
Life-Cycle Models
for Survivable Systems

Richard C. Linger
Howard F. Lipson
John McHugh
Nancy R. Mead
Carol A. Sledge

October 2002

TECHNICAL REPORT
CMU/SEI-2002-TR-026
ESC-TR-2002-026

Pittsburgh, PA 15213-3890

Life-Cycle Models
for Survivable Systems

CMU/SEI-2002-TR-026
ESC-TR-2002-026

Richard C. Linger
Howard F. Lipson
John McHugh
Nancy R. Mead
Carol A. Sledge

October 2002

Networked Systems Survivability Program

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2002-TR-026 i

Table of Contents

Acknowledgments ...vii

Abstract...ix

1 Survivability and the System Life Cycle ..1

2 Survivability Concepts ..3
2.1 The New Network Paradigm: Organizational Integration3

2.2 The Definition of Survivability ..4

2.3 Characteristics of Survivable Systems...5

2.4 Survivability as an Integrated Engineering Framework9

3 System Development Life-Cycle Models ...11
3.1 The Spiral Model ... 11

3.2 A Spiral Model for Survivable Systems Development...............................13

4 System Development Life-Cycle Activities and Survivability.....................17
4.1 Requirements and Specification ..17

4.1.1 Expressing Survivability Requirements ..18
4.1.2 Requirements Definition for Essential Services............................22
4.1.3 Requirements Definition for Survivability Services23

4.2 Architecture and Design ..26

4.3 Implementation and Verification...29
4.3.1 Defensive Coding Strategies..29
4.3.2 Correctness Verification...31

4.4 Testing...32
4.4.1 Penetration Testing..32
4.4.2 Statistical Usage-Based Testing ..33

4.5 System Evolution...33

5 COTS Development Life-Cycle Activities...39

6 COTS Development Life-Cycle Activities and Survivability........................45
6.1 System Context Survivability Issues ..48

ii CMU/SEI-2002-TR-026

7 Future Research Opportunities.. 51

References... 53

CMU/SEI-2002-TR-026 iii

List of Figures

Figure 1: A Project Spiral Cycle..13

Figure 2: Specialization of the Spiral Model for Survivability Driver.......................14

Figure 3: Classes of Requirements for Survivable Systems19

Figure 4: Integrating Survivability into System Requirements...............................20

Figure 5: Architectural Level of a Survivable Network Design Method..................27

Figure 6: Spiral Life-Cycle Model with Survivability Activities................................40

iv CMU/SEI-2002-TR-026

CMU/SEI-2002-TR-026 v

List of Tables

Table 1: Key Properties of Survivable Systems...7

Table 2: Life-Cycle Activities and Corresponding Survivability Elements.............17

Table 3: Correctness Conditions for Functional Verification32

Table 4: Trigger Elements for Evolutionary-Design Activities for Survivable
Systems ..35

Table 5: Possible Evolutionary-Design Activities in Response to a
Trigger Event...37

Table 6: CBS Life-Cycle Activities ...41

Table 7: COTS Life-Cycle Activities Tailored to Survivability46

vi CMU/SEI-2002-TR-026

CMU/SEI-2002-TR-026 vii

Acknowledgments

The authors are grateful for the excellent editorial support provided by Pamela Curtis.

viii CMU/SEI-2002-TR-026

CMU/SEI-2002-TR-026 ix

Abstract

Today’s large-scale, highly distributed, networked systems improve the efficiency and effec-
tiveness of organizations by permitting whole new levels of organizational integration. How-
ever, such integration is accompanied by elevated risks of intrusion and compromise. Incor-
porating survivability capabilities into an organization’s systems can mitigate these risks.
Current software development life-cycle models are not focused on creating survivable sys-
tems, and exhibit shortcomings when the goal is to develop systems with a high degree of
assurance of survivability. If addressed at all, survivability issues are often relegated to a
separate thread of project activity, with the result that survivability is treated as an add-on
property. For each life-cycle activity, survivability goals should be addressed, and methods to
ensure survivability incorporated.

This report explains survivability concepts, describes a software development life-cycle
model for survivability, and illustrates techniques that can be applied during new develop-
ment activities to support survivability goals. It also describes a software life-cycle model
and associated activities to support survivability goals for systems based on commercial off-
the-shelf products.

x CMU/SEI-2002-TR-026

CMU/SEI-2002-TR-026 1

1 Survivability and the System Life Cycle

Today’s large-scale, highly distributed networked systems improve the efficiency and effec-
tiveness of organizations by permitting whole new levels of organizational integration. How-
ever, such integration is accompanied by elevated risks of intrusion and compromise. Incor-
porating survivability capabilities into an organization’s systems can mitigate these risks. As
an emerging discipline, survivability builds on related fields of study (e.g., security, fault tol-
erance, safety, reliability, reuse, performance, verification, and testing) and introduces new
concepts and principles. Survivability focuses on preserving essential services, even when
systems are penetrated and compromised [Anderson 97].

Current software development life-cycle models are not focused on creating survivable sys-
tems, and exhibit shortcomings when the goal is to develop systems with a high degree of
assurance of survivability [Marmor-Squires 88]. If addressed at all, survivability issues are
often relegated to a separate thread of project activity, with the result that survivability is
treated as an add-on property. This isolation of survivability considerations from primary sys-
tem-development tasks results in an unfortunate separation of concerns. Survivability should
be integrated and treated on a par with other system properties, to develop systems with re-
quired functionality and performance that can also withstand failures and compromises. Im-
portant design decisions and tradeoffs become more difficult when survivability is not inte-
grated into the primary development life cycle. Separate threads of activities are expensive
and labor intensive, often resulting in duplicated effort in design and documentation. In addi-
tion, tools for supporting survivability engineering are often not integrated into the software-
development environment. With separate threads of activities, it becomes more difficult to
adequately address the high-risk issues of survivability and consequences of failure. In addi-
tion, technologies that support survivability goals, such as formal specification, architecture
tradeoff methods, intrusion analysis, and survivability design patterns, are not effectively ap-
plied in the development process.

For each life-cycle activity, survivability goals should be addressed, and methods to ensure
survivability incorporated [Mead 00c]. In some cases, existing development methods can en-
hance survivability. Current research is creating new methods that can be applied; however,
more research and experimentation are required before the goal of survivability can become a
reality.

In this report, we describe survivability concepts, discuss a software development life-cycle
model for survivability, and illustrate techniques that can be applied during new development

2 CMU/SEI-2002-TR-026

activities to support survivability goals. We also discuss a software life-cycle model and as-
sociated activities to support survivability goals for systems based on commercial off-the-
shelf (COTS) software.

CMU/SEI-2002-TR-026 3

2 Survivability Concepts

Survivable systems research over the past few years has resulted in the development of the
concepts and definitions of survivability described in this section. They are drawn from the
work of the Survivable Network Technology Team at the Software Engineering Institute
(SEI) and CERT Coordination Center (CERT/CC) [Lipson 96, Ellison 99a].

2.1 The New Network Paradigm: Organizational
Integration

From their modest beginnings some 20 years ago, computer networks have become a critical
element of modern society. These networks not only have global reach; they also have impact
on virtually every aspect of human endeavor. Network systems are principal enabling agents
in business, industry, government, and defense. Major economic sectors, including defense,
energy, transportation, telecommunications, manufacturing, financial services, health care,
and education, depend on a vast array of networks operating on local, national, and global
scales. This pervasive societal dependency on networks magnifies the consequences of intru-
sions, accidents, and failures, and amplifies the critical importance of ensuring network sur-
vivability.

As organizations seek to improve efficiency and competitiveness, a new network paradigm is
emerging. Networks are being used to achieve radical new levels of organizational integra-
tion. This integration obliterates traditional organizational boundaries and transforms local
operations into components of comprehensive, network-resident business processes. For ex-
ample, commercial organizations are integrating operations with business units, suppliers,
and customers through large-scale networks that enhance communication and services. These
networks combine previously fragmented operations into coherent processes open to many
organizational participants. This new paradigm represents a shift from bounded networks
with central control to unbounded networks. Unbounded networks are characterized by dis-
tributed administrative control without central authority, limited visibility beyond the bounda-
ries of local administration, and a lack of complete information about the network. At the
same time, organizational dependencies on networks are increasing and risks and conse-
quences of intrusions and compromises are amplified.

 CERT and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by

Carnegie Mellon University.

4 CMU/SEI-2002-TR-026

2.2 The Definition of Survivability

We define survivability as the capability of a system to fulfill its mission, in a timely manner,
in the presence of attacks, failures, or accidents. We use the term system in the broadest pos-
sible sense, including networks and large-scale systems of systems.

The term mission refers to a set of very high-level requirements or goals. Missions are not
limited to military settings, since any successful organization or project must have a vision of
its objectives whether expressed implicitly or as a formal mission statement. Judgments as to
whether or not a mission has been successfully fulfilled are typically made in the context of
external conditions that may affect achievement of that mission. For example, imagine that a
financial system shuts down for 12 hours during a period of widespread power outages
caused by a hurricane. If the system preserves the integrity and confidentially of its data and
resumes its essential services after the period of environmental stress is over, the system can
reasonably be judged to have fulfilled its mission. However, if the same system shuts down
unexpectedly for 12 hours under normal conditions or minor environmental stress, thereby
depriving its users of essential financial services, the system can reasonably be judged to
have failed its mission, even if data integrity and confidentiality are preserved.

Timeliness is a critical factor that is typically included in (or implied by) the very high-level
requirements that define a mission. However, timeliness is such an important factor that we
included it explicitly in the definition of survivability.

The terms attack, failure, and accident are meant to include all potentially damaging events;
but these terms do not partition these events into mutually exclusive or even distinguishable
sets. It is often difficult to determine if a particular detrimental event is the result of a mali-
cious attack, a failure of a component, or an accident. Even if the cause is eventually deter-
mined, the critical immediate response cannot depend on speculations about such future
knowledge.

Attacks are potentially damaging events orchestrated by an intelligent adversary. Attacks in-
clude intrusions, probes, and denials of service. Moreover, the threat of an attack may have as
severe an impact on a system as an actual occurrence. A system that assumes a defensive po-
sition because of the threat of an attack may reduce its functionality and divert resources to
monitoring the environment and protecting system assets.

We include failures and accidents in the definition of survivability. Failures are potentially
damaging events caused by deficiencies in the system or in an external element on which the
system depends. Failures may be due to software design errors, hardware degradation, human
errors, or corrupted data. Accidents describe a broad range of randomly occurring and poten-
tially damaging events, such as natural disasters. We tend to think of accidents as externally
generated events (i.e., outside the system) and failures as internally generated events.

CMU/SEI-2002-TR-026 5

With respect to system survivability, a distinction between a failure and an accident is less
important than the impact of the event. Also, it is often possible to distinguish between intel-
ligently orchestrated attacks and unintentional or randomly occurring detrimental events. Our
approach concentrates on the effect of a potentially damaging event. Typically, for a system
to survive, it must react to (and recover from) a damaging effect (e.g., the integrity of a data-
base being compromised) long before the underlying cause is identified. In fact, the reaction
and recovery must be successful whether or not the cause is ever determined.

The primary focus in this paper is to provide managers with methods to help systems survive
the acts of intelligent adversaries. While the focus is on intrusions, the methods discussed
apply in full measure to failures and accidents as well.

Finally, it is important to recognize that it is the mission fulfillment that must survive, not any
particular subsystem or system component. Central to the notion of survivability is the capa-
bility of a system to fulfill its mission, even if significant portions of the system are damaged
or destroyed. We use the term survivable system as a shorthand for a system with the capabil-
ity to fulfill a specified mission in the face of attacks, failures, or accidents. Again, it is the
mission, not a particular portion of the system that must survive.

2.3 Characteristics of Survivable Systems

A key characteristic of survivable systems is their capability to deliver essential services in
the face of attack, failure, or accident. Central to the delivery of essential services is the capa-
bility of a system to maintain essential properties (i.e., specified levels of integrity, confiden-
tiality, performance, and other quality attributes) in adverse environments. Thus, it is impor-
tant to define minimum levels of such quality attributes that must be associated with essential
services. For example, a launch of a missile by a defensive system is no longer effective if the
system performance is slowed to the point that the target is out of range before the system can
launch.

These quality attributes are so important that definitions of survivability are often expressed
in terms of maintaining a balance among multiple quality attributes, such as performance,
security, reliability, availability, fault-tolerance, modifiability, and affordability. The Architec-
ture Tradeoff Analysis project at the SEI is using this attribute-balancing (i.e., tradeoff) view
of survivability to evaluate and synthesize survivable systems [Kazman 98]. Quality attrib-
utes represent broad categories of related requirements, so a quality attribute may be com-
posed of other quality attributes. For example, the security attribute traditionally includes
three subattributes, namely, confidentiality, integrity, and availability.

The capability to deliver essential services, and maintain associated essential properties, must
be sustained even if a significant portion of a system is incapacitated. Furthermore, this capa-

6 CMU/SEI-2002-TR-026

bility should not be dependent upon the survival of a specific information resource, computa-
tion, or communication link. In a military setting, essential services might be those required
to maintain an overwhelming technical superiority, and essential properties may include in-
tegrity, confidentiality, and a level of performance sufficient to deliver results in less than one
decision cycle of the enemy. In the public sector, a survivable financial system might be one
that maintains the integrity, confidentiality, and availability of essential information and fi-
nancial services, even if particular nodes or communication links are incapacitated through
intrusion or accident, and that recovers compromised information and services in a timely
manner. The financial system’s survivability might be judged by using a composite measure
of the disruption of stock trades or bank transactions (i.e., a measure of the disruption of es-
sential services).

Key to the concept of survivability, then, is identifying the essential services (and the essen-
tial properties that support them) within an operational system. Essential services are defined
as the functions of the system that must be maintained when the environment is hostile or
when failures or accidents occur that threaten the system. To maintain their capabilities to
deliver essential services, survivable systems must exhibit the four key properties illustrated
in Table 1, namely, resistance, recognition, recovery (the three R’s), and adaptation.

The table identifies a number of survivability strategies that can be applied to counter threats
of an overt attack on a system. Some of these techniques for enhancing survivability are bor-
rowed from other areas, notably the security, safety, and fault-tolerance communities.

In the area of attack resistance, a number of techniques are available. User authentication
mechanisms limit access to a system to a group of approved users. Authentication mecha-
nisms range from simple passwords to combinations of passwords, user-carried authentica-
tion tokens (themselves password protected), and biometrics. Access controls can be applied
to system access or to individual programs and data sets. Access controls, enforced by a
trustworthy operating system, automatically apply a predefined policy to grant or deny access
to an authenticated user. When properly used and implemented, access controls can serve as a
substitute for program- and data-set-level password mechanisms.

CMU/SEI-2002-TR-026 7

Table 1: Key Properties of Survivable Systems
Key Property Description Example Strategies

Resistance to attacks Strategies for repelling
attacks

Authentication

Access controls

Encryption

Message filtering

Survivability wrappers

System diversification

Functional isolation

Recognition of attacks and damage Strategies for detecting attacks and
evaluating damage

Intrusion detection

Integrity checking

Recovery of essential and full ser-
vices after attack

Strategies for limiting damage, re-
storing compromised information or
functionality, maintaining or restor-
ing essential services within mission
time constraints, restoring full ser-
vices

Redundant components

Data replication

System backup and restoration

Contingency planning

Adaptation and evolution to reduce
effectiveness of future attacks

Strategies for improving system
survivability based on knowledge
gained from intrusions

New intrusion recognition patterns

Encryption can protect data, either within a system or in transit between systems, from inter-
ception or physical capture. Available encryption technologies are strong enough to resist all
currently feasible brute-force attacks. Encryption translates the problem of protecting large
quantities of data into a problem of managing relatively small quantities of keying material.
Encryption can also be used to provide authentication, non-repudiation, integrity checking,
and a variety of other assurance properties.

Message filtering is typically used at the boundary of a system or installation to restrict the
traffic that enters the system. For example, there is no reason to allow messages related to
unsupported or unwanted services to enter an installation. Messages appearing to originate
from within an installation are probably not legitimate if coming from the outside, and mes-
sages that appear to originate outside should not be let out. Filters can be designed to block
messages associated with known attacks, as well.

Survivability wrappers are essentially message filters applied at the OS interface level. They
may be used to provide operand checking or to redirect calls to unsafe library routines to
more robust versions. They may also be used to impose a restrictive access-control policy on
a particular application. System diversification combined with redundant implementations
makes an attacker’s job more difficult. In a diverse implementation, it is likely that a scenario
used to attack one implementation will fail on others. Defensive coding is used to protect
programs from bad input values. This technique is discussed in more detail in Section 4.3.1.

8 CMU/SEI-2002-TR-026

Functional isolation reduces or eliminates dependencies among services to the greatest extent
possible. This also prevents an attack on one service from compromising others. Isolation is
often not easy to achieve, as dependencies among services are not obvious if viewed at the
wrong level of abstraction. Services that share a processor, for example, are mutually de-
pendent on one another for CPU and memory resources. They may also share disk space and
probably a network adapter. It is possible for one process to launch a denial of service attack
on another by gaining a monopoly on any of these resources. Resource isolation may require
a quota-based sharing mechanism or similar technique. Functional isolation can extend to
physically separating system functions, often on separate servers with no logical connec-
tions—for example, separating email processing from sensitive data files. No electronic in-
trusion method can jump an air gap or penetrate a machine that is powered down.

In the area of attack recognition, there is a limited number of choices. Intrusion detection sys-
tems typically attempt to identify attacks by either looking for evidence of known attack pat-
terns or by using a baseline model of normal system behavior to treat departures from normal
as potential attacks. Both techniques can be applied to network traffic as well as to platform-
or application-specific data. System auditing and application logs are sources of information
for detecting intrusions at the platform or application level. Both real-time and post-
processing intrusion-detection systems (IDSs) exist. At the present time, IDSs miss many
intrusions, especially new or novel attacks, and suffer from high false-alarm rates. Integrity
checkers can detect intrusions that modify system files or data that should remain unchanged.
The checking process involves creating a baseline model of the files to be protected using
checksums or cryptographic signatures, and periodically comparing the current model to the
baseline.

In terms of recovery, when a damaging attack (or other failure) is recognized, it is necessary
to take steps to immediately recover essential services and, eventually, full services. There are
a number of techniques that can be used, and many of them have been applied to recovery
from failure in the past. Their effects range from transparent maintenance of full services
without noticeable interruption to fallback positions that maintain only a core of essential
services. The importance of recovery techniques is highlighted when the effects of an attack
are considered.

Redundancy is the key to maintaining full services in the face of failures. The fault-tolerance
community has considerable experience in the use of redundancy to maintain service in the
face of component failures, but their analytical techniques are predicated on knowing the sta-
tistical distributions associated with various failure mechanisms, something that may not be
possible with failures induced by attacks.

In many cases, the replication of critical data is a primary means for achieving recovery.
When essential services are supplied through commodity databases or the like, it may be pos-

CMU/SEI-2002-TR-026 9

sible to restore a critical data service by simply starting up another instance of the commodity
server with a replicated database at a more or less arbitrary location.

Systematic backup of all data sources, combined with appropriate mechanisms for restoring
the data on either the originating platform or another platform, is a key part of any recovery
strategy. The required granularity of backups depends on the frequency at which data changes
and the cost of repeating work performed between backups. In extreme cases, it may be nec-
essary to backup files each time they are closed after writing, and to log transactions or key-
strokes so that intermediate work can be recovered. In other cases, daily or weekly backups
may suffice.

When a system is under attack or has experienced a failure, it may be possible to dynamically
reconfigure the system to transfer essential services from the attacked component to an opera-
tional one, eliminating less essential services in the process. This strategy is employed by the
Federal Reserve, which can tolerate limited outages at one of its three primary computational
centers in this fashion. Since this strategy does not have redundant capacity, the reconfigura-
tion can persist only for limited periods, as the criticality of less essential services increases
with the length of time that they are unavailable.

Finally, it may be possible to devolve the system to an alternate mode of operation, perhaps
one in which the role of the computer system is temporarily reduced or even eliminated. For
example, computer-to-computer transactions might be replaced with manually initiated faxes.
A computerized parts inventory and order system might revert for a short period to a manual
system that indicates reorder levels by red lines on storage bins.

Perhaps the hardest part of survivability is adapting a system to make it more robust in the
hope that it will resist never-before-seen attacks or intrusions. Just as attackers are constantly
looking for new points of vulnerability, defenders must create defenses that are based on gen-
eralizations of previously seen attacks and must try to anticipate the directions from which
new attacks might occur.

2.4 Survivability as an Integrated Engineering
Framework

As a broadly based engineering paradigm, survivability is a natural framework for integrating
established and emerging software engineering disciplines in the service of a common goal.
The established areas of software engineering that are related to survivability include secu-
rity, fault tolerance, safety, reliability, reuse, performance, verification, and testing. Research
in survivability encompasses a wide variety of research methods, including the investigation
of analogs to the immunological functioning of an individual organism and sociological ana-
logs to public health efforts at the community level.

10 CMU/SEI-2002-TR-026

The discipline of computer security has made valuable contributions to the protection and
integrity of information systems over the past three decades. However, “computer security”
has traditionally been used as a binary term that suggests that at any moment in time a system
is either safe or compromised. We believe that this use of the term engenders viewpoints that
largely ignore the aspects of recovery from the compromise of a system, as well as aspects of
maintaining services during and after an intrusion. Such an approach is inadequate to support
necessary improvements in the state of the practice of protecting computer systems from at-
tack. In contrast, the term survivable systems refers to systems whose components collec-
tively accomplish their mission even under attack and despite active intrusions that effec-
tively damage a significant portion of the system.

Robustness under attack is at least as important as hardness or resistance to attack. Hardness
contributes to survivability, but robustness under attack (and, in particular, recoverability) is
the essential characteristic that distinguishes survivability from traditional computer security.
At the same time, survivability can benefit from computer security research and practice, and
survivability can provide a framework for integrating security with other disciplines that can
contribute to system survivability.

Survivability requires robustness under conditions of intrusion, failure, or accident. The con-
cept of survivability includes fault tolerance, but is not equivalent to it. Fault tolerance relates
to the statistical probability of an accidental fault or combination of faults, not to malicious
attack. For example, an analysis of a system may determine that the simultaneous occurrence
of three statistically independent faults (f1, f2, and f3) will cause the system to fail. The prob-
ability of the three independent faults occurring simultaneously by accident may be ex-
tremely small, but an intelligent adversary with knowledge of the system’s internals can or-
chestrate the simultaneous occurrence of these three faults and bring down the system. A
fault-tolerant system most likely does not address the possibility of the three faults occurring
simultaneously, if the probability of occurrence is below a threshold of concern. A survivable
system requires a contingency plan to deal with such a possibility.

Redundancy is another factor that can contribute to the survivability of systems. However,
redundancy alone is insufficient, because multiple identical backup systems share identical
vulnerabilities. A survivable system requires each backup system to offer equivalent func-
tionality, but significant variance in implementation. This variance thwarts attempts to com-
promise the primary system and all backup systems with a single attack strategy.

CMU/SEI-2002-TR-026 11

3 System Development Life-Cycle Models

3.1 The Spiral Model

Here we describe a life-cycle model that was developed for use in trusted systems [Marmor-
Squires 89]. Such a model is a natural fit for development of survivable systems. This work
was based on an assessment of the waterfall and spiral models, and an extension of the spiral
model to incorporate concepts of trusted systems.

Analysis of life-cycle model work done to date led to widespread use of the TRW spiral
model as a foundation. The spiral model can be adapted for use in developing survivable sys-
tems. The spiral model for the software development process has been developed at TRW as
an alternative to more conventional (largely waterfall-style) models. Its key features are risk
management, robustness, and flexibility. This section is devoted to a description of the basic
spiral model and a specialization of it. The description of the spiral model largely follows that
of Boehm [Boehm 89]. Much of the initial work on spiral models was carried out by Mills
and his associates [Mills 86].

The development of software is, at best, a difficult process. Many software systems, espe-
cially in the commercial area, simply evolve over time without a well-defined development
process. Other systems are developed using (or at least giving lip service to) a stagewise pro-
gression of steps, possibly with feedback between adjacent steps, as in the waterfall model
[Royce 87]. As Parnas has pointed out, this model makes a much better ex post facto explana-
tion of the development process than a guide for its execution [Parnas 86].

Over the years, numerous variations on, or alternatives to, the waterfall model have been pro-
posed. Each of these overcomes certain defects in the waterfall model, but introduces its own
set of additional problems.

While the waterfall model serves a useful purpose in introducing discipline into the software
development process, it essentially dictates the linear progressions that were necessary in the
batch-oriented world of limited alternatives and scarce computational power. It assumes a
factory-like assembly-line system in which each piece is understood. At the present time, the
availability of workstations, networks, and inexpensive mass storage, along with a variety of
tools, makes possible a wide variety of exploratory programming activities as part of the de-
velopment process. This means that it is possible to develop prototypes or models for parts of

12 CMU/SEI-2002-TR-026

systems, obtain reactions from a potential user community, and feed this information back
into the development process. Standardization efforts have produced large libraries of com-
ponents and even entire subsystems that can be used to reduce the amount of new develop-
ment required for a project. The growing availability of development and execution environ-
ments has accelerated this trend.

The spiral model is an attempt to provide a disciplined framework for software development
that both overcomes deficiencies in the waterfall model and accommodates activities such as
prototyping, reuse, and automatic coding as parts of the process. A consequence of the flexi-
bility of the life-cycle model is that the developer is faced with choices at many stages of the
process. With choice comes risk; therefore much of the emphasis of the spiral model is placed
on risk management. This, in turn, may result in uneven progress in various aspects of system
development, with high-risk areas being explored in depth, while low-risk areas are deferred.

The spiral model views the development process in polar coordinates. The r coordinate repre-
sents cumulative project cost, the w coordinate represents progress to date. The plane is di-
vided into four quadrants that represent different kinds of activities, as follows:

I. determination of objectives, alternatives, and constraints

II. evaluation of alternatives; identification and resolution of risks

III. development activities

IV. review and planning for future cycles

In addition, the boundary between quadrants I and IV represents a commitment to move for-
ward with a particular element, approach, or method, and advance to the next stage (or spiral)
within a defined space of activities (e.g., design). Specific activities may overlap multiple
spirals. Also, concurrent spirals may be required to address varying areas of risk. The com-
mitment line may involve a decision to terminate the project or change direction based on the
review results.

Figure 1 shows a single cycle of the spiral. The paragraphs that follow characterize the activi-
ties that take place in each quadrant. Note that w does not progress evenly with time. Some
cycles of the spiral may require months to complete, while others require only days. Simi-
larly, although increasing w denotes progress within a cycle of the spiral, it does not necessar-
ily denote progress towards project completion. Each cycle of the model addresses all the
activities between review and commitment events. Early in the process, cycles may be short
as alternatives in the decision space of the project are explored. As risks are resolved, cycles
may stretch, with the development quadrant subsuming several steps in the waterfall. The
spiral may be terminated with product delivery, in which case modification or maintenance
activities are new spirals, or the original spiral may continue until the product is retired.

CMU/SEI-2002-TR-026 13

Figure 1: A Project Spiral Cycle

3.2 A Spiral Model for Survivable Systems
Development

The generalized “pure” spiral process discussed above provides a framework for more spe-
cialized models. Specialization and enhancement call for adapting the activities carried out
under the general model to the special requirements of the systems to be produced. This is
done by specifying (a) activities that address the drivers that characterize the system and (b)
constraints that characterize the environment in which the system is to be produced.

The primary driver in the present context is the requirement to develop a survivable system.
Constraints include the political and social environment in which the system is to be con-
structed, the ever-present cost considerations, and the limitations of technologies and knowl-
edge that can be brought to bear on the problem at hand. These combine to yield a specialized
version of the spiral model that integrates survivability into the management process, as de-
picted in Figure 2.

Review &
Commit

QUADRANT I
Determine Objectives
Define Alternatives
Determine Constraints

QUADRANT IV
Plan for Next Cycle
Plan for Subsequent Cycles

QUADRANT III
Product Development

QUADRANT II
Basic Analysis
Risk Mitigation

Review &
Commit

QUADRANT I
Determine Objectives
Define Alternatives

QUADRANT IV
Plan for Next Cycle
Plan for Subsequent Cycles

QUADRANT III
Product Development

QUADRANT II
Basic Analysis
Risk Mitigation

14 CMU/SEI-2002-TR-026

Spiral Process
Model

Spiral Process Model
with Survivability

Added to Every Activity

Primary
Motivation/Driver

Functionality
Performance
Dependability
Scalability
…

Survivability
Add

Primary
Constraints

Mission
Organization
Environment
Cost
Schedule
Knowledge
Technology
…

Foundation

Figure 2: Specialization of the Spiral Model for Survivability Driver

Survivable systems must satisfy a variety of conflicting interests. End users want them to
carry out their primary operational mission, possibly at the expense of violating security poli-
cies under some circumstances. It is often the case that systems must also satisfy some certi-
fication or accreditation authority. The steps required for these approvals may conflict with
the interests of users. And developers want to finish the job, preferably ahead of schedule and
under budget. Within the development organization, tensions may exist between the various
specialties involved. Resolving these conflicts may involve constraining the environment and
the development process. In addition, cost considerations are always present. The spiral de-
velopment process has proven to be more cost effective than traditional methods, but exhibits
a different distribution of costs over time. Under the spiral model, expenditures are typically
higher in early specification and design activities, resulting in cost savings in later implemen-
tation and integration activities.

Table 2 identifies a typical set of broad system-development activities and the corresponding
survivability elements of each. The key point is that survivability is integrated into the
broader activities. For example, in defining system requirements, function, performance, de-
pendability, scalability, and other properties must be defined, as well as survivability attrib-
utes. The activities in Table 2 compose the subject matter for project management under the
specialized spiral model of Figure 2.

As an illustration, consider the following imagined application of the spiral management
process to the architecture-definition phase. We assume that prior phases have been com-
pleted successfully and that the appropriate requirements and specification documents are at
hand. The task of the initial architecture-definition spiral is to define a set of candidate com-

CMU/SEI-2002-TR-026 15

ponents and their interconnections that will implement the specified services in a way that
satisfies both functional and non-functional requirements. The architect will choose candidate
platforms, allocate functions to them, and determine the appropriate connections among plat-
forms and between platforms and the outside world. A variety of tools and techniques will be
used to analyze the proposed architecture to determine whether it satisfies the requirements
and specifications. One possibility of this analysis is that the proposed architecture satisfies
the functional requirements but cannot achieve the required throughput. Although processor
replication has already been used to improve performance, the processors require close cou-
pling to maintain synchronization and their co-location presents a vulnerability as a potential
single site of failure. Another spiral over the architecture is in order, as unresolved risks re-
main.

An examination of the specification for the service that results in the bottleneck shows that
what appeared as a monolithic service at first glance actually decomposes in a way that re-
duces the processing load and allows the two parts of the service to be separated both physi-
cally and temporally. After confirming that this revised service specification satisfies the re-
quirements and is consistent with the other, unchanged specifications, the architecture is
revisited. The revised specification permits a reduction in processor load and allows the criti-
cal function to be performed at several distant locations with greatly relaxed data-
synchronization requirements. As a result, it is possible to configure the system with suffi-
cient redundancy so that at least two loss-of-site events can be tolerated without loss of ser-
vice. Further site loss will reduce service levels, but it is possible to prioritize requests so that
the minimum essential service level will be maintained. Detailed analyses of this approach
show a low probability race condition that could deadlock the system. Adding explicit syn-
chronization mechanisms (another iteration) and additional communications capacity reduces
the residual risk to an acceptable level, and the architecture phase is complete after two spi-
rals of the management process.

16 CMU/SEI-2002-TR-026

CMU/SEI-2002-TR-026 17

4 System Development Life-Cycle
Activities and Survivability

The key survivability elements of Table 2 are the principal tasks that must be managed within
the spiral model to achieve system survivability. In this section, we examine the technologies
and processes of several of these elements, including requirements and specification, archi-
tecture and design, testing, and evolution.

Table 2: Life-Cycle Activities and Corresponding Survivability Elements
Life-Cycle
Activities Key Survivability Elements Examples

Mission definition Analysis of mission criticality and conse-
quences of failure

Estimation of cost impact of denial-of-
service attacks

Concept of operations Definition of system capabilities in ad-
verse environments

Enumeration of critical mission functions
that must withstand attacks

Project planning Integration of survivability into life-cycle
activities

Identification of defensive coding tech-
niques for implementation

Requirements definition Definition of survivability requirements
from mission perspective

Definition of access requirements for criti-
cal system assets during attacks

System specification Specification of essential service and
intrusion scenarios

Definition of steps that compose critical
system transactions

System architecture Integration of survivability strategies into
architecture definition

Creation of network facilities for replica-
tion of critical data assets

System design Development and verification of surviv-
ability strategies

Verification of data-encryption algorithms
for correctness

System implementation Application of survivability coding and
implementation techniques

Definition of methods to avoid buffer
overflow vulnerabilities

System testing Treatment of intruders as users in testing
and certification

Addition of intrusion usage to usage mod-
els for statistical testing; use of independ-
ent verification and validation

System evolution Improvement of survivability to prevent
degradation over time

Redefinition of architecture in response to
changing threat environment

4.1 Requirements and Specification

Requirements elicitation, validation, and specification are key early steps in the system life
cycle. Survivability requirements can vary substantially depending on system scope, critical-
ity, and the consequences of failure and interruption of service. Categories of requirements
definition for survivable systems include function, usage, development, operation, and evolu-

18 CMU/SEI-2002-TR-026

tion. In this section, we discuss the nature of survivability requirements, how these require-
ments can be expressed, and their impact on system survivability.

For typical large-scale systems, the new paradigm for requirements definition is characterized
by distributed hardware, services, and code (including executable content), distributed and
shared communications and routing infrastructure, diminished trust, and a lack of unified
administrative control. Assuring survivability of mission-critical systems developed under
this new paradigm is a formidable high-stakes effort for software engineering research. This
effort requires that traditional computer security measures be augmented by new and com-
prehensive system survivability strategies.

4.1.1 Expressing Survivability Requirements

The definition and analysis of survivability requirements is a critical first step in achieving
system survivability [Linger 98]. Figure 3 depicts an iterative model for defining these re-
quirements. Survivability must address not only requirements for software functionality, but
also requirements for software usage, development, operation, and evolution. Thus, five types
of requirements definitions are relevant to survivable systems in the model. These require-
ments are discussed in detail in the subsections that follow.

CMU/SEI-2002-TR-026 19

Figure 3: Classes of Requirements for Survivable Systems

System/Survivability Requirements. The term system requirements refers to traditional user
functions that a system must provide. For example, a network management system must pro-
vide functions to enable users to perform such tasks as monitoring network operations and
adjusting performance parameters. System requirements also include non-functional aspects
of a system, such as timing, performance, and reliability. The term survivability requirements
refers to the capabilities of a system to deliver essential services in the presence of intrusions
and compromises and to recover full services.

Figure 4 depicts the integration of survivability requirements with system requirements at
node and network levels.

Usage/
Intrusion

Requirements

System/
Survivability

Requirements

System
Development/

Evolution

Legacy/Acquired
Software,

Survivability
Strategies

Usage Model
Development/

Evolution

System
Testing/

Evaluation

System
Operation/

Administration

System
Development
Requirements

System
Operations

Requirements

System
Evolution

Requirements

20 CMU/SEI-2002-TR-026

Network-Level Emergent Behavior Requirements

Node-Level
System Requirements

Node-Level
Survivability Requirements

Survivability Services:
 Resistance
 Recognition
 Recovery
 Adaptation & Evolution

Non-Essential
Functional Services

Essential
Functional
Services

Figure 4: Integrating Survivability into System Requirements

Survivability requires that system requirements be organized into essential services and non-
essential services. Essential services must be maintained even during successful intrusions;
non-essential services are recovered after intrusions have been handled. Essential services
may be stratified into any number of levels, each embodying fewer and more vital services as
the severity and duration of intrusion increases. Thus, definitions of requirements for essen-
tial services must be augmented with appropriate survivability requirements.

As shown in Figure 3, survivable systems may also include legacy and acquired COTS com-
ponents that were not developed with survivability as an explicit objective. Such components
may provide both essential and non-essential services and may require functional require-
ments for isolation and control through wrappers and filters to permit their safe use in a sur-
vivable system environment.

Figure 4 shows that survivability itself imposes new types of requirements on systems. These
new requirements include the resistance to, recognition of, and recovery from intrusions and
compromises, and adaptation and evolution to diminish the effectiveness of future intrusion
attempts. These survivability requirements are supported by a variety of existing and emerg-
ing survivability strategies, as noted in Linger et al.’s paper [Linger 98], and are discussed in
more detail below.

Finally, Figure 4 depicts emergent behavior requirements at the network level. These re-
quirements are characterized as emergent because they are not associated with particular

CMU/SEI-2002-TR-026 21

nodes, but rather emerge from the collective behavior of node services in communicating
across the network. These requirements deal with the survivability of overall network capa-
bilities (e.g., capabilities to route messages between critical sets of nodes regardless of how
intrusions may damage or compromise network topology).

We envision survivable systems that are capable of adapting their behavior, function, and re-
source allocation in response to intrusions. For example, when necessary, functions and re-
sources devoted to non-essential services could be reallocated to the delivery of essential ser-
vices and to intrusion resistance, recognition, and recovery. Requirements for such systems
must also specify how the system should adapt and reconfigure itself in response to intru-
sions.

Systems can exhibit large variations in survivability requirements. Small local networks may
require few or no essential services and recovery times may be measured in hours. Con-
versely, large-scale networks of networks may require a core set of essential services, auto-
mated intrusion detection, and recovery times measured in minutes. Embedded command-
and-control systems may require essential services to be maintained in real time with recov-
ery times measured in milliseconds.

The attainment and maintenance of survivability consumes resources in system development,
operation, and evolution. The resources allocated to a system’s survivability should be based
on the costs and risks to an organization associated with the loss of essential services.

Usage/Intrusion Requirements. Survivable-system testing must demonstrate the correct
performance of essential and non-essential system services as well as the survivability of es-
sential services under intrusion. Because system performance in testing (and operation) de-
pends totally on the system’s use, an effective approach to survivable-system testing is based
on usage scenarios derived from usage models [Mills 92, Linger 99b].

Usage models are developed from usage requirements. These requirements specify usage en-
vironments and scenarios of system use. Usage requirements for essential and non-essential
services must be defined in parallel with system and survivability requirements. Furthermore,
intruders and legitimate users must be considered equally. Intrusion requirements that specify
intrusion-usage environments and scenarios of intrusion use must be defined as well. In this
approach, intrusion use and legitimate use of system services are modeled together.

Intruders might engage in scenarios beyond legitimate scenarios, but they might also employ
legitimate use for purposes of intrusion if they gain the necessary privileges.

Development Requirements. Survivability places stringent requirements on system devel-
opment and testing practices. Inadequate functionality and software errors can have a devas-

22 CMU/SEI-2002-TR-026

tating effect on system survivability and provide opportunities for intruder exploitation.
Sound engineering practices are required to create survivable software.

The following five principles (four technical and one organizational) are example require-
ments for survivable-system development and testing practices:

• Precisely specify required functions of a system in all possible circumstances of use.

• Verify the correctness of system implementations with respect to functional specifica-
tions.

• Precisely specify function usage in all possible circumstances of system use, including
intruder use.

• Test and certify the system based on function usage and statistical methods.

• Establish permanent readiness teams for system monitoring, adaptation, and evolution.

Sound engineering practices are required to deal with legacy and COTS software components
as well.

Operations Requirements. Survivability places demands on requirements for system opera-
tion and administration. These requirements include defining and communicating survivabil-
ity policies, monitoring system use, responding to intrusions, and evolving system functions
as needed to ensure survivability as usage environments and intrusion patterns change over
time.

Evolution Requirements. Systems evolution responds to user requirements for new func-
tions. However, this evolution is also necessary to respond to increasing intruder knowledge
of system behavior and structure. In particular, survivability requires that system capabilities
evolve more rapidly than intruder knowledge. This rapid evolution prevents intruders from
accumulating information about otherwise invariant system behavior, which intruders need to
achieve successful penetration and exploitation.

4.1.2 Requirements Definition for Essential Services

The preceding discussion distinguishes between essential and non-essential services. Each
system requirement must be examined to determine whether it corresponds to an essential
service. The set of essential services must form a viable subsystem for users that is complete
and coherent. If multiple levels of essential services are required, each set of services pro-
vided at each level must also be examined for completeness and coherence. In addition, re-
quirements must be defined for making the transition to and from essential-service levels.

When distinguishing between essential and non-essential services, all of the usual require-
ments-definition processes and methods can be applied. Elicitation techniques such as those

CMU/SEI-2002-TR-026 23

embodied in software requirements engineering can help to identify essential services [Ebert
97]. Tradeoff and cost/benefit analysis can help to determine the sets of services that suffi-
ciently address business survivability risks and vulnerabilities. Provisions for tracing surviv-
ability requirements through design, code, and test must be established. As previously men-
tioned, simulations of intrusion through intruder-usage scenarios are included in the testing
process.

4.1.3 Requirements Definition for Survivability Services

After requirements are specified for essential and non-essential services, a set of requirements
for survivability services must be defined. These services can be organized into four general
categories: resistance, recognition, recovery, and adaptation and evolution. These survivabil-
ity services must operate in an intruder environment that can be characterized by three dis-
tinct phases of intrusion: penetration, exploration, and exploitation.

Penetration Phase. In this phase, an intruder attempts to gain access to a system through
various attack scenarios. These scenarios range from random inputs by hobbyist hackers to
well-planned attacks by professional intruders. These attempts are designed to capitalize on
known system vulnerabilities.

Exploration Phase. In this phase, the system has been penetrated and the intruder is explor-
ing internal system organization and capabilities. By exploring, the intruder learns how to
exploit the access to achieve intrusion objectives.

Exploitation Phase. In this phase, the intruder has gained access to desired system facilities
and is performing operations designed to compromise system capabilities.

Penetration, exploration, and exploitation create a spiral of increasing intruder authority and a
widening circle of compromise. For example, penetration at the user level is typically a
means to find root-level vulnerabilities. User-level authorization is then employed to exploit
those vulnerabilities to achieve root-level penetration. Finally, compromise of the weakest
host in a networked system allows that host to be used as a stepping-stone to compromise
other more protected hosts.

Requirements definitions for resistance, recognition, recovery, and adaptation and evolution
services help developers select survivability strategies to deal with these phases of intrusion.
Some strategies, such as firewalls, are the product of extensive research and development and
currently are used extensively in bounded networks. New survivability strategies are emerg-
ing to respond to the unique challenges of unbounded networks.

24 CMU/SEI-2002-TR-026

Resistance Service Requirements. Resistance is the capability of a system to deter attacks.
Resistance is thus important in the penetration and exploration phases of an attack, before
actual exploitation. Current strategies for resistance include the use of firewalls, authentica-
tion, and encryption. Diversification is a resistance strategy that will likely become more im-
portant for unbounded networks.

Requirements for diversification must define planned variations in a survivable system’s
function, structure, and organization, and the means for achieving those variations. Diversifi-
cation is intended to create a moving target and render ineffective the accumulation of system
knowledge as an intrusion strategy. Diversification also eliminates intrusion opportunities
associated with multiple nodes that execute identical software and typically exhibit identical
vulnerabilities. Such systems offer tempting economies of scale to intruders, because when
one node has been penetrated, all nodes can be penetrated. Requirements for diversification
can include variation in programs, retained data, and network routing and communication.
For example, systematic means can be defined to randomize software programs while pre-
serving functionality [Linger 99a].

Recognition Service Requirements. Recognition is the capability of a system to recognize
attacks or the probing that precedes attacks. The ability to react or adapt during an intrusion is
central to a system’s capacity to survive an attack that cannot be completely repelled. To react
or adapt, the system must first recognize it is being attacked. In fact, recognition is essential
in all three phases of attack.

Current strategies for attack recognition include both state-of-the-art intrusion detection and
mundane but effective techniques such as logging and frequent auditing, as well as follow-up
investigations of reports generated by ordinary error-detection mechanisms. Advanced intru-
sion-detection techniques are generally of two types: anomaly detection and pattern recogni-
tion. Anomaly detection is based on models of normal user behavior. These models are often
established through statistical analysis of usage patterns. Deviations from normal usage pat-
terns are flagged as suspicious. Pattern recognition is based upon models of intruder behav-
ior. User activity that matches a known pattern of intruder behavior raises an alarm.

Requirements for future survivable networks will likely employ additional strategies such as
self-awareness, trust maintenance, and black-box reporting. Self-awareness is the process of
establishing a high-level semantic model of the computations that a component or system is
executing or has been asked to execute. A system or component that understands what it is
being asked can refuse requests that would be dangerous, would compromise a security pol-
icy, or would adversely affect the delivery of minimum essential services.

Trust maintenance is achieved by a system through periodic queries among its components
(e.g., among the nodes in a network) to continually test and validate trust relationships. De-
tection of signs of intrusion would trigger an immediate test of trust relationships.

CMU/SEI-2002-TR-026 25

Black-box reporting is a dump of system information that can be retrieved from a crashed
system or component for analysis to determine the cause of the crash (e.g., a design error or a
specific intrusion type). This analysis can help to prevent other components from suffering
the same fate.

A survivable-system design must include explicit requirements for recognition of attack.
These requirements ensure the use of one or more of the aforementioned strategies through
the specification of architectural features, automated tools, and manual processes. Because
intruder techniques are constantly advancing, recognition requirements should be frequently
reviewed and continuously improved.

Recovery Service Requirements. Recovery is a system’s ability to restore services after an
intrusion has occurred. Recovery also contributes to a system’s ability to maintain essential
services during intrusion.

Requirements for recoverability are what most clearly distinguish survivable systems from
systems that are merely secure. Traditional computer security leads to the design of systems
that rely almost entirely on hardening (i.e., resistance) for protection. Once security is
breached, damage may follow with little to stand in the way. The ability of a system to react
during an active intrusion is central to its capacity to survive an attack that cannot be com-
pletely repelled. Recovery is thus crucial during the exploration and exploitation phases of
intrusion.

Recovery strategies in use today include replication of critical information and services, use
of fault-tolerant designs, and incorporation of backup systems for hardware and software.
These backup systems maintain master copies of critical software in isolation from the net-
work. Some systems, such as large-scale transaction processing systems, employ elaborate,
fine-grained transaction roll-back processes to maintain the consistency and integrity of state
data.

Adaptation and Evolution Service Requirements. Adaptation and evolution are critical to
maintaining resistance to ever-increasing intruder knowledge of how to exploit otherwise
unchanging system functions. Dynamic adaptation permanently improves a system’s ability
to resist, recognize, and recover from intrusion attempts. For example, an adaptation re-
quirement may be an infrastructure that enables the system to inoculate itself against newly
discovered security vulnerabilities by automatically distributing and applying security fixes
to all network elements. Another adaptation requirement may be that intrusion-detection rule
sets are updated regularly in response to reports of known intruder activity from authoritative
sources of security information, such as the CERT Coordination Center.

26 CMU/SEI-2002-TR-026

Adaptation requirements ensure that such capabilities are an integral part of a system’s de-
sign. As in the cases of resistance, recognition, and recovery requirements, the constant evo-
lution of intruder techniques requires that adaptation requirements be frequently reviewed
and continuously improved.

4.2 Architecture and Design

The architectural level of a Survivable Network Design (SND) method is depicted in Figure
5. In contrast to treating survivability as an after-the-fact add-on to system architecture and
design, SND integrates survivability considerations into the development process. The SND
method is based on the Survivable Systems Analysis process [Ellison 98, Ellison 99b, Mead
00a] developed and applied by the CERT Coordination Center.

SND is driven by several of the requirements-specification types depicted in Figure 3, spe-
cifically

• system/survivability requirements. System requirements define all possible functional
behavior, plus non-functional properties that a system must satisfy. Survivability re-
quirements identify those elements of functional behavior that represent essential ser-
vices, and elaborate these services in terms of essential service scenarios of use.

• usage/intrusion requirements. These requirements define all possible system usage under
normal and adverse circumstances. Intruders are treated as another class of users, and
representative intrusion scenarios of use are defined.

• operations/administration requirements. These requirements identify operational proce-
dures and policies (security policies, for example) that must be developed.

CMU/SEI-2002-TR-026 27

Figure 5: Architectural Level of a Survivable Network Design Method

The architectural application of the SND method is embedded within a broader activity of
architecture definition and tradeoff that seeks to create a system architecture that satisfies all
required properties, such as performance, capacity, scalability, cost, and maintainability. The
focus of Figure 5 is on the SND method, in the knowledge that, in practice, this survivability-
specific process will be performed in parallel with other forms of analysis and design, includ-
ing, for example, simulation and rate monotonic analysis to predict performance properties.
The SEI’s Architecture Tradeoff Analysis MethodSM (ATAMSM) [Kazman 98] is directed at

SM Architecture Tradeoff Analysis Method and ATAM are service marks of Carnegie Mellon Univer-

sity.

STEP 1: Architecture Definition:
• Components and connections
• Component function and state
• Software allocation

STEP 2: Architecture Analysis:
• Essential service scenario

architecture traces
• Intrusion scenario architecture

traces
• Softspot component (essential

and compromisable) analysis

• Mission definition
• System/Survivability requirements/specifications

(including essential service scenarios)
• Usage/Intrusion requirements/specifications

(including representative intrusion scenarios)
• Operations requirements/specifications

STEP 3: Survivability Analysis
• Resistance, recognition, and

recovery strategies
• Survivability Map generation

Architecture
modifications

System,
usage, and
operations
requirements
modifications

(Initially, from requirements phase)

(Overall architecture
definition and tradeoff
context)

Requirements
modifications

28 CMU/SEI-2002-TR-026

integrating various forms of analysis and design to create an architecture that best satisfies
possibly conflicting requirements. The architectural level of SND is composed of three steps,
as follows:

Step 1. Architecture Definition: In this step, a proposed architecture is developed based on
the system mission and requirements. Architectural styles and patterns are selected, and com-
ponents and connectors are defined. Components can be described in terms of functionality to
be provided and state data to be retained. Typically, specific software elements are identified,
including protocols, operating systems, execution environments, and applications.

Step 2. Architecture Analysis: This step investigates the survivability properties of a candi-
date architecture in terms of (1) essential services (services that must be maintained during
attack); (2) essential assets (assets whose integrity, confidentiality, availability, and other
properties must be maintained during attack); and (3) mission objectives and the conse-
quences of failure. First, essential service and asset uses are characterized by usage scenarios
that are mapped onto the architecture as execution traces to identify the set of corresponding
essential components (components that must be available to deliver essential services and
maintain essential assets). Next, representative intrusion scenarios are selected based on the
system environment and an assessment of risks and intruder capabilities. Selections are also
influenced by the extensive CERT knowledge base of intrusion strategies. These scenarios
are likewise mapped onto the architecture as execution traces to identify corresponding sets
of compromisable components (components that could be penetrated and damaged by intru-
sion). In this mapping, the SND method takes into account strengths and weaknesses of
COTS components, as well as any known security and reliability flaws. Finally, softspot
components of the architecture are identified as components that are both essential and com-
promisable, based on the previous results.

Step 3: Survivability Analysis: Softspot components and their supporting architectures are
then analyzed for the key survivability properties of resistance, recognition, and recovery. At
this point, survivability strategies and architectural patterns are evaluated for potential use in
improving the survivability of the candidate architecture. This analysis of the “three Rs” is
summarized in a Survivability Map. The map is a matrix that enumerates, for every intrusion
scenario and its corresponding softspot effects, the current and recommended architecture
strategies for resistance, recognition, and recovery. The Survivability Map provides feedback
to the original architecture and often results in an iterative process of cost/benefit analysis
and survivability improvement. It can also provide feedback to system requirements, as new
understandings and better ideas emerge from the analysis.

The scenario-based approach in SND is a generalization of operation-sequence [Kemmerer
91] and usage-scenario methods [Carrol 99, Prowell 99].

CMU/SEI-2002-TR-026 29

4.3 Implementation and Verification

4.3.1 Defensive Coding Strategies

Many intrusion vulnerabilities turn out to be the result of poor coding practices that result in
unintended but exploitable program behavior that intruders can employ to gain access. Man-
agement of survivable systems development thus requires that defensive coding standards
and practices be defined and enforced.

System specifications typically deal with high-level behaviors under the assumption that pro-
grams operate within the constraints imposed by the semantics of both the specification lan-
guage and the programming or implementation language. In general, specifications assume
that operation in the mathematical world of real numbers and arbitrarily large integers. How-
ever, programming languages operate with floating-point numbers and integers with a re-
stricted range. Because we would like to show that program behavior is not inconsistent with
specified behavior, special attention is required to ensure that program operations produce
values that remain within these ranges and, in the integer case at least, are identical to the
mathematically expected results.

Programming languages vary in their treatment of programs that violate these constraints. In
general, we are concerned with a class of constraints that specifies the legitimate values that a
variable of a given data type may assume. These, in turn, limit the operations that can be per-
formed on such variables. For example, the result of performing an integer division with a
divisor of zero is undefined and the result of such a division cannot, in general, be assigned to
an integer variable. Similarly, the results of arithmetic operations that result in hardware over-
flows are not consistent with the mathematical definitions of the same operations.

Languages such as Ada provide exception mechanisms that detect attempts to violate lan-
guage assumptions at run time. Programmers can choose to provide code to deal with these
exceptional conditions and attempt recovery or they can allow the run-time system to termi-
nate the program when a constraint is violated. Languages such as C leave the behavior of
exceptional programs undefined (or defined by the implementation) and provide little or no
help to the programmer in either avoiding exceptions or coping with them when they occur.
The effect of an overflow in a C program is typically to assign a legal, but incorrect, result to
a variable. Subsequent use of such a result may lead to a cascade of wrong results that culmi-
nates in either erroneous program results being given to a user or in a problem so egregious
that the program abnormally terminates, perhaps from a hardware addressing error.

When an array is accessed, the subscript used must reference an element within the declared
bounds of the array. Similarly, when whole arrays are manipulated (e.g., strings are concate-
nated), it is assumed that the target of the operation is large enough to hold the entire result.
Since arrays are typically mapped onto contiguous blocks of address space, reading from an

30 CMU/SEI-2002-TR-026

address that is not part of the array has one of two effects: (1) the address is not a part of the
program’s address space at all and some sort of addressing fault occurs, or (2) the address is
allocated to something else—code, another variable, or unused, but addressable memory
(slack space). In the first case, an abnormal program termination usually results. In the sec-
ond case, the results are unpredictable unless the precise mapping of code, data, and slack
space is known. If the array operation is a store, the result could be an unexpected change in
the value of another variable or the corruption of program code. If one knows how code and
data are allocated by the compiler and loader, it is possible to use out-of-bounds array opera-
tions to modify code and achieve predictable changes in program behavior. Starting with the
Morris worm of 1988, this has become a common method for attacking Internet programs.

For the most part, both scalar- and array-type violations are almost completely avoidable.
Languages with suitable exception semantics, such as Ada, provide run-time indications of
attempts to access out-of-bounds array elements. Type-safe languages, such as Java, provide
similar protections. In C, programmers can code explicit checks to overflows and out-of-
bounds accesses. This is not often done for several reasons. It is commonly thought that such
checks exact an unacceptable run-time cost. In addition, most programmers simply do not
think about the ways in which their program could be forced to fail by supplying abnormal
inputs. Defensive programming techniques can prevent a broad class of program failures that
result from abnormal inputs. If they are carefully applied, these techniques need not exact a
significant run-time penalty. In general, the program specification should describe the input
ranges over which the program is expected to work.

The first step in constructing a defensive system is to add code to check that the data is within
the expected range. In the case of arrays or structures, this means reading data in bounded
chunks. The original Morris worm took advantage of the fact that the fingered program as-
sumed that its input lines would be the correct size (92 bytes) and used a library routine (gets)
that read until a “newline” character was encountered, placing the characters read into an ar-
ray. A defensive version of this would count characters as it read, discarding inputs that were
either too short or too long and then making sure that inputs of the correct length had the ap-
propriate structure.

Once the inputs have been validated, it is usually possible to reason about additional excep-
tions. If the lengths of strings being concatenated have been previously checked, they can be
safely combined if the target of the concatenation is large enough to hold their combined
maximum lengths. Similar reasoning applies to exceptions that might arise from arithmetic
operations. Experience with a variety of programs shows that, aside from the input checks
(which should always be performed since the inputs are not under the programmer’s control)
few, if any, additional checks are typically required. Optimizing compilers for type-safe lan-
guages typically perform such reasoning in order to eliminate run-time checks [McHugh 84].
These and related techniques are required for systems intended to be evaluated at the higher

CMU/SEI-2002-TR-026 31

assurance levels of the Trusted Computer Security Evaluation Criteria [DoD 85], and Young
and McHugh discuss them in detail [Young 87].

Design and code inspections are an excellent method for ensuring uniform application of de-
fensive practices. Inspections can be integrated into the spiral management process as a
means to reveal and improve development performance and adherence to project standards.

4.3.2 Correctness Verification

Most intrusion vulnerabilities are the result of poor programming practices that produce un-
foreseen software behavior which is often useful for intrusion purposes—for example, the
unintended and widely exploited behavior associated with buffer-overflow problems. The
first and best line of defense against intrusion is software whose required behavior in all pos-
sible circumstances of use is fully specified, and whose implementation behavior has been
verified against those specifications.

Because systems that can be attacked at all levels must be defended at all levels, it is impor-
tant to verify all software components for correctness with respect to specifications. By its
very nature, testing is insufficient for this purpose. Even small software systems exhibit a
virtually infinite population of possible executions; even the most carefully conceived pro-
gram of testing can exercise no more than a minute fraction of these executions. All testing is
really sampling from an essentially infinite population of possible executions. Correctness
verification, on the other hand, is intended to examine the full functional behavior of soft-
ware, and is not limited to particular execution paths.

Function-theoretic verification is particularly well suited for this purpose [Linger 99b, Prow-
ell 99]. This approach permits development teams to completely verify the correctness of
software with respect to specifications. A correctness theorem defines conditions to be met
for achieving correct software. These conditions are verified through systematic and repeat-
able correctness reasoning patterns applied in special team reviews. While programs contain
an essentially infinite number of paths, they are composed of a finite number of nested and
sequenced control structures (sequence, ifthenelse, whiledo, etc.). The Correctness Theorem
is based on verifying control structures, a finite task, and not on tracing execution paths, an
open-ended task. This reduction of verification to a finite process permits all software logic to
be checked for correctness, to help ensure that unforeseen behavior and potential intrusion
vulnerabilities are eliminated from designs.

The correctness conditions defined by the Correctness Theorem for the fundamental control
structures are given in Table 3. The control structures are expressed in generic design lan-
guage format. On the left, each control structure is preceded by a function definition labeled f
that defines and documents its net effect on data—that is, the specified mapping from domain
to range that the control structure is to implement. Within the structures, g and h represent

32 CMU/SEI-2002-TR-026

operations on data. On the right, the sequence-correctness question involves function compo-
sition, the ifthenelse, case analysis, and the whiledo, a termination argument plus case analy-
sis and function composition combined. Prowell and Stavely provide a full explanation of
function-theoretic verification [Prowell 99, Stavely 99].

Table 3: Correctness Conditions for Functional Verification
Control Structure Correctness Question

Sequence:

[f]
do
 g;
 h
enddo

Does g followed by h do f?

Ifthenelse:

[f]
if
 p
then
 g
else
 h
endif

When p is true,
 does g do f,
and when p is false,
 does h do f?

Whiledo:

[f]
while
 p
do
 g
enddo

Does the loop terminate,
and when p is true,
 does g followed by f do f,
and when p is false,
 does doing nothing do f?

4.4 Testing

In managing the development of survivable systems, it is important to treat survivability test-
ing on a par with testing for functionality, performance, and other system attributes. Penetra-
tion testing and statistical, usage-based testing are two useful approaches for evaluating sys-
tem survivability.

4.4.1 Penetration Testing

Often called “red teams,” groups that engage in penetration testing attempt to compromise a
system, in a benign manner, to assess the effectiveness of the system’s defenses against cy-
ber-attack. Penetration testing offers a complementary method of assessing the security of a
system, but it is never a substitute for traditional system testing or certification. Penetration
testing is carried out with the permission of the organization that owns the system, and within
the bounds of ground rules specifying what is off limits and what is not. For maximum effec-
tiveness, the test team should be free to use a wide variety of information-gathering tech-

CMU/SEI-2002-TR-026 33

niques, including scanning tools, social engineering, and dumpster diving, to support its sub-
sequent benign attacks on the system. This allows the team to test the security of the organi-
zation as a whole, of which the system is only a part.

Incorporating the concept of survivability into the penetration testing approach can greatly
increase its effectiveness and value. Computer security concepts give the test team little guid-
ance as to what within a system is worthy of attack. Survivability gives much stronger guid-
ance, because only if mission-critical services have been interrupted should the efforts of the
test team be regarded as successful. Successfully attacking non-essential parts of a system
does not allow the penetration test team to declare victory. This “strategic” use of penetration
testing can be tied to a system’s life cycle and to the evolutionary design of survivable sys-
tems. As a system’s mission is modified (i.e., evolves over time), the essential services that
support the mission may change, thus varying the targets that a penetration test team must
successfully attack to overcome the system’s survivability strategies.

4.4.2 Statistical Usage-Based Testing

As noted earlier, any process of testing can execute only a small sample of possible system
executions. The problem and opportunity in testing is how to draw the sample. It turns out
that if the sample is representative of eventual field usage, testing results can provide scien-
tifically valid predictions of field experience with the software. In this approach, testing is
conducted as a statistical experiment, and the results can be used to predict in statistical terms
how the software will behave for all the executions not tested. This statistical, usage-based
approach to testing permits certification of software’s fitness for use, and is fully described in
Prowell et al.’s book [Prowell 99]. In general terms, the process begins by constructing a us-
age model that enumerates possible software uses and their probabilities of occurrence. Us-
age models are often expressed in terms of formal grammars or Markov chains. The model
can then be sampled according to the probabilities, to identify a set of test cases that is faith-
ful to the defined probability distribution. These cases can be executed, and their outcomes
(success or failure) used to predict eventual field experience with the software.

In the context of testing for survivability, intruders can be treated as simply another class of
system users. Intruder usage can be integrated into a usage model along with legitimate us-
age. When the model is sampled, intrusion usage will appear in the test cases together with
legitimate usage. Success or failure of intrusion uses can be used to evaluate and predict sur-
vivability properties in field use.

4.5 System Evolution

Evolutionary design is an important concept that permeates the life cycle of all complex in-
formation systems, but evolution plays a particularly crucial role in the life cycle of surviv-

34 CMU/SEI-2002-TR-026

able systems. That is because the primary focus of information survivability is on protecting a
system’s mission from the malicious actions of intelligent adversaries. The capabilities of
intelligent adversaries are not static, but evolve over time in strength and pervasiveness. The
sophistication of attack techniques is constantly evolving. Both awareness of these techniques
and automation support in the form of readily available attack scripts and toolkits are con-
tinually diffusing throughout the Internet. Moreover, the CERT Coordination Center and
other incident-response teams are seeing evidence of an improvement in the software engi-
neering techniques employed in the design of some recent attack scripts. All this translates
into an ever-escalating arms race between attackers and defenders that will continue as long
as networked software systems exist.

Survivability is fundamentally a discipline that blends computer security with business risk
management [Lipson 99]. Perpetual system evolution, based on continual risk assessment
over the course of the system life cycle, is central to the design of survivable systems. In a
typical maintenance environment, the original architectural vision is not preserved and the
integrity of the system degrades over time. In the absence of the perpetual, risk-managed evo-
lution of a system’s design, the security and survivability of the system will also degrade over
time. For example, new vulnerabilities in many systems’ underlying COTS components are
continually being discovered, and system configurations drift from their optimal settings.
Mission and survivability requirements can change and may no longer be reflected in the de-
sign of the existing system. Finally, as stated above, attack techniques are continually evolv-
ing and may exceed a system’s capacity for automatic adaptation.

We distinguish the evolutionary design of survivable systems from straightforward (possibly
automated) adaptation and maintenance activities, such as updating virus definitions, adding
new rules and attack patterns to a system’s intrusion-detection facility, tuning a firewall, or
monitoring security advisories and patching announced security vulnerabilities in COTS
components. On the other hand, more complex maintenance activities, which may include
new or enhanced capabilities, would be considered part of evolutionary design. The success-
ful evolutionary design of survivable systems is dependent upon the establishment of a “sur-
vivability watch” activity, which involves the continual monitoring of the system and its en-
vironment to detect changes that may affect the risk-management assumptions upon which
the survivability of the system is founded. This argues strongly for the formation of a surviv-
ability risk-assessment team (SRT), which would be responsible for the survivability watch
activity within the system design team. The resources devoted to the SRT and survivability
watch will depend upon executive management’s risk tolerance and their perception of the
cost–benefit ratio for this activity.

Risk assessments for survivability require a broad range of perspectives and skills, and so the
members of the SRT must be drawn from all levels of an organization (executive manage-
ment, application domain experts, computer security experts, and other stakeholders, includ-
ing customers). SRTs for particular industry or government sectors can be formed to provide

CMU/SEI-2002-TR-026 35

some generic assistance for organizational SRTs, but the mission-sensitive nature of surviv-
ability means that SRTs at the organizational level must bear the ultimate responsibility for
survivability risk assessment.

We use the term “risk-assessment triggers” to refer to the elements of a system or its envi-
ronment that an SRT should monitor, looking for changes that can affect the risk-
management assumptions that underlie a system’s survivability. It is up to the SRT to deter-
mine if a particular change or set of changes will trigger an evolutionary design activity and
to decide upon the extent of that activity. Table 4 contains a representative set of risk-
assessment trigger elements that an SRT might track for changes. Trigger events include
changes in attack techniques, mission, management, staff, customers, and technological and
legal environments.

Table 4: Trigger Elements for Evolutionary-Design Activities for Survivable
Systems

Trigger Elements for
Evolutionary Design Activity Examples

Attack techniques A new attack technique or variation has been discovered for which
the system cannot adapt automatically or cannot be protected
through routine maintenance (e.g., simply by adding a new rule for
resistance, recognition, or recovery).

Mission, essential services, essential quality
attributes, key information resources and as-
sets

The organization’s mission has changed or the system will be pur-
chased and deployed by other organizations with different missions.

Customers New customers may be less known (hence less trustworthy), may
require more extensive access to information resources and assets,
or may require a higher quality of service (e.g., increased availabil-
ity) than previous customers required.

Management New executive management may differ in its tolerance for risk and
its risk-management strategies.

Workflow and processes Changes in organizational processes to which the system contrib-
utes may affect the overall survivability of the mission. There may
be new ways to attack the system or human-machine interface.

Organizational staff Turnover may result in reduction of staff expertise, which may
stress the survivability of the system. In a rapidly growing organiza-
tion, new staff may be less worthy of trust than previous staff (e.g.,
there may be less time for background checks or employees may be
stationed more remotely).

Vendors A new vendor for a system component may require remote mainte-
nance and trusted access.

Collaborators A partner on one project may be a competitor on the next.

Dependencies and interdependencies Increases in dependency upon a system may be brought on by the
elimination of manual processes, staff positions, or legacy systems,
which means there is no longer an alternative if the system fails.
Another example is the steadily increasing interdependency among
the nation’s critical infrastructures.

36 CMU/SEI-2002-TR-026

Trigger Elements for
Evolutionary Design Activity Examples

Technology A change in the technological environment in which a system oper-
ates can reduce the effectiveness of a given security or survivability
strategy. (This includes changes in the unbounded systems envi-
ronment, new security techniques, and changes in the availability
and knowledge of technology in the application domain.)

Threat environment More aggressive industrial competitors or increases in nation-state
sponsored cyber-terrorism may require additional system resources
to be devoted to survivability.

System components A COTS component that is no longer supported may have been
replaced with a new component whose contribution, positive or
negative, to system survivability must be evaluated.

Usage, functionality, access, or quality of
service

New means of access to a system (e.g., wireless), new ways of us-
ing an existing system, or new expectations for quality of service
can affect a system’s survivability.

Cost, profit, and other economic factors Changing cost factors may threaten or improve a system’s surviv-
ability by affecting the cost–benefit ratio associated with various
survivability solutions (e.g., risk mitigation strategies). Afforda-
bility is a primary factor that is traded off against survivability.
Lowered component cost can lead to an evolutionary redesign pro-
viding increased redundancy and diversity to support greater sur-
vivability. Increased stockholder demands for short-term profits
may tilt survivability requirements toward higher risk.

Legal environment Use of a system in a new and stricter jurisdiction may increase the
risks of liability and threaten survivability. New laws, increased
enforcement of existing laws, or lawsuits can change the risk equa-
tion and threaten the mission.

Government regulation Changes in government regulations to support increased privacy,
safety, competition, or quality of service may trigger the need to
modify a system’s design to ensure its continued survivability. (For
example, deregulation of the U.S. electric power system increases
competition, but may decrease reliability.)

Certification requirements or standards Business interruption insurance that covers cyber-attacks may de-
pend on certification of the survivability of a system or on demon-
stration that it meets a minimum standard. Thus, new or changed
standards or certification requirements may affect survivability.

Political and social environment Changes in privacy concerns, trust relationships, or the overall risk
tolerance of society will affect the survivability requirements of
critical national infrastructures upon which society depends.

Operational experience (attacks, accidents,
and failures)

Feedback from field use may lead to the discovery of new threats to
a system’s survivability or may reveal deficiencies.

Results of periodic penetration testing and
survivability evaluations (SSAs)

Troublesome results from regularly scheduled red team penetration
testing and security/survivability evaluations can trigger awareness
of the need for evolutionary improvements.

A change in one or more of the trigger elements can initiate any of a broad range of evolu-
tionary design activities described in Table 5, ranging from no action at all, to performing one
or more survivability life-cycle activities, to abandonment of a system. The SRT would initi-
ate the design activities, but the system design team would be responsible for performing
them.

CMU/SEI-2002-TR-026 37

Table 5: Possible Evolutionary-Design Activities in Response to a Trigger Event
Evolutionary Design Activity Example

No action needed or taken. Executive management sees no new threat to a system’s mis-
sion posed by greatly increased hiring activity, because all
new hires are subject to thorough background checks.

No action taken, but increase monitoring of this
trigger (or set of triggers).

Increase resources devoted to monitoring feedback from the
field, in response to evidence from operations indicating a
performance slowdown resulting from a rare combination of
customer actions.

Further analysis needed; generate scenarios for a
Survivable Systems Analysis (SSA) or carry out
penetration testing to determine next activity, if
any.

Create new scenarios that reflect the usage patterns of a new
type of customer. Use these scenarios to perform an SSA, the
results of which may drive additional evolutionary design
activities.

Perform a portion (delta) of one or more survivabil-
ity life-cycle activities.

A small change to the system architecture increases resis-
tance to a new attack scenario.

Perform a portion (delta) of each of the full set of
survivability life-cycle activities.

A modification to the mission touches all survivability life-
cycle activities to some extent.

Abandon the system and do a full redesign. A major change in the technology of the application domain,
coupled with sweeping improvements in defensive technol-
ogy, cannot be incorporated by evolutionary design activities
alone.

Abandon the system. A drastic change in the mission renders the system obsolete.

For example, a computer security expert on the SRT learns of a new attack technique that
might threaten the survivability of the existing system. Assume that this new attack technique
cannot be countered by straightforward maintenance activities such as applying a security
patch to a system component or adding a new rule to the firewall. Based on the new attack
technique, the security expert generates a set of new attack scenarios to be used as an input
delta to a Survivable Systems Analysis (SSA) of the existing system. If deficiencies in the
system’s resistance, recognition, or recovery are discovered, then one or more survivability
life-cycle activities (such as a modification of the system architecture, or a change in surviv-
ability requirements) will be required.

The completion of one survivability life-cycle activity may trigger the need for another. Ad-
justments in the design tradeoffs with other quality attributes in the system may also be called
for. The point at which the evolutionary design process stops is dependent upon the risk tol-
erance of an organization, and the perceived cost–benefit ratio, with respect to the particular
set of trigger events. If evolution is not feasible, the organization may tolerate the risk, or
seek other alternatives that transcend the system.

It is imperative that the evolutionary design activities take place in the context of full access
to a comprehensive set of artifacts of the design process (such as descriptions of the rationale
for tradeoffs made during the last design cycle). Continuity of the design team is particularly
crucial for the evolutionary design of survivable systems, so that the mission-specific design
expertise can be sustained throughout the life of the system. Otherwise, the evolutionary de-
sign process may degenerate into a “patching” approach that can never support the long-term

38 CMU/SEI-2002-TR-026

survivability of systems. Just as survivability must be designed into a system from the begin-
ning and not added on later as an afterthought, long-term survivability cannot be sustained
through patching or routine maintenance, but only through the continual incorporation of new
survivability solutions through a principled evolutionary design process.

CMU/SEI-2002-TR-026 39

5 COTS Development Life-Cycle Activities

Historically, computer security has been based on the use of a collection of generic tools and
approaches that provide a fortress or perimeter defense for the applications being protected.
For the most part, these security solutions were an add-on or afterthought. Moreover, the
open, unbounded, highly vulnerable, highly collaborative Internet environment renders for-
tress models largely ineffective. Survivability may be thought of as a software engineering
approach that integrates computer security into the software design and development process
from the beginning. It protects the application-specific mission, provides recognition of prob-
lems that cannot totally be prevented, and provides recovery schemes when attacks (or acci-
dents or component failures) cannot be completely avoided. Business risk management and
engineering trade-offs are an inherent part of the development process for survivable systems.

Hence, survivability strategies must be integrated throughout the software development life
cycle. This poses a particularly strong challenge for COTS-based software development. The
implications for the development of survivable COTS-based systems are daunting. With the
fortress or perimeter-based model of computer security, a COTS-based system could be de-
veloped with little or no regard to computer security concerns, and then a COTS-based pe-
rimeter defense (commercial firewalls plus a commercial encryption package, etc.) could be
added to improve security. However, survivability is a global system property that emerges
from the interactions among the system components and is difficult enough to discern when
the internals of the components are completely known. With COTS, many of the software
quality attributes are unknown and difficult to analyze without access to the source code or
other artifacts of the software engineering process.

Our long-term goal is to create practical software development methodologies for building
secure and survivable COTS-based systems. We plan to investigate two complementary areas
of software engineering research: (1) survivability for traditional (i.e., custom) software de-
velopment activities and (2) COTS-based system life-cycle activities.

Earlier in this report, we discussed our research work on development methodologies for sur-
vivable systems focused on the traditional software development life cycle and associated
survivability activities. Unfortunately, these traditional life-cycle activities (augmented with
survivability elements) cannot be directly applied to the development of COTS-based sys-
tems. As stated earlier, COTS-based systems pose special and severe challenges to any soft-
ware development team. The foremost challenge is dealing with extremely limited informa-
tion about the software quality attributes of the COTS products that are under consideration

40 CMU/SEI-2002-TR-026

for use as system components. Typically, none of the artifacts of the traditional software en-
gineering process (source code, design rationale, test suites and test results, and so forth) are
readily available. For a typical COTS product, it is therefore nearly impossible to discern the
engineering tradeoffs that were made (explicitly or implicitly) among the various attributes of
software quality (performance, security, reliability, maintainability, usability, etc.). Needless
to say, this is a severe disadvantage for a development team that is trying to build a surviv-
able system out of COTS components.

One useful step is an extension of the spiral life cycle model to incorporate survivability ac-
tivities. This is shown in Figure 6.

Survivability
lifecycle and

assurance
planning

Vendor alternatives

IV Planning III Product
Development

I Objectives,
Alternatives,
Constraints

II Risk Analysis
and Mitigation

Mission Needs
Primary
adversaries

Assess own
COTS risk

mngmt skills

Survey relevant
COTS
technology

Survivability
requirements

Intrusion
environment

Essential services
A

ssurance constraints

Impact analysis

Syst
em

 desi
gn

ref
inem

en
t p

lan

Design alternatives

A
ss

es
s d

es
ig

n
as

su
ra

nc
e

Architecture

Integration

Implementation

As
se

ss
 v

en
do

r c
om

pe
te

nc
e

an
d

pr
od

uc
t q

ua
lit

y

Vulnera
bilit

y a
nalys

is

System design refinement

D
esign verification

and validation

Figure 6: Spiral Life-Cycle Model with Survivability Activities

Imposing a principled software engineering process on the development of COTS-based sys-
tems has been the focus of earlier research on COTS-based system life-cycle activities
[Brownsword 00, Oberndorf 00]. Although security and survivability concerns were not ex-
plicitly addressed in this earlier work, the research serves as a foundation (along with ongo-
ing research on survivability for traditional life-cycle activities) for a development methodol-
ogy for building survivable COTS-based systems.

CMU/SEI-2002-TR-026 41

The COTS-based system (CBS) life cycle includes four activity areas, each of which has sev-
eral subareas [Oberndorf 00]:

• Engineering Activity Area: System Context, Architecture and Design, Marketplace, Con-
struction, Configuration Management, Deployment and Support, Evaluation

• Business Activity Area: COTS Business Case, COTS Cost Estimation, Internal Supplier
Relationships, Vendor Relationships

• Project-wide Activity Area: CBS Strategy, COTS Risk-Management, CBS Trade-offs,
Information Sharing, Cultural Transition

• Contract Activity Area: Contract Requirements, Contract Tracking and Oversight, Solici-
tation, License Negotiation

Each subarea includes a set of activities. The complete set of activities is shown in Table 6.
(Note that activities within an activity area are not sequential except where indicated.)

Table 6: CBS Life-Cycle Activities
Engineering Activity Area Activities

System Context Determine and prioritize negotiable and non-negotiable elements of the sys-
tem context.

Understand the essential elements of the end-users’ business processes.

Modify end-user processes.

Negotiate system context changes.

Reflect the results of trade-offs.

Periodically reexamine business processes.

Architecture and Design Select candidate products.

Create and evolve architecture/design representation.

Validate the architecture.

Reflect results of trade-offs.

Understand and reflect marketplace impact.

Marketplace Create and maintain current knowledge of the available and emerging mar-
ketplace.

Re-explore the marketplace.

Alert technical staff to promising new technologies.

Construction (includes coding,
integration, testing)

Discover and characterize product features.

Create glue code.

Integrate and test the system early and continuously.

Continuously determine the effect of product upgrades.

Configuration Management Identify configuration baselines.

Receive and process upgrades.

Systematically control changes.

Release new system versions.

Coordinate with construction.

Deployment and Support Plan support.

Plan system deployments.

42 CMU/SEI-2002-TR-026

Plan and accommodate the need for end-user support.

Incorporate new product releases.

Coordinate with suppliers.

Manage licenses.

Perform site-specific tailoring.

Plan and manage for multiple releases.

Coordinate and engineer multiple supplier releases with your releases.

Evaluation Plan evaluation.

Design evaluation.

Locate potentially relevant candidates.

Perform appropriate analyses for selection of technologies or products.

Document and share acquired information.

Business Activity Area Activities

COTS Business Case
(Note: These activities are sequen-
tial.)

Determine critical success factors for the system.

Conduct a preliminary feasibility study.

Identify key CBS assumptions.

Articulate the alternatives.

Formulate CBS strategic plans.

Analyze CBS financial implications.

Analyze alternatives.

Revisit the COTS business case.

COTS Cost Estimation Identify cost factors.

Select and calibrate COTS cost-estimation models.

Estimate costs.

Provide cost estimates in support of other activity sets.

Track actual costs vs. estimates.

Maintain COTS cost-estimation models.

Internal Supplier
Relationships

(written for government)

Vendor Relationships Understand and monitor the vendor’s long-term approach for maintenance
and support.

Develop a strategy to create and manage vendor relationships.

Engage in meetings and exchanges with vendors.

Establish liaisons for other vendor customers.

Coordinate organization-wide vendor relationships.

Encourage and facilitate working relationships among vendors.

Project-Wide Activity Area Activities

CBS Strategy Identify CBS goals, constraints, and assumptions.

Identify COTS-related risks.

Identify relevant market segments.

Identify alternative COTS-based solutions.

Assess, evaluate, and trade off alternative COTS-based solutions.

Recommend an overall CBS strategy.

Create a corresponding CBS plan.

Reassess and revise the acquisition strategy and plan.

CMU/SEI-2002-TR-026 43

COTS Risk Management Identify and prioritize COTS-related risks.

Analyze COTS-related risks.

Plan and institute COTS risk mitigations.

Track COTS-related risks.

Revisit CBS risk management success regularly.

CBS Trade-offs Determine organization and contractor roles.

Identify where CBS trade-offs are needed.

Gather sufficient information to make informed COTS-related trade-offs.

Select or make an appropriate CBS resolution.

Communicate the resolution.

Information Sharing Determine information collection and sharing strategies.

Actively monitor the use of information you provided for
sharing.

Seek CBS information from outside sources.

Ensure collection of CBS information.

Make your CBS information readily accessible to others.

Manage CBS information.

Build information sharing into your processes.

Cultural Transition Assess CBS readiness of your organization.

Identify the skills sets needed for CBS success.

Train everyone.

Secure CBS buy-in of senior executives.

Develop and implement a CBS cultural-transition strategy.

Identify and encourage CBS champions.

Provide incentives for changing.

Share information.

Contract Activity Area Activities

Contract Requirements (skills
needed)

Address COTS-specific requirements in contract requirements.

Appraise requests for contract changes to determine their effect on COTS
products.

Contract Tracking and Oversight Use testbeds and pilots to provide visibility.

Involve the end-user community in pilots.

Solicitation Prepare cost and schedule estimates for products.

Prepare for the evaluation of responses.

Conduct proposal evaluation.

License Negotiation Conduct a preliminary investigation of licensing alternatives and costs.

Secure a budget.

Negotiate the licenses.

44 CMU/SEI-2002-TR-026

CMU/SEI-2002-TR-026 45

6 COTS Development Life-Cycle Activities
and Survivability

For COTS-based systems (CBS), a survivability strategy can provide the framework for a
specific set of survivability activities to be associated with the CBS life-cycle activities de-
scribed previously in Table 6. The strategy should provide a framework for activities that are
aimed at both process and product. For example, such a strategy should address policy as
well as technical issues. Feasibility studies should be undertaken to determine whether COTS
products can meet survivability requirements. Vendor evolution plans should be examined to
determine whether the COTS products that currently meet survivability requirements will
evolve in such a way as to continue to do so.

6.1 CBS Survivability Activities

We have made some modifications to the CBS activity areas and have populated a matrix
with associated survivability activities [Mead 01]. The slightly revised CBS activity areas and
subareas are

• Engineering Activity Area: System Context, Enterprise Architecture and Design, Market-
place, Construction, Configuration Management, Deployment and Sustainment, Evalua-
tion

• Business Activity Area: COTS Business Case, COTS Cost Estimation, Vendor Relation-
ships

• Project-Wide Activity Area: CBS Strategy, COTS Risk Management, CBS Trade-offs,
Information Sharing, Cultural Transition, Policy

• Contract Activity Area: Contract Requirements (skills needed), Contract Tracking and
Oversight, Solicitation, License Negotiation

A complete set of CBS activity areas supplemented with survivability activities is shown in
Table 7.

46 CMU/SEI-2002-TR-026

Table 7: COTS Life-Cycle Activities Tailored to Survivability
Engineering Activity Area Survivability Activities

Understand your overall business mission and its consequences in terms of sur-
vivability, survivability requirements, and essential services.

Understand constraints such as existing networks, management issues, etc.

Understand intrusion environment and potential intrusion scenarios.

Understand survivability strategies of other systems external to this one.

Periodically reexamine survivability context and requirements, and business
processes as related to survivability, and trace the changes.

System Context

Policy: Develop or modify overall policy to include survivability aspects.

Refine overall survivability strategy in the architecture area.

Use Survivable Systems Analysis, Survivable Network Design.

Use survivability styles and strategies to guide architecture (Internal note:
consider loose coupling and encapsulation).

Understand survivability consequences of selected products.

Incorporate survivability capabilities of selected products.

Consider vulnerabilities outside specific components that may be part of the
normal process, in both systems and operations.

Enterprise Architecture and
Design

Policy: Consider the business processes that support technology and are essen-
tial for survivability.

Marketplace Remain current on new survivability techniques.

Revisit the marketplace with survivability in mind.

Alert staff to survivability consequences and capabilities of new technologies.

Use defensive coding strategies, correctness verification, penetration testing,
statistical testing.

Continuously determine the impact of product upgrades on survivability.

Consider integration and interoperability relative to survivability.

Consider tailoring and its impact on survivability.

Take preservation of properties into account.

Develop a survivability argument.

Construction (includes coding,
integration, testing)

Policy

Ensure that changes and upgrades do not negatively impact survivability. Use a
configuration management scheme that will make survivability aspects visible.

Configuration Management

Policy

Deployment and Sustainment Establish a survivability watch activity and a survivability risk assessment team.
Consider vendor product evolution, technology evolution, and system evolution.

Examine new products and new product releases for survivability.

Look at long-term evolution and its survivability consequences; maintain and
improve survivability.

Adjust/react to technical decisions that partners and customers have made.

Evaluation Assess the success of the survivability strategy.

Perform survivability analyses for selection of technologies or products.

Document and share acquired information.

CMU/SEI-2002-TR-026 47

Business Activity Area Survivability Activities

Assess whether or to what extent COTS can support needed survivability fea-
tures.

Assess whether you can neutralize undesired side effects, e.g., automatic up-
grades by the vendor.

Assess duplication of effort/interoperability from a survivability viewpoint (e.g.,
does the vendor require separate password files that need separate mainte-
nance?).

Assess the cost impact of attacks.

Determine critical survivability success factors for the system.

Understand the financial implications and revisit the business case.

Revisit the business case if critical sensitivity analysis factors change. This ap-
plies to both system and processes.

COTS Business Case

Policy

COTS Cost Estimation Use survivability as a cost factor in selected cost estimation models.

Estimate cost impact of building in survivability or acquiring survivable COTS
products for the threat environment.

Internal Supplier Relation-
ships

Vendor Relationships Develop a strategy to assess vendors relative to survivability.

Encourage and facilitate survivability discussions among vendors.

How well-positioned are the vendors relative to where you want to go?

Will they continue to be players in the long term?

Project-Wide Activity Area Survivability Activities

CBS Strategy Develop an overall survivability strategy.

Develop a survivability plan.

Identify needed survivability features.

Examine alternative COTS-based solutions for survivability.

COTS Risk Management Apply OCTAVE as part of the risk management scheme.

Track top survivability risks in addition to overall system risks.

CBS Trade-offs Assess survivability features of COTS products under consideration.

Trade off survivability against required attributes in a project-wide context.

Information Sharing Collect information about the threat environment and the survivability of CBS
products and make it accessible to others.

Include stakeholders and technical staff.

Cultural Transition Identify survivability champions and ensure stakeholder buy-in to survivability
needs.

Provide awareness training on survivability to all personnel and in-depth train-
ing as needed.

Keep in mind that the transition from security to survivability may be threaten-
ing to the traditional security staff, and obtain their participation and buy-in.

48 CMU/SEI-2002-TR-026

Contract Activity Area Survivability Activities

Contract Requirements (skills
needed)

Consider vendor and other contractor (e.g., integration, network) experience in
survivability, and specify survivability in contract requirements.

Contract Tracking and Over-
sight

Get visibility into the survivability of COTS products.

Have the ability to adjust contracts to reflect survivability changes, particularly
relative to threats.

Monitor COTS vendor performance relative to survivability requirements.

Obligate contractors to share risks.

Have the ability to audit/assess contractor systems.

Solicitation Establish survivability evaluation criteria for vendor-provided products and
services.

Include survivability in cost and schedule estimates and in evaluation criteria.

License Negotiation Determine whether survivability should be part of the license agreement.

Evaluate survivability expectations in the event of expiration or change.

As an example, we provide some further detail on the System Context subarea.

6.2 System Context Survivability Issues

The ability to design and develop a survivable system depends in large measure on a thor-
ough understanding of the context in which that system operates. The most salient character-
istic of that context is the overall business mission that the system is designed to support.
Ultimately it is the business mission that must survive, not any particular subsystem, compo-
nent, or technology [Lipson 99]. Traditional computer security is based on a binary view of
attack and defense, where an attack is either completely repelled or the attack succeeds and
the system is compromised. In the open, highly-distributed, Internet environment of today, a
perfect defense is impossible. In contrast, a survivable system degrades gracefully under at-
tack, and continues to provide essential services even if one or more of its components is
compromised. Survivability depends not only on a system’s ability to resist attack, but also
on its ability to recognize the effects of an attack, and its ability to recover from attacks that
cannot be completely repelled. Elicitation of survivability requirements, which includes an
enumeration and description of the essential services that a system must continue to provide
in the face of attacks, is a critical early step in the development process.

System architects and engineers must also be aware of the contextual constraints imposed on
the design by factors such as existing networks and technology that must function smoothly
(or at least adequately) with the new system; management issues, including limitations on
project funding, resources, and time to completion; and of course a finite set of existing
COTS products from which to build the new survivable system. The use of widely available
COTS products reduces costs, but their generic, mass-market, low-cost design makes it
unlikely that such products will meet the specific survivability requirements of a particular
application or system, particularly right out of the box. A crucial survivability activity, later in
the design process, is to understand the survivability consequences of selected products. The

CMU/SEI-2002-TR-026 49

unavailability of source code, design rationale, and other engineering artifacts associated with
COTS products makes them difficult to analyze for survivability, and for other attributes of
software quality.

The threat environment and potential attack scenarios are additional aspects of the system
context that must be considered in great detail. Survivability is a context-sensitive quality,
and a system cannot be analyzed for survivability without an in-depth understanding of the
mission, who and what would likely threaten that mission, and likely scenarios of the circum-
stances under which attacks on the system (and its mission) can be carried out. For example,
a particular implementation of a cryptographic algorithm might be sufficient for protecting
the daily transactions of a typical retailer on the Internet, but might be wholly inadequate to
protect inter-bank transactions. Attack scenarios involving a banking system would posit a
much greater use of resources by a potential attacker than would the scenarios for an attack
on a low-profile retailer.

Another key aspect of the system context concerns the survivability strategies of external sys-
tems that the system depends on. Such external systems include local and global infrastruc-
tures. When a target system is heavily defended, a common attack strategy is to attempt to
disrupt systems that provide services to the well-defended target. Hence, a survivability de-
sign strategy (and the risk-management analyses that support it) must consider the survivabil-
ity of external systems, including those belonging to business partners, suppliers, customers,
and collaborators. Survivability solution strategies should specify alternative means of ob-
taining the external services needed by the system, perhaps with a degraded but still accept-
able quality of service.

Changes in a system’s context are inevitable, and a survivable system must evolve over time
to address those changes, or the survivability and security of the system will degrade. A peri-
odic reexamination of the system context, including the underlying implementation technol-
ogy, business mission, survivability requirements, and supporting policies and processes, is a
critical part of the survivable system development life cycle. Addressing the results of this
periodic reexamination is even more important for developing and sustaining the survivabil-
ity of COTS-based systems. First, survivability strategies are based on the notion of an intel-
ligent adversary, and so new vulnerabilities are continually being discovered in the underly-
ing implementation technology, as are new means of exploiting such weaknesses. The
pervasive distribution of many COTS-based systems makes them widely available for ex-
perimentation by hackers, and a COTS product vulnerability discovered in one system con-
text can typically be exploited in many other systems that use that COTS product as a com-
ponent. Second, the release schedule of a COTS component is typically not under the control
of the design team of a COTS-based system. Upgrading quickly to the newest release may be
a necessity to continue to meet some functional or non-functional system requirement, but the
survivability implications of the upgrade will have to be evaluated (without the benefit of

50 CMU/SEI-2002-TR-026

engineering artifacts from the COTS component upgrade that would make the implications
easier to discern).

Finally, a survivable system is dependent not only upon technology, but also upon the busi-
ness policy and human processes that support the overall mission. System designers and de-
velopers must understand the policy context in which the system operates, or the survivability
of the system will be at risk.

CMU/SEI-2002-TR-026 51

7 Future Research Opportunities

Many extensions of this work are possible. The larger context for survivability, system and
COTS-based life-cycle models and their associated activities, could be investigated further.
For example, one could expand upon and refine the CBS survivability activities, and reflect
changes back to the CBS activity areas and subareas. Each of the activities could be de-
scribed in much greater detail, along with examples and case studies, to provide a practical
framework for building survivable CBS. This would allow CBS developers to begin to en-
hance and sustain system survivability. Our investigation of the survivability of CBS is part
of an overall research activity into methods for survivable systems that can be incorporated
into various life-cycle phases.

Some of the methods referenced in the activity areas are part of our research plan. A key next
step for survivability evolution is to develop more powerful abstractions and reasoning meth-
ods for defining the behavior and structure of large-scale distributed systems. Such results
will enable more comprehensive analysis of essential service and intrusion traces while limit-
ing complexity. In addition, improved representations and methods are required for defining
intrusions. It is important to move beyond the limitations of natural language and to develop
uniform semantics for intrusion usage that permit more rigorous analysis and even allow for
the application of computational methods.

Another fruitful line of research involves developing standardized architectural styles or tem-
plates for survivability strategies that can be inserted and composed with system architectures
to improve their survivability properties. Such templates can be independently analyzed to
define and document their contribution to system survivability.

52 CMU/SEI-2002-TR-026

CMU/SEI-2002-TR-026 53

References

[Anderson 97] Anderson, Robert H.; Hearn, Anthony C.; & Hundley, Richard O.
“RAND Studies of Cyberspace Security Issues and the Concept of a
U.S. Minimum Essential Information Infrastructure.” Proceedings
of the 1997 IEEE Information Survivability Workshop. San Diego,
California, Feb. 12-13, 1997. Los Alamitos, CA: IEEE Computer
Society, 1997. <http://www.cert.org/research/isw.html>.

[Boehm 89] Boehm, Barry W. Software Risk Management. Washington, D.C.:
IEEE Computer Society Press, 1989.

[Brownsword 00] Brownsword, Lisa; Oberndorf, Tricia; & Sledge, Carol A. “Devel-
oping New Processes for COTS-based Systems.” IEEE Software
17, 4 (July/August 2000): 48-55.

[Carrol 99] Carrol, John M. “Five Reasons for Scenario-Based Design.” Pro-
ceedings of the Thirty-Second Annual Hawaii International Confer-
ence on Systems Sciences. Maui, Hawaii, Jan. 5-8, 1999. Los
Alamitos, CA: IEEE Computer Society Press, 1999.

[DoD 85] Department of Defense. “Department of Defense Trusted Computer
System Evaluation Criteria.” DoD 5200.28-STD. National Com-
puter Security Center, Department of Defense Computer Security
Center, 1985.

[Ebert 97] Ebert, Christof. “Dealing with Nonfunctional Requirements in
Large Software Systems.” Annals of Software Engineering 3
(September 1997): 367-395.

[Ellison 98] Ellison, Robert; Fisher, David; Linger, Richard; Lipson, Howard;
Longstaff, Thomas; & Mead, Nancy. “A Survivable Network
Analysis Method.” Proceedings of the 1998 IEEE Information Sur-
vivability Workshop. Orlando, Florida, Oct. 28-30, 1998. Los
Alamitos, CA: IEEE Computer Society, 1998.
<http://www.cert.org/research/isw.html>.

54 CMU/SEI-2002-TR-026

[Ellison 99a] Ellison, Robert; Fisher, David; Linger, Richard; Lipson, Howard;
Longstaff, Thomas; & Mead, Nancy. Survivable Network Systems:
An Emerging Discipline (CMU/SEI-97-TR-013, ADA341963).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1997 [revised 1999]. <http://www.sei.cmu.edu
/publications/documents/97.reports/97tr013/97tr013abstract.html>.

[Ellison 99b] Ellison, Robert; Linger, Richard; Longstaff, Thomas; & Mead,
Nancy. “Survivable Network System Analysis: A Case Study.”
IEEE Software 16, 4 (July/August 1999): 70-77.

[Kazman 98] Kazman, Rick; Klein, Mark; Barbacci, Mario; Longstaff, Thomas;
Lipson, Howard; & Carriere, Jeromy. “The Architecture Tradeoff
Analysis Method.” Proceedings of the International Conference on
Engineering of Complex Computer Systems. Monterey, CA, Aug.
10-14, 1998. Los Alamitos, CA: IEEE Computer Society Press,
1998. <http://www.sei.cmu.edu/ata/publications.html#papers>.

[Kemmerer 91] Kemmerer, R.A. & Porras, P.A. “Covert Flow Trees: A Visual Ap-
proach to Analyzing Covert Storage Channels.” IEEE Transactions
on Software Engineering 17, 11 (November 1991): 1166-1185.

[Linger 98] Linger, Richard; Mead, Nancy; & Lipson, Howard. “Requirements
Definition for Survivable Network Systems.” Proceedings of the
International Conference on Requirements Engineering. Colorado
Springs, CO, Apr. 6-10, 1998. Los Alamitos, CA: IEEE Computer
Society Press, 1998. <http://www.cert.org/archive/pdf/icre.pdf>.

[Linger 99a] Linger, Richard. “Systematic Generation of Stochastic Diversity as
an Intrusion Barrier in Survivable Systems Software.” Proceedings
of the Thirty-Second Annual Hawaii International Conference on
Systems Sciences. Maui, Hawaii, Jan. 5-8, 1999. Los Alamitos, CA:
IEEE Computer Society Press, 1999.
<http://www.cert.org/archive/html/stochastic-divers.html>.

[Linger 99b] Linger, Richard & Trammell, Carmen J. “Cleanroom Software En-
gineering Theory and Practice,” 351-372. Industrial Strength For-
mal Methods in Practice. Hinchey, Mike & Bowen, Jonathan, eds.
London, UK: Springer-Verlag, 1999.

CMU/SEI-2002-TR-026 55

[Lipson 96] Lipson, Howard & Longstaff, Thomas. Coming Attractions in Sur-
vivable Systems (research report for DARPA). Pittsburgh, PA:
CERT Coordination Center, Software Engineering Institute, Carne-
gie Mellon University, June 1996. <http://www.cert.org/research/>.

[Lipson 99] Lipson, Howard & Fisher, David A. “Survivability: A New Techni-
cal and Business Perspective on Security,” 33-39. Proceedings of
the 1999 New Security Paradigms Workshop. Caledon Hills, ON,
September 22-24, 1999. New York, NY: Association for Computing
Machinery, 2000.

[Marmor-Squires
88]

Marmor-Squires, Ann & Rougeau, Pat. “Issues in Process Models
and Integrated Environments for Trusted Systems Development,”
109-113. Proceedings of the 11th National Computer Security
Conference. Fort George G. Meade, MD, Oct. 17-20, 1988.
Washington, D.C.: United States Government Printing Office, 1988.

[Marmor-Squires
89]

Marmor-Squires, Ann; McHugh, John; Branstad, Martha; Danner,
Bonnie; Nagy, Lou; Rougeau, Pat; & Sterne, Dan. “A Risk Driven
Process Model for the Development of Trusted Systems,” 184-192.
Proceedings of the 1989 Computer Security Applications Confer-
ence. Tucson, AZ, Dec. 1989. Los Alamitos, CA: IEEE Computer
Society Press, 1989.

[McHugh 84] McHugh, John. Towards the Generation of Efficient Code From
Verified Programs. PhD Dissertation, The University of Texas at
Austin, Austin, TX, 1984.

[McHugh 95] McHugh, John.; Payne, C.N.; & Martin, C. “Assurance Mappings,”
Handbook for the Computer Security Certification of Trusted Sys-
tems. NRL Technical Memorandum 5540:081A. Washington, DC:
Naval Research Laboratory, January 1995.

[Mead 00a] Mead, Nancy; Ellison, Robert; Richard, Linger; Longstaff, Thomas;
& McHugh, John. Survivable Network Analysis Method (CMU/SEI-
2000-TR-013, ADA383771). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2000.
<http://www.sei.cmu.edu/publications/documents/00.reports
/00tr013.html>.

56 CMU/SEI-2002-TR-026

[Mead 00b] Mead, Nancy. “Lifecycle Considerations for Survivable Systems,”
Cutter IT E-Mail Advisor, July 26, 2000.

[Mead 00c] Mead, Nancy; Linger, Richard; McHugh, John; & Lipson, Howard.
“Managing Software Development for Survivable Systems.” Annals
of Software Engineering 11, 1 (November 2001): 45-78.

[Mead 01] Mead, Nancy; Lipson, Howard; & Sledge, Carol. “Towards Surviv-
able COTS-Based Systems.” Cutter IT Journal 14, 2 (February
2001): 4-11.

[Mills 92] Mills, H.D. “Certifying the Correctness of Software.” Proceedings of 25th
Hawaii International Conference on System Sciences. Maui, Hawaii, Jan.
7-10, 1992. Los Alamitos, CA: IEEE Computer Society Press, 1992.

[Mills 97] Mills, Harlan D.; Linger, Richard C.; & Hevner, Alan R. Principles
of Information Systems Analysis and Design. New York, NY: Aca-
demic Press, 1997.

[Oberndorf 00] Oberndorf, Tricia; Brownsword, Lisa; & Sledge, Carol A. An Activ-
ity Framework for COTS-Based Systems (CMU/SEI-2000-TR-010,
ADA383836). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 2000. <http://www.sei.cmu.edu
/publications/documents/00.reports/00tr010.html>.

[Parnas 86] Parnas, D.L. & Clements, P.C. “A Rational Design Process: How
and Why to Fake It.” IEEE Transactions on Software Engineering
12, 2 (February 1986): 251-257.

[Prowell 99] Prowell, Stacy J.; Trammell, Carmen J.; Linger, Richard C.; &
Poore, Jesse H. Cleanroom Software Engineering: Technology and
Process. Boston, MA: Addison-Wesley, 1999.

[Royce 87] Royce, W.W, “Managing the Development of Large Software Sys-
tems.” Proceedings of the 9th International Conference on Software
Engineering Monterey, California, Mar. 30-Apr. 2, 1987. Los
Alamitos, CA: IEEE Computer Society Press, 1987.

CMU/SEI-2002-TR-026 57

[Stavely 98] Stavely, Allan M. Toward Zero-Defect Programming. Boston, MA:
Addison Wesley, 1998.

[Young 87] Young, W.D. & J. McHugh. “Coding for a Believable Specification
to Implementation Mapping,” 140-149. Proceedings of the 1987
IEEE Symposium on Security and Privacy. Oakland, CA, Apr. 27-
29, 1987. Los Alamitos, CA: IEEE Computer Society Press, 1987.

58 CMU/SEI-2002-TR-026

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

October 2002

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Life-Cycle Models for Survivable Systems

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Richard C. Linger, Howard F. Lipson, John McHugh, Nancy R. Mead, Carol A. Sledge
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2002-TR-026

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2002-026

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Today’s large-scale, highly distributed, networked systems improve the efficiency and effectiveness of organi-
zations by permitting whole new levels of organizational integration. However, such integration is accompa-
nied by elevated risks of intrusion and compromise. Incorporating survivability capabilities into an organiza-
tion’s systems can mitigate these risks. Current software development life-cycle models are not focused on
creating survivable systems, and exhibit shortcomings when the goal is to develop systems with a high de-
gree of assurance of survivability. If addressed at all, survivability issues are often relegated to a separate
thread of project activity, with the result that survivability is treated as an add-on property. For each life-cycle
activity, survivability goals should be addressed, and methods to ensure survivability incorporated.

This report explains survivability concepts, describes a software development life-cycle model for survivability,
and illustrates techniques that can be applied during new development activities to support survivability goals.
It also describes a software life-cycle model and associated activities to support survivability goals for sys-
tems based on commercial off-the-shelf products.

14. SUBJECT TERMS

software development life-cycle models, survivable systems, surviv-
ability

15. NUMBER OF PAGES

72

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Life-Cycle Models for Survivable Systems
	Contents
	Figures
	Tables
	Acknowledgments
	Abstract
	1 Survivability and the System Life Cycle
	2 Survivability Concepts
	3 System Development Life-Cycle Models
	4 System Development Life-Cycle Activities and Survivability
	5 COTS Development Life-Cycle Activities
	6 COTS Development Life-Cycle Activities and Survivability
	7 Future Research Opportunities
	References

