

TECHNICAL REPORT
CMU/SEI-2001-TR-029

ESC-TR-2001-029

 Foundations for
Survivable System
Development:
Service Traces,
Intrusion Traces,
and Evaluation
Models

Richard C. Linger
Andrew P. Moore

October 2001

Pittsburgh, PA 15213-3890

Foundations for Surviv-
able System Develop-
ment: Service Traces, In-
trusion Traces,
and Evaluation Models

CMU/SEI-2001-TR-029
ESC-TR-2001-029

Richard C. Linger
Andrew P. Moore

October 2001

Survivable Systems

Unlimited distribution subject to the copyright.

printed 11/16/01 8:18 AM 2.0 / PW

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2001-TR-029 i

Table of Contents

Acknowledgements v

Abstract vii

1 Survivable System Concepts 1

2 Service Traces for Survivability
Specification 5

2.1 Essential-Service Workflows 5

2.2 Essential-Service Traces 6

2.3 Relational Specification of Trace Compo-
nents 6

2.4 Computational Survivability 7

3 Intrusion Traces for Adverse Environment
Specification 9

3.1 Intruder Workflows Organized Into Attack
Trees 10

3.2 Attack Patterns Organized Into Attack Pro-
files 12

3.3 Refining Attack Trees Using Attack
Patterns 13

3.4 Analyzing Attack Trees Using Intrusion
Traces 14

4 Survivability Evaluation Models 17

5 Future Work 19

References/Bibliography 21

ii CMU/SEI-2001-TR-029

CMU/SEI-2001-TR-029 iii

List of Figures

Figure 1: Dual-Thread, Three-Stage Approach to
Survivability Research and
Development 2

Figure 2: Survivability Relationship to Life-Cycle
Activities 3

Figure 3: Attack-Tree Refinement Process 13

iv CMU/SEI-2001-TR-029

CMU/SEI-2001-TR-029 v

Acknowledgements

The work described in this paper was partially funded by DARPA (Order #J884-01). Substan-
tial contributions to the concepts were made by the members of the Survivable Systems
Working Group: Gwen Walton, University of Central Florida; Ann Sobel, Miami University
of Ohio; and Alan Hevner, University of South Florida. The authors gratefully acknowledge
the suggestions provided by Tom Longstaff, Bob Ellison, Howard Lipson, and Nancy Mead.

vi CMU/SEI-2001-TR-029

CMU/SEI-2001-TR-029 vii

Abstract

Survivability is a new branch of dependability. It addresses explicit requirements for re-
stricted modes of operation that preserve mission-critical essential services in adverse opera-
tional environments. A survivable system is one that satisfies its survivability specification of
essential services and adverse environments. On the system side, survivability specifications
can be defined by essential-service traces that map essential-service workflows, derived from
user requirements, into system component dependencies and required survivability attributes.
On the environment side, survivability specifications can be defined by intrusion traces that
map intruder workflows, derived from attack patterns, into compromisable system compo-
nents. Survivability design applies resistance, recognition, and recovery strategies to main-
tain essential-service workflows where possible despite compromised components. Test en-
vironments for survivable system implementations can be defined by survivability evaluation
models that merge essential-service and intruder workflows into usage-based, statistically
valid test suites. This paper describes the initial results of research in these areas.

viii CMU/SEI-2001-TR-029

CMU/SEI-2001-TR-029 1

1 Survivable System Concepts

Modern society is irreversibly dependent on large-scale critical infrastructure systems to sus-
tain quality of life, economic growth, and national security. As a result, society faces unquan-
tified, but generally acknowledged as substantial, risks of system failure or compromise with
potentially serious consequences. Sectors such as defense, telecommunications, energy, fi-
nance, and healthcare are potentially affected. Critical infrastructure systems share a depend-
ency on large-scale computing and communication systems for operation and control. These
systems exhibit powerful functionality for managing complex processes, extraordinary com-
plexity that challenges intellectual control, extensive use of commercial off-the-shelf (COTS)
components of uncertain reliability and quality, inflexible behavior that limits survivability,
and cascade failure effects across interdependent systems of systems1. Market forces have
long rewarded cost effectiveness over survivability in design and evolution of these systems.

As a new branch of dependability, the discipline of survivability addresses engineering meth-
ods for the analysis and design of systems that satisfy mission requirements for full services
in benign environments and reduced but critical services in adverse environments. Survivable
systems are intended to provide essential services despite the shock of adverse events. Essen-
tial services are mission-critical operations that must continue despite attacks, failures, or ac-
cidents [Ellison 99]. Our work is focused on attacks and intrusions, in the knowledge that the
results achieved will be valuable in dealing with failures and accidents as well. Survivability
requires capabilities to resist the effects of adverse environments, to recognize when these
effects have occurred, and to recover from them in a timely manner.

Figure 1 depicts our dual-thread, three-stage approach to survivability research and develop-
ment. We believe that survivability must be addressed from both the system side, in terms of
specification and design for essential-service preservation, and from the environment side, in
terms of intrusion specification and analysis. We further believe that rigorous foundations are
a required basis for representation and reasoning in both areas, and for the definition of re-
peatable engineering practices. This paper describes initial work in the foundations stage for
survivability specification and intrusion specification, as well as survivability evaluation
models that draw upon both of these areas.

1 A system of systems is a composite system composed of individual systems that may be tightly or

loosely coupled. Such systems are prone to cascade effects of intrusions and compromises that
propagate across system boundaries.

2 CMU/SEI-2001-TR-029

Figure 1: Dual-Thread, Three-Stage Approach to Survivability Research and
Development

The requirements for essential services can be specified in terms of workflows, which can be
refined into essential-service traces that define the sequencing of system architecture compo-
nents and artifacts that are required to satisfy the workflows. These traces can be annotated
with required survivability attributes. Intruder workflows can be derived from predefined
attack patterns, and likewise refined into intrusion traces that define potentially compromis-
able system components and regions. Both essential-service and intruder workflows can in-
form the definition of evaluation models for survivability testing. Figure 2 depicts the rela-
tionship of survivability activities and work products to the overall development life cycle.
Service traces, intrusion traces, and evaluation models are embedded within and support the
larger activities of system specification, design, and testing. Survivability requirements and
attack patterns drive the definition of essential-service and intruder workflows, respectively.
These workflows are, in turn, expanded into architecture traces, which drive the selection and
integration of survivability strategies in design and contribute to the definition of the testing
environment.

Survivability Thread:
Survivability
Specification/Design

Stage II: Representation

Survivability Specification
Language and

Reasoning Methods

Intrusion Specification
Language and

Reasoning Methods

Stage III: EngineeringStage I: Foundations

Foundations for
Survivability Specification
 in Large-Scale Systems

Survivability Engineering
Design & Testing Practices

Foundations for
Intrusion Specification

 in Large-Scale Systems

Intrusion Thread:
Intrusion
Specification/Analysis

CMU/SEI-2001-TR-029 3

Figure 2: Survivability Relationship to Life-Cycle Activities

Essential-Service
Workflows & Traces

Survivability Specification

Intrusion Workflows &
Traces Attack Patterns

Survivability
Requirements

System Specification

Resistance, Recognition, &
Recovery Strategies

Survivability Design

System Design

Survivability Evaluation
Models

Survivability Testing

System Testing

Essential-Service
Workflows & Traces

Survivability Specification

Intrusion Workflows &
Traces Attack Patterns

Survivability
Requirements

System Specification

Resistance, Recognition, &
Recovery Strategies

Survivability Design

System Design

Survivability Evaluation
Models

Survivability Testing

System Testing

4 CMU/SEI-2001-TR-029

CMU/SEI-2001-TR-029 5

2 Service Traces for Survivability Specifi-
cation

Current investigations in the foundations area of the survivability thread of Figure 1 involve
essential-service workflows, corresponding service traces of essential-system components,
and a computational approach to survivability attributes associated with traces. In today’s
world of large-scale, distributed systems of systems with indeterminate boundaries and com-
plex asynchronous behavior, workflows and their architecture traces developed according to
sound foundations provide rigorous and systematic representations for specification and de-
sign under intellectual control.

2.1 Essential-Service Workflows
Critical enterprise missions are carried out through the managed use of essential services pro-
vided by large-scale systems of systems composed of computation, communication, and hu-
man components. Services initiated by users at simple desktop machines may traverse exten-
sive paths of hardware, software, and communications links, often astonishing in their
complexity, to affect operations in a factory next door or a bank a continent away. Such paths
may link many computing domains and communication media, and may require many trans-
formations along the way.

Essential services can be defined by workflows [Hayes 00]. In simplest terms, a workflow is
a directed graph composed of tasks, information elements, decisions, and flows. Workflows
can define individual transactions or combinations of transactions. Tasks are nodes in the
graph that define units of work carried out by humans or systems. Tasks accept input infor-
mation and produce output information. Information elements are defined abstractly in terms
of semantic content and concretely in terms of data. For example, a “get account balance”
task could accept as input an “account number” and produce as output the corresponding “ac-
count balance.” Decisions are predicates on information elements that determine the flow of
control: for example, if “account balance < 0” then invoke “owner notification” task. Flow
is defined by the arcs between nodes. Workflow nodes and arcs can be annotated with attrib-
utes that define required properties such as security and survivability. Large-scale systems
typically provide many essential services that can be specified as workflows.

6 CMU/SEI-2001-TR-029

Because workflows contain decision points, they embody multiple paths from entry to exit,
with every path representing a possible sequence of tasks and outcomes. In terms of control
flow, both workflows and each of their contained tasks can be defined as single-entry, single-
exit structures. Such structures exhibit important properties for refinement and decomposi-
tion, and permit workflows to be expressed at multiple levels of abstraction with full referen-
tial transparency. Any sequential workflow can be expressed in terms of composition, alter-
nation, iteration, and concurrent structures.

2.2 Essential-Service Traces
An essential-service trace is a refinement of an essential-service workflow. It identifies the
architecture components that every task and decision in an essential-service workflow re-
quires for execution. A trace illuminates the hardware, software, communication, and human
components that support the service and are thereby essential to its availability.

In a trace: workflow tasks are refined into uses of architecture components (both human and
automated); information elements are refined into data; and decisions are refined into predi-
cates on data values. For example, a “get account balance” task may require invocations of,
say, “account manager,” “database,” “report generation,” and “user interface” components.
Such traces often reveal unforeseen and disturbing dependencies. For example, an essential-
service workflow requiring the high availability of telecommunication services may specify
the use of redundant carriers as a backup for potential outages. The trace refinement of the
service could reveal, however, that the presumed-redundant carriers lease fiber-optic lines
from the same provider, and that the service is in fact dependent on a single, fiber-optic line
and its hardware and software controlsa clear single point of failure or compromise. Once
identified, such dependencies can be redesigned to improve survivability attributes.

2.3 Relational Specification of Trace Components
It is invariably the case that particular system components (e.g., database or business-rule
components) will experience many uses in many workflows. In the operational use of a sys-
tem, workflows can be sequenced and interleaved by users in unpredictable ways. In fact, a
principal design objective in large-scale systems is the coordination and synchronization of
multiple uses of components specified by workflows. Furthermore, the components of large-
scale, distributed systems respond asynchronously to a blizzard of inputs whose innumerable
interleavings are essentially unknowable. Yet every asynchronous use of a component may
change its current state and thereby its responses to future uses. Thus, any operational use of
a workflow component can encounter any possible state at all in execution and receive a re-
sponse determined by that state. Because of this, when service traces are specified, the be-
havior of every component must be defined in terms of all possible responses resulting from
all possible component states that may be encountered. Such a relational specification de-
fines a set of all the responses accumulated from all the uses of a component in all the traces

CMU/SEI-2001-TR-029 7

within which it appears. In this way, completeness and consistency can be achieved in trace
definitions. It may seem a formidable undertaking to enumerate all the possible states of a
component, but this is not necessarily the case. It is usually sufficient to define equivalence
classes across potential states that dramatically reduce specification complexity. For exam-
ple, in accessing records from a database component, responses can be partitioned into “pre-
sent” and “not present,” with no immediate need for elaboration of the multiple circum-
stances leading to a “not present” response.

Incorporating the relational specifications of component behavior means that every use of a
component in the workflows reflects all possible outcomes for that use, no matter what his-
tory of asynchronous use it may have experienced up to that point. This completeness and
consistency of specification permits the paths of a trace to be treated as sequences of tasks
and decisions with full functional and compositional properties for simplified reasoning and
analysis, rather than as views of asynchronous processes with indeterminate outcomes, which
are difficult to reason about. Relational component specifications may reveal additional deci-
sion points unanticipated in the original workflows, which can be updated to reflect the ex-
panded set of possible paths and outcomes.

2.4 Computational Survivability
Substantial effort has been devoted to developing descriptive and largely subjective charac-
terizations of survivability as a non-functional system property. While useful methods have
emerged from this work, much remains to be done. Rather than focusing on non-functional
descriptions, we consider an alternative approach and ask how survivability can be defined,
computed, and acted upon as a dynamic characteristic of system operation. That is, we wish
to define computational survivability as a function to be computed, rather than as a subjective
description of a property to be achieved. While such a function relies on what can be com-
puted and may differ thereby from traditional, non-functional views, it may permit new ap-
proaches to survivability analysis, design, and operation. In illustration, a function imple-
menting computational survivability, centralized or decentralized within the control structure
of a system, could accept as stimuli the status of system services and compromises, and pro-
duce as responses modified traces that maintain the survivability properties of essential work-
flows where possible. We believe that computational survivability is a fruitful area for re-
search and development.

Survivability requirements can be associated with system-component uses embedded within
workflow traces. For example, a trace for an essential service may employ a database com-
ponent in its sequencing of component uses. In this usage, the database must satisfy a high
level of specified survivability. However, other uses of the same database in workflows for
non-essential services would carry less stringent specifications of survivability requirements.
Workflow traces provide a semantic framework for the specification, analysis, and composi-
tion of survivability properties.

8 CMU/SEI-2001-TR-029

As noted above, a primary control task in large-scale systems is managing the composition of
system components to satisfy workflow trace specifications. System-control functions recon-
cile trace specifications with available system components, and are a natural vehicle for im-
plementing survivability management based on the dynamic network and component capa-
bilities and availabilities [Sullivan 99]. The concept of a service-flow machine (SFM), in
analogy to a data-flow machine, either centralized or decentralized within the architecture of
a system, can embody trace-management functions that include dynamic survivability man-
agement through a variety of strategies, including alternate communication paths, resource
substitutions, state purging, alternate provisioning, and system reinitialization and reconfigu-
ration [Hevner 02]. An SFM abstraction could be designed and instantiated in a variety of
forms and technologies, depending on the survivability requirements, network configuration,
and operational environment.

CMU/SEI-2001-TR-029 9

3 Intrusion Traces for Adverse Environ-
ment Specification

Current investigations in the foundations stage of the intrusion thread of Figure 1 involve
intruder workflows derived from attack patterns and corresponding intrusion traces of com-
promisable system components. We define an intruder workflow and its encompassing attack
tree as

• intruder workflow – the sequence of steps that an intruder executes to compromise
the survivability of an enterprise

• attack tree – a set of hierarchically organized intruder workflows that result in a
common survivability compromise

Enterprise-specific intruder workflows and attack trees are built from reusable attack pat-
terns:

• attack pattern – a generic representation of a deliberate, malicious attack that com-
monly occurs in specific contexts

• attack profile – a set of related attack patterns defined in terms of a common architec-
tural reference model

Finally, intrusion traces help to identify countermeasures to resist, recognize, and recover
from intrusions. Intrusion traces map the intruder workflow onto the enterprise architecture.

We distinguish between an intrusion and an attack as follows. An attack is malicious activity
that may or may not, by itself, compromise an enterprise’s survivability. An attack may or
may not successfully accomplish an attacker’s objectives. Even if it does, an individual at-
tack may only increase an attacker’s ability to compromise survivability, without actually
causing the compromise. An intrusion, on the other hand, is a sequence of successful attacks
that results in a compromise to enterprise survivability.2 Attackers become intruders once
they execute such intrusions.

This section introduces the structures supporting these concepts in more detail. We describe
how attack patterns can be used to build intruder workflows that are organized into attack
trees. Intrusion traces map these workflows onto the enterprise architecture to help identify

2 This definition of intrusion suggests that attack trees may be more appropriately called intrusion

trees. We, however, use the more common phrase attack trees to avoid confusion [Schneier 00].

10 CMU/SEI-2001-TR-029

countermeasures to the intrusions. Our documentation approach provides a basis for using
attack data to improve the design and analysis of secure and survivable information systems.
We expect that security analysts will be able to use the structures described to document on-
going attacks derived from real attack data or hypothesized attacks from projected trends of
intruder behavior. Further, we expect that information system designers and analysts will be
able to use the attack patterns to make systems more secure and survivable.

3.1 Intruder Workflows Organized Into Attack Trees
The large number of intruder workflows relevant to any nontrivial enterprise necessitates a
scheme to organize related workflows. Attack trees provide such an organizational scheme
[Salter 98, Schneier 99, Schneier 00]. They refine information about attacks by identifying
the compromise of enterprise security or survivability as the root of the tree. The ways that an
attacker can cause this compromise are refined incrementally as lower level nodes of the tree.
For example, suppose Mal is a malicious competitor to a business, called Biz, that sells some
product. Mal may compromise Biz’s ability to make a profit by

1. hampering Biz’s development of the product

2. disrupting Biz’s sales of the product

3. undermining customer demand for Biz’s product

Each of these attack classes can be refined as a separate branch of the attack tree.

An enterprise typically has a set, or forest, of attack trees that are relevant to its operation.
The root of each tree in a forest represents an event that could significantly harm the enter-
prise’s mission. Each attack tree enumerates and elaborates the ways that an attacker could
cause the event to occur. Each path through an attack tree represents a unique intrusion on
the enterprise. We decompose a node of an attack tree as one of the following:

• a set of attack subgoals that is represented as an AND decomposition. All of these goals
must be achieved for the attack to succeed.

• a set of attack subgoals that is represented as an OR decomposition. If any of these goals
is achieved, the attack succeeds.

We represent decompositions graphically as follows:

 AND-decomposition: OR-decomposition:

 G0

G1 G2 Gn
…

 G0

G1 G2 Gn
…

CMU/SEI-2001-TR-029 11

The AND-decomposition represents a goal G0 that can be achieved if the attacker achieves
all of the goals G1 through Gn. The OR-decomposition represents a goal G0 that can be
achieved if the attacker achieves any one of goals G1 through Gn. In practice, we often repre-
sent attack trees textually, since the graphical representation can be awkward for nontrivial
attack trees.

Attack trees consist of any combination of AND- and OR-decompositions. We generate indi-
vidual intruder workflows from an attack tree by traversing the tree in a depth-first manner.
For example,

 generates the
 intruder workflows

In general, leaf goals are added onto the end of intruder workflows as they are generated.
OR-decompositions cause new workflows to be generated. AND-decompositions cause ex-
isting workflows to be extended. Intermediate nodes of the attack tree do not appear in the
intruder workflows, since they are elaborated by lower level goals.

Attack trees allow the refinement of attacks to a level of detail chosen by the developer.
They exhibit the property of referential transparency as characterized by Prowell:

“Referential transparency implies that the relevant lower level details of an en-
tity are abstracted rather than omitted in a particular system of higher level de-
scription, so that the higher level description contains everything needed to un-
derstand the entity when placed in a larger context” [Prowell 99].

This property permits the developer to explore certain attack paths in more depth than others,
while still allowing the developer to generate intruder workflows that make sense. In addi-
tion, refining the branches of the attack tree generates new leaves resulting in intruder work-
flows at the new lower level of abstraction.

G5

G1 G2

G0

G3 G4 G6

〈 G3 , G5 , G6 〉
〈 G4 , G5 , G6 〉

12 CMU/SEI-2001-TR-029

3.2 Attack Patterns Organized Into Attack Profiles
The practicality of attack trees to characterize attacks on real-world systems depends on be-
ing able to reuse previously developed patterns of attack. We describe two structures that
support such reuse: an attack pattern for characterizing an individual type of attack, and an
attack profile for organizing attack patterns to make it easier to search for and apply them.

An attack pattern contains the overall goal of the attack specified by the pattern, a list of pre-
conditions for its use, the steps for carrying out the attack, and a list of postconditions that are
true if the attack is successful. The preconditions include assumptions that we make about
the attacker or the state of the enterprise that are necessary for an attack to succeed. Example
preconditions include the skills, resources, access, or knowledge that attackers must possess,
and the level of risk that they must be willing to tolerate. The postconditions include knowl-
edge gained by the attacker and changes to the enterprise state that result from successfully
carrying out the attack steps when the preconditions hold.

We further organize related attack patterns into an encompassing attack profile. Attack pro-
files contain a common reference model, a set of variants, a set of attack patterns, and a glos-
sary of defined terms and phrases. The reference model represents an architecture template
with parameters that may include the variants. The attack patterns are also defined in terms
of the variants. As we will describe more fully in the next section, attack profiles are speci-
fied independently of any particular enterprise. An enterprise whose architecture is consistent
with a profile’s reference model may use the profile’s attack patterns, once instantiated, to
help construct the attack trees that are relevant to the enterprise’s operation. Different attack
profiles may address different levels of attacker access, resources, and skills, as well as dif-
ferent configurations of system components. Therefore, different attack profiles may help
refine an enterprise-specific attack tree along different lines of attack.

As in the example in Section 3.1, Mal may want to disrupt the sales of Biz by attacking Biz’s
Web site. A SYN Flood attack pattern can severely degrade the performance of a Web site by
repeatedly transmitting TCP SYN packets to the Web server from a forged, bogus origin. The
resulting flood of interminable connection requests overwhelms the Web site so that it cannot
process requests by legitimate customers. A precondition of this attack is that Mal knows the
Internet Protocol (IP) address of Biz’s Web site. Such an attack pattern may be part of an
attack profile in which the reference architecture allows Internet-based attacks on an enclave
protected at its boundary by a firewall. Variants of this attack profile include the component
of the enclave under attack and the type of firewall at the enclave boundary.

CMU/SEI-2001-TR-029 13

3.3 Refining Attack Trees Using Attack Patterns
As shown in the flowchart in Figure 3, an attack tree can be refined from the root-node com-
promise as a combination of manual extensions and pattern applications. Manual extensions
depend greatly on the security expertise of the person developing the attack tree. Pattern ap-
plication also depends on such expertise, but to a lesser extent. Some of this security exper-
tise is built into an attack-pattern library.

A good attack-pattern library provides a set of attack profiles that are rich enough to charac-
terize the attacks that may take place on a broad range of enterprise architectures. Refining a
particular enterprise’s attack tree involves first finding those attack profiles that are consistent
with the enterprise architecture. The developer searches the attack patterns of consistent at-
tack profiles for a refinement of an attack path contained in the enterprise attack tree. Once
found, the developer can appropriately instantiate and apply the attack pattern to extend the
enterprise attack tree. This process of pattern application intermixed with manual extension
continues until the attack tree is refined sufficiently. The decision of when to halt the process
is at the discretion of the developer.

Figure 3: Attack-Tree Refinement Process

Compromise
to enterprise

mission

yes no

no

no

no

yes

yes

yes

Extend
attack
tree

manu-

Done?

Find
attack profile

of interest
Consistent?

Keep
searching?

Instantiate
and apply

pattern
 Applicable?

Use attack tree
to design and

analyze system
survivability

Find

attack pattern
of interest

14 CMU/SEI-2001-TR-029

As mentioned previously, the reference model associated with an attack profile can be viewed
as an architecture template. The parameters of this template are the reference model variants.
If a set of values for these variants exists that unifies the attack profile’s reference model with
some portion of the enterprise architecture, we say that the attack profile is consistent with
the enterprise architecture. The attack patterns associated with the profile are written with
respect to the profile’s reference model and in terms of the profile’s variants. These attack
patterns are, therefore, relevant to the enterprise architecture.

Determining which attack profiles are consistent with the enterprise architecture is only the
first step. Analysts must also determine which attack patterns in consistent profiles help re-
fine the enterprise attack tree. This requires identifying a pattern whose goal helps to achieve
the goal identified at an attack-tree node. We say that such patterns, when properly instanti-
ated, are applicable to the enterprise attack tree. In our previous example, the SYN Flood
attack pattern is applicable to the second branch of Biz’s attack tree (disrupting sales of the
product) where the component under attack is Biz’s Web server.

3.4 Analyzing Attack Trees Using Intrusion Traces
Intrusion traces map each intrusion path through an attack tree onto the enterprise architec-
ture. This helps identify those components that can be compromised from the intrusion and
the impact to the enterprise mission that results. The enterprise architecture can then be ana-
lyzed by asking resistance or recovery questions at each of the attack tree nodes. Resistance
questions ask, “How can we prevent an attacker from successfully traversing this node to
achieve the attacker’s goal?” Of course, the answer to such questions may not always be a
cost-effective or practical solution. Fundamental to the goal of survivability is recognizing
when an attack that we cannot effectively resist takes place and executing recovery plans. We
thus ask “How can we detect an attacker during an attempted attack or after a successful at-
tack?” and “How can we react to this detection?”

In our running example, an intrusion trace of the SYN Flood attack would clearly identify
Biz’s Web server as a compromisable component. Biz may decide to do one of the following:

• Reduce the effectiveness SYN Flood attacks generally by decreasing the amount of time
a TCP connection request takes to time-out.

• Detect the attack when it occurs and free up additional space so that customer requests
can be handled.

Attack trees provide a powerful mechanism to document the multitude of diverse types of
attacks, to abstract from intrusion details as a buffer against attack volatility, and to suggest
improvements to requirements and design. They are, however, only a relatively small part of
the answer as to how to use intruder workflows and intrusion traces to design more surviv-
able systems. The lack of accurate adversary models and risk-analysis methods obstructs the

CMU/SEI-2001-TR-029 15

progress on this front. A rich attack-pattern library populated with attack patterns at the right
level of abstraction is needed to build enterprise attack trees more systematically. Finally, the
lack of robust resistance, recognition, and recovery countermeasures hampers our ability to
construct survivable systems. Overcoming these obstacles will require a truly interdiscipli-
nary effort.

16 CMU/SEI-2001-TR-029

CMU/SEI-2001-TR-029 17

4 Survivability Evaluation Models

It is well known that the set of possible executions of a large-scale system forms an essen-
tially infinite population. All testing is in effect sampling from that infinite population. No
testing process, no matter how well funded and conceived, can execute more than a minute
portion of all the possible executions. Thus, the real question is how to draw the finite sam-
ple so as to maximize the value of the testing process. If the sample is randomized based on
projected usage, the results of the testing process can be used to estimate system performance
on all the test cases in the infinite population that could not be executed. Such statistical us-
age-based testing produces scientific measures of system quality, just as has been done in
hardware engineering for years.

When a population is too large to permit exhaustive analysis, as is indeed the case in large-
scale information systems, a statistically correct sample must be defined as a basis for mak-
ing valid inferences about the population as a whole [Prowell 99]. In such a statistical testing
protocol, the environment of usage is modeled in terms of states of use and associated prob-
abilities of transitions among states. Usage models can be represented conveniently in formal
grammars or Markov chains. Every possible usage scenario is represented in the model and
potentially generated as a test case by traversing the model according to its transition prob-
abilities. Transition probabilities among states can be determined from historical or projected
usage data for a system. Where extensive field usage data exists, probabilities may be known
in detail. For new systems, probabilities may be estimated initially and refined as usage data
accumulates. When complete information is not available, usage models can be represented
as a system of constraints, and transition probabilities can be generated through mathematical
programming as the solution to an optimization problem.

Survivability workflows and their essential-service traces enumerate steps in system usage
that can define, in conjunction with all other system usage, the structural characteristics of
usage models for statistical testing. Intrusion workflows and their traces likewise contribute
to the definition of usage-model structures. For survivability evaluation, a usage model for a
system must embody essential and non-essential service workflows, as well as intrusion
workflows, all of which are interwoven according to usage probabilities to represent the spec-
trum of expected system usage by both legitimate users and attackers. Such models support
generations of test suites whose execution results permit the estimation of system perform-
ance for the defined usage.

18 CMU/SEI-2001-TR-029

While usage-based statistical testing has proven to be a powerful tool for system quality and
reliability assessment, it is an open question whether the benefits of the approach can be
achieved in survivability testing against intrusions. Two major issues must be addressed:
what methods can be used to define intrusion probabilities, and how unforeseen intrusion
strategies not represented in the usage models can be accommodated in the analysis [McHugh
00]. The high potential value of statistical testing for survivability analysis motivates our
interest in developing solutions to these problems.

CMU/SEI-2001-TR-029 19

5 Future Work

We intend to continue elaborating on the concepts described in this paper through

1. defining the mathematical properties of essential-service and intrusion traces and evalua-
tion models

2. developing language representations for traces and evaluation models

3. defining engineering practices for trace and evaluation-model specification, analysis,
and design

20 CMU/SEI-2001-TR-029

CMU/SEI-2001-TR-029 21

References/Bibliography

[Anderson 94] Anderson, R. “Why Cryptosystems Fail,” 47-61. Proceedings of
12th Worldwide Congress on Computer and Communications Secu-
rity and Protection. Paris, France, June 1-2, 1994. Paris, France:
M.C.I.- Manifestations et Commun. Int., 1994.

[Arbaugh 00] Arbaugh, W.A.; Fithen, W.L.; & McHugh, J. “Windows of Vulner-
ability: A Case Study Analysis.” IEEE Computer 33, 12 (December
2000): 52-59.

[Ellison 99] Ellison, R.; Fisher, D.; Linger, R.; Lipson, F.; Longstaff, T.; &
Mead, N. Survivable Network Systems: An Emerging Discipline
(CMU/SEI-97-TR-013, ADA341963). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1997, revised
1999. Available WWW: <URL: http://www.sei.cmu.edu/
publications/documents/97.reports/97tr013/97tr013abstract.html>
(1999).

[Hayes 00] Hayes, J., et al. “Workflow Interoperability Standards for the Inter-
net.” IEEE Internet Computing 4, 3 (May/June 2000): 37-45.

[Hevner 02] Hevner, A.R.; Linger, R.C.; Sobel, A.E.; & Walton, G. “Flow-
Service-Quality Structures: A Unified Engineering Framework for
Survivable Distributed Systems. Proceedings of the Hawaii Inter-
national Conference on System Sciences. Kona, Hawaii, January 7-
10, 2002. Los Alamitos, CA: IEEE Computer Society Press, 2002.

[Howard 98] Howard, J. & Longstaff, T. A Common Language for Computer Se-
curity Incidents (SANDIA Report SAND98-8867). Livermore, CA:
Sandia National Laboratories, October 1998. Available WWW:
<URL: http://www.cert.org/research/papers.html> (1998).

22 CMU/SEI-2001-TR-029

[McHugh 00] McHugh, J. “The 1998 Lincoln Lab IDS Evaluation: A Critique,”
145-161. RAID 2000, Lecture Notes in Computer Science # 1907.
Berlin, Germany: Springer-Verlag, 2000.

 [Mead 00] Mead, N.; Ellison, R.; Linger, R.; Longstaff, T.; & McHugh, J. Sur-
vivable Network Analysis Method (CMU/SEI-2000-TR-013,
ADA383771). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, September 2000. Available WWW:
<URL: http://www.sei.cmu.edu/publications/documents/00.reports/
00tr013.html> (2000).

[Prowell 99]

Prowell, S.; Trammell, C.; Linger, R.; & Poore, J. Cleanroom Soft-
ware Engineering: Technology and Process. Reading, MA: Addi-
son-Wesley-Longman, Inc., 1999.

[Salter 98] Salter, C.; Saydjari, O.; Schneier, B.; & Walner, J. “Toward a Se-
cure System Engineering Methodology,” 2-10. Proceedings of the
New Security Paradigms Workshop. Charlottesville, Virginia, Sep-
tember 22-26, 1998. New York, NY: Association for Computing
Machinery, 1999.

[Schneier 99] Schneier, B. “Attack Trees: Modeling Security Threats.” Dr. Dobb’s
Journal 24, 12 (December 1999): 21-29.

[Schneier 00] Schneier, B. Secrets and Lies: Digital Security in a Networked
World. New York, NY: John Wiley & Sons, August 2000.

[Sullivan 99] Sullivan, K.; Knight, J.; Du, X.; & Geist, S. “Information Surviv-
ability Control Systems,” 184-192. Proceedings of the 21st Interna-
tional Conference on Software Engineering. Los Angeles, Califor-
nia, May 16-22, 1999. New York, NY: Association for Computing
Machinery, 1999.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

October 2001

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Foundations for Survivable System Development: Service Traces, Intrusion Traces,
and Evaluation Models

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Richard C. Linger and Andrew P. Moore
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-TR-029

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2001-029

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

Unlimited
13. ABSTRACT (MAXIMUM 200 WORDS)

Survivability is a new branch of dependability. It addresses explicit requirements for restricted modes of operation that
preserve mission-critical essential services in adverse operational environments. A survivable system is one that satis-
fies its survivability specification of essential services and adverse environments. On the system side, survivability
specifications can be defined by essential-service traces that map essential-service workflows, derived from user re-
quirements, into system component dependencies and required survivability attributes. On the environment side, sur-
vivability specifications can be defined by intrusion traces that map intruder workflows, derived from attack patterns, into
compromisable system components. Survivability design applies resistance, recognition, and recovery strategies to
maintain essential-service workflows where possible despite compromised components. Test environments for surviv-
able system implementations can be defined by survivability evaluation models that merge essential-service and in-
truder workflows into usage-based, statistically valid test suites. This paper describes initial results of research in these
areas.

14. SUBJECT TERMS

system survivability, information system security, Internet security, attack patterns,
risk analysis, essential services, user workflow intrusions, system mission

15. NUMBER OF PAGES

34

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Foundations for Survivable System Development: Service Traces, Intrusion Traces, and Evaluation Models
	Contents
	Figures
	Acknowledgements
	Abstract
	1 Survivable System Concepts
	2 Service Traces for Survivability Specification
	3 Intrusion Traces for Adverse Environment Specification
	4 Survivability Evaluation Models
	5 Future Work
	References/Bibliography

