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Abstract 

Survivability is a new branch of dependability.  It addresses explicit requirements for re-
stricted modes of operation that preserve mission-critical essential services in adverse opera-
tional environments. A survivable system is one that satisfies its survivability specification of 
essential services and adverse environments.  On the system side, survivability specifications 
can be defined by essential-service traces that map essential-service workflows, derived from 
user requirements, into system component dependencies and required survivability attributes.  
On the environment side, survivability specifications can be defined by intrusion traces that 
map intruder workflows, derived from attack patterns, into compromisable system compo-
nents.  Survivability design applies resistance, recognition, and recovery strategies to main-
tain essential-service workflows where possible despite compromised components.  Test en-
vironments for survivable system implementations can be defined by survivability evaluation 
models that merge essential-service and intruder workflows into usage-based, statistically 
valid test suites.  This paper describes the initial results of research in these areas. 
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1 Survivable System Concepts 

Modern society is irreversibly dependent on large-scale critical infrastructure systems to sus-
tain quality of life, economic growth, and national security.  As a result, society faces unquan-
tified, but generally acknowledged as substantial, risks of system failure or compromise with 
potentially serious consequences.  Sectors such as defense, telecommunications, energy, fi-
nance, and healthcare are potentially affected.  Critical infrastructure systems share a depend-
ency on large-scale computing and communication systems for operation and control.  These 
systems exhibit powerful functionality for managing complex processes, extraordinary com-
plexity that challenges intellectual control, extensive use of commercial off-the-shelf (COTS) 
components of uncertain reliability and quality, inflexible behavior that limits survivability, 
and cascade failure effects across interdependent systems of systems1.  Market forces have 
long rewarded cost effectiveness over survivability in design and evolution of these systems. 

As a new branch of dependability, the discipline of survivability addresses engineering meth-
ods for the analysis and design of systems that satisfy mission requirements for full services 
in benign environments and reduced but critical services in adverse environments. Survivable 
systems are intended to provide essential services despite the shock of adverse events.  Essen-
tial services are mission-critical operations that must continue despite attacks, failures, or ac-
cidents [Ellison 99].  Our work is focused on attacks and intrusions, in the knowledge that the 
results achieved will be valuable in dealing with failures and accidents as well.  Survivability 
requires capabilities to resist the effects of adverse environments, to recognize when these 
effects have occurred, and to recover from them in a timely manner. 

Figure 1 depicts our dual-thread, three-stage approach to survivability research and develop-
ment. We believe that survivability must be addressed from both the system side, in terms of 
specification and design for essential-service preservation, and from the environment side, in 
terms of intrusion specification and analysis.  We further believe that rigorous foundations are 
a required basis for representation and reasoning in both areas, and for the definition of re-
peatable engineering practices.  This paper describes initial work in the foundations stage for 
survivability specification and intrusion specification, as well as survivability evaluation 
models that draw upon both of these areas. 

                                                 
1  A system of systems is a composite system composed of individual systems that may be tightly or 

loosely coupled.  Such systems are prone to cascade effects of intrusions and compromises that 
propagate across system boundaries. 
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Figure 1: Dual-Thread, Three-Stage Approach to Survivability Research and 
Development 

The requirements for essential services can be specified in terms of workflows, which can be 
refined into essential-service traces that define the sequencing of system architecture compo-
nents and artifacts that are required to satisfy the workflows. These traces can be annotated 
with required survivability attributes.   Intruder workflows can be derived from predefined 
attack patterns, and likewise refined into intrusion traces that define potentially compromis-
able system components and regions.  Both essential-service and intruder workflows can in-
form the definition of evaluation models for survivability testing.  Figure 2 depicts the rela-
tionship of survivability activities and work products to the overall development life cycle. 
Service traces, intrusion traces, and evaluation models are embedded within and support the 
larger activities of system specification, design, and testing. Survivability requirements and 
attack patterns drive the definition of essential-service and intruder workflows, respectively.  
These workflows are, in turn, expanded into architecture traces, which drive the selection and 
integration of survivability strategies in design and contribute to the definition of the testing 
environment.  
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Figure 2: Survivability Relationship to Life-Cycle Activities 
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2 Service Traces for Survivability Specifi-
cation 

Current investigations in the foundations area of the survivability thread of Figure 1 involve 
essential-service workflows, corresponding service traces of essential-system components, 
and a computational approach to survivability attributes associated with traces. In today’s 
world of large-scale, distributed systems of systems with indeterminate boundaries and com-
plex asynchronous behavior, workflows and their architecture traces developed according to 
sound foundations provide rigorous and systematic representations for specification and de-
sign under intellectual control.  

2.1 Essential-Service Workflows 
Critical enterprise missions are carried out through the managed use of essential services pro-
vided by large-scale systems of systems composed of computation, communication, and hu-
man components. Services initiated by users at simple desktop machines may traverse exten-
sive paths of hardware, software, and communications links, often astonishing in their 
complexity, to affect operations in a factory next door or a bank a continent away.  Such paths 
may link many computing domains and communication media, and may require many trans-
formations along the way.   

Essential services can be defined by workflows [Hayes 00].  In simplest terms, a workflow is 
a directed graph composed of tasks, information elements, decisions, and flows.  Workflows 
can define individual transactions or combinations of transactions.  Tasks are nodes in the 
graph that define units of work carried out by humans or systems.  Tasks accept input infor-
mation and produce output information.  Information elements are defined abstractly in terms 
of semantic content and concretely in terms of data.  For example, a “get account balance” 
task could accept as input an “account number” and produce as output the corresponding “ac-
count balance.”  Decisions are predicates on information elements that determine the flow of 
control: for example, if  “account balance < 0” then invoke “owner notification” task.   Flow 
is defined by the arcs between nodes.  Workflow nodes and arcs can be annotated with attrib-
utes that define required properties such as security and survivability.  Large-scale systems 
typically provide many essential services that can be specified as workflows.   
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Because workflows contain decision points, they embody multiple paths from entry to exit, 
with every path representing a possible sequence of tasks and outcomes.  In terms of control 
flow, both workflows and each of their contained tasks can be defined as single-entry, single-
exit structures.  Such structures exhibit important properties for refinement and decomposi-
tion, and permit workflows to be expressed at multiple levels of abstraction with full referen-
tial transparency.  Any sequential workflow can be expressed in terms of composition, alter-
nation, iteration, and concurrent structures. 

2.2 Essential-Service Traces 
An essential-service trace is a refinement of an essential-service workflow.  It identifies the 
architecture components that every task and decision in an essential-service workflow re-
quires for execution.  A trace illuminates the hardware, software, communication, and human 
components that support the service and are thereby essential to its availability.   

In a trace: workflow tasks are refined into uses of architecture components (both human and 
automated); information elements are refined into data; and decisions are refined into predi-
cates on data values.  For example, a “get account balance” task may require invocations of, 
say, “account manager,” “database,” “report generation,” and “user interface” components. 
Such traces often reveal unforeseen and disturbing dependencies.  For example, an essential-
service workflow requiring the high availability of telecommunication services may specify 
the use of redundant carriers as a backup for potential outages.  The trace refinement of the 
service could reveal, however, that the presumed-redundant carriers lease fiber-optic lines 
from the same provider, and that the service is in fact dependent on a single, fiber-optic line 
and its hardware and software controlsa clear single point of failure or compromise. Once 
identified, such dependencies can be redesigned to improve survivability attributes. 

2.3 Relational Specification of Trace Components 
It is invariably the case that particular system components (e.g., database or business-rule 
components) will experience many uses in many workflows.  In the operational use of a sys-
tem, workflows can be sequenced and interleaved by users in unpredictable ways. In fact, a 
principal design objective in large-scale systems is the coordination and synchronization of 
multiple uses of components specified by workflows.  Furthermore, the components of large-
scale, distributed systems respond asynchronously to a blizzard of inputs whose innumerable 
interleavings are essentially unknowable. Yet every asynchronous use of a component may 
change its current state and thereby its responses to future uses.  Thus, any operational use of 
a workflow component can encounter any possible state at all in execution and receive a re-
sponse determined by that state.  Because of this, when service traces are specified, the be-
havior of every component must be defined in terms of all possible responses resulting from 
all possible component states that may be encountered.  Such a relational specification de-
fines a set of all the responses accumulated from all the uses of a component in all the traces 
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within which it appears.  In this way, completeness and consistency can be achieved in trace 
definitions.  It may seem a formidable undertaking to enumerate all the possible states of a 
component, but this is not necessarily the case. It is usually sufficient to define equivalence 
classes across potential states that dramatically reduce specification complexity.  For exam-
ple, in accessing records from a database component, responses can be partitioned into “pre-
sent” and “not present,” with no immediate need for elaboration of the multiple circum-
stances leading to a “not present” response.   

Incorporating the relational specifications of component behavior means that every use of a 
component in the workflows reflects all possible outcomes for that use, no matter what his-
tory of asynchronous use it may have experienced up to that point.  This completeness and 
consistency of specification permits the paths of a trace to be treated as sequences of tasks 
and decisions with full functional and compositional properties for simplified reasoning and 
analysis, rather than as views of asynchronous processes with indeterminate outcomes, which 
are difficult to reason about.  Relational component specifications may reveal additional deci-
sion points unanticipated in the original workflows, which can be updated to reflect the ex-
panded set of possible paths and outcomes. 

2.4 Computational Survivability 
Substantial effort has been devoted to developing descriptive and largely subjective charac-
terizations of survivability as a non-functional system property.  While useful methods have 
emerged from this work, much remains to be done.  Rather than focusing on non-functional 
descriptions, we consider an alternative approach and ask how survivability can be defined, 
computed, and acted upon as a dynamic characteristic of system operation.  That is, we wish 
to define computational survivability as a function to be computed, rather than as a subjective 
description of a property to be achieved.  While such a function relies on what can be com-
puted and may differ thereby from traditional, non-functional views, it may permit new ap-
proaches to survivability analysis, design, and operation.  In illustration, a function imple-
menting computational survivability, centralized or decentralized within the control structure 
of a system, could accept as stimuli the status of system services and compromises, and pro-
duce as responses modified traces that maintain the survivability properties of essential work-
flows where possible.  We believe that computational survivability is a fruitful area for re-
search and development. 

Survivability requirements can be associated with system-component uses embedded within 
workflow traces. For example, a trace for an essential service may employ a database com-
ponent in its sequencing of component uses.  In this usage, the database must satisfy a high 
level of specified survivability.  However, other uses of the same database in workflows for 
non-essential services would carry less stringent specifications of survivability requirements.  
Workflow traces provide a semantic framework for the specification, analysis, and composi-
tion of survivability properties.  



8  CMU/SEI-2001-TR-029 

As noted above, a primary control task in large-scale systems is managing the composition of 
system components to satisfy workflow trace specifications. System-control functions recon-
cile trace specifications with available system components, and are a natural vehicle for im-
plementing survivability management based on the dynamic network and component capa-
bilities and availabilities [Sullivan 99].  The concept of a service-flow machine (SFM), in 
analogy to a data-flow machine, either centralized or decentralized within the architecture of 
a system, can embody trace-management functions that include dynamic survivability man-
agement through a variety of strategies, including alternate communication paths, resource 
substitutions, state purging, alternate provisioning, and system reinitialization and reconfigu-
ration [Hevner 02].  An SFM abstraction could be designed and instantiated in a variety of 
forms and technologies, depending on the survivability requirements, network configuration, 
and operational environment. 
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3 Intrusion Traces for Adverse Environ-
ment Specification 

Current investigations in the foundations stage of the intrusion thread of Figure 1 involve 
intruder workflows derived from attack patterns and corresponding intrusion traces of com-
promisable system components. We define an intruder workflow and its encompassing attack 
tree as 

• intruder workflow – the sequence of steps that an intruder executes to compromise 
the survivability of an enterprise 

• attack tree – a set of hierarchically organized intruder workflows that result in a 
common survivability compromise 

Enterprise-specific intruder workflows and attack trees are built from reusable attack pat-
terns: 

• attack pattern – a generic representation of a deliberate, malicious attack that com-
monly occurs in specific contexts 

• attack profile – a set of related attack patterns defined in terms of a common architec-
tural reference model 

Finally, intrusion traces help to identify countermeasures to resist, recognize, and recover 
from intrusions.  Intrusion traces map the intruder workflow onto the enterprise architecture. 

We distinguish between an intrusion and an attack as follows.  An attack is malicious activity 
that may or may not, by itself, compromise an enterprise’s survivability.  An attack may or 
may not successfully accomplish an attacker’s objectives.  Even if it does, an individual at-
tack may only increase an attacker’s ability to compromise survivability, without actually 
causing the compromise.  An intrusion, on the other hand, is a sequence of successful attacks 
that results in a compromise to enterprise survivability.2  Attackers become intruders once 
they execute such intrusions. 

This section introduces the structures supporting these concepts in more detail.  We describe 
how attack patterns can be used to build intruder workflows that are organized into attack 
trees.  Intrusion traces map these workflows onto the enterprise architecture to help identify 

                                                 
2   This definition of intrusion suggests that attack trees may be more appropriately called intrusion 

trees. We, however, use the more common phrase attack trees to avoid confusion [Schneier 00]. 
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countermeasures to the intrusions.  Our documentation approach provides a basis for using 
attack data to improve the design and analysis of secure and survivable information systems.  
We expect that security analysts will be able to use the structures described to document on-
going attacks derived from real attack data or hypothesized attacks from projected trends of 
intruder behavior.  Further, we expect that information system designers and analysts will be 
able to use the attack patterns to make systems more secure and survivable. 

3.1 Intruder Workflows Organized Into Attack Trees 
The large number of intruder workflows relevant to any nontrivial enterprise necessitates a 
scheme to organize related workflows.  Attack trees provide such an organizational scheme 
[Salter 98, Schneier 99, Schneier 00].  They refine information about attacks by identifying 
the compromise of enterprise security or survivability as the root of the tree. The ways that an 
attacker can cause this compromise are refined incrementally as lower level nodes of the tree.  
For example, suppose Mal is a malicious competitor to a business, called Biz, that sells some 
product. Mal may compromise Biz’s ability to make a profit by 

1. hampering Biz’s development of the product 

2. disrupting Biz’s sales of the product 

3. undermining customer demand for Biz’s product 

Each of these attack classes can be refined as a separate branch of the attack tree. 

An enterprise typically has a set, or forest, of attack trees that are relevant to its operation.  
The root of each tree in a forest represents an event that could significantly harm the enter-
prise’s mission.  Each attack tree enumerates and elaborates the ways that an attacker could 
cause the event to occur.  Each path through an attack tree represents a unique intrusion on 
the enterprise. We decompose a node of an attack tree as one of the following: 

• a set of attack subgoals that is represented as an AND decomposition. All of these goals 
must be achieved for the attack to succeed. 

• a set of attack subgoals that is represented as an OR decomposition. If any of these goals 
is achieved, the attack succeeds. 

We represent decompositions graphically as follows:  

 AND-decomposition:    OR-decomposition:   
  

   
   

 G0 

G1 G2 Gn 
… 

    G0   

G1 G2 Gn 
… 
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The AND-decomposition represents a goal G0 that can be achieved if the attacker achieves 
all of the goals G1 through Gn.  The OR-decomposition represents a goal G0 that can be 
achieved if the attacker achieves any one of goals G1 through Gn.  In practice, we often repre-
sent attack trees textually, since the graphical representation can be awkward for nontrivial 
attack trees. 

Attack trees consist of any combination of AND- and OR-decompositions. We generate indi-
vidual intruder workflows from an attack tree by traversing the tree in a depth-first manner.  
For example,  

 

 

              generates the 
         intruder workflows 
 

In general, leaf goals are added onto the end of intruder workflows as they are generated.  
OR-decompositions cause new workflows to be generated.  AND-decompositions cause ex-
isting workflows to be extended.  Intermediate nodes of the attack tree do not appear in the 
intruder workflows, since they are elaborated by lower level goals. 

Attack trees allow the refinement of attacks to a level of detail chosen by the developer.  
They exhibit the property of referential transparency as characterized by Prowell: 

“Referential transparency implies that the relevant lower level details of an en-
tity are abstracted rather than omitted in a particular system of higher level de-
scription, so that the higher level description contains everything needed to un-
derstand the entity when placed in a larger context” [Prowell 99]. 

This property permits the developer to explore certain attack paths in more depth than others, 
while still allowing the developer to generate intruder workflows that make sense. In addi-
tion, refining the branches of the attack tree generates new leaves resulting in intruder work-
flows at the new lower level of abstraction. 

G5 

G1 G2 

G0 

G3 G4 G6 

〈 G3 , G5 , G6 〉 
〈 G4 , G5 , G6 〉 
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3.2 Attack Patterns Organized Into Attack Profiles 
The practicality of attack trees to characterize attacks on real-world systems depends on be-
ing able to reuse previously developed patterns of attack.  We describe two structures that 
support such reuse: an attack pattern for characterizing an individual type of attack, and an 
attack profile for organizing attack patterns to make it easier to search for and apply them. 

An attack pattern contains the overall goal of the attack specified by the pattern, a list of pre-
conditions for its use, the steps for carrying out the attack, and a list of postconditions that are 
true if the attack is successful.  The preconditions include assumptions that we make about 
the attacker or the state of the enterprise that are necessary for an attack to succeed.  Example 
preconditions include the skills, resources, access, or knowledge that attackers must possess, 
and the level of risk that they must be willing to tolerate.  The postconditions include knowl-
edge gained by the attacker and changes to the enterprise state that result from successfully 
carrying out the attack steps when the preconditions hold.  

We further organize related attack patterns into an encompassing attack profile.  Attack pro-
files contain a common reference model, a set of variants, a set of attack patterns, and a glos-
sary of defined terms and phrases. The reference model represents an architecture template 
with parameters that may include the variants.  The attack patterns are also defined in terms 
of the variants.  As we will describe more fully in the next section, attack profiles are speci-
fied independently of any particular enterprise.  An enterprise whose architecture is consistent 
with a profile’s reference model may use the profile’s attack patterns, once instantiated, to 
help construct the attack trees that are relevant to the enterprise’s operation.  Different attack 
profiles may address different levels of attacker access, resources, and skills, as well as dif-
ferent configurations of system components.  Therefore, different attack profiles may help 
refine an enterprise-specific attack tree along different lines of attack.  

As in the example in Section 3.1, Mal may want to disrupt the sales of Biz by attacking Biz’s 
Web site.  A SYN Flood attack pattern can severely degrade the performance of a Web site by 
repeatedly transmitting TCP SYN packets to the Web server from a forged, bogus origin.  The 
resulting flood of interminable connection requests overwhelms the Web site so that it cannot 
process requests by legitimate customers.  A precondition of this attack is that Mal knows the 
Internet Protocol (IP) address of Biz’s Web site.  Such an attack pattern may be part of an 
attack profile in which the reference architecture allows Internet-based attacks on an enclave 
protected at its boundary by a firewall.  Variants of this attack profile include the component 
of the enclave under attack and the type of firewall at the enclave boundary. 
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3.3 Refining Attack Trees Using Attack Patterns 
As shown in the flowchart in Figure 3, an attack tree can be refined from the root-node com-
promise as a combination of manual extensions and pattern applications.  Manual extensions 
depend greatly on the security expertise of the person developing the attack tree.  Pattern ap-
plication also depends on such expertise, but to a lesser extent.  Some of this security exper-
tise is built into an attack-pattern library.   

A good attack-pattern library provides a set of attack profiles that are rich enough to charac-
terize the attacks that may take place on a broad range of enterprise architectures.  Refining a 
particular enterprise’s attack tree involves first finding those attack profiles that are consistent 
with the enterprise architecture.  The developer searches the attack patterns of consistent at-
tack profiles for a refinement of an attack path contained in the enterprise attack tree.  Once 
found, the developer can appropriately instantiate and apply the attack pattern to extend the 
enterprise attack tree.  This process of pattern application intermixed with manual extension 
continues until the attack tree is refined sufficiently. The decision of when to halt the process 
is at the discretion of the developer. 

Figure 3: Attack-Tree Refinement Process 
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As mentioned previously, the reference model associated with an attack profile can be viewed 
as an architecture template.  The parameters of this template are the reference model variants.  
If a set of values for these variants exists that unifies the attack profile’s reference model with 
some portion of the enterprise architecture, we say that the attack profile is consistent with 
the enterprise architecture. The attack patterns associated with the profile are written with 
respect to the profile’s reference model and in terms of the profile’s variants.  These attack 
patterns are, therefore, relevant to the enterprise architecture. 

Determining which attack profiles are consistent with the enterprise architecture is only the 
first step. Analysts must also determine which attack patterns in consistent profiles help re-
fine the enterprise attack tree.  This requires identifying a pattern whose goal helps to achieve 
the goal identified at an attack-tree node.  We say that such patterns, when properly instanti-
ated, are applicable to the enterprise attack tree. In our previous example, the SYN Flood 
attack pattern is applicable to the second branch of Biz’s attack tree (disrupting sales of the 
product) where the component under attack is Biz’s Web server.  

3.4 Analyzing Attack Trees Using Intrusion Traces 
Intrusion traces map each intrusion path through an attack tree onto the enterprise architec-
ture.  This helps identify those components that can be compromised from the intrusion and 
the impact to the enterprise mission that results.  The enterprise architecture can then be ana-
lyzed by asking resistance or recovery questions at each of the attack tree nodes. Resistance 
questions ask, “How can we prevent an attacker from successfully traversing this node to 
achieve the attacker’s goal?” Of course, the answer to such questions may not always be a 
cost-effective or practical solution. Fundamental to the goal of survivability is recognizing 
when an attack that we cannot effectively resist takes place and executing recovery plans. We 
thus ask “How can we detect an attacker during an attempted attack or after a successful at-
tack?” and “How can we react to this detection?”  

In our running example, an intrusion trace of the SYN Flood attack would clearly identify 
Biz’s Web server as a compromisable component. Biz may decide to do one of the following: 

• Reduce the effectiveness SYN Flood attacks generally by decreasing the amount of time 
a TCP connection request takes to time-out. 

• Detect the attack when it occurs and free up additional space so that customer requests 
can be handled. 

Attack trees provide a powerful mechanism to document the multitude of diverse types of 
attacks, to abstract from intrusion details as a buffer against attack volatility, and to suggest 
improvements to requirements and design.  They are, however, only a relatively small part of 
the answer as to how to use intruder workflows and intrusion traces to design more surviv-
able systems.  The lack of accurate adversary models and risk-analysis methods obstructs the 
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progress on this front.  A rich attack-pattern library populated with attack patterns at the right 
level of abstraction is needed to build enterprise attack trees more systematically.  Finally, the 
lack of robust resistance, recognition, and recovery countermeasures hampers our ability to 
construct survivable systems.  Overcoming these obstacles will require a truly interdiscipli-
nary effort. 
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4 Survivability Evaluation Models 

It is well known that the set of possible executions of a large-scale system forms an essen-
tially infinite population.  All testing is in effect sampling from that infinite population.  No 
testing process, no matter how well funded and conceived, can execute more than a minute 
portion of all the possible executions.  Thus, the real question is how to draw the finite sam-
ple so as to maximize the value of the testing process.  If the sample is randomized based on 
projected usage, the results of the testing process can be used to estimate system performance 
on all the test cases in the infinite population that could not be executed.  Such statistical us-
age-based testing produces scientific measures of system quality, just as has been done in 
hardware engineering for years. 

When a population is too large to permit exhaustive analysis, as is indeed the case in large-
scale information systems, a statistically correct sample must be defined as a basis for mak-
ing valid inferences about the population as a whole [Prowell 99].  In such a statistical testing 
protocol, the environment of usage is modeled in terms of states of use and associated prob-
abilities of transitions among states.  Usage models can be represented conveniently in formal 
grammars or Markov chains.  Every possible usage scenario is represented in the model and 
potentially generated as a test case by traversing the model according to its transition prob-
abilities.  Transition probabilities among states can be determined from historical or projected 
usage data for a system.  Where extensive field usage data exists, probabilities may be known 
in detail.  For new systems, probabilities may be estimated initially and refined as usage data 
accumulates.  When complete information is not available, usage models can be represented 
as a system of constraints, and transition probabilities can be generated through mathematical 
programming as the solution to an optimization problem. 

Survivability workflows and their essential-service traces enumerate steps in system usage 
that can define, in conjunction with all other system usage, the structural characteristics of 
usage models for statistical testing.  Intrusion workflows and their traces likewise contribute 
to the definition of usage-model structures.  For survivability evaluation, a usage model for a 
system must embody essential and non-essential service workflows, as well as intrusion 
workflows, all of which are interwoven according to usage probabilities to represent the spec-
trum of expected system usage by both legitimate users and attackers.  Such models support 
generations of test suites whose execution results permit the estimation of system perform-
ance for the defined usage.   
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While usage-based statistical testing has proven to be a powerful tool for system quality and 
reliability assessment, it is an open question whether the benefits of the approach can be 
achieved in survivability testing against intrusions.  Two major issues must be addressed: 
what methods can be used to define intrusion probabilities, and how unforeseen intrusion 
strategies not represented in the usage models can be accommodated in the analysis [McHugh 
00].  The high potential value of statistical testing for survivability analysis motivates our 
interest in developing solutions to these problems.     
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5 Future Work 

We intend to continue elaborating on the concepts described in this paper through 

1. defining the mathematical properties of essential-service and intrusion traces and evalua-
tion models 

2. developing language representations for traces and evaluation models 

3. defining engineering practices for trace and evaluation-model specification, analysis, 
and design 
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