

Collaborative Botnet Detection through Large-scale Network Traffic

Bo Hu, Kazunori Kamiya (NTT) Kenji Takahashi (NTT Ltd.) Karel Mittig, Fabien Bignon(Orange)

Agenda

- Background
- Problem Statement
- Operator's TI approaches
 - Piper by NTT
 - Voodoo by Orange
- Collaborative Approach
- Collaboration Assessment
- Conclusion

Background

• A botnet is a group of malware-infected hosts that collaborate together to launch various cyberattacks.

Background

- Machine learning can automatically extract intelligence from large-scale network traffic
- **Botnet detection** is its one important application field.
 - e.g., bot detection, Command & Control (C&C) server detection

Problem Statement

- Many existing methods focus on traffic analysis in a user network.
- However, they lack the visibility of layered and distributed botnet infrastructure.
- Large-scale traffic analysis at the Internet backbone is necessary.

Problem Statement

• To comprehensively detect botnets through the Internet, collaborations among multiple ISPs are expected.

Problem Statement

- However, this is challenging, since each ISP has different techniques, traffic data and threat intelligence (TI).
- Considering the user privacy and difference of techniques, existing collaborations are limited to information exchanges.

Overview of Proposed Collaboration K × NTT O

- We introduce a collaborative framework which
 - Leverages TI/enriched features of malicious servers from other operators to enhance the existing prediction models, and
 - Shares newly generated TI/enriched features to others,
 - While preserving the privacy and confidentiality of communications

Piper by NTT R&D

Overlap in Analysis

- Applying multiple applications separately to the same data may result in a huge overlap
- An efficient and practical platform for Internet-scale traffic is required

overlap

Piper: A Machine Learning Pipeline 🔜 × NTT 🕐

- Piper: Unified machine learning pipeline for Internet-scale traffic analysis and threat detection.
- With its fast pipeline and predefined capabilities, ISPs/enterprises can easily deploy new analysis applications.

٠

Piper: A Machine Learning Pipeline 🔜 × NTT 🕐

Voodoo

by Orange Labs

Hybrid AI based Threat Intelligence

Voodoo

Insight

mixing machine learning, deep-learning and expert system altogether

Voodoo: leverage CTI through Hybrid AI to proactively discover threats and produce valuable information

Collaborative Framework

Collaborative Framework

Joint Experiment Results

Orange & NTTVoodoojoint experimentGeneral statistics

652 distinct IP addresses reported by Piper in one month experiment

- 120 unique entries unknown by Voodoo
- 209 IPs referenced first by Piper

Feed name	% Piper overlap
Virus total	27.9%
Warui ip malware	19.5%
Cert gov Georgia	14.8%
Zerocert	14.3%
Surbl	13,8%

Top 5 sources cross referencing

- ➔ 18.4% unique entries from Piper
- → Ovelapped entries covered by an average of 11 feeds

Computed reliability of Piper unique entries by Voodoo

Orange & NTTVoodoojoint experimentEnriched Threat Intelligence

- Voodoo has a limited access to live malicious traffic
- The collaboration with Piper helps to enrich Voodoo knowledge regarding malicious ports

→ Piper allowed to enrich shared IoCs with 543 new ports of interest

Orange & NTTVoodoojoint experimentEnriched Threat Intelligence

Threats names computed by Voodoo

Orange & NTT joint experiment

Reinforcement learning Reliability correction

Scope: IPs addresses reported by Piper, and already known (or with related URLs known) by Voodoo

False POSITIVE Correction

IoCs initially classified by Voodoo as false positive because there is :

- no longer a feed referencing the IP addresses anymore
- not enough information context to classify IP addresses as malicious

False NEGATIVE Correction

loCs classified with a low confidence on Voodoo side because there is no longer a feed referencing the IP addresses anymore.

Conclusion

Orange restricted / NTT corp. All Rights Reserved.

Conclusion

- As joint experiments, NTT and Orange have introduced new approach to enrich and extend TI while preserving the privacy and confidentiality of communications.
- According to our preliminary results, the collaboration allows to detect new C&C servers and botnet related activities.
- This provides new opportunities to improve cybersecurity among ISPs, and to discover and extend detections to other malicious activities.

Thank you

Orange restricted / NTT corp. All Rights Reserved.