
TECHNICAL REPORT
CMU/SEI-2001-TR-035

ESC-TR-2001-035

Using Economic
Considerations to
Choose Among
Architecture
Design Alternatives

Jayatirtha Asundi
Rick Kazman
Mark Klein

December 2001

Pittsburgh, PA 15213-3890

Using Economic
Considerations to
Choose Among
Architecture
Design Alternatives
CMU/SEI-2001-TR-035
ESC-TR-2001-035

Jayatirtha Asundi
Rick Kazman
Mark Klein

December 2001

Product Line Systems

Unlimited distribution subject to the copyright.

printed 1/28/2002 3:16 PM version number / rjl

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2001-TR-035 i

Table of Contents

Abstract vii

1 Introduction and Motivation 1

2 Decision-Making Context 3

3 The Steps of the CBAM 5

3.1 The Triage Phase 5

3.2 The Detailed Examination Phase 6

4 Theoretical Basis of the CBAM and
Detailed Description 7

4.1 Step 1: Choose Scenarios and
Architectural Strategies (ASs) 7

4.2 Step 2: Assess the Relative Importance
of QAs (Elicit QAScorej) 8

4.3 Step 3: Quantify the Benefits of ASs
(Elicit ContribScorei,j) 9
4.3.1 Addressing Variability in the

Contribution Score 9
4.3.2 Calculating the Benefit Scores

of the ASs 10

4.4 Step 4: Quantify the Costs of the AS
and Incorporate Schedule Implications 11

4.5 Step 5: Calculate Return for Each AS 12

4.6 Step 6: Rank Order the ASs and Apply
an Appropriate Decision-Rule 12
4.6.1 A Decision-Rule Based on

Probability 12
4.6.2 Dealing with Combinations of

Strategies Using the Portfolio
Theory Framework 14

ii CMU/SEI-2001-TR-035

5 Case Study 19

5.1 Description of the Project 19

5.2 Applying the CBAM to the ECS 19
5.2.1 Step 1: Choosing the Scenarios

and Architectural Strategies
(ASs) 19

5.2.2 Step 2: Assessing the Relative
Importance of QAs 20

5.2.3 Step 3: Quantifying the
Benefits of the ASs 21

5.2.4 Step 4: Quantifying the Costs
of ASs and Incorporating
Schedule Implications 21

5.2.5 Step 5: Calculating the Return
for Each AS 22

5.2.6 Step 6: Rank Ordering and
Applying an Appropriate
Decision-Rule 22

5.3 Summary of the ECS Case Study 24

6 Related Work 25

7 Lessons Learned and Further
Developments of the CBAM 27

8 Conclusion 29

References 31

Appendix A: Multi-Attribute Decision Theory
for a Software Design Problem 35

Appendix B: Determining the Probability of
Dominance of AS Return Values 41

8.1 Case 1: Partial Overlap 41

8.2 Case 2: Complete Overlap 42

CMU/SEI-2001-TR-035 iii

List of Figures

Figure 1: Context of the Cost Benefit Analysis
Method (CBAM) 3

Figure 2: ASs Mapping on a Benefit-Cost Plot
During Triage Phase 6

Figure 3: Components and the Influence of ASs 16

Figure 4: Efficient Portfolios of Architectural
Strategies 24

Figure 5: Maximized Boundary for a
Two-Attribute Problem 36

Figure 6: Maximized Boundary with Thresholds 36

Figure 7: Sources of Uncertainty in
Architectural Benefit Assessment 38

Figure 8: Expected Utility Functions of QAs 39

Figure 9: Case 1: Partial Overlap of ASs 41

Figure 10: Case 2: Complete Overlap of ASs 42

iv CMU/SEI-2001-TR-035

CMU/SEI-2001-TR-035 v

List of Tables

Table 1: Elicited Triage Information 5

Table 2: Example of Scaling Parameters
Elicited from Stakeholders 8

Table 3: Probability of ASrow > AScolumn 13

Table 4: Correlation Matrix for ASs 16

Table 5: Description of Quality Attributes (QAs) 20

Table 6: Quality Attribute Ratings of
Stakeholders 20

Table 7: Template of AS Rating Sheet 21

Table 8: Aggregated Benefit Scores, Cost
Values, Return Score of Top 10 ASs 22

Table 9: Rank Ordering of ASs by Criterion
(Top 10) 23

vi CMU/SEI-2001-TR-035

CMU/SEI-2001-TR-035 vii

Abstract

The software architecture forms an essential part of a complex software-intensive system.
Architecture design decision-making involves addressing tradeoffs due to the presence of
economic constraints. The problem is to develop a process that helps a designer choose
amongst architectural options, during both initial design and its subsequent periods of up-
grade, while being constrained to finite resources. To address this need for better decision-
making, we have developed a method for performing economic modeling of software sys-
tems, centered on an analysis of their architecture. We call this method the Cost Benefit
Analysis Method (CBAM). The CBAM incorporates the costs and benefits of architectural
design decisions and provides an effective means of making such decisions. The CBAM pro-
vides a structured integrated assessment of the technical and economic issues and architec-
tural decisions. The CBAM utilizes techniques in decision analysis, optimization, and statis-
tics to help software architects characterize their uncertainty and choose a subset of changes
that should be implemented from a larger set of alternatives. We also report on the application
of this method to a real world case study.

viii CMU/SEI-2001-TR-035

CMU/SEI-2001-TR-035 1

1 Introduction and Motivation

The software architecture is an essential part of a complex software-intensive system. Shaw
and Garlan [Shaw 96] state that, with increasing complexity of a system, the specification of
the overall system, i.e., its software architecture, becomes a more significant issue than the
choice of algorithms or data structures. The Architecture Tradeoff Analysis Method (ATAM)
[Kazman 00] provides software architects a framework to reason about the technical tradeoffs
faced while designing or maintaining a software system. In the ATAM, we are primarily in-
vestigating how well the architecture has been designed with respect to its quality attributes
(QAs) that include modifiability, performance, availability, and usability. It is these qualities
that shape the architecture and consequently dictate the cost of building and maintaining a
software system. The ATAM also analyzes architectural tradeoffs, the places where a decision
might have consequences for several QA concerns simultaneously.

The biggest tradeoffs in large, complex systems usually have to do with economics. How
should an organization invest its resources in a manner that will maximize its gains and
minimize its risk? Where this question has been addressed, it has primarily focused on costs
[Boehm 81], and even then these costs are primarily the costs of building the system in the
first place, and not its long-term costs through cycles of maintenance and upgrade. The bene-
fits that an architectural decision may bring to an organization are just as important as the
costs.

Given that the resources for building and maintaining a system are finite, there must be a ra-
tional process that helps us choose amongst architectural options, during both initial design
and its subsequent periods of upgrade. These options will have different costs, will imple-
ment different features, each of which brings some benefit to the organization, and will have
some inherent risk or uncertainty. Thus, we need economic models of software that take into
account costs, benefits, risks, and schedule implications.

To address this need for better economic decision-making, we have developed a method for
performing economic modeling of software systems, centered on an analysis of their architec-
ture. We call this method the CBAM (Cost Benefit Analysis Method). The CBAM builds
upon the ATAM to model the costs and the benefits of architectural design decisions and pro-
vides a means of optimizing such decisions. The CBAM provides a structured integrated as-
sessment of the technical and economic issues and architectural decisions. In our framework,
we incorporate economic criteria like benefit and cost that are derived from the technical cri-
teria like quality attribute responses.

2 CMU/SEI-2001-TR-035

The following section describes the decision-making context behind the CBAM, while sec-
tion 3 provides a broad outline of the steps involved. In section 4 we describe the steps in
detail as well as the theoretical basis of the CBAM. We apply the method to a real world pro-
ject, NASA’s Earth Observatory System Distributed Information System (EOSDIS) Core
System (ECS), which is outlined as our case study in section 5. We describe related work in
section 6, discuss our plans for improving the method in section 7, and finally conclude in
section 8.

CMU/SEI-2001-TR-035 3

2 Decision-Making Context

In the CBAM the software architect or decision-maker wishes to maximize the difference
between the benefit he or she derives from the system, and the cost of implementing the de-
sign. The CBAM begins where the ATAM concludes, and in fact, depends upon the artifacts
that the ATAM produces as output. Figure 1 depicts the context for the CBAM. The business
goals of a software system are expected to influence the architecture decisions made by soft-
ware architects or designers. These architecture decisions have economic as well as technical
implications. The direct economic implication is that of the cost of building/implementing the
system. The technical implications are the characteristics of the software system, namely the
quality attributes. These quality attributes in turn have economic implications for the benefit
that can be derived from the system.

Figure 1: Context of the Cost Benefit Analysis Method (CBAM)

When the ATAM is applied to a software system, we expect to have a set of artifacts docu-
mented upon completion. They are as follows:

• a description of the business goals that are crucial to the success of the system

• a set of architectural views that document the existing or proposed architecture

• a utility tree that represents a decomposition of the stakeholders’ goals for the architec-
ture. The utility tree starts with high-level statements of QAs, decomposes these into spe-

Business
Goals

Architecture
Decisions Benefit

Cost

P - Performance
A - Availability
S - Security
M - Modifiability

Influences

4 CMU/SEI-2001-TR-035

cific instances of QA requirements (performance, availability, etc.) and realizes these as
scenarios

• a set of risks that have been identified

• a set of sensitivity points (architectural decisions that affect some QA measure of con-
cern)

• a set of tradeoff points (architectural decisions that affect more than one QA measure,
some positively and some negatively)

The ATAM results in a set of key potentially problematic architectural decisions, based on
QA scenarios elicited from the stakeholders. These architectural decisions result in some spe-
cific QA responses, namely, a particular level of performance, security, usability, modifiabil-
ity, and so forth. But those architectural decisions also have an associated cost. For example,
if an architectural decision is made to use redundant hardware to increase reliability, then this
has one cost consequence. If check pointing to a disk file is used instead, then this architec-
tural decision has a different cost. Furthermore, both of these architectural decisions will re-
sult in a measurable level of reliability (perhaps measured as mean time to failure or steady-
state availability). These QA responses will have some value to the organization developing
software. Perhaps the organization believes that its stakeholders will pay extra for a highly
reliable system (a telephone switch, for example) or that the organization will get sued if the
system is not highly available (for example, a medical monitoring device).

The ATAM uncovers the architectural decisions made and links them to business goals and
QA response measures. The CBAM builds on this foundation by filling in the pentagons in
Figure 1, by eliciting the costs and benefits associated with these decisions.1 Given this in-
formation, the stakeholders can then decide whether to use redundant hardware, check point-
ing, or some other architectural decision addressed at increasing the system’s reliability. Or
the stakeholders can choose to invest their finite resources in some other QA—perhaps be-
lieving that higher performance will have a better benefit to cost ratio. A system always has a
limited budget for creation or upgrade, so every architectural choice is, in some sense, com-
peting with every other one for inclusion. The problem addressed in this technical report is
that, given the inevitable constraints on cost, how should an architect choose a small set of
architectural strategies to be implemented from a large set of alternatives?

The CBAM does not make decisions for the stakeholders; it simply aids them in the elicita-
tion and documentation of costs, benefits, and uncertainty and gives them a framework
within which they can apply a rational decision-making process.

1 The CBAM does not include a new way of determining costs (although we think that an architec-
ture-aware cost estimation method is a desirable goal). It assumes that some method of cost esti-
mation already exists within the organization.

CMU/SEI-2001-TR-035 5

3 The Steps of the CBAM

The CBAM consists of six steps.

1. Choose the scenarios and architectural strategies (ASs).

2. Assess the relative importance of QAs.

3. Quantify the benefit scores of the ASs.

4. Quantify the costs of the ASs and incorporate schedule implications.

5. Calculate the ‘return’ for each AS.

6. Rank order the ASs and apply an appropriate decision rule.

When we start with a CBAM exercise, there is a large number of ‘desired’ architectural
changes or ASs. Performing a detailed CBAM exercise involving exhaustive elicitation and
analysis of each of these changes is an impossible task. To wade through such a large space
of possible changes makes it necessary to use a two-phase approach. Hence, the CBAM con-
sists of two phases: the triage phase, where rough order of magnitude estimates are used to
prune the decision space, and the detailed examination phase, where more detailed estimates
are gathered about the more promising architecture design alternatives. The six steps, de-
scribed above, are carried out in both phases.

3.1 The Triage Phase
In the triage phase of the CBAM we elicit the costs and benefits of the changes in a rough
qualitative manner. Another step is to find a consensus amongst the stakeholders about the
definition of the various QAs of importance as elicited during the ATAM. This exercise is
carried out so that the stakeholders have a common understanding about the attributes that
they are going to use as a basis for rating the various ASs.

Table 1: Elicited Triage Information

Architectural
Strategy

Performance
(50)

Availability
(30)

Modifiability
(20)

Cost

AS1 ++ + -- L
AS2 + 0 -- M
AS3 - 0 ++ H
AS4 0 + ++ H
AS5 ++ - 0 M
AS6 -- + ++ L

6 CMU/SEI-2001-TR-035

During triage, we request the experts to rate every AS by QA on a five-point scale (--, -, 0, +,
++). For the cost estimates we use a simple three-point scale: low, medium, high. The various
QAs are assigned votes, on the basis of their importance to the system, such that the sum of
the votes is equal to 100. An example of the elicited information is shown in Table 1. The
qualitative scales are converted to rough quantitative estimates for benefit as well as cost. The
ASs are then plotted on a graph of benefit against cost as shown in Figure 2. This exercise
helps in visualizing the alternatives.

Figure 2: ASs Mapping on a Benefit-Cost Plot During Triage Phase2

The ovals surrounding the ASs depict the uncertainty region. The chosen ASs are shown in
bold. The number of ASs considered for detailed analysis are pruned on the basis of having a
high benefit - low cost characteristic, other factors like regulations/standards and that they
have no resource conflicts or dependencies. In this manner, triage is used to prune the set of
ASs to a manageable number of alternatives that can be analyzed in detail. We expect about
20-25 ASs for detailed examination.

It is quite possible that some organizations may not feel the need for a detailed analysis due
to resource constraints. For some, order of magnitude estimates or qualitative measures are
sufficient for their decision-making process. In these cases the triage could prove to be suffi-
cient for their needs.

3.2 The Detailed Examination Phase
In the detailed examination phase we perform a detailed analysis on the 20-25 ASs that were
found to be promising in the triage phase. The strategies are re-assessed for their impact on
the software system’s QAs, and a more quantitative scale, which varies from –1 to +1, re-
places the -/+ scale of the triage phase. We describe the theoretical basis and the step details
in the following section.

2 The ovals shown within each cost category are representative and not actual positions.

Low Medium High
Cost

AS1

AS7
AS3

AS5

AS6

AS4

AS13

AS14

AS17

AS12

AS15

AS9
AS8

AS2

AS1

CMU/SEI-2001-TR-035 7

4 Theoretical Basis of the CBAM and
Detailed Description

The architecture design problem of analyzing tradeoffs between the various quality attributes
of a system can be characterized in a traditional multi-attribute decision theory framework.
We use this framework as the basis for the CBAM. We explore the problem of uncertainty
[Morgan 90] and also examine techniques like portfolio analysis [Markowitz 52] to tackle our
problem. Multi-attribute decision theory as described by Keeney and Raffia [Keeney 76] is
adapted to software systems, and the formalisms are presented in Appendix A.

Complex software decision problems involve conflicting objectives with multiple attribute
measures. Usually, there is no alternative that is superior, in all respects, to other alternatives,
i.e., no dominating solution. There are value tradeoffs between the various quality attributes
of the system. For example, one alternative may have high performance but low maintainabil-
ity, while another alternative has high maintainability but low performance. Choosing be-
tween the two alternatives will involve understanding the value judgments of the key stake-
holders in the software project. (A dominating alternative would be one with high
performance and high maintainability—but rarely do we find such easy and obviously opti-
mal solutions to problems!)

The decision-making framework thus involves

1. determining the scaling parameters or the relative importance of the attributes (which we
call QAScorej)

2. determining the attribute-specific impact or utility values (which we call
ContribScorei,j.)

The product of these values gives us a measure of the benefit due to an AS and can thus be
used as an evaluation metric. The details are described in the following sections.

4.1 Step 1: Choose Scenarios and Architectural
Strategies (ASs)

In the first step, we choose a smaller number of ASs for detailed analysis. Frequently it is the
case that certain changes are dictated by external forces—keeping up with a competitor, be-
ing forced to port to newer hardware, meeting government regulations, complying with stan-
dards, etc. Thus some of the ASs considered in the triage phase may be automatically consid-

8 CMU/SEI-2001-TR-035

ered in the next phase in spite of their benefit/cost value. These are indicated by AS8 and AS15

in Figure 2. From the triage phase, we also identify the ASs that have a high benefit but low
to medium cost; this is shown by the dotted rectangle in Figure 2. Some ASs may be ex-
cluded due to resource conflicts or lack of support from the management. Additionally, some
ASs that are outside this region may be included, because of dependencies (i.e., AS13 may
depend on AS7). A few other ASs may be chosen for analysis due their proximity to already
chosen ASs (like AS5 and AS14). Thus a smaller set of ASs are chosen for detailed analysis.

4.2 Step 2: Assess the Relative Importance of QAs
(Elicit QAScorej)

Once the various quality attributes of importance have been identified, the scaling parameter
QAscorej for each quality attribute, j, is elicited. By design, we ensure that

001� =
j

jQAScore

and 0: ≥∀ jQAScorej

An example of elicited QAscore parameters is shown in Table 2.

Table 2: Example of Scaling Parameters Elicited from Stakeholders

Quality Attribute Stakeholder 1 Stakeholder 2 Stakeholder 3
Attribute1 50 (1) 60 (1) 40 (1)
Attribute2 15 (3) 15 (2) 15 (3)
Attribute3 25 (2) 10 (4) 30 (2)
Attribute4 10 (4) 15 (2) 15 (3)
∑QAscore 100 100 100

The stakeholders are usually from the same organization or have similar understanding of the
goals of the system. They are frequently in accordance with each other regarding the scaling
parameters. However, there are times when they may show great differences of opinion. This
difference in opinion will manifest as a high variability of elicited values. The variability
could be either due to the inherent uncertainty present in the system or that the stakeholders
are not completely in agreement with each other regarding the definition of the scaling pa-
rameters. To test how much the stakeholders agree with each other regarding the scaling pa-
rameters, we use the Kendall’s3 concordance coefficient as a measure of agreement for the
group as a whole [Kendall 55]. The more the group agrees over the rank of each attribute, the
higher the concordance coefficient.

In the example shown in Table 2, we have 3 stakeholders and 4 attributes. The values in the
columns show the elicited scaling parameters and the numbers in the bracket show the rank

3 It is similar to Spearman’s correlation coefficient but it is a non-parametric measure.

CMU/SEI-2001-TR-035 9

of that particular attribute for that particular stakeholder. Kendall’s concordance coefficient
reflects how much the stakeholders agree on the rank of the particular attribute. In this exam-
ple, the Kendall’s coefficient of concordance, W, is 0.6905 (F-stat = 4.461, p = 0.08), which
shows a fair level of concordance, though it is not significant. Though the values elicited
from the stakeholders may differ, a consistent rating on the relative importance of each of the
attributes shows that the stakeholders more or less agree as to which attributes are important
to the business goals of the system. If the concordance value is low or not significantly
greater than zero, then the stakeholders will need to revisit the business goals of the system
and definitions of the QAs. This is to ensure that the stakeholders have a common under-
standing of the QAs and their respective implications on the business goals of the system.
This iteration is carried out to ensure that variability due to lack of understanding is reduced.

4.3 Step 3: Quantify the Benefits of ASs (Elicit
ContribScorei,j)

A single architectural strategy affects more than one QA. Some effects are positive, some
negative, and all to varying degrees. When considering large software systems, there is uncer-
tainty regarding the exact effect of a particular architectural strategy on the system. While the
effect of some changes could be measured approximately through simulation models, the ef-
fect of some changes can only be obtained through expert elicitation of the experts of the sys-
tem and their understanding of system behavior. Another source of uncertainty and subjectiv-
ity is the utility assessment of various levels of the quality attributes. (See Figure 7 in
Appendix A.)

In this step we ask the experts to rate each architectural strategy (ASi) in terms of its contri-
bution (ContribScorei,j) to each quality attribute (QAj) on a scale of –1 to +1. A plus 1 implies
that the AS has a perceived best possible effect on the QA for the system and a minus 1
means the opposite. These values represent the utility gained or lost by making a particular
architectural change (ASi) on each of the quality attributes (QAj).

4.3.1 Addressing Variability in the Contribution Score

So far we have explained a deterministic case of eliciting contribution scores. However, with
multiple stakeholders and sources of uncertainty the elicited values will be ranges and not
single point estimates. As explained in the previous section, we assume that the variability in
contribution scores may be due to two following reasons:

1. the existence of uncertainty in the system response characteristics or

2. a difference in interpretation or understanding of the system or particular subsystems by
experts

We address the variability due to uncertainty in our analysis of elicited values explained later
in this report. However, the variability arising due to the interpretation or understanding of

10 CMU/SEI-2001-TR-035

the system is something we wish to minimize (if not eliminate completely). Here we use the
Delphi method [Linstone 75] for obtaining consensus on the specific impacts of particular
architectural strategies on the system. The specific process we use is the following:

1. Obtain the first round of contribution scores from all experts including a short one-line
statement as to why the expert has rated a particular AS in that way. For example, the
expert could annotate the comment: “Improved logging would allow systematic security
audits” against the rating for security.

2. Also obtain self-evaluations of the experts, with regard to their understanding of the im-
pacts of the AS, on a four point scale (‘Don’t have any idea,’ ‘have some idea,’ ‘have a
reasonable idea,’ and ‘have a good idea’).

3. Compile scores to produce ranges and the comments for each AS.

4. Provide all the experts with the range and comment information and ask them to review
their ratings based on the collected information. We do not reveal the expert raters’ iden-
tity to reduce the possibility of influencing other raters.

5. Obtain a final range on contribution scores and compile the one-line reasons given by
experts as documentation.

In this manner, we expect to minimize the variability of elicited values due to lack of infor-
mation or lack of understanding of all the implications of a change. We also give the experts
the choice to recuse themselves from rating certain architectural changes due to their lack of
understanding about the impacts of an AS.

The measure of variability in the scores we use is the Kendall’s concordance coefficient. We
compute this coefficient from the elicited contribution scores and use it as an indicator of
how consistent the raters are with each other. A low coefficient indicates that the variability in
ratings is high and it is plausible that some experts may be missing certain information that
other experts possess. Thus, we could use the coefficient as a measure of the stopping point
for the iterative Delphi process of circulating information and eliciting ratings.

Though this process seems tedious and time consuming, we feel that this is necessary to in-
crease the objectivity of the ratings and make sure that every expert has the same information
to make the rating. Another benefit of this exercise is to capture the information contained in
the one-line statements made by the experts. This may be used to build models of the system
and to generate utility-attribute curves. (See Figure 8 in Appendix A.)

4.3.2 Calculating the Benefit Scores of the ASs

At this point in the method we have elicited values for the scaling parameter, QAscorej, to
reflect the importance of the QAs with respect the business goals and the utility of each archi-
tectural change, ContribScorei,j. We can now calculate the benefit score for each architectural
strategy by the following formula:

CMU/SEI-2001-TR-035 11

� ×=
j

jjii QattribreContribScoASBenefit)()()(,

Since the ContribScore is a utility estimate, the benefit score is expressed in ‘utils.’
For example, consider a software system with the following scaling parameters:

(performance, security, availability, modifiability) = (25, 30, 15, 30)

and the rating of the architectural strategies for the respective QAs as follows:

AS1 (1, -0.5, 0.6, -0.4)

AS2 (-0.4, 1.0, 0.8, 1.0)

The respective benefit scores will be:

Benefit(AS1) = (1)*25 + (-0.5)*30 + (0.6)*15 +(-0.4)*30 = 7 utils

Benefit(AS2) = (-0.4)*25 + (1)*30 + (0.8)*15 +(1.0)*30 = 71.2 utils

This benefit score utility estimate is bounded between -100 and +100 utils.

4.4 Step 4: Quantify the Costs of the AS and
Incorporate Schedule Implications

We have described in detail a method to elicit benefits of various architectural strategies.
There are few studies that discuss the benefit of architectural strategies. Cost estimation on
the other hand, as far as the implementation cost is concerned, has received considerable at-
tention in the software engineering literature [Boehm 88, Jones 99]. Typically, most mature
organizations adopt their own methods for cost estimation across all projects. The CBAM
does not include any new way of determining costs. However, considering that most cost es-
timation techniques are dependent on much finer detailed parameters like lines of code or
number of variables and other implementation details, we think that an “architecture-aware”
cost estimation method is a desirable goal. This architecture-aware cost model would enable
us to obtain cost estimates based on the type of components used or the architectural styles
used to design the system.

As of now, the CBAM assumes that some method of cost estimation already exists within the
organization, even if it is ad-hoc, and we can directly obtain cost estimates, Ci, for each of the
architectural strategies. In addition to eliciting the costs and benefits of the ASs under consid-
eration, prudent planning dictates that we estimate the schedule implications of each ASi in
terms of elapsed time, shared use of critical resources, and dependencies among implementa-
tion efforts. Perhaps an AS is otherwise desirable, but does not fit in with the organization’s
time-to-market goals. During this step we will note any contention for shared resources
among these estimates (hardware, software, or personnel), for these will also affect the feasi-
bility of an AS.

12 CMU/SEI-2001-TR-035

4.5 Step 5: Calculate Return for Each AS
The next step in the process of ranking our architectural strategies is to calculate the return
score (ri). This score is given by

)(ASCost

)(ASBenefit
)(ASReturn

i

i
i =

The units of the return score will differ according to the units of benefit and cost elicited. Ide-
ally the return score will be a non-dimensional number since both the benefit and cost are
utility values, in utils or in dollars. Due to the range of values in benefit as well as cost, the
calculated return scores have a range of values. The return score is similar to a return-on-
investment (ROI) metric used commonly in the financial literature.4

4.6 Step 6: Rank Order the ASs and Apply an
Appropriate Decision-Rule

A decision rule that is based on the mean value of the return could be applied. The ASs could
be rank ordered according to the mean value of their return. This assumes that the underlying
distribution of the return is symmetric around the mean value. The top ‘r’ASs could then be
chosen such that

KASCost
r

i
i ≤�

=1

)(

where K is the total budget amount available for the project.

The number of stakeholders is usually small and the mean value could be skewed considera-
bly because one stakeholder varies considerably from other stakeholders. To account for this,
another criterion for rank ordering is the median value of the return score. Similarly, the top
‘r’ASs could be chosen, subject to the cost constraint as shown above.

4.6.1 A Decision-Rule Based on Probability

In the above two ranking methods, we have assumed that the central moments, namely the
mean and median estimates for return, accurately represent the AS. Using the mean or me-
dian values of return assumes that the underlying distribution of the return score is nor-
mal/log-normal. Considering that uncertainty is fairly high, and the underlying distribution at
times skewed, an expected value decision rule may not be sufficient to capture the uncer-
tainty. In this section we briefly describe a technique to incorporate the uncertainty into our
decision.

4 The relation between our defined return and ROI is: ROI = (return – 1) x 100 if the units of cost
and benefit are the same.

CMU/SEI-2001-TR-035 13

Considering that the number of stakeholders is usually small and each stakeholder conveys
important information about the elicited values, we assume that the underlying distribution of
the return score is uniform. This assumption is reasonable considering that the outlier may be
examining the system from a perspective that other stakeholders may not be able to appreci-
ate. If each architectural strategy is plotted along a single scale, according to its return score,
there could be overlap of scores between any two ASs.

Given that the values overlap, we cannot say for certain which AS is preferable. For this pur-
pose we develop a probabilistic technique, where we calculate the probability that the return
score of any ASi is greater than the return of another ASj. The detailed derivations for two
cases of possible overlap are provided in Appendix B.

Case: 1: When there is partial overlap between ASi and ASj.

() { } 2
min,max,2

1
ji

ji
ji ASAS

RR
ASASprob −=≥

Case: 2: When ASi completely overlaps ASj.

() { }min,max,max,2
2

1
jji

i
ji ASASAS

R
ASASprob −−=≥

where Rj is the total range of the return value for ASj and ASj,min and ASj,max are the minimum
and maximum return values of ASj respectively.

For example, consider a sample set of 6 ASs. The above technique yields the probability ma-
trix shown in Table 3. Each value in the matrix denotes the Probability (Row-AS >= Column-
AS).

Table 3: Probability of ASrow > AScolumn

AS1 AS2 AS3 AS4 AS5 AS6 Avg.
AS1 0.5 0.3 0.6 0.7 0.4 0.9 0.57
AS2 0.7 0.5 0.7 1.0 0.6 1.0 0.75
AS3 0.4 0.3 0.5 0.6 0.3 0.7 0.47
AS4 0.3 0.0 0.4 0.5 0.2 0.3 0.28
AS5 0.6 0.4 0.7 0.8 0.5 0.6 0.60
AS6 0.1 0.0 0.3 0.7 0.4 0.5 0.33

The probabilities in Table 3 are used to determine the sensitivity of our earlier ranking deci-
sion. If we choose AS5 over AS6, then the table tells us that there is a 40% probability that
we may be incorrect in our rank ordering. If we fix p >= 0.6, as a limit for partial dominance,
then we get the following result:

AS1> AS3, AS4, AS6

14 CMU/SEI-2001-TR-035

AS2> AS1, AS3, AS4, AS5, AS6 (Clearly a highly ranked AS)

AS3> AS4, AS6

AS4>

AS5> AS1, AS3, AS4, AS6

AS6>AS4

We can see that in these conditions, AS2 is the most preferred AS, followed by AS5, AS1,
AS3 AS6, AS4 in that order.

We use this probabilistic framework to rank the different architectural strategies. We have
shown how a decision rule based on a particular probability value, ‘p’, can be used to incor-
porate the variance information. We notice that the rank ordering based on the p-value is also
reflected in the average value of the probabilities in the rows. Thus, similar to earlier ranking
methods, we could rank order based on the average probability value for any AS, and then
choose the top ‘r’ASs, subject to the constraint of cost. An extra constraint in choosing the
set of ASs could be that every AS chosen should have a return greater than the return of any
other AS with a probability greater than ‘p’ unless the other AS has already been chosen.
Formally, this is represented as follows:

Let Chosen Set be represented by CS, then

CSAS

ji

pASASP

CSAS

j

ji

i

∉
≠

≥>
∈

)(

Substituting the uniform distribution with any other distribution would require the develop-
ment of a different analytical solution for calculating the probabilities, though the underlying
principle will remain the same.

4.6.2 Dealing with Combinations of Strategies Using the
Portfolio Theory Framework

The idea of diversification of stocks within a portfolio by investors to reduce the standard
deviation on the returns was shown by Markowitz [Markowitz 52]. The central idea behind
portfolio theory is to combine two assets in a portfolio that are not perfectly correlated in or-
der to reduce the overall uncertainty on the returns.

The idea behind the portfolio approach to investment is to reduce the overall uncertainty by
implementing either uncorrelated or negatively correlated strategies [Butler 99]. For example,

CMU/SEI-2001-TR-035 15

we could have a particular architectural strategy, AS1, which has high benefit with relatively
high cost and uncertainty. Another architectural change, AS7, could have low benefit and low
cost and uncertainty. AS1 is considered as a high-risk option while AS7 is a low risk option.
Further analysis of the dependencies shows that AS1 and AS7 are competing technologies that
are mutually exclusive and negatively correlated as far as their uncertainties are concerned. In
simpler terms, we find that if AS1 is successful, AS7 will not be and vice versa.

This concept leads us to the generalization that there are a number of other changes ASi and
ASj, which, combined together, could reduce the overall risk of the system even though some
of them are doomed to failure. The architectural changes thus chosen could be considered to
be a portfolio that attempts to ensure a certain level of success, while simultaneously reduc-
ing the overall risk. When combining the various architectural strategies to form a portfolio,
one also needs to look at the technical feasibility of implementing all of them at the same
time, as well as the implied schedule and budget considerations.

Similar to the problem of rank ordering various ASs, we now consider various ways of com-
bining ASs such that the resultant portfolio maximizes return on investment and minimizes
the variance of the portfolio subject to a cost constraint. The return and variance of a portfolio
containing ASs is given by:

1and =

=

=

=

�

��

�

ii

i
i

i
i

i j
ijjiji

i
ii

C

C
xwhere

xxVar

rxR

ρ

ρσσ

The return (ri) is obtained as described in the previous section. The value σi is the uncertainty
of the return score. This formulation tells us that when we combine strategies that are corre-
lated with each other, then the variance on return for the combination is lower. The correla-
tion value, ρij, which lies between +1 and –1, is more challenging to obtain. For this purpose,
we introduce the concept of a “dependency structure” between the various ASs under consid-
eration as a proxy for the correlation value. Figure 3 shows the influence of various ASs on
the components of a system. The details of the component names are not important for our
example.

16 CMU/SEI-2001-TR-035

Figure 3: Components and the Influence of ASs

We use this example to show how the dependency structure could be elicited. We see in this
example that AS7 and AS1 overlap—they affect the same component (MSS). Since they im-
plement competing technologies, they are considered to be uncorrelated (i.e., success of one
guarantees failure of the other). Similarly, we see that AS1 and AS4 do not have any overlap
in terms of components affected. Based on this information, we elicit the correlation informa-
tion from the experts as shown in Table 4. The information obtained could be qualitative (+/-
H, M, L, or 0) or quantitative (a number between –1 and +1).

Table 4: Correlation Matrix for ASs

Arch. Strategy AS1 AS4 AS5 AS7

AS1 1 0 0.3(+L) -0.6(-H)
AS4 1 0.6(+H) 0
AS5 1 -0.3(-L)
AS7 1

In traditional portfolio management, the investor chooses a particular value of xi, which is the
fraction of total investment in a portfolio in a particular asset. In the case of software, this
flexibility is not available since the designers cannot invest in fractions of an AS. However, in
a portfolio of ASs, the value of xi for ASi varies depending on the chosen set of ASs. If we
have 4 strategies in consideration, we can construct 15 portfolios (4C1 + 4C2 + 4C3 + 4C4) with
varying return, cost, and variance. These 15 portfolios are analyzed and a portfolio with a
“reasonable” return, cost, and variance is chosen for implementation.5 We also observe that,
as the number of considered strategies increases, the number of possible combinations of
portfolios increases in the order n2 and the calculations become computationally intensive.

5 The project manager determines what is considered “reasonable.”

AS7

IOS

DMS

MSS

DSS

PLS

DPS

INS

AS1

AS5

AS4

CMU/SEI-2001-TR-035 17

The CBAM, through its idea of quantification of benefit, cost, and uncertainty helps us struc-
ture the problem of choosing ASs in the framework of well developed methods from invest-
ment theory. The superior techniques now available to us could be applied to the problem for
an economically sound solution.

18 CMU/SEI-2001-TR-035

CMU/SEI-2001-TR-035 19

5 Case Study

In this section we describe the application of the CBAM to a real-world software project to
demonstrate the feasibility of this method for large-scale projects. The CBAM helped struc-
ture an unstructured architecture design problem and offered the project manager a set of so-
lutions to choose from. We first describe the project in brief to give a sense about the magni-
tude of the project and then outline the various CBAM steps and the results from applying
them.

5.1 Description of the Project
The Earth Observing System is a constellation of NASA satellites that gathers data about the
Earth for the U. S. Global Change Research Program and other scientific communities
worldwide. The Earth Observing System Data Information System (EOSDIS) Core System,
also called the ECS, collects data from various satellite downlink stations for further process-
ing. The mission of the ECS is to process the data into higher-form information and make it
available in searchable form to scientists around the world. The goal is to provide a common
way to store (and hence, process) data, and a public mechanism to introduce new data for-
mats and processing algorithms, thus making the information widely available to the scien-
tific community at large. The ECS processes an input stream of hundreds of gigabytes of raw
environment-related data per day. The processing involving the computation of 250 standard
“products” results in thousands of gigabytes of information that gets archived at 8 data-
centers in the United States. The ECS has important performance and reliability require-
ments. The long-term nature of the project also makes modifiability an important require-
ment.

5.2 Applying the CBAM to the ECS
The ECS, with about 1.2 million lines of code in 12,000 modules and about 50 customer off-
the-shelf (COTS) products, is a very large software system. We had seven stakeholders, cho-
sen by the project manager, to take part in the CBAM exercise.

5.2.1 Step 1: Choosing the Scenarios and Architectural
Strategies (ASs)

Prior to the CBAM, an ATAM exercise was carried out for the ECS project. As a result of this
exercise, 72 architectural strategies were identified to improve the system. Except for one
strategy that was deemed crucial and non-negotiable, the rest of them needed to be analyzed

20 CMU/SEI-2001-TR-035

with respect to their benefits, costs, and uncertainty. When analyzing an architectural strategy,
the decision was whether or not the project should implement that strategy.

5.2.2 Step 2: Assessing the Relative Importance of QAs

To quantify the relative importance of the various QAs, the stakeholders first outlined a list of
QAs that they felt were important to the software system’s goals. These QAs, as shown in
Table 5, were arrived at through consensus and discussion of the definition of each, as well as
relating them to the ‘utility tree’ constructed during the ATAM exercise. The seven stake-
holders then independently rated each of the QAs as described in section 4.2. The ratings are
shown in Table 6. The stakeholders then discussed the values to arrive at a consensus value to
be used through the rest of the method.

Table 5: Description of Quality Attributes (QAs)

Attribute Description
Maintainability Lowers maintenance cost of the system by making it easier to find and fix

problems and deploy minor changes to existing problems
Operability To make it cheaper to operate the system or do more load with less people

(increase efficiency)
Relavailability Decreases the degradation in throughput due to downtime; minimizes the op-

erator requirement in recovery of the requests; no key inputs/outputs to
the system are lost

Scalability Stable to increase the problem size, capacity (hardware, operators) scales line-
arly with workload: system components scale linearly with problem size

Performance Reduce the end user request latency while increase system throughput
User Satisfaction Increase user empowerment/capability; decreased response time, accuracy,

understandability
Security The ability to maintain the integrity of their data holding and maintain privacy

of the user information and reduce the loss of availability due to denial-
of-service attacks

Flextensibility Ability to insert or add major new functionality or products

Table 6: Quality Attribute Ratings of Stakeholders

Quality
Attribute Stk1 Stk2 Stk3 Stk4 Stk5 Stk6 Stk7 Mean Var. Consensus

Maintainability 20 20 20 20 20 15 20 19.286 3.06 19

Operability 25 25 20 20 20 20 25 22.143 6.12 22

Relavailability 20 15 15 15 10 15 15 15.0 7.14 15

Scalability 10 10 5 10 10 10 5 8.571 5.10 9

Performance 5 10 5 10 15 10 5 8.571 12.25 9

User
Satisfaction 10 15 25 10 15 20 20 16.429 26.53 16

Security 0 0 5 5 0 0 0 1.429 5.10 1

Flextensibility 10 5 5 10 10 10 10 8.571 5.10 9

CMU/SEI-2001-TR-035 21

Using the values elicited in Table 6 we calculate the Kendall’s coefficient, W, to be 0.8383,
indicating a high level of concordance (F-stat=31.1, p<0.001). This gives us confidence that
the stakeholders agreed with each other about the importance of various QAs with respect to
the business goals of the system.

5.2.2.1 Pruning the Decision Space

In the triage phase of the method, the stakeholders were provided with the list of 72 architec-
tural strategies that were considered desirable changes to the system. The stakeholders inde-
pendently rated each AS by QA on a 5-point (-- to ++) scale. The cost estimate for each was
also noted on a 3-point scale (H, M, L). The ratings were converted to a quantitative scale (-1
to +1), and a total benefit was computed. The project manager guided the discussion to en-
sure consensus about the chosen strategies and that no important aspect was being over-
looked. Applying a mixed strategy for evaluation, the pruning process resulted in 25 ASs for
detailed analysis.

5.2.3 Step 3: Quantifying the Benefits of the ASs
The detailed analysis phase began with the experts independently rating each of 25 ASs by
the QAs on a scale of -1 to +1. A template of the rating sheet is shown in Table 7.

Table 7: Template of AS Rating Sheet

QAscore 30 40 15 15 Total Comment

AS Number QA1 QA2 QA3 QA4

AS1

AS2

AS3

The stakeholders varied considerably in their ratings for various ASs and the ranges were re-
corded as a measure of the uncertainty that the stakeholders had about the effects of the ASs
to the system attributes. The concordance score was computed to be 0.326 (F-stat = 2.9,
p<0.001), which informs us that it was fairly low, yet still significantly greater than zero. A
follow up Delphi exercise was initiated with the experts.

5.2.4 Step 4: Quantifying the Costs of ASs and Incorporating
Schedule Implications

The costs of various ASs were assessed in terms of person-months. This estimate was ob-
tained from two of the stakeholders who independently performed a cost estimation exercise.

22 CMU/SEI-2001-TR-035

No guidance regarding cost estimation was given and the experts applied existing methods.
The two stakeholders were found to be consistent in their estimates.6

5.2.5 Step 5: Calculating the Return for Each AS

The return for the various ASs was calculated using the formula specified in section 4.5. The
results are shown in Table 8. The uncertainty in the form of range as well as standard devia-
tion was also calculated.

5.2.6 Step 6: Rank Ordering and Applying an Appropriate
Decision-Rule

The ASs were then rank ordered based on their mean and median return score. To determine
the sensitivity of this rank ordering, we then calculated the probability matrix as explained in
section 4.6.1. The resulting rank ordering of our 25 ASs by the mean, median, and probability
is shown in Table 9.

Table 8: Aggregated Benefit Scores, Cost Values, Return Score of Top 10 ASs

AGGREGATE BENEFIT SCORE ReturnAS
Number

MIN MAX MEAN MEDIAN

COST

(p. m.) MEAN MEDIAN

AS-2 6 53 33.88 40 4 8.47 10.0

AS-3 13 53 34.47 34 10 3.45 3.4

AS-5 5 51 26.14 25 12 2.18 2.1

AS-6 33 69 52.69 56 6 8.78 9.3

AS-7 30 67 49.29 46.8 6 8.22 7.8

AS-8 17 64 42.58 42.6 16 2.66 2.66

AS-9 36 90 59.48 55.8 20 2.97 2.79

AS-11 24 93 58.74 46.8 16 3.67 2.93

AS-13 24 59 44.71 42.8 16 2.79 2.68

AS-20 45 86 63.37 62.5 16 3.96 3.91

6 The original estimates differed considerably until a follow-up discussion established that one
stakeholder had included cost of testing while the other hadn’t. The ensuing adjustment resulted in
an almost perfect correlation in cost estimates.

CMU/SEI-2001-TR-035 23

Table 9: Rank Ordering of ASs by Criterion (Top 10)

Return based RankArch. Strategy
Mean Median Probab.

Cost
based
Rank

AS-2 2 1 3 1
AS-3 6 5 6 4
AS-5 12 13 11 5
AS-6 1 2 1 2
AS-7 3 3 2 2
AS-8 10 10 9 6
AS-9 8 8 7 10
AS-11 5 7 5 6
AS-13 9 9 8 6
AS-20 4 4 4 6

5.2.6.1 Portfolio Theory Framework to Pick a Set of ASs

In section 4.6.2 we described a technique to incorporate the uncertainty as well as the de-
pendency structure of the various ASs to make a choice. This involved the elicitation of a
dependency structure among the ASs, which was used to populate the correlation matrix. This
matrix was then used to build portfolios containing various ASs. The return, variance, total
benefit, and total cost were computed for each of these portfolios. Considering that we had 25
ASs, the total number of possible combinations is given by

25C1 + 25C2 + … + 25C25 = 33,554,431

Considering that we have a budget and schedule constraints, we assume that the total number
of ASs that can eventually be implemented cannot exceed 8; we restrict the maximum num-
ber of ASs in our chosen portfolio to be 8. We also assume that to get a reasonable benefit,
the portfolio must contain at least 4 ASs. Even with this restriction, the total number of possi-
ble combinations is 1,805,155 (25C4 + 25C5 + … + 25C8). This is still a fairly large number and
the analysis and comparison of portfolios took about 2.5 hours on a Pentium III, 450MHz
processor. A portfolio that belongs to a set of portfolios that is non-dominated on the criteria
of return and variance is called an efficient portfolio. The efficient portfolios are shown in
Figure 4.

24 CMU/SEI-2001-TR-035

Figure 4: Efficient Portfolios of Architectural Strategies

5.3 Summary of the ECS Case Study
In this section we illustrated how we applied the CBAM to NASA’s ECS project. The feed-
back we received from the ECS project manager indicates that the method holds significant
promise for facilitating the decision making process. A benefit perceived by the stakeholders
was the structured approach to prune their decision space for changes. The quantification as-
sisted them in objectively assessing the various ASs and implementing those that would give
them the greatest return. The method aided the stakeholders in determining how to allocate
limited resources to their software evolution effort and they participated enthusiastically.

0
1
2
3
4
5
6
7
8

0 0.5 1 1.5 2
Variance

R
et

ur
n

CMU/SEI-2001-TR-035 25

6 Related Work

Traditional software design methods address the technical aspects of a software system by
identifying the functionality to be delivered during the requirement specification phase of
product development. Analysis of the product with respect to its economic impact, risks, and
tradeoffs is seldom performed. If done, it mainly focuses on the cost of the system and the
methods of estimating cost accurately. Identification of the source of benefit for a software
system and its quantification is rarely carried out. Some attempts have been made to tie the
business goals of the system to the technical aspects of a software system. The Spiral model
of software development [Boehm 88] and the Next Generation Process Model (NGPM)
[Boehm 94] help system stakeholders converge on a system’s next-level objectives, con-
straints, and alternatives. The NGPM uses the Theory W, which involves identification of the
system’s stakeholders and their respective “win” conditions. Using a negotiation process
among the stakeholders, a mutually satisfactory set of objectives, constraints, and alternatives
is determined. Our method differs from the NGPM in the aspects of the stage in the life cycle
of the development process, as well as the level of abstraction within the software system.
The NGPM addresses the requirements specification stage and tries to understand the broad
functional requirements, while our method is at the architectural level of abstraction and ex-
pects that the functional requirements are understood and already carried out. In some sense
the CBAM is complementary to the NGPM.

There are a few studies on understanding the quality attributes of a software system. Johans-
son et al. [Johansson 01] use a survey method to understand how different stakeholders view
different quality attributes and how they rank the importance of each. They surveyed the
software architect, system designer, and marketing manager of three different organizations
(one educational, two commercial) as stakeholders. The results from the study indicated that
different stakeholders prioritize the various quality attributes differently in spite of a common
organizational goal. They also conclude that there are inadequate metrics to measure the im-
pact of the quality attributes of software platforms. This leads to stakeholders not knowing
the quality attributes they need to focus on for improvements. An area of further research
they have identified is the feedback loop to the stakeholders about how the various quality
attributes affect cost, quality, and lead-times for projects built on a software platform. Since
our method directly follows an ATAM, the system stakeholders and experts already have a
common level of understanding about the system goals and the attributes of importance. In
the CBAM we also revisit the definition of the various QAs and make sure that all the stake-
holders understand as well as agree about the definition of each and how they affect the sys-
tem goals.

26 CMU/SEI-2001-TR-035

Earlier in this report, we also mentioned the work of Sullivan et al. [Sullivan 99] and Butler
et al. [Butler 99] in the area of application of advanced economic theories to software design.
Benaroch and Kauffman [Benaroch 99], in their application of real-option theory to an in-
formation system, analyze the decision from a pure business context and do not in any way
tie it to the specifics of the system design or implementation. In the CBAM we incorporate
the idea of portfolio theory into the design decisions such that the designers can reason about
the implementation of certain strategies. In our method, we expect the designers to think
about aspects of ASs, like correlation between ASs, as well as implementation of some ASs
in order to increase the information about other strategies. This should result in a reduction of
variability of the overall outcome.

CMU/SEI-2001-TR-035 27

7 Lessons Learned and Further
Developments of the CBAM

In our pilot implementation of the method with NASA’s ECS project we gained significant
insights into the practical operational issues of running a CBAM. Significantly, we noticed
that there were large variations in the elicited values of the contribution scores for the ASs.
We feel that this was due to the fact that the quality attributes (performance, modifiability,
etc.) for the stakeholders and experts are abstract entities and hence hard to interpret consis-
tently. Also, quantifying the expected utility level of an AS without understanding of the cur-
rent system QA response/utility level makes the elicitation exercise prone to variable
interpretations and judgments amongst the stakeholders. For these reasons we are already
planning further refinements to the CBAM.

To quantify and understand the impact of the ASs on the QAs in a consistent manner the
stakeholders need a more concrete representation of the QAs. For this purpose we intend to
make use of the scenarios as elicited during the ATAM for characterizing the specifics of the
various QAs. These scenarios also specify the stimulus-response characteristics of the sub-
system in question and provide a concrete example by which the stakeholders can rate the
effect of the ASs. The scenarios also provide a basis upon which the system utility is derived
and hence it is also possible to rate their relative importance.

One final important feature of the next version of the CBAM that we are developing is that of
multiple iterations, where each iteration adds some information and pares down the space of
scenarios considered. For example, separate iterations will consider the side effects of ASs,
and the correlation between ASs.

28 CMU/SEI-2001-TR-035

CMU/SEI-2001-TR-035 29

8 Conclusion

When developing or evolving any engineering artifact, including software-intensive systems,
one is always faced with the problem of determining where to spend a finite set of resources.
The ever-present (albeit sometimes implicit) problem is to maximize the benefits resulting
from developing or evolving the system given a limited pot of dollars to spend. Frequently
this involves selecting the right set of product features. Determining the “right” feature set is
clearly necessary for a system’s eventual success, but it is not always clear that this is not suf-
ficient. The quality attributes associated with each feature are key. A feature with poor per-
formance or poor security may be equivalent to or worse than not having the feature at all.
Moreover, it is the quality attributes (such as performance, security, reliability, modifiability,
etc.) that determine the overall architecture of a large and complex system. Usually a signifi-
cant amount of effort is dedicated to getting these attributes right. Consequently, we have de-
veloped and prototyped a decision-making method that explicitly accounts for the cost and
benefits associated with engineering qualities into the software architecture of a system. In
the Cost Benefit Analysis Method (CBAM), costs and benefits are qualities that are traded
off, in addition to the technical quality attributes.

In this report we have introduced the CBAM. The CBAM is

• a method that causes the stakeholders to quantify the benefits as well as the costs, de-
pendencies, and schedule implications of architectural decisions

• a method that explicitly captures the uncertainty surrounding costs and benefits

• a scalable method; it can be inexpensively employed for triage or it can be used exhaus-
tively once the search space of ASs has been narrowed

We have presented the steps of the CBAM, the theory behind the steps and the assumptions
we make to suit the theory to our practical needs. We applied the method to NASA’s ECS
project and our experience has helped us understand the shortcomings and areas of the
method that need improvement. Feedback elicited from the stakeholders of the ECS project
highlighted the following positive aspects of the CBAM:

• its structured approach to prune a large decision space of ASs

• its objective methodology to allocate limited resources to a software evolution effort

• its ability to encourage a structured discussion regarding the desired properties of the sys-
tem as well as the course of action for implementation

30 CMU/SEI-2001-TR-035

An identified drawback of the CBAM is that it depends on the subjective judgment of the
stakeholders. Formal verification is either very expensive or difficult to carry out. Due to the
subjective nature of stakeholder judgment, the elicited values can show large variability.
While some of this variability reflects the underlying uncertainty, the rest is due to limited
knowledge among the stakeholders regarding all parts of the system. Within the CBAM the
Delphi approach is used to eliminate the variability arising due to limited knowledge. This
involves stakeholders sharing information about the rationale used while rating particular
strategies. This should help make assumptions explicit and more open to scrutiny.

We are also examining the CBAM for places where our approach might be strengthened. We
have presently identified three areas of future work:

1. examining how to better elicit, represent, and understand the method's sensitivity to un-
certainty

2. exploring how real-option theory can be used to exploit the “wait and watch” nature of
many decisions

3. characterizing and using dependencies amongst ASs in a “portfolio of architectural op-
tions”

In conclusion, we are optimistic about the prospects of the CBAM evolving to be a theoreti-
cally sound and yet practical method that can be used for making software-related cost-
benefit decisions.

CMU/SEI-2001-TR-035 31

References

[Benaroch 99] Benaroch, M. & Kauffman, R.J. “A Case for Using Real Options
Pricing Analysis to Evaluate Information Technology Project In-
vestments.” Information Systems Research 10, 1 (March 1999),
70-86.

[Boehm 81] Boehm, B.W. Software Engineering Economics. Englewood Cliffs,
New Jersey: Prentice-Hall, 1981.

[Boehm 88] Boehm, B.W. “A Spiral Model of Software Development and
Enhancement,” Computer 21, 5 (May 1988), pp.61-72.

[Boehm 94] Boehm, B.; Bose, P.; Horowitz E.; & Lee, M.J. “Software Require-
ments as Negotiated Win Conditions.” 74-83, Proceedings of the
First International Conference on Requirements Engineering
(ICRE94), April 18-22, 1994, Colorado Springs, Co. Los Alamitos,
Ca.: IEEE Computer Society Press, 1994.

[Brealey 81] Brealey, R. & Myers, S. Principles of Corporate Finance. New
York: McGraw-Hill, 1981.

[Butler 99] Butler, S.; Chalasani, S.; Jha, S.; Raz, O.; & Shaw, M. “The Poten-
tial of Portfolio Analysis in Guiding Software Decisions.” First
Workshop on Economics-Driven Software Engineering Research,
1999. <http://www.cs.virginia.edu/~sullivan/EDSER1/>.

[Dixit 94] Dixit A. & Pindyck, R.S. Investment Under Uncertainty. Princeton,
New Jersey: Princeton University Press, 1994.

32 CMU/SEI-2001-TR-035

[Fleiss 81] Fleiss, J.L. Statistical Methods for Rates and Proportions. New
York: John Wiley & Sons, 1981.

[Johansson 01] Johansson, E.; Wesslen, A.; Brathall, L.; & Host, M. “The Impor-
tance of Quality Requirements in Software Platform Development–
A Survey.” Proceedings of the 34th Hawaii International Confer-
ence on System Sciences, Maui, Hawaii, January 3-6, 2001. Los
Alamitos, Ca.: IEEE Computer Society Press, 2001.

[Jones 99] Capers Jones, T. Estimating Software Costs. New York: McGraw-
Hill, 1999.

[Kazman 00] Kazman, R.; Klein M.; & Clements, P. ATAM: A Method for Archi-
tecture Evaluation (CMU/SEI-2000-TR-004, ADA382629). Pitts-
burgh, Pa.: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2000. <http://www.sei.cmu.edu/publications/documents
/00.reports/00tr004.html>

[Keeney 76] Keeney, R.L. & Raiffa, H. Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. New York,: John Wiley & Sons,
1976.

[Kendall 55] Kendall, M.G. Rank Correlation Methods. London: C. Griffin,
1955.

[Linstone 75] Linstone, H. & Turoff, M. The Delphi Method: Techniques and Ap-
plications. Reading, Ma.: Addison-Wesley, 1975.

[Markowitz 52] Markowitz, H.M. “Portfolio Selection.” Journal of Finance 7
(March 1952), 77-91.

[Morgan 90] Morgan G. & Henrion, M. Uncertainty: A Guide to Dealing with
Uncertainty in Quantitative Risk and Policy Analysis. New York:
Cambridge University Press, 1990.

[Shaw 96] Shaw, M. and Garlan, D. Software Architecture: Perspectives on an
Emerging Discipline. Upper Saddle River, New Jersey: Prentice-
Hall, 1996.

CMU/SEI-2001-TR-035 33

[Sullivan 99] Sullivan, K.J.; Chalasani, P.S.; Jha, S.; & Sazawal, V. “Software
Design as an Investment Activity: A Real Options Perspective.”
Real Options and Business Strategy: Applications to Decision Mak-
ing, L. Trigeorgis, ed. London: Risk Books, 1999.

[Winterfeldt 86] Winterfeldt D. & Edwards, E. Decision Analysis and Behavioral
Research. New York: Cambridge University Press, 1986.

34 CMU/SEI-2001-TR-035

CMU/SEI-2001-TR-035 35

Appendix A: Multi-Attribute Decision
Theory for a Software Design
Problem

The multi-attribute problem of software design can be stated as follows: Let a be a feasible
alternative in the set of architectural strategies (ASs), A. Each alternative ‘a’ is associated by
indices of value X1(a), … Xn(a). We can think of these n indices X1, … Xn as evaluators of
‘a’ mapping onto a consequence space. These evaluators are the quality attributes (QAs) of a
software system, which we have described earlier. The consequence space is the resultant
quality attribute level for the system due to the prescribed AS, a. If (x1,…, xn) is a point in
consequence space that maps a, then we can never compare xi and xj where i≠j. This would
be equivalent to comparing performance and maintainability. Hence the software designer’s
objective is to choose a in A such that he or she is happiest with the payoff of {X1(a), …
Xn(a)}. To compare different alternatives we need to define a value function, v, which com-
bines X1(a), …, Xn(a) into a scalar index of preferability. The value function must be defined
on the consequence space with the following property:

v(x1, x2, … xn) ≥ v(x1’, x2’, … x n’) ⇔ (x1, x2, … xn)≥ (x1’, x2’, … x n’)

This implies that if we ‘prefer’ the point (x1, x2, …xn) over the point (x1’, x2’, …x n’) in the con-
sequence space, then the value of (x1, x2, …xn) should be greater than the value of (x1’, x2’, …x

n’). The value function is referred to by many names in literature – ordinal utility function,
preference function, worth function or utility function. Given v, the software designer’s prob-
lem is to choose a in A such that v(a) for a given cost is maximized. The value function v
serves to compare the various levels of the different attributes (X1, X2, … Xn) on a similar
scale.

For any architectural strategy, a∈ A, there is a consequence on the quality attributes, x∈ R.
The set of consequences of R that are not dominated is called the efficient frontier. Figure 5
depicts a consequence space for the case of two attributes (n=2). Each circle is the conse-
quence of an architectural strategy and all the dark circles show the efficient frontier. The
value function v will help the software designer make a decision as to which of the points on
the efficient frontier is superior. The case of two attributes is simple and can be plotted easily,
however, in practice we usually have more than three quality attributes to care about and that
cannot be graphically depicted.

36 CMU/SEI-2001-TR-035

Figure 5: Maximized Boundary for a Two-Attribute Problem

Before we step into the details of value functions, let us examine other ways that the conse-
quence space can be limited. While building software systems, rarely do we maximize a sin-
gle quality attribute and not care about how low the other attributes are set as a consequence.
For example, there are situations where the system is completely useless if the availability is
less than 99.9% or the performance is worse than 10 transactions/sec. Hence we can define a
set of threshold levels, x1

o, x2
o,…, xn

o, for each attribute respectively. These threshold levels
set the minimum values that any attribute is permitted to be and thus acts as a constraint on
the original set of the consequence space as shown in Figure 6. The dotted circles represent
the architectural strategies that are not in the feasible space and the dark circles represent the
new efficient frontier.

Figure 6: Maximized Boundary with Thresholds

For our problem of assessing architectural strategies and the impact on the software system,
we assume an additive preference structure for the quality attributes. Formally this could be
expressed as

X1

X2

x1
o

x2
o

X1

X2

CMU/SEI-2001-TR-035 37

�=+++=
j

jxnxxx xvxvxvxvxv
jn

)()()()()(21 21
�

�

This preference structure assumes that the attributes of the system are preferentially inde-
pendent of one another. A pair of attributes X and Y are said to be preferentially independent
of a third attribute Z if the conditional preferences in the (x, y) space do not depend on z. For
example, if we consider the quality attributes maintainability, operability, and performance,
then we assume that the relative importance of operability with respect to maintainability is
independent of the performance level of the system. We believe that this assumption holds
true for a majority of the ranges of the quality attributes within which the architectural
changes in question affect the system.

To make this form operational we use an additive value function that is scaled to reflect the
relative importance of the various attributes with respect to the business goals of the system.
The form of the equation is

�=
i

jjj xvxv)()(λ� ; where

� =
i

j 1λ

0: ≥∀ jj λ

We thus need to determine appropriate values for λ (scaling parameters) and vi().

Ideally, we would like to obtain the value function, v, from existing prototype models that
will give us quantitative and fairly accurate insight into the effect of any particular AS on the
QAs of the system. However, in particularly large and complex systems, building of proto-
types may not always be feasible. In these cases we elicit the expected behavior of the system
from various stakeholders such as the main software architect, implementers of various mod-
ules, maintainers of various subsystems and others that are interacting with the users on a
regular basis. The choice of the stakeholders is made by the project manager(s). The elicita-
tion exercise is divided into two parts:

1. determining the scaling parameters λj, (QAScorej)

2. determining the attribute specific utility values vj(xj), (ContribScorei,j)

Once the various quality attributes of importance are determined, the scaling parameter
QAscorej for each quality attribute, j, is elicited. By design, we ensure that

001� =
j

jQAScore

and 0: ≥∀ jQAScorej

The value function, v(), is typically elicited in units of currency, such as dollars. To account
for the risk-averseness of project managers as well as the difficulty in quantifying values in

38 CMU/SEI-2001-TR-035

dollars, we use utility estimates for the various ASs. In this section we elicit the utility values
u[v(x)] for each of the architectural strategies.7 A single architectural strategy affects more
than one QA. Some effects are positive, some negative, and all to varying degrees. When
considering large software systems, there is uncertainty regarding the exact effect of a par-
ticular architectural strategy on the system. While the effect of some changes could be meas-
ured approximately through simulation models, the effect of some changes can only be ob-
tained through expert elicitation of the experts of the system and their understanding of
system behavior. Another source of uncertainty and subjectivity is the utility assessment of
various levels of the quality attributes. The sources of uncertainty are depicted in Figure 7.

Figure 7: Sources of Uncertainty in Architectural Benefit Assessment

Constructing the utility function, u[v(x)], is context specific, hence we tackle this problem by
eliciting the utility values of u[v(x)]≡u[x] directly from the experts8 of the system. We ask the
experts to rank each architectural strategy (ASi) in terms of its contribution (ContribScorei,j)
to each quality attribute (QAj) on a scale of –1 to +1. A plus 1 implies that the AS has a per-
ceived best possible effect on the QA for the system and a minus 1 means the opposite. These
values represent the utility gained or lost by making a particular architectural change (ASi) on
each of the quality attributes (QAj).

During the assessment, we expect the experts to factor into their utility values the short-term
as well as long-term effects of that particular change. The benefits and costs accrued in the
future are discounted for present values. We assume that the experts in their assessment ap-
propriately discount the future and the net present utility is reflected in their ratings.

7 Here we make a distinction that v() is the value function with units of dollars and u[v()] is the
utility function with units of ‘utils.’

8 We assume that the stakeholders are also the experts of the system.

Architecture
Decision(s)

P

A

S

M

Utility

Sources of
Uncertainty/
Subjectivity

P - Performance
A - Availability
S - Security
M - Modifiability

Influences

CMU/SEI-2001-TR-035 39

By asking the experts to assign a utility value ranging from –1 to +1 we make certain as-
sumptions about the utility functions for the quality attributes of the system. In the earlier
section we argued about the validity of an additive value function, v(). We extend this as-
sumption to the utility function, u[v()], and assume utility independence amongst attributes.
This implies that

�=+++=
j

jxnxxx xuxuxuxuxu
jn

)()()()()(21 21
�

�

In circumstances of high uncertainty, we expect that the system experts are risk-averse and
that the elicited ratings reflect a concave utility function.

Figure 8: Expected Utility Functions of QAs

Figure 8 depicts what we assume to be examples of the utility function characteristic of the
quality attributes of the system. Though these are not actual utility curves, we expect that
over time and repetition of the CBAM, the experts of the software system will be able to
build similar curves to aid the elicitation process and make it more objective.9 Ideally, for the
contribution scores, we would want to be able to understand the architectural change in terms
of the QA response characteristics and then subsequently read off the utility values from a
QA-utility chart. That process would involve considerable effort and participation from sys-
tem experts, and with our present work we are moving in that direction.

9 To generate these curves would also involve an elaborate elicitation procedure, which is not dis-
cussed here.

Utility
AvailabilityPerformance

Utility

-1

+1

-1

+1

40 CMU/SEI-2001-TR-035

CMU/SEI-2001-TR-035 41

Appendix B: Determining the Probability
of Dominance of AS Return
Values

Assuming that the underlying distribution is uniform, each architectural strategy is plotted
along a single scale, according to its return score. There could thus be two kinds of overlap of
scores between any two ASs. The first kind of overlap is when there is a partial overlap of
values depicted by Figure 9, while the second kind is when the values of one AS completely
overlap another AS, depicted by Figure 10.

8.1 Case 1: Partial Overlap

Figure 9: Case 1: Partial Overlap of ASs

Each rectangle represents the probability distribution function of an AS’s return score. If Ri is
the range of elicited return scores, then the distribution height, hi, will be determined by nor-
malization:

i
iii R

hhR
1

1 =�=

The probability that the architectural change “i” whose return “value” satisfies

max,min, ii ASvalueAS ≤≤ is larger than the return “value” of architectural change “j” is

Ri Rj

ASj

ASi

ASj,,min ASi,max

x

Return

42 CMU/SEI-2001-TR-035

ASj

ASi

ASj,min
ASi,max

x

ASj,max

Ri

Rj

()
()

()

() ()() ()

() ()() (){ }2min,min,max,
2

max,

2
min,

2
max,min,max,

2
max,

max,

max,min,

2
2

1

2

1

2

11

1

1

max,

min,

max,

min,

max,

jjii
ji

jijii
ji

AS

AS

jij
ji

AS

AS

AS

x

ij
ji

ijij

ji

ASASASAS
RR

ASASASASAS
RR

xASdx
RR

dxdx
RR

ASxASjiASxASxprob

jiASASprob

i

j

i

j

i

j

+−=

�
�
�

�
�
� +−−=

−=

=

≤≤∀≠≤≥=

≠≥

�

� �

��

�

()

() { } 2
min,max,

2
min,max,

2

1
,

2

1

ji
ji

ji

ji
ji

ASAS
RR

ASASprobhence

ASAS
RR

−=≥

−=

8.2 Case 2: Complete Overlap

Figure 10: Case 2: Complete Overlap of ASs

CMU/SEI-2001-TR-035 43

()
()

()

()() ()
�
�
�

�
�
� −−−=

−=

=

≤≤∀≠≤≥=

≠≥

�

� �

2
min,

2
max,min,max,max,

max,

max,min,

2

11

1

1

max,

min,

max,

min,

max,

jjjji
ji

AS

AS

jij
ji

AS

AS

AS

x

ij
ji

jjij

ji

ASASASASAS
RR

xASdx
RR

dxdx
RR

ASxASjiASxASxprob

jiASASprob

j

j

j

j

i

j

��

�

(){ }

()min,max,max,

min,max,max,

2
2

1

2
2

1

jji
i

jjjji
ji

ASASAS
R

RASASRAS
RR

−−=

+−=

Hence the generic solution is:

Case: 1: When there is partial overlap between ASi and ASj.

() { } 2
min,max,2

1
ji

ji
ji ASAS

RR
ASASprob −=≥

Case: 2: When ASi completely overlaps ASj.

() { }min,max,max,2
2

1
jji

i
ji ASASAS

R
ASASprob −−=≥

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

3. REPORT DATE

December 2001

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Using Economic Considerations to Choose Among Architecture Design
Alternatives

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Jayatirtha Asundi, Rick Kazman, Mark Klein
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-TR-035

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The software architecture forms an essential part of a complex software-intensive system. Architecture design decision-
making involves addressing tradeoffs due to the presence of economic constraints. The problem is to develop a proc-
ess that helps a designer choose amongst architectural options, during both initial design and its subsequent periods of
up-grade, while being constrained to finite resources. To address this need for better decision-making, we have devel-
oped a method for performing economic modeling of software systems, centered on an analysis of their architecture.
We call this method the Cost Benefit Analysis Method (CBAM). The CBAM incorporates the costs and benefits of archi-
tectural design decisions and provides an effective means of making such decisions. The CBAM provides a structured
integrated assessment of the technical and economic issues and architectural decisions. The CBAM utilizes techniques
in decision analysis, optimization, and statistics to help software architects characterize their uncertainty and choose a
subset of changes that should be implemented from a larger set of alternatives. We also report on the application of this
method to a real world case study.

14. SUBJECT TERMS

cost benefit analysis method, portfolio theory, software architecture

15. NUMBER OF PAGES

56 pp.
16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Using Economic Considerations to Choose Amongst Architecture Design Alternatives
	Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction and Motivation
	2 Decision-Making Context
	3 The Steps of the CBAM
	4 Theoretical Basis of the CBAM and Detailed Description
	5 Case Study
	6 Related Work
	7 Lessons Learned and Further Developments of the CBAM
	8 Conclusion
	References
	Appendix A: Multi-Attribute Decision Theory for Software Design Problem
	Appendix B: Determining the Probability of Dominance of AS Return Values

