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Abstract 

Today’s large-scale, highly distributed, networked systems improve the efficiency and effec-
tiveness of organizations by permitting whole new levels of organizational integration. How-
ever, such integration is accompanied by elevated risks of intrusion and compromise. Incor-
porating survivability capabilities into an organization’s systems can mitigate these risks. 
Current software development life-cycle models are not focused on creating survivable sys-
tems, and exhibit shortcomings when the goal is to develop systems with a high degree of 
assurance of survivability. If addressed at all, survivability issues are often relegated to a 
separate thread of project activity, with the result that survivability is treated as an add-on 
property. For each life-cycle activity, survivability goals should be addressed, and methods to 
ensure survivability incorporated. 

This report explains survivability concepts, describes a software development life-cycle 
model for survivability, and illustrates techniques that can be applied during new develop-
ment activities to support survivability goals. It also describes a software life-cycle model 
and associated activities to support survivability goals for systems based on commercial off-
the-shelf products. 
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1 Survivability and the System Life Cycle 

Today’s large-scale, highly distributed networked systems improve the efficiency and effec-
tiveness of organizations by permitting whole new levels of organizational integration. How-
ever, such integration is accompanied by elevated risks of intrusion and compromise. Incor-
porating survivability capabilities into an organization’s systems can mitigate these risks. As 
an emerging discipline, survivability builds on related fields of study (e.g., security, fault tol-
erance, safety, reliability, reuse, performance, verification, and testing) and introduces new 
concepts and principles. Survivability focuses on preserving essential services, even when 
systems are penetrated and compromised [Anderson 97].  

Current software development life-cycle models are not focused on creating survivable sys-
tems, and exhibit shortcomings when the goal is to develop systems with a high degree of 
assurance of survivability [Marmor-Squires 88]. If addressed at all, survivability issues are 
often relegated to a separate thread of project activity, with the result that survivability is 
treated as an add-on property. This isolation of survivability considerations from primary sys-
tem-development tasks results in an unfortunate separation of concerns. Survivability should 
be integrated and treated on a par with other system properties, to develop systems with re-
quired functionality and performance that can also withstand failures and compromises. Im-
portant design decisions and tradeoffs become more difficult when survivability is not inte-
grated into the primary development life cycle. Separate threads of activities are expensive 
and labor intensive, often resulting in duplicated effort in design and documentation. In addi-
tion, tools for supporting survivability engineering are often not integrated into the software-
development environment. With separate threads of activities, it becomes more difficult to 
adequately address the high-risk issues of survivability and consequences of failure. In addi-
tion, technologies that support survivability goals, such as formal specification, architecture 
tradeoff methods, intrusion analysis, and survivability design patterns, are not effectively ap-
plied in the development process. 

For each life-cycle activity, survivability goals should be addressed, and methods to ensure 
survivability incorporated [Mead 00c]. In some cases, existing development methods can en-
hance survivability. Current research is creating new methods that can be applied; however, 
more research and experimentation are required before the goal of survivability can become a 
reality.  

In this report, we describe survivability concepts, discuss a software development life-cycle 
model for survivability, and illustrate techniques that can be applied during new development 
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activities to support survivability goals. We also discuss a software life-cycle model and as-
sociated activities to support survivability goals for systems based on commercial off-the-
shelf (COTS) software. 
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2 Survivability Concepts 

Survivable systems research over the past few years has resulted in the development of the 
concepts and definitions of survivability described in this section. They are drawn from the 
work of the Survivable Network Technology Team at the Software Engineering Institute 
(SEI) and CERT  Coordination Center (CERT/CC) [Lipson 96, Ellison 99a]. 

2.1 The New Network Paradigm: Organizational 
Integration 

From their modest beginnings some 20 years ago, computer networks have become a critical 
element of modern society. These networks not only have global reach; they also have impact 
on virtually every aspect of human endeavor. Network systems are principal enabling agents 
in business, industry, government, and defense. Major economic sectors, including defense, 
energy, transportation, telecommunications, manufacturing, financial services, health care, 
and education, depend on a vast array of networks operating on local, national, and global 
scales. This pervasive societal dependency on networks magnifies the consequences of intru-
sions, accidents, and failures, and amplifies the critical importance of ensuring network sur-
vivability.  

As organizations seek to improve efficiency and competitiveness, a new network paradigm is 
emerging. Networks are being used to achieve radical new levels of organizational integra-
tion. This integration obliterates traditional organizational boundaries and transforms local 
operations into components of comprehensive, network-resident business processes. For ex-
ample, commercial organizations are integrating operations with business units, suppliers, 
and customers through large-scale networks that enhance communication and services. These 
networks combine previously fragmented operations into coherent processes open to many 
organizational participants. This new paradigm represents a shift from bounded networks 
with central control to unbounded networks. Unbounded networks are characterized by dis-
tributed administrative control without central authority, limited visibility beyond the bounda-
ries of local administration, and a lack of complete information about the network. At the 
same time, organizational dependencies on networks are increasing and risks and conse-
quences of intrusions and compromises are amplified. 

                                                 
   CERT and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by 

Carnegie Mellon University. 
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2.2 The Definition of Survivability 

We define survivability as the capability of a system to fulfill its mission, in a timely manner, 
in the presence of attacks, failures, or accidents. We use the term system in the broadest pos-
sible sense, including networks and large-scale systems of systems.  

The term mission refers to a set of very high-level requirements or goals. Missions are not 
limited to military settings, since any successful organization or project must have a vision of 
its objectives whether expressed implicitly or as a formal mission statement. Judgments as to 
whether or not a mission has been successfully fulfilled are typically made in the context of 
external conditions that may affect achievement of that mission. For example, imagine that a 
financial system shuts down for 12 hours during a period of widespread power outages 
caused by a hurricane. If the system preserves the integrity and confidentially of its data and 
resumes its essential services after the period of environmental stress is over, the system can 
reasonably be judged to have fulfilled its mission. However, if the same system shuts down 
unexpectedly for 12 hours under normal conditions or minor environmental stress, thereby 
depriving its users of essential financial services, the system can reasonably be judged to 
have failed its mission, even if data integrity and confidentiality are preserved. 

Timeliness is a critical factor that is typically included in (or implied by) the very high-level 
requirements that define a mission. However, timeliness is such an important factor that we 
included it explicitly in the definition of survivability. 

The terms attack, failure, and accident are meant to include all potentially damaging events; 
but these terms do not partition these events into mutually exclusive or even distinguishable 
sets. It is often difficult to determine if a particular detrimental event is the result of a mali-
cious attack, a failure of a component, or an accident. Even if the cause is eventually deter-
mined, the critical immediate response cannot depend on speculations about such future 
knowledge. 

Attacks are potentially damaging events orchestrated by an intelligent adversary. Attacks in-
clude intrusions, probes, and denials of service. Moreover, the threat of an attack may have as 
severe an impact on a system as an actual occurrence. A system that assumes a defensive po-
sition because of the threat of an attack may reduce its functionality and divert resources to 
monitoring the environment and protecting system assets. 

We include failures and accidents in the definition of survivability. Failures are potentially 
damaging events caused by deficiencies in the system or in an external element on which the 
system depends. Failures may be due to software design errors, hardware degradation, human 
errors, or corrupted data. Accidents describe a broad range of randomly occurring and poten-
tially damaging events, such as natural disasters. We tend to think of accidents as externally 
generated events (i.e., outside the system) and failures as internally generated events.  
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With respect to system survivability, a distinction between a failure and an accident is less 
important than the impact of the event. Also, it is often possible to distinguish between intel-
ligently orchestrated attacks and unintentional or randomly occurring detrimental events. Our 
approach concentrates on the effect of a potentially damaging event. Typically, for a system 
to survive, it must react to (and recover from) a damaging effect (e.g., the integrity of a data-
base being compromised) long before the underlying cause is identified. In fact, the reaction 
and recovery must be successful whether or not the cause is ever determined. 

The primary focus in this paper is to provide managers with methods to help systems survive 
the acts of intelligent adversaries. While the focus is on intrusions, the methods discussed 
apply in full measure to failures and accidents as well. 

Finally, it is important to recognize that it is the mission fulfillment that must survive, not any 
particular subsystem or system component. Central to the notion of survivability is the capa-
bility of a system to fulfill its mission, even if significant portions of the system are damaged 
or destroyed. We use the term survivable system as a shorthand for a system with the capabil-
ity to fulfill a specified mission in the face of attacks, failures, or accidents. Again, it is the 
mission, not a particular portion of the system that must survive. 

2.3 Characteristics of Survivable Systems 

A key characteristic of survivable systems is their capability to deliver essential services in 
the face of attack, failure, or accident. Central to the delivery of essential services is the capa-
bility of a system to maintain essential properties (i.e., specified levels of integrity, confiden-
tiality, performance, and other quality attributes) in adverse environments. Thus, it is impor-
tant to define minimum levels of such quality attributes that must be associated with essential 
services. For example, a launch of a missile by a defensive system is no longer effective if the 
system performance is slowed to the point that the target is out of range before the system can 
launch. 

These quality attributes are so important that definitions of survivability are often expressed 
in terms of maintaining a balance among multiple quality attributes, such as performance, 
security, reliability, availability, fault-tolerance, modifiability, and affordability. The Architec-
ture Tradeoff Analysis project at the SEI is using this attribute-balancing (i.e., tradeoff) view 
of survivability to evaluate and synthesize survivable systems [Kazman 98]. Quality attrib-
utes represent broad categories of related requirements, so a quality attribute may be com-
posed of other quality attributes. For example, the security attribute traditionally includes 
three subattributes, namely, confidentiality, integrity, and availability. 

The capability to deliver essential services, and maintain associated essential properties, must 
be sustained even if a significant portion of a system is incapacitated. Furthermore, this capa-
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bility should not be dependent upon the survival of a specific information resource, computa-
tion, or communication link. In a military setting, essential services might be those required 
to maintain an overwhelming technical superiority, and essential properties may include in-
tegrity, confidentiality, and a level of performance sufficient to deliver results in less than one 
decision cycle of the enemy. In the public sector, a survivable financial system might be one 
that maintains the integrity, confidentiality, and availability of essential information and fi-
nancial services, even if particular nodes or communication links are incapacitated through 
intrusion or accident, and that recovers compromised information and services in a timely 
manner. The financial system’s survivability might be judged by using a composite measure 
of the disruption of stock trades or bank transactions (i.e., a measure of the disruption of es-
sential services). 

Key to the concept of survivability, then, is identifying the essential services (and the essen-
tial properties that support them) within an operational system. Essential services are defined 
as the functions of the system that must be maintained when the environment is hostile or 
when failures or accidents occur that threaten the system. To maintain their capabilities to 
deliver essential services, survivable systems must exhibit the four key properties illustrated 
in Table 1, namely, resistance, recognition, recovery (the three R’s), and adaptation.  

The table identifies a number of survivability strategies that can be applied to counter threats 
of an overt attack on a system. Some of these techniques for enhancing survivability are bor-
rowed from other areas, notably the security, safety, and fault-tolerance communities. 

In the area of attack resistance, a number of techniques are available. User authentication 
mechanisms limit access to a system to a group of approved users. Authentication mecha-
nisms range from simple passwords to combinations of passwords, user-carried authentica-
tion tokens (themselves password protected), and biometrics. Access controls can be applied 
to system access or to individual programs and data sets. Access controls, enforced by a 
trustworthy operating system, automatically apply a predefined policy to grant or deny access 
to an authenticated user. When properly used and implemented, access controls can serve as a 
substitute for program- and data-set-level password mechanisms. 
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Table 1: Key Properties of Survivable Systems 
Key Property Description Example Strategies 

Resistance to attacks Strategies for repelling 
attacks 

Authentication 

Access controls 

Encryption 

Message filtering  

Survivability wrappers 

System diversification  

Functional isolation  

Recognition of attacks and damage Strategies for detecting attacks and 
evaluating damage  

Intrusion detection 

Integrity checking 

Recovery of essential and full ser-
vices after attack 

Strategies for limiting damage, re-
storing compromised information or 
functionality, maintaining or restor-
ing essential services within mission 
time constraints, restoring full ser-
vices  

Redundant components 

Data replication 

System backup and restoration 

Contingency planning 

Adaptation and evolution to reduce 
effectiveness of future attacks 

Strategies for improving system 
survivability based on knowledge 
gained from intrusions 

New intrusion recognition patterns  

Encryption can protect data, either within a system or in transit between systems, from inter-
ception or physical capture. Available encryption technologies are strong enough to resist all 
currently feasible brute-force attacks. Encryption translates the problem of protecting large 
quantities of data into a problem of managing relatively small quantities of keying material. 
Encryption can also be used to provide authentication, non-repudiation, integrity checking, 
and a variety of other assurance properties. 

Message filtering is typically used at the boundary of a system or installation to restrict the 
traffic that enters the system. For example, there is no reason to allow messages related to 
unsupported or unwanted services to enter an installation. Messages appearing to originate 
from within an installation are probably not legitimate if coming from the outside, and mes-
sages that appear to originate outside should not be let out. Filters can be designed to block 
messages associated with known attacks, as well. 

Survivability wrappers are essentially message filters applied at the OS interface level. They 
may be used to provide operand checking or to redirect calls to unsafe library routines to 
more robust versions. They may also be used to impose a restrictive access-control policy on 
a particular application. System diversification combined with redundant implementations 
makes an attacker’s job more difficult. In a diverse implementation, it is likely that a scenario 
used to attack one implementation will fail on others. Defensive coding is used to protect 
programs from bad input values. This technique is discussed in more detail in Section 4.3.1.  
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Functional isolation reduces or eliminates dependencies among services to the greatest extent 
possible. This also prevents an attack on one service from compromising others. Isolation is 
often not easy to achieve, as dependencies among services are not obvious if viewed at the 
wrong level of abstraction. Services that share a processor, for example, are mutually de-
pendent on one another for CPU and memory resources. They may also share disk space and 
probably a network adapter. It is possible for one process to launch a denial of service attack 
on another by gaining a monopoly on any of these resources. Resource isolation may require 
a quota-based sharing mechanism or similar technique. Functional isolation can extend to 
physically separating system functions, often on separate servers with no logical connec-
tions—for example, separating email processing from sensitive data files. No electronic in-
trusion method can jump an air gap or penetrate a machine that is powered down. 

In the area of attack recognition, there is a limited number of choices. Intrusion detection sys-
tems typically attempt to identify attacks by either looking for evidence of known attack pat-
terns or by using a baseline model of normal system behavior to treat departures from normal 
as potential attacks. Both techniques can be applied to network traffic as well as to platform- 
or application-specific data. System auditing and application logs are sources of information 
for detecting intrusions at the platform or application level. Both real-time and post-
processing intrusion-detection systems (IDSs) exist. At the present time, IDSs miss many 
intrusions, especially new or novel attacks, and suffer from high false-alarm rates. Integrity 
checkers can detect intrusions that modify system files or data that should remain unchanged. 
The checking process involves creating a baseline model of the files to be protected using 
checksums or cryptographic signatures, and periodically comparing the current model to the 
baseline. 

In terms of recovery, when a damaging attack (or other failure) is recognized, it is necessary 
to take steps to immediately recover essential services and, eventually, full services. There are 
a number of techniques that can be used, and many of them have been applied to recovery 
from failure in the past. Their effects range from transparent maintenance of full services 
without noticeable interruption to fallback positions that maintain only a core of essential 
services. The importance of recovery techniques is highlighted when the effects of an attack 
are considered. 

Redundancy is the key to maintaining full services in the face of failures. The fault-tolerance 
community has considerable experience in the use of redundancy to maintain service in the 
face of component failures, but their analytical techniques are predicated on knowing the sta-
tistical distributions associated with various failure mechanisms, something that may not be 
possible with failures induced by attacks. 

In many cases, the replication of critical data is a primary means for achieving recovery. 
When essential services are supplied through commodity databases or the like, it may be pos-
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sible to restore a critical data service by simply starting up another instance of the commodity 
server with a replicated database at a more or less arbitrary location. 

Systematic backup of all data sources, combined with appropriate mechanisms for restoring 
the data on either the originating platform or another platform, is a key part of any recovery 
strategy. The required granularity of backups depends on the frequency at which data changes 
and the cost of repeating work performed between backups. In extreme cases, it may be nec-
essary to backup files each time they are closed after writing, and to log transactions or key-
strokes so that intermediate work can be recovered. In other cases, daily or weekly backups 
may suffice. 

When a system is under attack or has experienced a failure, it may be possible to dynamically 
reconfigure the system to transfer essential services from the attacked component to an opera-
tional one, eliminating less essential services in the process. This strategy is employed by the 
Federal Reserve, which can tolerate limited outages at one of its three primary computational 
centers in this fashion. Since this strategy does not have redundant capacity, the reconfigura-
tion can persist only for limited periods, as the criticality of less essential services increases 
with the length of time that they are unavailable. 

Finally, it may be possible to devolve the system to an alternate mode of operation, perhaps 
one in which the role of the computer system is temporarily reduced or even eliminated. For 
example, computer-to-computer transactions might be replaced with manually initiated faxes. 
A computerized parts inventory and order system might revert for a short period to a manual 
system that indicates reorder levels by red lines on storage bins. 

Perhaps the hardest part of survivability is adapting a system to make it more robust in the 
hope that it will resist never-before-seen attacks or intrusions. Just as attackers are constantly 
looking for new points of vulnerability, defenders must create defenses that are based on gen-
eralizations of previously seen attacks and must try to anticipate the directions from which 
new attacks might occur.  

2.4 Survivability as an Integrated Engineering 
Framework 

As a broadly based engineering paradigm, survivability is a natural framework for integrating 
established and emerging software engineering disciplines in the service of a common goal. 
The established areas of software engineering that are related to survivability include secu-
rity, fault tolerance, safety, reliability, reuse, performance, verification, and testing. Research 
in survivability encompasses a wide variety of research methods, including the investigation 
of analogs to the immunological functioning of an individual organism and sociological ana-
logs to public health efforts at the community level. 
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The discipline of computer security has made valuable contributions to the protection and 
integrity of information systems over the past three decades. However, “computer security” 
has traditionally been used as a binary term that suggests that at any moment in time a system 
is either safe or compromised. We believe that this use of the term engenders viewpoints that 
largely ignore the aspects of recovery from the compromise of a system, as well as aspects of 
maintaining services during and after an intrusion. Such an approach is inadequate to support 
necessary improvements in the state of the practice of protecting computer systems from at-
tack. In contrast, the term survivable systems refers to systems whose components collec-
tively accomplish their mission even under attack and despite active intrusions that effec-
tively damage a significant portion of the system. 

Robustness under attack is at least as important as hardness or resistance to attack. Hardness 
contributes to survivability, but robustness under attack (and, in particular, recoverability) is 
the essential characteristic that distinguishes survivability from traditional computer security. 
At the same time, survivability can benefit from computer security research and practice, and 
survivability can provide a framework for integrating security with other disciplines that can 
contribute to system survivability.  

Survivability requires robustness under conditions of intrusion, failure, or accident. The con-
cept of survivability includes fault tolerance, but is not equivalent to it. Fault tolerance relates 
to the statistical probability of an accidental fault or combination of faults, not to malicious 
attack. For example, an analysis of a system may determine that the simultaneous occurrence 
of three statistically independent faults (f1, f2, and f3) will cause the system to fail. The prob-
ability of the three independent faults occurring simultaneously by accident may be ex-
tremely small, but an intelligent adversary with knowledge of the system’s internals can or-
chestrate the simultaneous occurrence of these three faults and bring down the system. A 
fault-tolerant system most likely does not address the possibility of the three faults occurring 
simultaneously, if the probability of occurrence is below a threshold of concern. A survivable 
system requires a contingency plan to deal with such a possibility. 

Redundancy is another factor that can contribute to the survivability of systems. However, 
redundancy alone is insufficient, because multiple identical backup systems share identical 
vulnerabilities. A survivable system requires each backup system to offer equivalent func-
tionality, but significant variance in implementation. This variance thwarts attempts to com-
promise the primary system and all backup systems with a single attack strategy. 
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3 System Development Life-Cycle Models 

3.1 The Spiral Model  

Here we describe a life-cycle model that was developed for use in trusted systems [Marmor-
Squires 89]. Such a model is a natural fit for development of survivable systems. This work 
was based on an assessment of the waterfall and spiral models, and an extension of the spiral 
model to incorporate concepts of trusted systems. 

Analysis of life-cycle model work done to date led to widespread use of the TRW spiral 
model as a foundation. The spiral model can be adapted for use in developing survivable sys-
tems. The spiral model for the software development process has been developed at TRW as 
an alternative to more conventional (largely waterfall-style) models. Its key features are risk 
management, robustness, and flexibility. This section is devoted to a description of the basic 
spiral model and a specialization of it. The description of the spiral model largely follows that 
of Boehm [Boehm 89]. Much of the initial work on spiral models was carried out by Mills 
and his associates [Mills 86].  

The development of software is, at best, a difficult process. Many software systems, espe-
cially in the commercial area, simply evolve over time without a well-defined development 
process. Other systems are developed using (or at least giving lip service to) a stagewise pro-
gression of steps, possibly with feedback between adjacent steps, as in the waterfall model 
[Royce 87]. As Parnas has pointed out, this model makes a much better ex post facto explana-
tion of the development process than a guide for its execution [Parnas 86].  

Over the years, numerous variations on, or alternatives to, the waterfall model have been pro-
posed. Each of these overcomes certain defects in the waterfall model, but introduces its own 
set of additional problems. 

While the waterfall model serves a useful purpose in introducing discipline into the software 
development process, it essentially dictates the linear progressions that were necessary in the 
batch-oriented world of limited alternatives and scarce computational power. It assumes a 
factory-like assembly-line system in which each piece is understood. At the present time, the 
availability of workstations, networks, and inexpensive mass storage, along with a variety of 
tools, makes possible a wide variety of exploratory programming activities as part of the de-
velopment process. This means that it is possible to develop prototypes or models for parts of 
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systems, obtain reactions from a potential user community, and feed this information back 
into the development process. Standardization efforts have produced large libraries of com-
ponents and even entire subsystems that can be used to reduce the amount of new develop-
ment required for a project. The growing availability of development and execution environ-
ments has accelerated this trend. 

The spiral model is an attempt to provide a disciplined framework for software development 
that both overcomes deficiencies in the waterfall model and accommodates activities such as 
prototyping, reuse, and automatic coding as parts of the process. A consequence of the flexi-
bility of the life-cycle model is that the developer is faced with choices at many stages of the 
process. With choice comes risk; therefore much of the emphasis of the spiral model is placed 
on risk management. This, in turn, may result in uneven progress in various aspects of system 
development, with high-risk areas being explored in depth, while low-risk areas are deferred. 

The spiral model views the development process in polar coordinates. The r coordinate repre-
sents cumulative project cost, the w coordinate represents progress to date. The plane is di-
vided into four quadrants that represent different kinds of activities, as follows: 

I. determination of objectives, alternatives, and constraints 

II. evaluation of alternatives; identification and resolution of risks 

III. development activities 

IV. review and planning for future cycles 

In addition, the boundary between quadrants I and IV represents a commitment to move for-
ward with a particular element, approach, or method, and advance to the next stage (or spiral) 
within a defined space of activities (e.g., design). Specific activities may overlap multiple 
spirals. Also, concurrent spirals may be required to address varying areas of risk. The com-
mitment line may involve a decision to terminate the project or change direction based on the 
review results. 

Figure 1 shows a single cycle of the spiral. The paragraphs that follow characterize the activi-
ties that take place in each quadrant. Note that w does not progress evenly with time. Some 
cycles of the spiral may require months to complete, while others require only days. Simi-
larly, although increasing w denotes progress within a cycle of the spiral, it does not necessar-
ily denote progress towards project completion. Each cycle of the model addresses all the 
activities between review and commitment events. Early in the process, cycles may be short 
as alternatives in the decision space of the project are explored. As risks are resolved, cycles 
may stretch, with the development quadrant subsuming several steps in the waterfall. The 
spiral may be terminated with product delivery, in which case modification or maintenance 
activities are new spirals, or the original spiral may continue until the product is retired. 
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Figure 1: A Project Spiral Cycle 

3.2 A Spiral Model for Survivable Systems 
Development 

The generalized “pure” spiral process discussed above provides a framework for more spe-
cialized models. Specialization and enhancement call for adapting the activities carried out 
under the general model to the special requirements of the systems to be produced. This is 
done by specifying (a) activities that address the drivers that characterize the system and (b) 
constraints that characterize the environment in which the system is to be produced. 

The primary driver in the present context is the requirement to develop a survivable system. 
Constraints include the political and social environment in which the system is to be con-
structed, the ever-present cost considerations, and the limitations of technologies and knowl-
edge that can be brought to bear on the problem at hand. These combine to yield a specialized 
version of the spiral model that integrates survivability into the management process, as de-
picted in Figure 2. 
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Figure 2: Specialization of the Spiral Model for Survivability Driver 

Survivable systems must satisfy a variety of conflicting interests. End users want them to 
carry out their primary operational mission, possibly at the expense of violating security poli-
cies under some circumstances. It is often the case that systems must also satisfy some certi-
fication or accreditation authority. The steps required for these approvals may conflict with 
the interests of users. And developers want to finish the job, preferably ahead of schedule and 
under budget. Within the development organization, tensions may exist between the various 
specialties involved. Resolving these conflicts may involve constraining the environment and 
the development process. In addition, cost considerations are always present. The spiral de-
velopment process has proven to be more cost effective than traditional methods, but exhibits 
a different distribution of costs over time. Under the spiral model, expenditures are typically 
higher in early specification and design activities, resulting in cost savings in later implemen-
tation and integration activities. 

Table 2 identifies a typical set of broad system-development activities and the corresponding 
survivability elements of each. The key point is that survivability is integrated into the 
broader activities. For example, in defining system requirements, function, performance, de-
pendability, scalability, and other properties must be defined, as well as survivability attrib-
utes. The activities in Table 2 compose the subject matter for project management under the 
specialized spiral model of Figure 2.  

As an illustration, consider the following imagined application of the spiral management 
process to the architecture-definition phase. We assume that prior phases have been com-
pleted successfully and that the appropriate requirements and specification documents are at 
hand. The task of the initial architecture-definition spiral is to define a set of candidate com-
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ponents and their interconnections that will implement the specified services in a way that 
satisfies both functional and non-functional requirements. The architect will choose candidate 
platforms, allocate functions to them, and determine the appropriate connections among plat-
forms and between platforms and the outside world. A variety of tools and techniques will be 
used to analyze the proposed architecture to determine whether it satisfies the requirements 
and specifications. One possibility of this analysis is that the proposed architecture satisfies 
the functional requirements but cannot achieve the required throughput. Although processor 
replication has already been used to improve performance, the processors require close cou-
pling to maintain synchronization and their co-location presents a vulnerability as a potential 
single site of failure. Another spiral over the architecture is in order, as unresolved risks re-
main. 

An examination of the specification for the service that results in the bottleneck shows that 
what appeared as a monolithic service at first glance actually decomposes in a way that re-
duces the processing load and allows the two parts of the service to be separated both physi-
cally and temporally. After confirming that this revised service specification satisfies the re-
quirements and is consistent with the other, unchanged specifications, the architecture is 
revisited. The revised specification permits a reduction in processor load and allows the criti-
cal function to be performed at several distant locations with greatly relaxed data-
synchronization requirements. As a result, it is possible to configure the system with suffi-
cient redundancy so that at least two loss-of-site events can be tolerated without loss of ser-
vice. Further site loss will reduce service levels, but it is possible to prioritize requests so that 
the minimum essential service level will be maintained. Detailed analyses of this approach 
show a low probability race condition that could deadlock the system. Adding explicit syn-
chronization mechanisms (another iteration) and additional communications capacity reduces 
the residual risk to an acceptable level, and the architecture phase is complete after two spi-
rals of the management process. 



16  CMU/SEI-2002-TR-026 

 



CMU/SEI-2002-TR-026 17 

4 System Development Life-Cycle 
Activities and Survivability 

The key survivability elements of Table 2 are the principal tasks that must be managed within 
the spiral model to achieve system survivability. In this section, we examine the technologies 
and processes of several of these elements, including requirements and specification, archi-
tecture and design, testing, and evolution. 

Table 2: Life-Cycle Activities and Corresponding Survivability Elements 
Life-Cycle 
Activities Key Survivability Elements Examples 

Mission definition Analysis of mission criticality and conse-
quences of failure  

Estimation of cost impact of denial-of-
service attacks  

Concept of operations  Definition of system capabilities in ad-
verse environments  

Enumeration of critical mission functions 
that must withstand attacks  

Project planning Integration of survivability into life-cycle 
activities 

Identification of defensive coding tech-
niques for implementation  

Requirements definition Definition of survivability requirements 
from mission perspective 

Definition of access requirements for criti-
cal system assets during attacks   

System specification Specification of essential service and 
intrusion scenarios 

Definition of steps that compose critical 
system transactions 

System architecture Integration of survivability strategies into 
architecture definition  

Creation of network facilities for replica-
tion of critical data assets 

System design Development and verification of surviv-
ability strategies  

Verification of data-encryption algorithms 
for correctness 

System implementation Application of survivability coding and 
implementation techniques  

Definition of methods to avoid buffer 
overflow vulnerabilities 

System testing  Treatment of intruders as users in testing 
and certification  

Addition of intrusion usage to usage mod-
els for statistical testing; use of independ-
ent verification and validation 

System evolution Improvement of survivability to prevent 
degradation over time  

Redefinition of architecture in response to 
changing threat environment 

 

4.1 Requirements and Specification 

Requirements elicitation, validation, and specification are key early steps in the system life 
cycle. Survivability requirements can vary substantially depending on system scope, critical-
ity, and the consequences of failure and interruption of service. Categories of requirements 
definition for survivable systems include function, usage, development, operation, and evolu-
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tion. In this section, we discuss the nature of survivability requirements, how these require-
ments can be expressed, and their impact on system survivability. 

For typical large-scale systems, the new paradigm for requirements definition is characterized 
by distributed hardware, services, and code (including executable content), distributed and 
shared communications and routing infrastructure, diminished trust, and a lack of unified 
administrative control. Assuring survivability of mission-critical systems developed under 
this new paradigm is a formidable high-stakes effort for software engineering research. This 
effort requires that traditional computer security measures be augmented by new and com-
prehensive system survivability strategies. 

4.1.1 Expressing Survivability Requirements  

The definition and analysis of survivability requirements is a critical first step in achieving 
system survivability [Linger 98]. Figure 3 depicts an iterative model for defining these re-
quirements. Survivability must address not only requirements for software functionality, but 
also requirements for software usage, development, operation, and evolution. Thus, five types 
of requirements definitions are relevant to survivable systems in the model. These require-
ments are discussed in detail in the subsections that follow. 
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Figure 3: Classes of Requirements for Survivable Systems 

System/Survivability Requirements. The term system requirements refers to traditional user 
functions that a system must provide. For example, a network management system must pro-
vide functions to enable users to perform such tasks as monitoring network operations and 
adjusting performance parameters. System requirements also include non-functional aspects 
of a system, such as timing, performance, and reliability. The term survivability requirements 
refers to the capabilities of a system to deliver essential services in the presence of intrusions 
and compromises and to recover full services.  

Figure 4 depicts the integration of survivability requirements with system requirements at 
node and network levels. 

Usage/ 
Intrusion 

Requirements 

System/ 
Survivability 

Requirements 

System 
Development/ 

Evolution 

Legacy/Acquired 
Software, 

Survivability  
Strategies 

Usage Model 
Development/ 

Evolution 

System 
Testing/ 

Evaluation 

System 
Operation/ 

Administration 

System 
Development 
Requirements 

System 
Operations 

Requirements 

System 
Evolution 

Requirements 



20  CMU/SEI-2002-TR-026 

Network-Level Emergent Behavior Requirements

Node-Level
System Requirements

Node-Level
Survivability Requirements

Survivability Services:
   Resistance
   Recognition
   Recovery
   Adaptation & Evolution

Non-Essential
Functional Services

Essential
Functional
Services

 

Figure 4: Integrating Survivability into System Requirements 

Survivability requires that system requirements be organized into essential services and non-
essential services. Essential services must be maintained even during successful intrusions; 
non-essential services are recovered after intrusions have been handled. Essential services 
may be stratified into any number of levels, each embodying fewer and more vital services as 
the severity and duration of intrusion increases. Thus, definitions of requirements for essen-
tial services must be augmented with appropriate survivability requirements. 

As shown in Figure 3, survivable systems may also include legacy and acquired COTS com-
ponents that were not developed with survivability as an explicit objective. Such components 
may provide both essential and non-essential services and may require functional require-
ments for isolation and control through wrappers and filters to permit their safe use in a sur-
vivable system environment. 

Figure 4 shows that survivability itself imposes new types of requirements on systems. These 
new requirements include the resistance to, recognition of, and recovery from intrusions and 
compromises, and adaptation and evolution to diminish the effectiveness of future intrusion 
attempts. These survivability requirements are supported by a variety of existing and emerg-
ing survivability strategies, as noted in Linger et al.’s paper [Linger 98], and are discussed in 
more detail below. 

Finally, Figure 4 depicts emergent behavior requirements at the network level. These re-
quirements are characterized as emergent because they are not associated with particular 
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nodes, but rather emerge from the collective behavior of node services in communicating 
across the network. These requirements deal with the survivability of overall network capa-
bilities (e.g., capabilities to route messages between critical sets of nodes regardless of how 
intrusions may damage or compromise network topology). 

We envision survivable systems that are capable of adapting their behavior, function, and re-
source allocation in response to intrusions. For example, when necessary, functions and re-
sources devoted to non-essential services could be reallocated to the delivery of essential ser-
vices and to intrusion resistance, recognition, and recovery. Requirements for such systems 
must also specify how the system should adapt and reconfigure itself in response to intru-
sions. 

Systems can exhibit large variations in survivability requirements. Small local networks may 
require few or no essential services and recovery times may be measured in hours. Con-
versely, large-scale networks of networks may require a core set of essential services, auto-
mated intrusion detection, and recovery times measured in minutes. Embedded command-
and-control systems may require essential services to be maintained in real time with recov-
ery times measured in milliseconds. 

The attainment and maintenance of survivability consumes resources in system development, 
operation, and evolution. The resources allocated to a system’s survivability should be based 
on the costs and risks to an organization associated with the loss of essential services. 

Usage/Intrusion Requirements. Survivable-system testing must demonstrate the correct 
performance of essential and non-essential system services as well as the survivability of es-
sential services under intrusion. Because system performance in testing (and operation) de-
pends totally on the system’s use, an effective approach to survivable-system testing is based 
on usage scenarios derived from usage models [Mills 92, Linger 99b]. 

Usage models are developed from usage requirements. These requirements specify usage en-
vironments and scenarios of system use. Usage requirements for essential and non-essential 
services must be defined in parallel with system and survivability requirements. Furthermore, 
intruders and legitimate users must be considered equally. Intrusion requirements that specify 
intrusion-usage environments and scenarios of intrusion use must be defined as well. In this 
approach, intrusion use and legitimate use of system services are modeled together. 

Intruders might engage in scenarios beyond legitimate scenarios, but they might also employ 
legitimate use for purposes of intrusion if they gain the necessary privileges. 

Development Requirements. Survivability places stringent requirements on system devel-
opment and testing practices. Inadequate functionality and software errors can have a devas-



22  CMU/SEI-2002-TR-026 

tating effect on system survivability and provide opportunities for intruder exploitation. 
Sound engineering practices are required to create survivable software. 

The following five principles (four technical and one organizational) are example require-
ments for survivable-system development and testing practices: 

• Precisely specify required functions of a system in all possible circumstances of use. 

• Verify the correctness of system implementations with respect to functional specifica-
tions. 

• Precisely specify function usage in all possible circumstances of system use, including 
intruder use. 

• Test and certify the system based on function usage and statistical methods. 

• Establish permanent readiness teams for system monitoring, adaptation, and evolution. 

Sound engineering practices are required to deal with legacy and COTS software components 
as well. 

Operations Requirements. Survivability places demands on requirements for system opera-
tion and administration. These requirements include defining and communicating survivabil-
ity policies, monitoring system use, responding to intrusions, and evolving system functions 
as needed to ensure survivability as usage environments and intrusion patterns change over 
time. 

Evolution Requirements. Systems evolution responds to user requirements for new func-
tions. However, this evolution is also necessary to respond to increasing intruder knowledge 
of system behavior and structure. In particular, survivability requires that system capabilities 
evolve more rapidly than intruder knowledge. This rapid evolution prevents intruders from 
accumulating information about otherwise invariant system behavior, which intruders need to 
achieve successful penetration and exploitation. 

4.1.2 Requirements Definition for Essential Services 

The preceding discussion distinguishes between essential and non-essential services. Each 
system requirement must be examined to determine whether it corresponds to an essential 
service. The set of essential services must form a viable subsystem for users that is complete 
and coherent. If multiple levels of essential services are required, each set of services pro-
vided at each level must also be examined for completeness and coherence. In addition, re-
quirements must be defined for making the transition to and from essential-service levels. 

When distinguishing between essential and non-essential services, all of the usual require-
ments-definition processes and methods can be applied. Elicitation techniques such as those 
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embodied in software requirements engineering can help to identify essential services [Ebert 
97]. Tradeoff and cost/benefit analysis can help to determine the sets of services that suffi-
ciently address business survivability risks and vulnerabilities. Provisions for tracing surviv-
ability requirements through design, code, and test must be established. As previously men-
tioned, simulations of intrusion through intruder-usage scenarios are included in the testing 
process. 

4.1.3 Requirements Definition for Survivability Services 

After requirements are specified for essential and non-essential services, a set of requirements 
for survivability services must be defined. These services can be organized into four general 
categories: resistance, recognition, recovery, and adaptation and evolution. These survivabil-
ity services must operate in an intruder environment that can be characterized by three dis-
tinct phases of intrusion: penetration, exploration, and exploitation. 

Penetration Phase. In this phase, an intruder attempts to gain access to a system through 
various attack scenarios. These scenarios range from random inputs by hobbyist hackers to 
well-planned attacks by professional intruders. These attempts are designed to capitalize on 
known system vulnerabilities. 

Exploration Phase. In this phase, the system has been penetrated and the intruder is explor-
ing internal system organization and capabilities. By exploring, the intruder learns how to 
exploit the access to achieve intrusion objectives. 

Exploitation Phase. In this phase, the intruder has gained access to desired system facilities 
and is performing operations designed to compromise system capabilities. 

Penetration, exploration, and exploitation create a spiral of increasing intruder authority and a 
widening circle of compromise. For example, penetration at the user level is typically a 
means to find root-level vulnerabilities. User-level authorization is then employed to exploit 
those vulnerabilities to achieve root-level penetration. Finally, compromise of the weakest 
host in a networked system allows that host to be used as a stepping-stone to compromise 
other more protected hosts. 

Requirements definitions for resistance, recognition, recovery, and adaptation and evolution 
services help developers select survivability strategies to deal with these phases of intrusion. 
Some strategies, such as firewalls, are the product of extensive research and development and 
currently are used extensively in bounded networks. New survivability strategies are emerg-
ing to respond to the unique challenges of unbounded networks. 
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Resistance Service Requirements. Resistance is the capability of a system to deter attacks. 
Resistance is thus important in the penetration and exploration phases of an attack, before 
actual exploitation. Current strategies for resistance include the use of firewalls, authentica-
tion, and encryption. Diversification is a resistance strategy that will likely become more im-
portant for unbounded networks. 

Requirements for diversification must define planned variations in a survivable system’s 
function, structure, and organization, and the means for achieving those variations. Diversifi-
cation is intended to create a moving target and render ineffective the accumulation of system 
knowledge as an intrusion strategy. Diversification also eliminates intrusion opportunities 
associated with multiple nodes that execute identical software and typically exhibit identical 
vulnerabilities. Such systems offer tempting economies of scale to intruders, because when 
one node has been penetrated, all nodes can be penetrated. Requirements for diversification 
can include variation in programs, retained data, and network routing and communication. 
For example, systematic means can be defined to randomize software programs while pre-
serving functionality [Linger 99a]. 

Recognition Service Requirements. Recognition is the capability of a system to recognize 
attacks or the probing that precedes attacks. The ability to react or adapt during an intrusion is 
central to a system’s capacity to survive an attack that cannot be completely repelled. To react 
or adapt, the system must first recognize it is being attacked. In fact, recognition is essential 
in all three phases of attack. 

Current strategies for attack recognition include both state-of-the-art intrusion detection and 
mundane but effective techniques such as logging and frequent auditing, as well as follow-up 
investigations of reports generated by ordinary error-detection mechanisms. Advanced intru-
sion-detection techniques are generally of two types: anomaly detection and pattern recogni-
tion. Anomaly detection is based on models of normal user behavior. These models are often 
established through statistical analysis of usage patterns. Deviations from normal usage pat-
terns are flagged as suspicious. Pattern recognition is based upon models of intruder behav-
ior. User activity that matches a known pattern of intruder behavior raises an alarm. 

Requirements for future survivable networks will likely employ additional strategies such as 
self-awareness, trust maintenance, and black-box reporting. Self-awareness is the process of 
establishing a high-level semantic model of the computations that a component or system is 
executing or has been asked to execute. A system or component that understands what it is 
being asked can refuse requests that would be dangerous, would compromise a security pol-
icy, or would adversely affect the delivery of minimum essential services. 

Trust maintenance is achieved by a system through periodic queries among its components 
(e.g., among the nodes in a network) to continually test and validate trust relationships. De-
tection of signs of intrusion would trigger an immediate test of trust relationships. 
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Black-box reporting is a dump of system information that can be retrieved from a crashed 
system or component for analysis to determine the cause of the crash (e.g., a design error or a 
specific intrusion type). This analysis can help to prevent other components from suffering 
the same fate. 

A survivable-system design must include explicit requirements for recognition of attack. 
These requirements ensure the use of one or more of the aforementioned strategies through 
the specification of architectural features, automated tools, and manual processes. Because 
intruder techniques are constantly advancing, recognition requirements should be frequently 
reviewed and continuously improved. 

Recovery Service Requirements. Recovery is a system’s ability to restore services after an 
intrusion has occurred. Recovery also contributes to a system’s ability to maintain essential 
services during intrusion. 

Requirements for recoverability are what most clearly distinguish survivable systems from 
systems that are merely secure. Traditional computer security leads to the design of systems 
that rely almost entirely on hardening (i.e., resistance) for protection. Once security is 
breached, damage may follow with little to stand in the way. The ability of a system to react 
during an active intrusion is central to its capacity to survive an attack that cannot be com-
pletely repelled. Recovery is thus crucial during the exploration and exploitation phases of 
intrusion. 

Recovery strategies in use today include replication of critical information and services, use 
of fault-tolerant designs, and incorporation of backup systems for hardware and software. 
These backup systems maintain master copies of critical software in isolation from the net-
work. Some systems, such as large-scale transaction processing systems, employ elaborate, 
fine-grained transaction roll-back processes to maintain the consistency and integrity of state 
data. 

Adaptation and Evolution Service Requirements. Adaptation and evolution are critical to 
maintaining resistance to ever-increasing intruder knowledge of how to exploit otherwise 
unchanging system functions. Dynamic adaptation permanently improves a system’s ability 
to resist, recognize, and recover from intrusion attempts. For example, an adaptation re-
quirement may be an infrastructure that enables the system to inoculate itself against newly 
discovered security vulnerabilities by automatically distributing and applying security fixes 
to all network elements. Another adaptation requirement may be that intrusion-detection rule 
sets are updated regularly in response to reports of known intruder activity from authoritative 
sources of security information, such as the CERT Coordination Center. 
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Adaptation requirements ensure that such capabilities are an integral part of a system’s de-
sign. As in the cases of resistance, recognition, and recovery requirements, the constant evo-
lution of intruder techniques requires that adaptation requirements be frequently reviewed 
and continuously improved. 

4.2 Architecture and Design 

The architectural level of a Survivable Network Design (SND) method is depicted in Figure 
5. In contrast to treating survivability as an after-the-fact add-on to system architecture and 
design, SND integrates survivability considerations into the development process. The SND 
method is based on the Survivable Systems Analysis process [Ellison 98, Ellison 99b, Mead 
00a] developed and applied by the CERT Coordination Center. 

SND is driven by several of the requirements-specification types depicted in Figure 3, spe-
cifically  

• system/survivability requirements. System requirements define all possible functional 
behavior, plus non-functional properties that a system must satisfy. Survivability re-
quirements identify those elements of functional behavior that represent essential ser-
vices, and elaborate these services in terms of essential service scenarios of use. 

• usage/intrusion requirements. These requirements define all possible system usage under 
normal and adverse circumstances. Intruders are treated as another class of users, and 
representative intrusion scenarios of use are defined. 

• operations/administration requirements. These requirements identify operational proce-
dures and policies (security policies, for example) that must be developed.  
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Figure 5: Architectural Level of a Survivable Network Design Method 

The architectural application of the SND method is embedded within a broader activity of 
architecture definition and tradeoff that seeks to create a system architecture that satisfies all 
required properties, such as performance, capacity, scalability, cost, and maintainability. The 
focus of Figure 5 is on the SND method, in the knowledge that, in practice, this survivability-
specific process will be performed in parallel with other forms of analysis and design, includ-
ing, for example, simulation and rate monotonic analysis to predict performance properties. 
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integrating various forms of analysis and design to create an architecture that best satisfies 
possibly conflicting requirements. The architectural level of SND is composed of three steps, 
as follows: 

Step 1. Architecture Definition: In this step, a proposed architecture is developed based on 
the system mission and requirements. Architectural styles and patterns are selected, and com-
ponents and connectors are defined. Components can be described in terms of functionality to 
be provided and state data to be retained. Typically, specific software elements are identified, 
including protocols, operating systems, execution environments, and applications.    

Step 2. Architecture Analysis: This step investigates the survivability properties of a candi-
date architecture in terms of (1) essential services (services that must be maintained during 
attack); (2) essential assets (assets whose integrity, confidentiality, availability, and other 
properties must be maintained during attack); and (3) mission objectives and the conse-
quences of failure. First, essential service and asset uses are characterized by usage scenarios 
that are mapped onto the architecture as execution traces to identify the set of corresponding 
essential components (components that must be available to deliver essential services and 
maintain essential assets). Next, representative intrusion scenarios are selected based on the 
system environment and an assessment of risks and intruder capabilities. Selections are also 
influenced by the extensive CERT knowledge base of intrusion strategies. These scenarios 
are likewise mapped onto the architecture as execution traces to identify corresponding sets 
of compromisable components (components that could be penetrated and damaged by intru-
sion). In this mapping, the SND method takes into account strengths and weaknesses of 
COTS components, as well as any known security and reliability flaws. Finally, softspot 
components of the architecture are identified as components that are both essential and com-
promisable, based on the previous results.  

Step 3: Survivability Analysis: Softspot components and their supporting architectures are 
then analyzed for the key survivability properties of resistance, recognition, and recovery. At 
this point, survivability strategies and architectural patterns are evaluated for potential use in 
improving the survivability of the candidate architecture. This analysis of the “three Rs” is 
summarized in a Survivability Map. The map is a matrix that enumerates, for every intrusion 
scenario and its corresponding softspot effects, the current and recommended architecture 
strategies for resistance, recognition, and recovery. The Survivability Map provides feedback 
to the original architecture and often results in an iterative process of cost/benefit analysis 
and survivability improvement. It can also provide feedback to system requirements, as new 
understandings and better ideas emerge from the analysis.  

The scenario-based approach in SND is a generalization of operation-sequence [Kemmerer 
91] and usage-scenario methods [Carrol 99, Prowell 99].  
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4.3 Implementation and Verification 

4.3.1 Defensive Coding Strategies  

Many intrusion vulnerabilities turn out to be the result of poor coding practices that result in 
unintended but exploitable program behavior that intruders can employ to gain access. Man-
agement of survivable systems development thus requires that defensive coding standards 
and practices be defined and enforced.  

System specifications typically deal with high-level behaviors under the assumption that pro-
grams operate within the constraints imposed by the semantics of both the specification lan-
guage and the programming or implementation language. In general, specifications assume 
that operation in the mathematical world of real numbers and arbitrarily large integers. How-
ever, programming languages operate with floating-point numbers and integers with a re-
stricted range. Because we would like to show that program behavior is not inconsistent with 
specified behavior, special attention is required to ensure that program operations produce 
values that remain within these ranges and, in the integer case at least, are identical to the 
mathematically expected results. 

Programming languages vary in their treatment of programs that violate these constraints. In 
general, we are concerned with a class of constraints that specifies the legitimate values that a 
variable of a given data type may assume. These, in turn, limit the operations that can be per-
formed on such variables. For example, the result of performing an integer division with a 
divisor of zero is undefined and the result of such a division cannot, in general, be assigned to 
an integer variable. Similarly, the results of arithmetic operations that result in hardware over-
flows are not consistent with the mathematical definitions of the same operations. 

Languages such as Ada provide exception mechanisms that detect attempts to violate lan-
guage assumptions at run time. Programmers can choose to provide code to deal with these 
exceptional conditions and attempt recovery or they can allow the run-time system to termi-
nate the program when a constraint is violated. Languages such as C leave the behavior of 
exceptional programs undefined (or defined by the implementation) and provide little or no 
help to the programmer in either avoiding exceptions or coping with them when they occur. 
The effect of an overflow in a C program is typically to assign a legal, but incorrect, result to 
a variable. Subsequent use of such a result may lead to a cascade of wrong results that culmi-
nates in either erroneous program results being given to a user or in a problem so egregious 
that the program abnormally terminates, perhaps from a hardware addressing error. 

When an array is accessed, the subscript used must reference an element within the declared 
bounds of the array. Similarly, when whole arrays are manipulated (e.g., strings are concate-
nated), it is assumed that the target of the operation is large enough to hold the entire result. 
Since arrays are typically mapped onto contiguous blocks of address space, reading from an 
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address that is not part of the array has one of two effects: (1) the address is not a part of the 
program’s address space at all and some sort of addressing fault occurs, or (2) the address is 
allocated to something else—code, another variable, or unused, but addressable memory 
(slack space). In the first case, an abnormal program termination usually results. In the sec-
ond case, the results are unpredictable unless the precise mapping of code, data, and slack 
space is known. If the array operation is a store, the result could be an unexpected change in 
the value of another variable or the corruption of program code. If one knows how code and 
data are allocated by the compiler and loader, it is possible to use out-of-bounds array opera-
tions to modify code and achieve predictable changes in program behavior. Starting with the 
Morris worm of 1988, this has become a common method for attacking Internet programs. 

For the most part, both scalar- and array-type violations are almost completely avoidable. 
Languages with suitable exception semantics, such as Ada, provide run-time indications of 
attempts to access out-of-bounds array elements. Type-safe languages, such as Java, provide 
similar protections. In C, programmers can code explicit checks to overflows and out-of-
bounds accesses. This is not often done for several reasons. It is commonly thought that such 
checks exact an unacceptable run-time cost. In addition, most programmers simply do not 
think about the ways in which their program could be forced to fail by supplying abnormal 
inputs. Defensive programming techniques can prevent a broad class of program failures that 
result from abnormal inputs. If they are carefully applied, these techniques need not exact a 
significant run-time penalty. In general, the program specification should describe the input 
ranges over which the program is expected to work.  

The first step in constructing a defensive system is to add code to check that the data is within 
the expected range. In the case of arrays or structures, this means reading data in bounded 
chunks. The original Morris worm took advantage of the fact that the fingered program as-
sumed that its input lines would be the correct size (92 bytes) and used a library routine (gets) 
that read until a “newline” character was encountered, placing the characters read into an ar-
ray. A defensive version of this would count characters as it read, discarding inputs that were 
either too short or too long and then making sure that inputs of the correct length had the ap-
propriate structure. 

Once the inputs have been validated, it is usually possible to reason about additional excep-
tions. If the lengths of strings being concatenated have been previously checked, they can be 
safely combined if the target of the concatenation is large enough to hold their combined 
maximum lengths. Similar reasoning applies to exceptions that might arise from arithmetic 
operations. Experience with a variety of programs shows that, aside from the input checks 
(which should always be performed since the inputs are not under the programmer’s control) 
few, if any, additional checks are typically required. Optimizing compilers for type-safe lan-
guages typically perform such reasoning in order to eliminate run-time checks [McHugh 84]. 
These and related techniques are required for systems intended to be evaluated at the higher 
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assurance levels of the Trusted Computer Security Evaluation Criteria [DoD 85], and Young 
and McHugh discuss them in detail [Young 87]. 

Design and code inspections are an excellent method for ensuring uniform application of de-
fensive practices. Inspections can be integrated into the spiral management process as a 
means to reveal and improve development performance and adherence to project standards.  

4.3.2 Correctness Verification 

Most intrusion vulnerabilities are the result of poor programming practices that produce un-
foreseen software behavior which is often useful for intrusion purposes—for example, the 
unintended and widely exploited behavior associated with buffer-overflow problems. The 
first and best line of defense against intrusion is software whose required behavior in all pos-
sible circumstances of use is fully specified, and whose implementation behavior has been 
verified against those specifications.  

Because systems that can be attacked at all levels must be defended at all levels, it is impor-
tant to verify all software components for correctness with respect to specifications. By its 
very nature, testing is insufficient for this purpose. Even small software systems exhibit a 
virtually infinite population of possible executions; even the most carefully conceived pro-
gram of testing can exercise no more than a minute fraction of these executions. All testing is 
really sampling from an essentially infinite population of possible executions. Correctness 
verification, on the other hand, is intended to examine the full functional behavior of soft-
ware, and is not limited to particular execution paths.  

Function-theoretic verification is particularly well suited for this purpose [Linger 99b, Prow-
ell 99]. This approach permits development teams to completely verify the correctness of 
software with respect to specifications. A correctness theorem defines conditions to be met 
for achieving correct software. These conditions are verified through systematic and repeat-
able correctness reasoning patterns applied in special team reviews. While programs contain 
an essentially infinite number of paths, they are composed of a finite number of nested and 
sequenced control structures (sequence, ifthenelse, whiledo, etc.). The Correctness Theorem 
is based on verifying control structures, a finite task, and not on tracing execution paths, an 
open-ended task. This reduction of verification to a finite process permits all software logic to 
be checked for correctness, to help ensure that unforeseen behavior and potential intrusion 
vulnerabilities are eliminated from designs. 

The correctness conditions defined by the Correctness Theorem for the fundamental control 
structures are given in Table 3. The control structures are expressed in generic design lan-
guage format. On the left, each control structure is preceded by a function definition labeled f 
that defines and documents its net effect on data—that is, the specified mapping from domain 
to range that the control structure is to implement. Within the structures, g and h represent 
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operations on data. On the right, the sequence-correctness question involves function compo-
sition, the ifthenelse, case analysis, and the whiledo, a termination argument plus case analy-
sis and function composition combined. Prowell and Stavely provide a full explanation of 
function-theoretic verification [Prowell 99, Stavely 99].    

Table 3: Correctness Conditions for Functional Verification 
Control Structure Correctness Question 

Sequence: 
 
[f] 
do 
    g; 
    h 
enddo 

 
 
Does g followed by h do f? 

Ifthenelse: 
 
[f] 
if 
    p 
then 
    g 
else 
    h 
endif 

 
 
When p is true, 
    does g do f, 
and when p is false, 
    does h do f? 

Whiledo: 
 
[f] 
while 
    p 
do 
    g 
enddo 

 
 
Does the loop terminate, 
and when p is true, 
    does g followed by f do f, 
and when p is false, 
    does doing nothing do f? 

4.4 Testing 

In managing the development of survivable systems, it is important to treat survivability test-
ing on a par with testing for functionality, performance, and other system attributes. Penetra-
tion testing and statistical, usage-based testing are two useful approaches for evaluating sys-
tem survivability.  

4.4.1 Penetration Testing  

Often called “red teams,” groups that engage in penetration testing attempt to compromise a 
system, in a benign manner, to assess the effectiveness of the system’s defenses against cy-
ber-attack. Penetration testing offers a complementary method of assessing the security of a 
system, but it is never a substitute for traditional system testing or certification. Penetration 
testing is carried out with the permission of the organization that owns the system, and within 
the bounds of ground rules specifying what is off limits and what is not. For maximum effec-
tiveness, the test team should be free to use a wide variety of information-gathering tech-
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niques, including scanning tools, social engineering, and dumpster diving, to support its sub-
sequent benign attacks on the system. This allows the team to test the security of the organi-
zation as a whole, of which the system is only a part. 

Incorporating the concept of survivability into the penetration testing approach can greatly 
increase its effectiveness and value. Computer security concepts give the test team little guid-
ance as to what within a system is worthy of attack. Survivability gives much stronger guid-
ance, because only if mission-critical services have been interrupted should the efforts of the 
test team be regarded as successful. Successfully attacking non-essential parts of a system 
does not allow the penetration test team to declare victory. This “strategic” use of penetration 
testing can be tied to a system’s life cycle and to the evolutionary design of survivable sys-
tems. As a system’s mission is modified (i.e., evolves over time), the essential services that 
support the mission may change, thus varying the targets that a penetration test team must 
successfully attack to overcome the system’s survivability strategies. 

4.4.2 Statistical Usage-Based Testing 

As noted earlier, any process of testing can execute only a small sample of possible system 
executions. The problem and opportunity in testing is how to draw the sample. It turns out 
that if the sample is representative of eventual field usage, testing results can provide scien-
tifically valid predictions of field experience with the software. In this approach, testing is 
conducted as a statistical experiment, and the results can be used to predict in statistical terms 
how the software will behave for all the executions not tested. This statistical, usage-based 
approach to testing permits certification of software’s fitness for use, and is fully described in 
Prowell et al.’s book [Prowell 99]. In general terms, the process begins by constructing a us-
age model that enumerates possible software uses and their probabilities of occurrence. Us-
age models are often expressed in terms of formal grammars or Markov chains. The model 
can then be sampled according to the probabilities, to identify a set of test cases that is faith-
ful to the defined probability distribution. These cases can be executed, and their outcomes 
(success or failure) used to predict eventual field experience with the software. 

In the context of testing for survivability, intruders can be treated as simply another class of 
system users. Intruder usage can be integrated into a usage model along with legitimate us-
age. When the model is sampled, intrusion usage will appear in the test cases together with 
legitimate usage. Success or failure of intrusion uses can be used to evaluate and predict sur-
vivability properties in field use.   

4.5 System Evolution 

Evolutionary design is an important concept that permeates the life cycle of all complex in-
formation systems, but evolution plays a particularly crucial role in the life cycle of surviv-
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able systems. That is because the primary focus of information survivability is on protecting a 
system’s mission from the malicious actions of intelligent adversaries. The capabilities of 
intelligent adversaries are not static, but evolve over time in strength and pervasiveness. The 
sophistication of attack techniques is constantly evolving. Both awareness of these techniques 
and automation support in the form of readily available attack scripts and toolkits are con-
tinually diffusing throughout the Internet. Moreover, the CERT Coordination Center and 
other incident-response teams are seeing evidence of an improvement in the software engi-
neering techniques employed in the design of some recent attack scripts. All this translates 
into an ever-escalating arms race between attackers and defenders that will continue as long 
as networked software systems exist. 

Survivability is fundamentally a discipline that blends computer security with business risk 
management [Lipson 99]. Perpetual system evolution, based on continual risk assessment 
over the course of the system life cycle, is central to the design of survivable systems. In a 
typical maintenance environment, the original architectural vision is not preserved and the 
integrity of the system degrades over time. In the absence of the perpetual, risk-managed evo-
lution of a system’s design, the security and survivability of the system will also degrade over 
time. For example, new vulnerabilities in many systems’ underlying COTS components are 
continually being discovered, and system configurations drift from their optimal settings. 
Mission and survivability requirements can change and may no longer be reflected in the de-
sign of the existing system. Finally, as stated above, attack techniques are continually evolv-
ing and may exceed a system’s capacity for automatic adaptation. 

We distinguish the evolutionary design of survivable systems from straightforward (possibly 
automated) adaptation and maintenance activities, such as updating virus definitions, adding 
new rules and attack patterns to a system’s intrusion-detection facility, tuning a firewall, or 
monitoring security advisories and patching announced security vulnerabilities in COTS 
components. On the other hand, more complex maintenance activities, which may include 
new or enhanced capabilities, would be considered part of evolutionary design. The success-
ful evolutionary design of survivable systems is dependent upon the establishment of a “sur-
vivability watch” activity, which involves the continual monitoring of the system and its en-
vironment to detect changes that may affect the risk-management assumptions upon which 
the survivability of the system is founded. This argues strongly for the formation of a surviv-
ability risk-assessment team (SRT), which would be responsible for the survivability watch 
activity within the system design team. The resources devoted to the SRT and survivability 
watch will depend upon executive management’s risk tolerance and their perception of the 
cost–benefit ratio for this activity. 

Risk assessments for survivability require a broad range of perspectives and skills, and so the 
members of the SRT must be drawn from all levels of an organization (executive manage-
ment, application domain experts, computer security experts, and other stakeholders, includ-
ing customers). SRTs for particular industry or government sectors can be formed to provide 
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some generic assistance for organizational SRTs, but the mission-sensitive nature of surviv-
ability means that SRTs at the organizational level must bear the ultimate responsibility for 
survivability risk assessment. 

We use the term “risk-assessment triggers” to refer to the elements of a system or its envi-
ronment that an SRT should monitor, looking for changes that can affect the risk-
management assumptions that underlie a system’s survivability. It is up to the SRT to deter-
mine if a particular change or set of changes will trigger an evolutionary design activity and 
to decide upon the extent of that activity. Table 4 contains a representative set of risk-
assessment trigger elements that an SRT might track for changes. Trigger events include 
changes in attack techniques, mission, management, staff, customers, and technological and 
legal environments.  

Table 4: Trigger Elements for Evolutionary-Design Activities for Survivable 
Systems 

Trigger Elements for 
Evolutionary Design Activity Examples 

Attack techniques A new attack technique or variation has been discovered for which 
the system cannot adapt automatically or cannot be protected 
through routine maintenance (e.g., simply by adding a new rule for 
resistance, recognition, or recovery). 

Mission, essential services, essential quality 
attributes, key information resources and as-
sets 

The organization’s mission has changed or the system will be pur-
chased and deployed by other organizations with different missions. 

Customers New customers may be less known (hence less trustworthy), may 
require more extensive access to information resources and assets, 
or may require a higher quality of service (e.g., increased availabil-
ity) than previous customers required. 

Management New executive management may differ in its tolerance for risk and 
its risk-management strategies. 

Workflow and processes Changes in organizational processes to which the system contrib-
utes may affect the overall survivability of the mission. There may 
be new ways to attack the system or human-machine interface. 

Organizational staff Turnover may result in reduction of staff expertise, which may 
stress the survivability of the system. In a rapidly growing organiza-
tion, new staff may be less worthy of trust than previous staff (e.g., 
there may be less time for background checks or employees may be 
stationed more remotely). 

Vendors A new vendor for a system component may require remote mainte-
nance and trusted access. 

Collaborators A partner on one project may be a competitor on the next. 

Dependencies and interdependencies Increases in dependency upon a system may be brought on by the 
elimination of manual processes, staff positions, or legacy systems, 
which means there is no longer an alternative if the system fails. 
Another example is the steadily increasing interdependency among 
the nation’s critical infrastructures. 
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Trigger Elements for 
Evolutionary Design Activity Examples 

Technology A change in the technological environment in which a system oper-
ates can reduce the effectiveness of a given security or survivability 
strategy. (This includes changes in the unbounded systems envi-
ronment, new security techniques, and changes in the availability 
and knowledge of technology in the application domain.) 

Threat environment More aggressive industrial competitors or increases in nation-state 
sponsored cyber-terrorism may require additional system resources 
to be devoted to survivability. 

System components A COTS component that is no longer supported may have been 
replaced with a new component whose contribution, positive or 
negative, to system survivability must be evaluated. 

Usage, functionality, access, or quality of 
service 

New means of access to a system (e.g., wireless), new ways of us-
ing an existing system, or new expectations for quality of service 
can affect a system’s survivability. 

Cost, profit, and other economic factors Changing cost factors may threaten or improve a system’s surviv-
ability by affecting the cost–benefit ratio associated with various 
survivability solutions (e.g., risk mitigation strategies). Afforda-
bility is a primary factor that is traded off against survivability. 
Lowered component cost can lead to an evolutionary redesign pro-
viding increased redundancy and diversity to support greater sur-
vivability. Increased stockholder demands for short-term profits 
may tilt survivability requirements toward higher risk. 

Legal environment Use of a system in a new and stricter jurisdiction may increase the 
risks of liability and threaten survivability. New laws, increased 
enforcement of existing laws, or lawsuits can change the risk equa-
tion and threaten the mission. 

Government regulation Changes in government regulations to support increased privacy, 
safety, competition, or quality of service may trigger the need to 
modify a system’s design to ensure its continued survivability. (For 
example, deregulation of the U.S. electric power system increases 
competition, but may decrease reliability.) 

Certification requirements or standards Business interruption insurance that covers cyber-attacks may de-
pend on certification of the survivability of a system or on demon-
stration that it meets a minimum standard. Thus, new or changed 
standards or certification requirements may affect survivability. 

Political and social environment Changes in privacy concerns, trust relationships, or the overall risk 
tolerance of society will affect the survivability requirements of 
critical national infrastructures upon which society depends. 

Operational experience (attacks, accidents, 
and failures) 

Feedback from field use may lead to the discovery of new threats to 
a system’s survivability or may reveal deficiencies. 

Results of periodic penetration testing and 
survivability evaluations (SSAs) 

Troublesome results from regularly scheduled red team penetration 
testing and security/survivability evaluations can trigger awareness 
of the need for evolutionary improvements. 

A change in one or more of the trigger elements can initiate any of a broad range of evolu-
tionary design activities described in Table 5, ranging from no action at all, to performing one 
or more survivability life-cycle activities, to abandonment of a system. The SRT would initi-
ate the design activities, but the system design team would be responsible for performing 
them. 
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Table 5: Possible Evolutionary-Design Activities in Response to a Trigger Event 
Evolutionary Design Activity Example 

No action needed or taken. Executive management sees no new threat to a system’s mis-
sion posed by greatly increased hiring activity, because all 
new hires are subject to thorough background checks. 

No action taken, but increase monitoring of this 
trigger (or set of triggers). 

Increase resources devoted to monitoring feedback from the 
field, in response to evidence from operations indicating a 
performance slowdown resulting from a rare combination of 
customer actions.  

Further analysis needed; generate scenarios for a 
Survivable Systems Analysis (SSA) or carry out 
penetration testing to determine next activity, if 
any. 

Create new scenarios that reflect the usage patterns of a new 
type of customer. Use these scenarios to perform an SSA, the 
results of which may drive additional evolutionary design 
activities. 

Perform a portion (delta) of one or more survivabil-
ity life-cycle activities. 

A small change to the system architecture increases resis-
tance to a new attack scenario. 

Perform a portion (delta) of each of the full set of 
survivability life-cycle activities. 

A modification to the mission touches all survivability life-
cycle activities to some extent.  

Abandon the system and do a full redesign. A major change in the technology of the application domain, 
coupled with sweeping improvements in defensive technol-
ogy, cannot be incorporated by evolutionary design activities 
alone. 

Abandon the system. A drastic change in the mission renders the system obsolete. 

 

For example, a computer security expert on the SRT learns of a new attack technique that 
might threaten the survivability of the existing system. Assume that this new attack technique 
cannot be countered by straightforward maintenance activities such as applying a security 
patch to a system component or adding a new rule to the firewall. Based on the new attack 
technique, the security expert generates a set of new attack scenarios to be used as an input 
delta to a Survivable Systems Analysis (SSA) of the existing system. If deficiencies in the 
system’s resistance, recognition, or recovery are discovered, then one or more survivability 
life-cycle activities (such as a modification of the system architecture, or a change in surviv-
ability requirements) will be required.  

The completion of one survivability life-cycle activity may trigger the need for another. Ad-
justments in the design tradeoffs with other quality attributes in the system may also be called 
for. The point at which the evolutionary design process stops is dependent upon the risk tol-
erance of an organization, and the perceived cost–benefit ratio, with respect to the particular 
set of trigger events. If evolution is not feasible, the organization may tolerate the risk, or 
seek other alternatives that transcend the system. 

It is imperative that the evolutionary design activities take place in the context of full access 
to a comprehensive set of artifacts of the design process (such as descriptions of the rationale 
for tradeoffs made during the last design cycle). Continuity of the design team is particularly 
crucial for the evolutionary design of survivable systems, so that the mission-specific design 
expertise can be sustained throughout the life of the system. Otherwise, the evolutionary de-
sign process may degenerate into a “patching” approach that can never support the long-term 
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survivability of systems. Just as survivability must be designed into a system from the begin-
ning and not added on later as an afterthought, long-term survivability cannot be sustained 
through patching or routine maintenance, but only through the continual incorporation of new 
survivability solutions through a principled evolutionary design process. 
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5 COTS Development Life-Cycle Activities 

Historically, computer security has been based on the use of a collection of generic tools and 
approaches that provide a fortress or perimeter defense for the applications being protected. 
For the most part, these security solutions were an add-on or afterthought. Moreover, the 
open, unbounded, highly vulnerable, highly collaborative Internet environment renders for-
tress models largely ineffective. Survivability may be thought of as a software engineering 
approach that integrates computer security into the software design and development process 
from the beginning. It protects the application-specific mission, provides recognition of prob-
lems that cannot totally be prevented, and provides recovery schemes when attacks (or acci-
dents or component failures) cannot be completely avoided. Business risk management and 
engineering trade-offs are an inherent part of the development process for survivable systems. 

Hence, survivability strategies must be integrated throughout the software development life 
cycle. This poses a particularly strong challenge for COTS-based software development. The 
implications for the development of survivable COTS-based systems are daunting. With the 
fortress or perimeter-based model of computer security, a COTS-based system could be de-
veloped with little or no regard to computer security concerns, and then a COTS-based pe-
rimeter defense (commercial firewalls plus a commercial encryption package, etc.) could be 
added to improve security. However, survivability is a global system property that emerges 
from the interactions among the system components and is difficult enough to discern when 
the internals of the components are completely known. With COTS, many of the software 
quality attributes are unknown and difficult to analyze without access to the source code or 
other artifacts of the software engineering process. 

Our long-term goal is to create practical software development methodologies for building 
secure and survivable COTS-based systems. We plan to investigate two complementary areas 
of software engineering research: (1) survivability for traditional (i.e., custom) software de-
velopment activities and (2) COTS-based system life-cycle activities. 

Earlier in this report, we discussed our research work on development methodologies for sur-
vivable systems focused on the traditional software development life cycle and associated 
survivability activities. Unfortunately, these traditional life-cycle activities (augmented with 
survivability elements) cannot be directly applied to the development of COTS-based sys-
tems. As stated earlier, COTS-based systems pose special and severe challenges to any soft-
ware development team. The foremost challenge is dealing with extremely limited informa-
tion about the software quality attributes of the COTS products that are under consideration 
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for use as system components. Typically, none of the artifacts of the traditional software en-
gineering process (source code, design rationale, test suites and test results, and so forth) are 
readily available. For a typical COTS product, it is therefore nearly impossible to discern the 
engineering tradeoffs that were made (explicitly or implicitly) among the various attributes of 
software quality (performance, security, reliability, maintainability, usability, etc.). Needless 
to say, this is a severe disadvantage for a development team that is trying to build a surviv-
able system out of COTS components.  

One useful step is an extension of the spiral life cycle model to incorporate survivability ac-
tivities. This is shown in Figure 6. 
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Figure 6: Spiral Life-Cycle Model with Survivability Activities 

Imposing a principled software engineering process on the development of COTS-based sys-
tems has been the focus of earlier research on COTS-based system life-cycle activities 
[Brownsword 00, Oberndorf 00]. Although security and survivability concerns were not ex-
plicitly addressed in this earlier work, the research serves as a foundation (along with ongo-
ing research on survivability for traditional life-cycle activities) for a development methodol-
ogy for building survivable COTS-based systems.  
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The COTS-based system (CBS) life cycle includes four activity areas, each of which has sev-
eral subareas [Oberndorf 00]:  

• Engineering Activity Area: System Context, Architecture and Design, Marketplace, Con-
struction, Configuration Management, Deployment and Support, Evaluation 

• Business Activity Area: COTS Business Case, COTS Cost Estimation, Internal Supplier 
Relationships, Vendor Relationships 

• Project-wide Activity Area: CBS Strategy, COTS Risk-Management, CBS Trade-offs, 
Information Sharing, Cultural Transition 

• Contract Activity Area: Contract Requirements, Contract Tracking and Oversight, Solici-
tation, License Negotiation 

Each subarea includes a set of activities. The complete set of activities is shown in Table 6. 
(Note that activities within an activity area are not sequential except where indicated.) 

Table 6: CBS Life-Cycle Activities 
Engineering Activity Area Activities 

System Context Determine and prioritize negotiable and non-negotiable elements of the sys-
tem context. 

Understand the essential elements of the end-users’ business processes. 

Modify end-user processes. 

Negotiate system context changes. 

Reflect the results of trade-offs. 

Periodically reexamine business processes. 

Architecture and Design Select candidate products. 

Create and evolve architecture/design representation. 

Validate the architecture. 

Reflect results of trade-offs. 

Understand and reflect marketplace impact. 

Marketplace Create and maintain current knowledge of the available and emerging mar-
ketplace. 

Re-explore the marketplace. 

Alert technical staff to promising new technologies. 

Construction (includes coding, 
integration, testing) 

Discover and characterize product features. 

Create glue code. 

Integrate and test the system early and continuously. 

Continuously determine the effect of product upgrades. 

Configuration Management Identify configuration baselines. 

Receive and process upgrades. 

Systematically control changes. 

Release new system versions. 

Coordinate with construction. 

Deployment and Support Plan support.  

Plan system deployments. 
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Plan and accommodate the need for end-user support. 

Incorporate new product releases. 

Coordinate with suppliers. 

Manage licenses. 

Perform site-specific tailoring. 

Plan and manage for multiple releases. 

Coordinate and engineer multiple supplier releases with your releases. 

Evaluation Plan evaluation. 

Design evaluation. 

Locate potentially relevant candidates. 

Perform appropriate analyses for selection of technologies or products. 

Document and share acquired information. 

Business Activity Area Activities 

COTS Business Case 
(Note: These activities are sequen-
tial.) 

Determine critical success factors for the system. 

Conduct a preliminary feasibility study. 

Identify key CBS assumptions. 

Articulate the alternatives. 

Formulate CBS strategic plans. 

Analyze CBS financial implications. 

Analyze alternatives. 

Revisit the COTS business case. 

COTS Cost Estimation  Identify cost factors. 

Select and calibrate COTS cost-estimation models. 

Estimate costs. 

Provide cost estimates in support of other activity sets. 

Track actual costs vs. estimates. 

Maintain COTS cost-estimation models. 

Internal Supplier 
Relationships 

(written for government) 

Vendor Relationships Understand and monitor the vendor’s long-term approach for maintenance 
and support. 

Develop a strategy to create and manage vendor relationships. 

Engage in meetings and exchanges with vendors. 

Establish liaisons for other vendor customers. 

Coordinate organization-wide vendor relationships. 

Encourage and facilitate working relationships among vendors. 

Project-Wide Activity Area Activities 

CBS Strategy Identify CBS goals, constraints, and assumptions. 

Identify COTS-related risks. 

Identify relevant market segments. 

Identify alternative COTS-based solutions. 

Assess, evaluate, and trade off alternative COTS-based solutions. 

Recommend an overall CBS strategy. 

Create a corresponding CBS plan. 

Reassess and revise the acquisition strategy and plan. 
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COTS Risk Management Identify and prioritize COTS-related risks. 

Analyze COTS-related risks. 

Plan and institute COTS risk mitigations. 

Track COTS-related risks. 

Revisit CBS risk management success regularly. 

CBS Trade-offs Determine organization and contractor roles.  

Identify where CBS trade-offs are needed. 

Gather sufficient information to make informed COTS-related trade-offs. 

Select or make an appropriate CBS resolution. 

Communicate the resolution. 

Information Sharing Determine information collection and sharing strategies. 

Actively monitor the use of information you provided for 
sharing. 

Seek CBS information from outside sources. 

Ensure collection of CBS information. 

Make your CBS information readily accessible to others. 

Manage CBS information. 

Build information sharing into your processes. 

Cultural Transition Assess CBS readiness of your organization. 

Identify the skills sets needed for CBS success. 

Train everyone. 

Secure CBS buy-in of senior executives. 

Develop and implement a CBS cultural-transition strategy. 

Identify and encourage CBS champions. 

Provide incentives for changing. 

Share information. 

Contract Activity Area Activities 

Contract Requirements (skills 
needed) 

Address COTS-specific requirements in contract requirements. 

Appraise requests for contract changes to determine their effect on COTS 
products. 

Contract Tracking and Oversight Use testbeds and pilots to provide visibility. 

Involve the end-user community in pilots. 

Solicitation Prepare cost and schedule estimates for products. 

Prepare for the evaluation of responses. 

Conduct proposal evaluation. 

License Negotiation  Conduct a preliminary investigation of licensing alternatives and costs. 

Secure a budget. 

Negotiate the licenses. 
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6 COTS Development Life-Cycle Activities 
and Survivability 

For COTS-based systems (CBS), a survivability strategy can provide the framework for a 
specific set of survivability activities to be associated with the CBS life-cycle activities de-
scribed previously in Table 6. The strategy should provide a framework for activities that are 
aimed at both process and product. For example, such a strategy should address policy as 
well as technical issues. Feasibility studies should be undertaken to determine whether COTS 
products can meet survivability requirements. Vendor evolution plans should be examined to 
determine whether the COTS products that currently meet survivability requirements will 
evolve in such a way as to continue to do so. 

6.1 CBS Survivability Activities 

We have made some modifications to the CBS activity areas and have populated a matrix 
with associated survivability activities [Mead 01]. The slightly revised CBS activity areas and 
subareas are 

• Engineering Activity Area: System Context, Enterprise Architecture and Design, Market-
place, Construction, Configuration Management, Deployment and Sustainment, Evalua-
tion 

• Business Activity Area: COTS Business Case, COTS Cost Estimation, Vendor Relation-
ships 

• Project-Wide Activity Area: CBS Strategy, COTS Risk Management, CBS Trade-offs, 
Information Sharing, Cultural Transition, Policy 

• Contract Activity Area: Contract Requirements (skills needed), Contract Tracking and 
Oversight, Solicitation, License Negotiation 

A complete set of CBS activity areas supplemented with survivability activities is shown in 
Table 7. 
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Table 7: COTS Life-Cycle Activities Tailored to Survivability 
Engineering Activity Area Survivability Activities 

Understand your overall business mission and its consequences in terms of sur-
vivability, survivability requirements, and essential services.   

Understand constraints such as existing networks, management issues, etc.  

Understand intrusion environment and potential intrusion scenarios.  

Understand survivability strategies of other systems external to this one.  

Periodically reexamine survivability context and requirements, and business 
processes as related to survivability, and trace the changes. 

System Context 

Policy: Develop or modify overall policy to include survivability aspects.  

Refine overall survivability strategy in the architecture area.  

Use Survivable Systems Analysis, Survivable Network Design.   

Use survivability styles and strategies to guide architecture (Internal note:  
consider loose coupling and encapsulation).   

Understand survivability consequences of selected products.  

Incorporate survivability capabilities of selected products.  

Consider vulnerabilities outside specific components that may be part of the 
normal process, in both systems and operations.  

Enterprise Architecture and 
Design 

Policy: Consider the business processes that support technology and are essen-
tial for survivability.  

Marketplace Remain current on new survivability techniques.   

Revisit the marketplace with survivability in mind.   

Alert staff to survivability consequences and capabilities of new technologies. 

Use defensive coding strategies, correctness verification, penetration testing, 
statistical testing.  

Continuously determine the impact of product upgrades on survivability.  

Consider integration and interoperability relative to survivability.  

Consider tailoring and its impact on survivability.  

Take preservation of properties into account.  

Develop a survivability argument.  

Construction (includes coding, 
integration, testing) 

Policy  

Ensure that changes and upgrades do not negatively impact survivability. Use a 
configuration management scheme that will make survivability aspects visible.  

Configuration Management 

Policy  

Deployment and Sustainment Establish a survivability watch activity and a survivability risk assessment team. 
Consider vendor product evolution, technology evolution, and system evolution.  

Examine new products and new product releases for survivability.  

Look at long-term evolution and its survivability consequences; maintain and 
improve survivability.  

Adjust/react to technical decisions that partners and customers have made. 

Evaluation Assess the success of the survivability strategy.    

Perform survivability analyses for selection of technologies or products.  

Document and share acquired information.  
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Business Activity Area Survivability Activities 

Assess whether or to what extent COTS can support needed survivability fea-
tures.   

Assess whether you can neutralize undesired side effects, e.g., automatic up-
grades by the vendor. 

Assess duplication of effort/interoperability from a survivability viewpoint (e.g., 
does the vendor require separate password files that need separate mainte-
nance?). 

Assess the cost impact of attacks. 

Determine critical survivability success factors for the system.   

Understand the financial implications and revisit the business case. 

Revisit the business case if critical sensitivity analysis factors change. This ap-
plies to both system and processes. 

COTS Business Case 

Policy 

COTS Cost Estimation  Use survivability as a cost factor in selected cost estimation models.   

Estimate cost impact of building in survivability or acquiring survivable COTS 
products for the threat environment. 

Internal Supplier Relation-
ships 

 

Vendor Relationships Develop a strategy to assess vendors relative to survivability.   

Encourage and facilitate survivability discussions among vendors. 

How well-positioned are the vendors relative to where you want to go? 

Will they continue to be players in the long term? 

Project-Wide Activity Area Survivability Activities 

CBS Strategy Develop an overall survivability strategy. 

Develop a survivability plan. 

Identify needed survivability features.   

Examine alternative COTS-based solutions for survivability. 

COTS Risk Management Apply OCTAVE as part of the risk management scheme.  

Track top survivability risks in addition to overall system risks. 

CBS Trade-offs Assess survivability features of COTS products under consideration.   

Trade off survivability against required attributes in a project-wide context. 

Information Sharing Collect information about the threat environment and the survivability of CBS 
products and make it accessible to others. 

Include stakeholders and technical staff. 

Cultural Transition Identify survivability champions and ensure stakeholder buy-in to survivability 
needs.   

Provide awareness training on survivability to all personnel and in-depth train-
ing as needed. 

Keep in mind that the transition from security to survivability may be threaten-
ing to the traditional security staff, and obtain their participation and buy-in. 
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Contract Activity Area Survivability Activities 

Contract Requirements (skills 
needed) 

Consider vendor and other contractor (e.g., integration, network) experience in 
survivability, and specify survivability in contract requirements. 

Contract Tracking and Over-
sight 

Get visibility into the survivability of COTS products. 

Have the ability to adjust contracts to reflect survivability changes, particularly 
relative to threats. 

Monitor COTS vendor performance relative to survivability requirements. 

Obligate contractors to share risks. 

Have the ability to audit/assess contractor systems. 

Solicitation Establish survivability evaluation criteria for vendor-provided products and 
services. 

Include survivability in cost and schedule estimates and in evaluation criteria. 

License Negotiation  Determine whether survivability should be part of the license agreement.   

Evaluate survivability expectations in the event of expiration or change. 

 

As an example, we provide some further detail on the System Context subarea. 

6.2 System Context Survivability Issues 

The ability to design and develop a survivable system depends in large measure on a thor-
ough understanding of the context in which that system operates. The most salient character-
istic of that context is the overall business mission that the system is designed to support. 
Ultimately it is the business mission that must survive, not any particular subsystem, compo-
nent, or technology [Lipson 99]. Traditional computer security is based on a binary view of 
attack and defense, where an attack is either completely repelled or the attack succeeds and 
the system is compromised. In the open, highly-distributed, Internet environment of today, a 
perfect defense is impossible. In contrast, a survivable system degrades gracefully under at-
tack, and continues to provide essential services even if one or more of its components is 
compromised. Survivability depends not only on a system’s ability to resist attack, but also 
on its ability to recognize the effects of an attack, and its ability to recover from attacks that 
cannot be completely repelled. Elicitation of survivability requirements, which includes an 
enumeration and description of the essential services that a system must continue to provide 
in the face of attacks, is a critical early step in the development process.  

System architects and engineers must also be aware of the contextual constraints imposed on 
the design by factors such as existing networks and technology that must function smoothly 
(or at least adequately) with the new system; management issues, including limitations on 
project funding, resources, and time to completion; and of course a finite set of existing 
COTS products from which to build the new survivable system. The use of widely available 
COTS products reduces costs, but their generic, mass-market, low-cost design makes it 
unlikely that such products will meet the specific survivability requirements of a particular 
application or system, particularly right out of the box. A crucial survivability activity, later in 
the design process, is to understand the survivability consequences of selected products. The 
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unavailability of source code, design rationale, and other engineering artifacts associated with 
COTS products makes them difficult to analyze for survivability, and for other attributes of 
software quality. 

The threat environment and potential attack scenarios are additional aspects of the system 
context that must be considered in great detail. Survivability is a context-sensitive quality, 
and a system cannot be analyzed for survivability without an in-depth understanding of the 
mission, who and what would likely threaten that mission, and likely scenarios of the circum-
stances under which attacks on the system (and its mission) can be carried out. For example, 
a particular implementation of a cryptographic algorithm might be sufficient for protecting 
the daily transactions of a typical retailer on the Internet, but might be wholly inadequate to 
protect inter-bank transactions. Attack scenarios involving a banking system would posit a 
much greater use of resources by a potential attacker than would the scenarios for an attack 
on a low-profile retailer. 

Another key aspect of the system context concerns the survivability strategies of external sys-
tems that the system depends on. Such external systems include local and global infrastruc-
tures. When a target system is heavily defended, a common attack strategy is to attempt to 
disrupt systems that provide services to the well-defended target. Hence, a survivability de-
sign strategy (and the risk-management analyses that support it) must consider the survivabil-
ity of external systems, including those belonging to business partners, suppliers, customers, 
and collaborators. Survivability solution strategies should specify alternative means of ob-
taining the external services needed by the system, perhaps with a degraded but still accept-
able quality of service. 

Changes in a system’s context are inevitable, and a survivable system must evolve over time 
to address those changes, or the survivability and security of the system will degrade. A peri-
odic reexamination of the system context, including the underlying implementation technol-
ogy, business mission, survivability requirements, and supporting policies and processes, is a 
critical part of the survivable system development life cycle. Addressing the results of this 
periodic reexamination is even more important for developing and sustaining the survivabil-
ity of COTS-based systems. First, survivability strategies are based on the notion of an intel-
ligent adversary, and so new vulnerabilities are continually being discovered in the underly-
ing implementation technology, as are new means of exploiting such weaknesses. The 
pervasive distribution of many COTS-based systems makes them widely available for ex-
perimentation by hackers, and a COTS product vulnerability discovered in one system con-
text can typically be exploited in many other systems that use that COTS product as a com-
ponent. Second, the release schedule of a COTS component is typically not under the control 
of the design team of a COTS-based system. Upgrading quickly to the newest release may be 
a necessity to continue to meet some functional or non-functional system requirement, but the 
survivability implications of the upgrade will have to be evaluated (without the benefit of 
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engineering artifacts from the COTS component upgrade that would make the implications 
easier to discern). 

Finally, a survivable system is dependent not only upon technology, but also upon the busi-
ness policy and human processes that support the overall mission. System designers and de-
velopers must understand the policy context in which the system operates, or the survivability 
of the system will be at risk.    

 



CMU/SEI-2002-TR-026 51 

7 Future Research Opportunities 

Many extensions of this work are possible. The larger context for survivability, system and 
COTS-based life-cycle models and their associated activities, could be investigated further. 
For example, one could expand upon and refine the CBS survivability activities, and reflect 
changes back to the CBS activity areas and subareas. Each of the activities could be de-
scribed in much greater detail, along with examples and case studies, to provide a practical 
framework for building survivable CBS. This would allow CBS developers to begin to en-
hance and sustain system survivability. Our investigation of the survivability of CBS is part 
of an overall research activity into methods for survivable systems that can be incorporated 
into various life-cycle phases. 

Some of the methods referenced in the activity areas are part of our research plan. A key next 
step for survivability evolution is to develop more powerful abstractions and reasoning meth-
ods for defining the behavior and structure of large-scale distributed systems. Such results 
will enable more comprehensive analysis of essential service and intrusion traces while limit-
ing complexity. In addition, improved representations and methods are required for defining 
intrusions. It is important to move beyond the limitations of natural language and to develop 
uniform semantics for intrusion usage that permit more rigorous analysis and even allow for 
the application of computational methods. 

Another fruitful line of research involves developing standardized architectural styles or tem-
plates for survivability strategies that can be inserted and composed with system architectures 
to improve their survivability properties. Such templates can be independently analyzed to 
define and document their contribution to system survivability. 
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