent
 System
 Guide

Dialogue Editor
 User’s Guide

 Slang
 Reference
 Manual

 Guide to
 Adding Toolkits

 Application
 Developer’s
 Guide

Introduction

8 Serpent Overview

System Description

 Serpent Overview 9

System Description
Serpent is based on the UIMS architecture defined by the Seeheim work-
ing group on graphical interfaces. The architecture consists of three lay-
ers:

1. The presentation layer is responsible for layout and device issues.
2. The dialogue layer specifies the presentation of application informa-

tion and user interactions
3. The application layer provides the functionality for the system under

development.

System Description

10 Serpent Overview

The architecture is intended to encourage the proper separation of func-
tionality between the application and the user interface portions of a soft-
ware system and to allow for the development of specialized tools to sup-
port the different layers. The three different layers of the standard archi-
tecture provide differing levels of control over user input and system
output.

Serpent Architecture

application
 layer interface

dialogue
manager dialogue

dialogue layer

interface

I/O toolkits

presentation layer

System Description

 Serpent Overview 11

Presentation Layer
The presentation layer controls the end user interactions and generates
low-level feedback. As illustrated in the following figure, the presenta-
tion layer consists of various I/O toolkits that have been incorporated into
Serpent. A standard interface is used that simplifies the addition of new
toolkits. Each I/O toolkit defines a collection of interaction objects visi-
ble to the end user. The interaction objects that exist at this level depend
upon which I/O toolkits have been integrated into Serpent at a particular
installation. Currently, Serpent supports the X Window System, Version
11, with the Athena Widget set and the OSF Motif Widget set.

Presentation Layer

X Window
System

experimental
gesturing
system

video-based
mapping
system

digital
mapping
system

System Description

12 Serpent Overview

Dialogue Layer
The dialogue layer specifies the user interface and provides the mapping
between the presentation and application layers.

The data that is passed between the application layer and the dialogue
layer is referred to as application shared data. The application shared
data definition provides the format of the data, while the application
shared data represents the actual value of the data.

The dialogue layer determines which information is currently available
to the end user and specifies the form that the presentation will take as
previously defined by the dialogue specifier (individual responsible for
creating the dialogue). The dialogue layer acts as a traffic manager for
communications between the application and I/O toolkits. The presenta-
tion layer manages the presentation; the dialogue layer tells the presenta-
tion layer what to do. For example, the presentation layer will display a
button that the end user can select; the dialogue layer will tell the presen-
tation layer the position and the contents of the button, and will respond
when the button is selected.

Dialogue Layer

dialogue manager
dialogue

transaction processing library

application shared data definition

System Description

 Serpent Overview 13

Application Layer
The application layer performs those functions that are specific to the ap-
plication. Since the other two layers are designed to take care of all the
user interface details, the application should be written to be presenta-
tion-independent: there should be no dependency upon a specific I/O
toolkit. While the application developer should be aware that there is an
end user and should provide the end user with information, that informa-
tion should be presented in application terms.

The application layer is not part of the Serpent system. Serpent currently
supports applications developed in C or Ada.

Application Layer

application
shared data
definition

application
portion

application
portion

System Description

14 Serpent Overview

Serpent Components
The components of Serpent are highlighted in the illustration below. A
short summary of each of the components follows.

Serpent Components

Dialogue editor - Interactive editor used to specify a dialogue. The ed-
itor contains manipulation capabilities to construct and preview a dia-
logue.

I/O toolkits - Components of the presentation layer. Included are both the
toolkits that have been integrated into Serpent and the integration code
itself.

Saddle - Database-like schema language used to define the interface be-
tween the application layer and the dialogue layer.

Slang - Language used to specify the dialogue. This language is compiled
into the dialogue layer of the Serpent architecture.

Transaction processing library - Library of procedures linked to the ap-
plication layer to provide access to Serpent.

Dialogue
Editor

Saddle
Processor

Slang
Compiler

Slang
Program

application
program

Transaction
Processing

Library

application
layer

I / O
Toolkits

presentation
layer

dialogue
layer

.

.

.

.

.

.

.

.

.

.

.

.

Using Serpent for Prototyping

 Serpent Overview 15

Using Serpent
for Prototyping

Serpent is designed to allow incremental development of the user inter-
face from prototyping through production. Serpent can be used either
with or without an application layer.

Simple prototyping is the construction of displays with a fixed collection
of objects on the screen. The visual aspects of these objects are best spec-
ified with the dialogue editor and the active aspects are best specified us-
ing the Serpent textual dialogue description language, Slang. This chap-
ter presents the concepts that underlie the dialogue description.

In Serpent terms, a simple prototype has no application layer.

Objects
Objects are the means by which an end user visualizes and interacts with
the presentation layer. Examples of objects are instances of Athena com-
mand widgets. Objects are defined in the dialogue, which is represented
in Slang. Each presentation technology defines a set of primitive object
types that may be used in a dialogue. For example, the Athena widget set
includes object types such as: forms, command buttons, and textual in-
put. Each object type has a collection of attributes that define its presen-
tation, as well as methods that determine the high-level interactions that
the end user can have with the object. Objects are specified in a Slang
program by listing the objects to be created and the attribute values to be
assigned to each occurrence of the object. Objects created using the dia-
logue editor are maintained internally in Slang.

Using Serpent for Prototyping

16 Serpent Overview

Object Types

The objects used in the Sepent program examples at the end of this man-
ual are X Toolkit Athena Widgets. A complete list of these objects and
their attributes available through Serpent can be found in Appendix B in
Serpent: Slang Reference Manual.

The examples use three types of Athena Widget objects—form widget,
label widget, and command widget.

Object Types

The form widget defines an area on the screen on which other objects can
be placed. If the form is moved, all of the objects on it are also moved.
The required attributes necessary for a form are its height and width. All
of the other attributes contain default values. For example, in construct-
ing a calculator, the form widget provides the outline for the calculator.

Command
Widget

Label Widget

Form Widget

Using Serpent for Prototyping

 Serpent Overview 17

A second type of object is a label widget. This type of widget is used for
displaying text that the end user cannot select. (For example, the user
cannot select or edit the display of a calculator.) The attributes for the
label widget are described in the following table.

Label and Command Widget Attributes

A third type of object is a command widget. This type of widget is used
to display text denoting possible commands that the end user can select.
The attributes for the command widget are the same as the attributes for
the label widget.

A fourth type of object, the text widget, allows an end user to input text
into a field. The text is maintained in the widget within the presentation
layer until the dialogue explicitly asks for the text. Dialogues that use text
widgets tend to be somewhat complicated because of this feature. The
use of a text widget is demonstrated in Example 4 of the Serpent pro-
grams included at the end of this manual.

Label Widget Description

parent The form widget that acts as the base
for the widget.

x, y

height, width

label

The position of the upper left corner of the
widget with respect to the upper left corner
of the parent in pixels.

The height and width of the label widget in
pixels.

The text displayed within the label.

Using Serpent for Prototyping

18 Serpent Overview

Enumerating Objects in Slang

The Slang code for displaying the digit 7 on a calculator is shown below.
Objects are enumerated in Slang by name and type. Within each object,
the attributes are enumerated and given a value.

digit_7: XawCommand: {

 Attributes:

 parent: main_background;

 horizDistance: 20;

 vertDistance: 100;

 height: 50;

 width: 50;

 label: 7;

 justify: 2;

}

 Enumerating Objects in Slang

Methods
Some of the object types in the presentation layer allow end user interac-
tion. These end user interactions are handled in a Slang program by de-
fining a method for that particular object. The command widget allows
the end user to select the widget. In the presentation layer, the selection
is converted into a notify method for that object, which causes the
statements in the method portion of the object definition to be executed.
Example 2 in the example programs at the end of this manual demon-
strates the concept of a method.

Variables
A Slang program can have variables that are used for intermediate calcu-
lations. Attribute definitions and methods can use a collection of state-
ments that give very flexible arithmetic calculations. The number of vari-
ables used depends on the number of calculations.

Using Serpent for Prototyping

 Serpent Overview 19

In the following example, the variable display holds the value to be
shown in the display portion of the calculator. When the method for the
command widget is executed, the value of the variable is modified.

display_widget: XawLabel {

 Attributes:

 parent: main_background;

 horizDistance: 50;

 vertdistance: 20;

 height: 40;

 label: display;

 justify: 2;

}

digit7: XawCommand {

 Attributes:

 parent: main_background;

 horizDistance: 20;

 vertDistance: 100;

 height: 50;

 width: 50;

 label: 7;

Use of a Variable

Using Serpent for Prototyping

20 Serpent Overview

Dependencies Between
Variables and Attributes

In Slang, dependencies between calculations are automatically enforced.
This is a very important and powerful feature. It frees an interface spec-
ifier from the implications of modifying a variable. The interface speci-
fier has to modify only the variable; Slang automatically updates all of
the attributes and variables that depend upon that variable.

In the calculator example, the text to be output to the display of the cal-
culator is specified as the value of the variable display. When the value
of the variable is modified, the output automatically changes. The value
is initially set to 0 and when, for example, the digit labeled 7 is selected,
the value of the variable is changed to 7. Changing the value of dis-
play automatically causes the attribute label in display_widget
to be modified and that modification to be communicated to the presen-
tation layer and, consequently, to the end user.

Specifying a prototype interface requires only:

1. Specifying the objects to be displayed and their positions. This is usu-
ally done with the layout portion of the dialogue editor.

2. Deciding which attributes might be changed through end user inter-
actions and use of variables (or arithmetic functions with variables)
to set the values of these attributes. This is usually done through the
textual portion of the dialogue editor.

3. Specifying the actions to occur on end user interaction with the dis-
played objects. This is usually done through the textual portion of the
dialogue editor.

4. Iterating through the layout and the dynamics given in steps 1-3.

Serpent takes all the steps necessary to update the displays when one of
the variables is modified. Serpent: Slang Reference Manual discusses
this concept in more detail.

How to Control the Existence of Objects

 Serpent Overview 21

How to Control
the Existence of Objects

Serpent features provide for the presentation of objects, the handling of
end user interactions on those objects, and the automatic enforcement of
dependencies. Serpent has features that also allow the creation and dele-
tion of objects, both individually and in logical groups.

View Controllers
The mechanism by which objects are grouped, or collected, is a view con-
troller. A view controller performs two main functions:

1. Mapping specific data in the application to display objects with
which the end user can interact.

2. Controlling the existence of groups of objects.

A dialogue is specified in terms of view controller templates. A template
maintains a watch on application shared data for specific conditions.
When data that satisfies a view controller template is placed into appli-
cation shared data, a view controller is created.

A Slang program specifies a view controller template with which a group
of objects is associated. When a view controller is instantiated (created)
from the template, the associated objects are created and communicated
to the presentation layer. The presentation layer makes the objects visible
to the end user.

For example, suppose a menu bar with a list of options is displayed.
When one of the options is chosen, a pull down menu appears. Each pull
down menu is implemented in a distinct view controller. Example 3 in
the example programs included at the end of this manual contains a Slang
program that implements a menu bar in this manner.

How to Control the Existence of Objects

22 Serpent Overview

Creation Conditions
Each view controller template has a creation condition that specifies the
condition under which a template is instantiated. The creation condition
can be any boolean expression. When the boolean expression becomes
true, a view controller and its associated objects are instantiated from the
template. When the boolean condition becomes false, the view controller
and its associated objects are deleted.

Nesting View Controllers
It is possible to specify that one view controller template be nested within
another view controller template. This nesting extends to the view con-
trollers created from the templates: a nested view controller inherits the
data from its predecessor. When a view controller is deleted, all of its
nested view controllers are also deleted.

Control Within Dialogues
The order in which the view controllers are created depends on the data
that the application places into shared data and on the actions of the end
user. A subdialogue is a collection of view controllers that perform one
particular task. It is possible to have multiple subdialogues within a dia-
logue. There are no a priori timing constraints on the execution order for
the subdialogues.

Actions of the dialogue are determined by the actions of the application
and those of the end user. Multiple subdialogues can be active simulta-
neously. Within Serpent, view controller creation and deletion take place
only in response to end user and application actions. In particular, several
subdialogues may be carried on in parallel. This parallel execution of
subdialogues represents the power of the production model used in Ser-
pent.

Using Serpent with an Application

 Serpent Overview 23

Using Serpent
with an Application

The full power of Serpent is demonstrated when used with an applica-
tion. When data is shared, it is possible to have multiple instances of a
particular view controller template. This is one of the powerful, although
somewhat complicated, features of Serpent. Shared data provides the in-
terface between Serpent and the application.

Shared Data
From the application developer’s perspective, Serpent behaves like an
active database management system. The data that is managed by Ser-
pent (except for variables declared within view controller templates) is
called shared data. Data is manipulated within the shared database by the
application, the presentation layer (usually in response to end user ac-
tions), or the dialogue layer (in response to actions of the dialogue). The
shared database is segmented into sections associated with the applica-
tion, presentation, and dialogue layers.

Using Serpent with an Application

24 Serpent Overview

Serpent Shared Database

The section associated with the application (application shared data) is
accessible only from the application layer and the dialogue layer. The
section associated with the presentation layer (toolkit shared data) is ac-
cessible only from the presentation layer and the dialogue layer.

From this perspective, the actions of the dialogue layer are to retrieve
data from application shared data and transform that data into toolkit
shared data and, also, to retrieve data from toolkit shared data and trans-
form it into application shared data. This simplified view ignores the fact
that the dialogue could transform some application or toolkit shared data
into other application shared data. It also ignores the fact that toolkit
shared data is actually segmented into a collection of shared data specific
to the I/O toolkits that have been integrated into Serpent.

Serpent combines communications between the application and dialogue
layers into transactions to protect against collisions of data between the
two layers.

application
shared data

technology
shared data

local
 data

dialogue layer

Application

Athena Widget

Technology “Z”

Using Serpent with an Application

 Serpent Overview 25

Shared Data Definition File
The type and structure of data that is maintained in the shared database
is defined externally in a shared data definition file. This corresponds to
the database concept of schema. A shared data definition file is created
once for each application and once for each technology that is integrated
into Serpent. Creation of this file is necessary before an application can
use Serpent. The language used to define the shared data definition is
called Saddle. Saddle is more completely described in Serpent: Saddle
User’s Guide.

A shared data definition file consists primarily of aggregate data struc-
tures (records). These records represent a structure that is instantiated at
runtime. The term shared data element is used to refer to the aggregate
structure.

The notion that instances exist of shared data records is important. Ex-
amples of instances of an employee record within a shared database are
shown below. The shared data record (depicted in the following figure)
is specified in the shared data definition file. At runtime, three employee
instances were added to the shared database. That is, the record was in-
stantiated three times. Each shared data instance is identified by a unique
name, known as its ID.

Shared Data Record Instantiation Shared Data Instances

employee:
name:

address:
phone:

end record;

record
string[50];
string[50];
string[13];

John Smith
101 Main Street
(212) 555-1234

Sue Scott
22 Park Avenue

Undefined

Harry Altair
64 Fifth Avenue
(212) 712-6873

Using Serpent with an Application

26 Serpent Overview

Description Mechanism
A file external to the dialogue and the application contains the descrip-
tion of the shared data structure. The description is in Saddle, a shared
data description language tailored especially for Serpent. The file is pro-
cessed to produce a language-specific description of shared data. Proces-
sors exist for Ada and C. If the application is written in C, the processor
will generate structure definitions that can be included in the application
program. If the application is written in Ada, the processor will generate
package specifications. (For more information about Saddle, refer to Ser-
pent: Saddle User’s Guide.)

The Application Perspective
Serpent provides an active database view to the application. The applica-
tion can add, modify, or delete data from the shared database. Informa-
tion provided to Serpent by the application is available for presentation
to the end user. The application has no knowledge of the presentation
media or user interface styles used to present the information.

When the end user, through the dialogue, adds, modifies, or deletes data
from the application shared database, the application is informed. The
shared database mechanism also is used to communicate commands
from the dialogue to the application. For example, instructing the appli-
cation to add a new employee could be accomplished by having a menu
with an “add” selection, or by using a command-style syntax. In the first
case, the dialogue would inform the application that an “add” was select-
ed, and in the second, the dialogue would parse the command syntax and
inform the application that an “add” was to be accomplished. The appli-
cation is kept ignorant of the mechanism by which the command is en-
tered.

Using Serpent with an Application

 Serpent Overview 27

Using Slang with an Application
At this point, the concepts necessary to use Serpent with an application
have all been introduced:

• Instances of application shared data elements as individual
application objects.

• Objects as both presentation and interaction mechanisms.
• View controllers as logical collections of objects.

The application creates the instances of application shared data through
the use of the Serpent library. In the dialogue, view controller templates
are defined. Each template has a creation condition that specifies under
what condition the view controller is to be created. If that condition in-
cludes a reference to application shared data, then a new view controller
is created whenever an application shared data instance is placed into
shared data.

A view controller template can be instantiated for each instance of a par-
ticular shared data element. Thus, a single view controller template could
be used to display data for each of the employees represented in the
shared data instantiation illustration. Each instance of employee data
would cause a view controller instance to be created, and each view con-
troller would have its associated collection of objects presented. Some of
the attributes in the objects would depend upon the components of the
employee data record, and the same dependency conditions that are en-
forced for local variables would also be enforced for application shared
data.

In other words, for a given employee, that employee represents one in-
stance in shared data, and that instance is bound to a particular view con-
troller. The view controller has an object whose text is determined by the
shared data component employee.address. If the value of an in-
stance of employee.address changes, the object being displayed
with that address will automatically be updated by Serpent.

Using Serpent with an Application

28 Serpent Overview

Application Example

Sensor Site

This figure illustrates the display an end user sees for a command and
control application. The rectangular boxes on the right and left sides
(e.g., GS1 and GS2) represent sensor sites that detect information. The
boxes in the middle (CMC and OFT) represent correlation centers where
the information from all of the sensors is collected. Each sensor site
sends its information to both correlation centers, which accounts for the
repetition of the sensor site boxes on both the right and left sides of the
display. The lines represent the communication path between a particular
sensor site and a correlation center.

The end user may select one of the sensor sites, and a detail window will
appear giving more status information about the site. This detail window
may be used to modify the estimated time to return to operation (ETRO),
the status, and the reason for failure (RFO). The figure shows the result
of selecting the WRB sensor.

Dialogue Editor

 Serpent Overview 29

Dialogue Editor
The dialogue editor is an interactive tool used to specify a dialogue. A
dialogue consists of a static layout portion and a dynamic behavioral por-
tion, and the editor is used to specify both portions. The output of the ed-
itor is a Slang program that can then be compiled and executed in the
same fashion as any other Slang program.

The layout portion of a dialogue is the placement of objects on the screen.
If the position and size of the objects are constant then the layout portion
can be specified directly prior to execution. If the position or size varies,
the layout specifies the initial position of the objects. The portion of the
editor that is used to specify the layout is called the layout editor. The ed-
itor has the capability to create objects through the layout editor and
modify their attributes.

The dynamic portion of a dialogue controls the creation and deletion of
objects and the modification of attributes to change position or appear-
ance. The portion of the editor that is used to specify dynamics is called
the structure editor.

When an object is created within the layout editor, a template for that ob-
ject is created and is accessible through the structure editor. Thus, a par-
ticular attribute or collection of attributes can be made dynamic.

 It is possible to instantiate all of the objects that exist in a view control-
ler. Thus, an iterative dialogue design method that calls for laying out a
portion of the dialogue, adding and testing some of the dynamic portions,
and so on is possible with the dialogue editor.

Finally, the dialogue editor is itself an application that uses Serpent. That
is, the application layer is responsible for saving and restoring dialogues,
for generating the Slang program, and for other non-visible types of ac-
tivities. Serpent is responsible for presentation of menus, interpretation
of selections, presentation of the visual representation of the dialogue,
and other visible and non-functional activities.

Dialogue Editor

30 Serpent Overview

Visual Presentation of Displays
Each view controller template contains a collection of objects. The ob-
jects associated with a particular view controller can be previewed at
specification time without executing the Slang program. Thus, the dia-
logue specifier is able to see the size and relationship of the objects more
quickly. The dialogue specifier can modify the size and position of an ob-
ject either directly with a mouse or indirectly through modification of the
attributes of the object.

The dialogue specifier selects the objects to preview by view controller.
Because a particular display may represent a collection of view control-
lers, the time at which the collection is to be previewed can be specified.
This allows the dialogue specifier to get some idea of the effect of se-
quencing through displays.

The dialogue specifier can also use the preview mechanism to create and
delete objects. Objects can be created and left indeterminate with respect
to particular view controllers. At a later point in the evolution of a dia-
logue, objects can be assigned to particular view controllers and moved
from one view controller to another.

Structure Editor
 The editor provides both a structured presentation of the Slang language
and a preview of the constructed displays. The structured presentation of
the language simplifies the syntactic specification of a Slang program.
The preview of constructed displays allows the individual responsible for
creating the dialogue (the dialogue specifier) to see the static structure of
the displays without the necessity of compiling and executing the Slang
program.

A Slang program consists of syntactic superstructure (e.g., identifying
something as a creation condition) and procedural code to perform some
action (e.g., calculating the attribute of an object). The editor allows the
dialogue specifier to focus on the procedural aspects of a dialogue. For
example, a creation condition is specified in Slang by the syntax:

Creation Condition: (Actual Condition)

Dialogue Editor

 Serpent Overview 31

Using the editor, the dialogue specifier would select creation condition
on a menu associated with a view controller and be able to edit the actual
condition. When the editor transforms the dialogue into a Slang program,
the editor creates the syntax:

Creation Condition: (...)

and places the actual condition inside the parentheses. Thus, the editor
eliminates the need to be concerned with the detailed syntax of the Slang
program. A dialogue specifier has access through visual means to all of
the components of a dialogue; that is, view controllers, objects, attributes
of objects, creation conditions, and variable declarations. The logical
portion of a dialogue is specified textually.

Editing the Dialogue

Dialogue Editor

32 Serpent Overview

Thus, two approaches to specify the dialogue are:

1. A structured, top-down definition of the dialogue, defining view con-
trollers and the objects contained within them.

2. A bottom-up definition of the dialogue, defining the objects and sub-
sequently collecting them into view controllers.

When all of the attributes of the objects are known at the time of dialogue
specification (that is, when the attributes are constants,) Serpent knows
how to display the objects. When some of the attributes depend upon ei-
ther local variables or shared data, previewing the objects becomes more
complicated. A specific value needs to be assigned to those attributes at
specification time so that Serpent will know how to display the objects.

The editor sees the preview values of attributes differently from their cal-
culation values. If the attribute is a constant, the values are identical and
a modification to one view of the attribute is considered to be a modifi-
cation of both views. If the attribute must be calculated at execution time,
the values are different.

Dialogue Editor

 Serpent Overview 33

Editing the Layout

Dialogue Editor

34 Serpent Overview

Integrating New Input/Output Toolkits

 Serpent Overview 35

Integrating New
Input/Output Toolkits

Serpent is designed to allow the integration of new input/output toolkits
into the presentation layer. Toolkits are integrated into Serpent through
mechanisms that are similar to those used by applications.

The following are steps for integrating a new technology into Serpent:

1. Decide upon the objects to be presented to the end user and their at-
tributes.

2. Define a shared data definition that reflects the objects defined in
Step 1.

3. Develop a layer of software that translates between the objects de-
fined in Step 1 and the internal representations of the technology.

4. Register the technology with the dialogue editor.

Except for following communication conventions, a technology is inte-
grated into Serpent using the same mechanism and techniques as an ap-
plication written using Serpent. Integrating new I/O toolkits is described
completely in Serpent: Guide to Adding Toolkits.

Toolkits based on Xt (the Intrinsics of the X Toolkit) are more easily in-
tegrated into Serpent. A special purpose language for describing such
toolkits exists, and all of the mechanisms exist that are necessary to in-
clude such toolkits into the presentation layer and the layout portion of
the editor. These mechanisms are also described completely in Serpent:
Guide to Adding Toolkits.

Integrating New Input/Output Toolkits

36 Serpent Overview

Glossary

 Serpent Overview 37

Glossary
application data

Data provided to Serpent by the application.

application developer

The individual responsible for developing the application.

application layer

The layer that provides the functionality for the system being developed.

application shared data

The section of the shared database associated with the application. This data acts as the interface
between the functional portion of the application system and Serpent.

attribute

A characteristic of an interaction object that is specified by the dialogue.

creation condition

The specified condition under which a view controller is created.

dialogue

A specification of the user interface.

dialogue layer

The layer that implements the dialogue between the user and the application.

dialogue manager

The part of Serpent that executes the dialogue.

dialogue specifier

The individual responsible for creating the dialogues.

end user

The individual who uses the system developed with Serpent.

ID

A unique internal name of a shared data element.

Glossary

38 Serpent Overview

input/output (I/O) toolkits

Hardware/software systems that perform some level of generalized interaction with the end
user.

interaction objects

Objects by which the user and application communicate.

interface specifier

The individual responsible for developing the user interface Serpent.

layout editor

The layout editor specifies the position of objects on the screen.

method

A way of handling end user interactions in the dialogue by specifying actions to be performed
for specific end user generated events.

object

The means by which an end user interacts with the presentation layer.

presentation independent

A presentation that is independent of the user interface of the system.

presentation layer

The layer responsible for layout and device issues.

preview of objects

A Serpent feature that provides the dialogue specifier a view of objects at specification time
without the Slang program’s having to be executed.

record

A collection of simple objects.

Saddle

A special-purpose data declaration language used by Serpent to describe the structure of the
shared data.

schema

A description used by the interface to define the type and structure of data shared between the
major system components.

Glossary

 Serpent Overview 39

Serpent

A user interface management system being developed by the Software Engineering Institute.
Serpent supports the separation of a computing system into an application portion and a
presentation portion.

shared data

The data (except for variables declared within view controller templates) that is managed by
Serpent.

shared database

All data managed by Serpent. The database consists of application data, presentation data, and
global dialogue data.

shared data element

A shared data element is a description of a particular portion of shared data. It has attributes
called components. Instances of elements are called IDs, occur at runtime, and are managed by
the runtime interface library.

shared data definition file

A description in Saddle of the shared data.

simple prototype

The construction of displays without the application for which the interface is being designed.

Slang

A fourth-generation language for dialogue specification created specifically for Serpent.

structure editor

The structure editor controls the dynamic portion of a dialogue which affects the creation and
deletion of objects and the modification of attributes to change position or appearance.

subdialogue

A collection of view controllers that perform one particular task.

toolkit shared data

Toolkit shared data that is shared between the dialogue manager layer and the presentation
layer.

technology integrator

The individual responsible for integrating the selected I/O technology into the Serpent system.

Glossary

40 Serpent Overview

view controller

A view controller is an instance of a view controller template. It provides a mechanism for
grouping objects according to visibility conditions. A view controller performs two main
functions: controlling the existence of groups of objects; mapping specific data in the
application to display objects with which the end user can interact.

view controller template

A dialogue is specified in terms of view controller templates. A template maintains a watch on
application shared data for specific conditions. When data that satisfies a view controller
template is placed into application shared data, a view controller is created.

widget

A name for interaction objects used with the X Window System.

Example Programs

 Serpent Overview 41

Example Programs
Example 1: Creating Widgets

In this example three components of a screen calculator are created in
Slang:

• Form widget, which acts as the outside boundary of the calculator.
• Label widget, which acts as the display portion of the calculator.
• Command widget, which acts as the numeric button 7 on the calcula-

tor.

The end user cannot control any of the actions in this example.

In the first line, the #include “sat.ill” informs Serpent that this
program will be used with the X Window and Toolkit technology. The
||| is a special Slang delimiter.

#include “sat.ill”

|||

Objects:

/*

** Object outside boundary of calculator.

*/

main_background: XawBboard {

 Attributes:

 height: 400;

 width: 300;

}

/* object: display on top of calculator.

** For this example, the value will be 0 and will not

**be changed.

*/

Example Programs

42 Serpent Overview

display_widget: XawLabel {

 Attributes:

 parent: main_background;

 horizDistance: 50;

 vertDistance: 20;

 height: 40;

 width: 200;

 label: 0;

 justify: 2;

}

/* object: display digit 7.

** For this example, selecting digit does nothing.

*/

digit7: XawCommand {

 Attributes:

 parent: main_background;

 horizDistance: 20;

 vertDistance: 100;

 height: 50;

 width: 50;

 label: 7;

}

Example Programs

 Serpent Overview 43

Calculator – Creating Widgets

Example 2: Invoking a Method
In this example more of the calculator is displayed, in particular, a second
digit and a button that clears the display area. The digit buttons have
methods that execute statements when the digit buttons are selected. The
clear button has a method that resets the display when selected.

The variable display stores the value to be shown in the display por-
tion of the calculator. When the method for any of the command widgets
is executed, the value of the display variable is modified. The value
is initially set to 0 and when, for example, the digit labeled 7 is selected,
the value of the variable is set to 7. This automatically causes the attribute
label to be modified and that modification to be communicated to the
presentation layer, and consequently, displayed to the end user.

Example Programs

44 Serpent Overview

#include “sat.ill”

|||

Variables:

/*

** The variable carries the value to be presented in the

** display

*/

 display: 0;

Objects:

/*

Object: outside boundary of calculator.

*/

main_background: XawBboard {

 Attributes:

 height: 400;

 width: 300;

}

/*

** Object: display on top of calculator. For this

** example, the value is given by the variable display.

** It is changed by pushing the digit or clear button.

*/

display_widget: XawLabel {

 Attributes:

 parent: main_background;

 horizDistance: 50;

 vertDistance: 20;

 height: 40;

 width: 200;

 label: display;

 justify: 2;

}

/* Object: display digit 7.

** For this example, selecting digit adds 7 to

** the end of the display.

*/

digit7: XawCommand {

 Attributes:

 parent: main_background;

 horizDistance: 20;

Example Programs

 Serpent Overview 45

 vertDistance: 100;

 height: 50;

 width: 50;

 label: 7;

 Methods:

 notify:{

 display := 10 * display + 7;

 }

}

/*

** Object: display digit 4. For this example, selecting

** digit adds 4 to the end of the display.

*/

digit4: XawCommand {

 Attributes:

 parent: main_background;

 horizDistance: 20;

 vertDistance: 170;

 height: 50;

 width: 50;

 label: 4;

 Methods:

 notify:{

 display := 10 * display + 4;

 }

}

/*

** This command button causes the display to be reset

** to 0.

*/

clear_display: XawCommand {

 Attributes:

 parent: main_background;

 label: “CE”;

 horizDistance: 20;

 vertDistance: 310;

 height: 50;

 width: 50;

Example Programs

46 Serpent Overview

 Methods:

 notify: {

 display := 0;

 }

}

>

Calculator – Invoking Methods

Example 3: Creating a Menu Bar
This example demonstrates the use of Slang to produce a menu bar with
two submenus. The top menu bar presents three options: Menu_1,
Menu_2, and Quit. When the user chooses Menu_1 another menu is dis-
played. The user can select Item 2 to display a submenu. If the user
chooses Close on either submenu only that submenu will close, illustrat-
ing the creation of tear off menus. Choosing Quit will terminate the pro-
gram.

Example Programs

 Serpent Overview 47

#include “sat.ill”

|||

Example Programs

48 Serpent Overview

/*

** This demonstrates the use of Slang to produce

** a menu bar with two tear off menus.

** Initially, there is a menu bar presented to

** the user with two options: Menu_1 and Menu_2.

** Only Menu_1 is active. When the user selects

** Menu_1, a pull down menu will be displayed

** with additional items. When the user selects

** “Item 2 ->” another menu will be displayed.

** Each pull down has its own “Close” button and

** only affects that pull down menu. When the

** user selects the “Close” from the first pull

** down menu, the other pull down menu will

** remain on the display.

*/

Variables:

 display_menu1_submenu : FALSE;

 display_menu2_submenu : FALSE;

 display_sub_item_submenu : FALSE;

Objects:

menu_bar_form: XawBboard {

 Attributes:

 height:250;

 width: 250;

}

menu_bar: XawBboard {

 Attributes:

 parent: menu_bar_form;

 height:200;

 width: 200;

 vertDistance:20;

 horizDistance:20;

 borderWidth: 3;

}

menu1_item: XawCommand {

 Attributes:

Example Programs

 Serpent Overview 49

 parent: menu_bar;

 vertDistance: 10;

 horizDistance: 10;

 height: 20;

 width: 50;

 label: “Menu_1”;

 Methods:

 notify: {

 display_menu1_submenu := TRUE;

 }

}

menu2_item: XawCommand {

 Attributes:

 parent: menu_bar;

 vertDistance: 10;

 horizDistance: 60;

 height: 20;

 width: 50;

 label: “Menu_2”;

 Methods:

 notify: {

 display_menu2_submenu := TRUE;

 }

}

quit_menu_item: XawCommand {

 Attributes:

 parent: menu_bar;

 height: 20;

 width: 50;

 vertDistance: 10;

 horizDistance: 110;

 label: “QUIT”;

 Methods:

 notify: {

 exit ();

 }

}

Example Programs

50 Serpent Overview

/*

** menu1 view controller

*/

VC: menu1_submenu

Creation Condition: (display_menu1_submenu)

Objects:

menu1_form: XawBboard {

 Attributes:

 parent: menu_bar;

 vertDistance: 30;

 horizDistance:10;

 borderWidth: 1;

 height: 65;

 width: 76;

}

item1_menu_item: XawCommand {

 Attributes:

 parent: menu1_form;

 vertDistance: 0;

 horizDistance: 2;

 height: 20;

 width: 70;

 borderWidth: 1;

 label: “Item 1";

}

item2_menu_item: XawCommand {

 Attributes:

 parent: menu1_form;

 vertDistance: 21;

 horizDistance: 2;

 height: 20;

 width: 70;

 borderWidth: 1;

 label: “Item 2 ->”;

 Methods:

 notify: {

Example Programs

 Serpent Overview 51

 display_sub_item_submenu := TRUE;

 }

}

remove_menu_item: XawCommand {

 Attributes:

 parent: menu1_form;

 vertDistance: 42;

 horizDistance: 2;

 borderWidth: 1;

 height: 20;

 width: 70;

 label: “Close”;

 Methods:

 notify: {

 display_menu1_submenu := FALSE;

 }

}

ENDVC menu1_submenu

/*

** sub_item_submenu view controller

*/

VC: sub_item_submenu

Creation Condition: (display_sub_item_submenu)

Objects:

sub_item_form: XawBboard {

 Attributes:

 parent: menu_bar;

 vertDistance: 53;

 horizDistance: 88;

 borderWidth: 1;

 height: 65;

 width: 76;

}

Example Programs

52 Serpent Overview

itema_menu_item: XawCommand {

 Attributes:

 parent: sub_item_form;

 vertDistance: 0;

 horizDistance: 2;

 height: 20;

 width: 70;

 borderWidth: 1;

 label: “Item A”;

}

itemb_menu_item: XawCommand {

 Attributes:

 parent: sub_item_form;

 vertDistance: 21;

 horizDistance: 2;

 height: 20;

 width: 70;

 borderWidth: 1;

 label: “Item B”;

}

remove_menu_item: XawCommand {

 Attributes:

 parent: sub_item_form;

 vertDistance: 42;

 horizDistance: 2;

 borderWidth: 1;

 height: 20;

 width: 70;

 label: “Close”;

 Methods:

 notify: {

 display_sub_item_submenu := FALSE;

 }

}

ENDVC sub_item_submenu

Example Programs

 Serpent Overview 53

Menu Bar

Example 4: Combining Serpent Concepts
This example, although complicated, is intended to show the power of
combining the concepts of application shared data, view controllers as
logical groupings of objects, and the automatic propagation of dependen-
cies through both local variables and application shared data.

The Slang program demonstrates a simple prototyper for command wid-
gets. It allows the user to create command widgets and manipulate them
based on textual input into a table. There are several different logical
functions in the example:

• Present a canvas that will be filled in by the created display. (A draw-
ing surface if the example used a direct manipulation interface.)

• Present a button to use to create new elements for the canvas.
• Present a table that displays and allows modification of the current at-

tributes of each element.
• Present the created element itself.

Example Programs

54 Serpent Overview

The form named main_background in the example acts as the canvas
and the command_widget named create presents a button to be used to
create a new instance of a command widget for the end user to manipu-
late. These are elements seen in the previous examples.

New elements are added to the example beginning with the method for
the create_object. This method adds a new instance of the command
element of application shared data. It does this using the
create_sd_instance function. This function is used to create a new in-
stance of application shared data.

 The view controller template command_instance has a creation condi-
tion that is watching for new command element instances. The creation
condition of a view controller template creates a new instance of the view
controller whenever the condition is true. Thus, the creation of a new in-
stance of application shared data will trigger the creation of another in-
stance of the view controller.

When the view controller is created, a table that displays and gives the
end user the opportunity to modify the attributes of the created command
button is also created. This table is based on the att_background form
and has a number of elements that will be discussed. Also created at the
same time is the command_widget named command_real that is placed
on the canvas and that gives a visual presentation of the attributes. When-
ever the end user selects the create button, a new command_real widget
and its attributes are created and displayed.

The total sequence of events to place a widget on the canvas is:

1. The end user selects the command widget create.
2. The method for create is activated and a new element is added to

the command record in application shared data.
3. A new instance of the command_instance view controller is created

together with its associated objects.
4. The objects created are:

• att_background
•the ten objects that display the attributes:

•att_text_label
•att_text_value
•att_height_label
•att_height_value
•att_width_label

Example Programs

 Serpent Overview 55

•att_width_value
•x label
•x_value
•y_label
•y_value
•att_vert_value

•the displayed command widget itself,
command_real

To understand how modification of the attributes results in modification
of the displayed widget, the structure of the table of attributes must be un-
derstood. Each entry in the table consists of a label widget and a text wid-
get. The label widget gives a description of what the value of the text
widget represents. All of these widgets are based on the
att_background form. There is also a command button labeled “ok” on
the form. The end user modifies those attributes desired and then selects
the “ok” button. Each text widget has an attribute named send_buffer
that tells the widget whether to report the current value of its text. The
widget holds its text unless send_buffer is 1.

In the table, send_buffer is made to depend upon a local variable named
send_flag. (This is another example of the propagation of dependen-
cies.) The variable send_flag is initially set to 0 and the send_buffer
attribute of each of the text buffers is set to send_flag. Thus, the
send_buffer attribute of each of the text buffers is initially set to ask the
text buffer to hold its text. When the end user selects the “ok” button,
send_flag is set to 1. This automatically sets the send_buffer of each
text widget to 1 and asks the text widget to send its value. This value is
placed in text_buffer and the send method is generated for the
text_widget. Each text widget’s method sets the correct value of the
displayed widget into application shared data. This, in turn, is propagated
to the displayed copy of the widget on the canvas.

If there are multiple instances of the displayed widget, each is owned by
a particular instance of the command_instance view controller, and
each instance of that view controller is bound to an instance of the com-
mand record in application shared data. Consequently, the attributes dis-
played to the end user are associated with a command widget on the can-
vas.

Example Programs

56 Serpent Overview

Shared Data Definition File

The shared data definition used in this example defines the communica-
tion between the dialogue and the application, which saves the values of
the prototyping. The attributes of the created command widgets are
passed to the prototyper.

<<< >>>

app: shared data

command: record

text: string[32];!included text

vert_distance:integer;!y position

horiz_distance:integer;!x position

width: integer; !width of widget

height: integer; !height of widget

end record;

end shared data;

Example Programs

 Serpent Overview 57

Slang Code

This Slang program demonstrates a simple prototyper for command wid-
gets. It allows the end user to create command widgets and manipulate
them based on textual input into a table.

Initially created are a form upon which the command widgets are posi-
tioned and a button which when pressed will create another command
widget.

Prototyper for Command Widgets

Example Programs

58 Serpent Overview

There is a view controller template which is instantiated for each com-
mand widget created. It controls the input of the attributes and the assign-
ing of those attributes to the command widgets displayed for modifica-
tion.

This slang program is not very general. That is, the addition of something
beside a command widget would require essentially replicating the entire
program. It is intended as an example to demonstrate the use of Serpent
with an application.

Example Programs

 Serpent Overview 59

#include “sat.ill”

#include “dm.ill”

|||

/*

** This is the slang program to demonstrate a simple

** prototyper for command widgets. It allows the end

** user to create command widgets and manipulate them

** based on textual input into a table.

** Initially created are a form upon which the command

** widgets are positioned and a button which when

** pressed will create a command widget.

** There is a view controller template which is

** instantiated for each command widget created. It

** controls the input of the attributes and the

** assigning of those attributes to the command widgets

** displayed for modification.

** This slang program is not very general. That is, the

** addition of something beside a command widget would

** require essentially replicating the entire program.

** It is intended as an example to demonstrate the use

** of Serpent with an application.

*/

/*Two objects are defined here.

** 1. a form for the background of all of the objects

** 2. a button to create a new command widget for

** management

*/

Objects:

main_background: XawBboard {

 Attributes:

 width: 765;

 height: 645;

 }

create_btn: XawCommand {

Example Programs

60 Serpent Overview

 Attributes:

 parent: main_background;

 label: “Create command widget”;

 width: 140;

 height: 20;

 vertDistance: 10;

 horizDistance: 600;

 Methods:

 notify: {

 create_element(“command”, “DM_BOX”);

 }

}

quit_widget: XawCommand {

 Attributes:

 parent: main_background;

 label: “Quit”;

 width: 140;

 height: 20;

 vertDistance: 600;

 horizDistance: 600;

 Methods:

 notify: {

 exit();

 }

}

/*

** The “new” function will create a view controller

** instance whenever a new instance of the command

** element is added to shared data.

*/

VC: command_instance

Creation Condition: (new(“command”))

/*

** The components being set represent those variables

** which can be modified through the attribute form.

** The settings are default values to be modified. The

** modifications are automatically displayed in the

Example Programs

 Serpent Overview 61

** realization window.

*/

Variables:

 send_flag : 0;

 local_variable : 1;

 command_x : 0;

 command_y : 0;

 command_w : 100;

 command_h : 20;

Objects:

/*

** The following objects form a table which allows the

** end user to input attributes textually

*/

att_background: XawBboard {

 Attributes:

 width: 200;

 height: 200;

 }

/*

** The ok_button signals the text widgets with their

** attributes to send their current values.

*/

ok_button: XawCommand {

 Attributes:

 parent: att_background;

 justify: 1;/* center */

 label: “OK”;

 width: 50;

 height: 20;

 fromHoriz: NULL;

 horizDistance: 75;

 fromVert: NULL;

 vertDistance: 160;

 Methods:

 notify: {

Example Programs

62 Serpent Overview

 send_flag := 1;

 }

}

/*

** The next two objects represent an entry in the table

** which provides the text: “text” and the value. This

** allows modification of the text within the

** constructed widget

*/

att_text_label: XawLabel {

 Attributes:

 parent: att_background;

 justify: 0;/* left */

 label: “text:”;

 fromHoriz: NULL;

 fromVert: NULL;

 borderColor: “white”;

 vertDistance: 0;

 horizDistance: 0;

 height: 25;

 width: 50;

}

att_text_value: XawText {

 Attributes:

 parent: att_background;

 width: 175;

 height: 25;

 fromHoriz: NULL;

 fromVert: NULL;

 borderColor: “white”;

 vertDistance: 5;

 horizDistance: 50;

 editType: 2;

 sendBuffer: send_flag;

 /* value of 1 is message to send text*/

 textBuffer: “<label>”;

 Methods:

 send: {

 command.text := textBuffer;

Example Programs

 Serpent Overview 63

 send_flag := 0;

 }

}

/*

** The next two objects represent an entry in the table

** which provides the text: “height” and the value. This

** allows modification of the size of the constructed

** widget

*/

att_height_label: XawLabel {

 Attributes:

 parent: att_background;

 justify: 0;

 label: “height :”;

 fromHoriz: NULL;

 fromVert: NULL;

 borderColor: “white”;

 vertDistance: 25;

 horizDistance: 0;

 height: 25;

 width: 105;

}

att_height_value: XawText {

 Attributes:

 parent: att_background;

 width: 120;

 height: 25;

 fromHoriz: NULL;

 fromVert: NULL;

 borderColor: “white”;

 vertDistance: 30;

 horizDistance: 105;

 editType: 2;

 sendBuffer: send_flag;

 /* value of 1 is message to send text*/

 textBuffer: command_h ;

 Methods:

 send: {

 commandheight := textBuffer;

Example Programs

64 Serpent Overview

 send_flag := 0;

 }

}

/*

** The next two objects represent an entry in the table

** which provides the text: “width” and the value. This

** allows modification of the size of the constructed

** widget

*/

att_width_label: XawLabel {

 Attributes:

 parent: att_background;

 justify: 0;

 label: “width :”;

 fromHoriz: NULL;

 fromVert: NULL;

 borderColor: “white”;

 vertDistance: 50;

 horizDistance: 0;

 height: 25;

 width: 105;

}

att_width_value: XawText {

 Attributes:

 parent: att_background;

 width: 120;

 height: 25;

 fromHoriz: NULL;

 fromVert: NULL;

 borderColor: “white”;

 vertDistance: 55;

 horizDistance: 105;

 editType: 2;

 sendBuffer: send_flag;

 textBuffer: command_w;

 Methods:

 send: {

 command.width := textBuffer;

 send_flag := 0;

Example Programs

 Serpent Overview 65

 }

}

/*

** The next two objects represent an entry in the table

** which provides the text: “horizDistance” and the

** value. This allows modification of the position of

** the constructed widget

*/

att_horiz_label: XawLabel {

 Attributes:

 parent: att_background;

 justify: 0;

 label: “x :”;

 fromHoriz: NULL;

 fromVert: NULL;

 borderColor: “white”;

 vertDistance: 75;

 horizDistance: 0;

 height: 25;

 width: 105;

}

att_horiz_value: XawText {

 Attributes:

 parent: att_background;

 width: 120;

 height: 25;

 fromHoriz: NULL;

 fromVert: NULL;

 borderColor: “white”;

 vertDistance: 80;

 horizDistance: 105;

 editType: 2;

 sendBuffer: send_flag;

 textBuffer: command_x;

 length: 10 ;

 Methods:

 send: {

 commandhoriz_distance := textBuffer;

 send_flag := 0;

Example Programs

66 Serpent Overview

 }

}

/*

** The next two objects represent an entry in the table

** which provides the text: “vertDistance” and the

** value. This allows modification of the position of

** the constructed widget

*/

att_vert_label: XawLabel {

 Attributes:

 parent: att_background;

 justify: 0;

 label: “y :”;

 fromHoriz: NULL;

 fromVert: NULL;

 borderColor: “white”;

 vertDistance: 100;

 horizDistance : 0;

 height: 25;

 width: 105;

}

att_vert_value: XawText {

 Attributes:

 parent: att_background;

 width: 120;

 height: 25;

 fromHoriz: NULL;

 fromVert: NULL;

 borderColor: “white”;

 vertDistance: 105;

 horizDistance: 105;

 editType: 2;

 sendBuffer: send_flag;

 textBuffer: command_y;

 Methods:

 send: {

 command.vert_distance := textBuffer;

 send_flag := 0;

 }

Example Programs

 Serpent Overview 67

}

/*

** The following object actually displays the

** widget which is created and which has

** attributes specified from the table

*/

 VC: XawCommand_instance

 Creation Condition: (local_variable = 1)

 Objects:

 command_real: XawCommand {

 Attributes:

 parent: main_background;

 label: att_text_value.textBuffer;

 width: att_width_value.textBuffer;

 height: att_height_value.textBuffer;

 justify: 1;/* center */

 vertDistance: att_vert_value.textBuffer;

 horizDistance: att_horiz_value.textBuffer;

 x: horizDistance;

 y: vertDistance;

 allowUserResize: TRUE;

 allowUserMove: TRUE;

 Methods:

 move: {

 command_x := x;

 command_y := y;

 }

 resize: {

 command_x := x;

 command_y := y;

 command_w := width;

 command_h := height;

 }

 }

 ENDVC XawCommand_instance

ENDVC command_instance

Example Programs

68 Serpent Overview

 Serpent Overview 69

Index

A
Application 26

layer 13
shared data 24
shared data definition 12

Architecture of Serpent 9
Attributes 20

C
Creating widgets 41
Creation condition 22, 27, 30

D
Dialogue editor 14
Dialogue layer 12
Dialogue specifier 30
Documentation 5

F
Form widget 16

I
I/O toolkits 14, 35

Athena widget set 11
OSF motif widget set 11
X Window system 11

M
Method 18

O
Object types 16
Objects 15

P
Presentation layer 11
Prototype 20

S
Saddle 14, 26
Serpent 4

architecture 9
documents 5
features 5

Shared data
definition file 25
element 25

Slang 14, 29, 30
Subdialogue 22

T
Templates 27
Toolkit shared data 24
Transaction processing library 14

U
UIMS 3
User interface 3

V
Variables 18
View controller 21
View controller templates 21, 27

W
Widget

command 17
label 17
set 11

70 Serpent Overview

13a. TYPE OF REPORT

Final

UNCLASSIFIED/UNLIMITED SAME AS RPTDTIC USERS

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr., Mo., Day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (City, State and ZIP Code)

ESD/AVS
Hanscom Air Force Base, MA 01731

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

22a. NAME OF RESPONSIBLE INDIVIDUAL

John S. Herman, Capt, USAF

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

FIELD SUB. GR.GROUP

22c. OFFICE SYMBOL

ESD/AVS (SEI
22b. TELEPHONE NUMBER (Include Area Code)

(412) 268-7630

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

SEI

ESD/AVS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

63752F N/A N/A N/A

8c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

(please turn over)

CMU/SEI-91-UG-1 CMU/SEI-91-UG-1

Serpent: Overview

April 1991

Serpent, UIMS, user interface management system, user
interface generators

Serpent is a user interface management system (UIMS) that supports the development and imple-
mentation of user interfaces, providing an editor to specify the user interface and a runtime system
that enables communication between the application and the end user. This document provides an
overview of the Serpent system. It is intended for software engineers involved in user interface devel-
opment and assumes no previous knowledge of Serpent.

SEI User Interface Project

ABSTRACT —continued from page one, block 19

CMU/SEI-91-UG-1 Serpent Overview
CMU/SEI-91-UG-2 Serpent: System Guide
CMU/SEI-91-UG-3 Serpent: Saddle User’s Guide
CMU/SEI-91-UG-4 Serpent: Dialogue Editor User’s Guide
CMU/SEI-91-UG-5 Serpent: Slang Reference Manual
CMU/SEI-91-UG-6 Serpent: C Application Developer’s Guide
CMU/SEI-91-UG-7 Serpent: Ada Application Developer’s Guide
CMU/SEI-91-UG-8 Serpent: Guide to Adding Toolkits
CMU/SEI-91-UG-9 Dialogue Editor User’s Guide

