

Software Engineering Institute

Managing Cyber Risks

Express Control Impact and Risk Analysis

Muhammad Bin Oiad - Yaman Yu - Lucas Falivene - Fabio Beltran Vasquez - Sarah Sha

Advised by Brett Tucker

Sarah Sha | Project Manager

 Fabio Beltran Vasquez | Financial Manager

Yaman Yu | Data Science Lead

Muhammad Bin Oiad | Technical Lead

Lucas Falivene | R&D Lead

Brett Tucker | Advisor

Background

Project Scope

Process

Q&A

Background

National Institute of Standards and Technology (NIST) 800-53

Catalog of controls for all U.S. federal information systems Established to provide guidance for the protection of agencyand citizen-owned private data

ATION SYSTEMS • PUBLIC POLICY • MANAGEMENT

Companies have existing Enterprise Risk Management (ERM) Process

Risk Appetite definitions

Threats and Risk Identification

Problem Statement

Struggle to answer the following questions:

How much less risk will we have if we spend a given budget on certain security controls?

Which controls should be prioritized and implemented?

Develop a method and tool to help analyze the impact a given set of controls has on cyber risks estimation

Scope

Purpose

Helps determine how much less risk an organization will have if certain controls are implemented and reduce financial loss

Building blocks

Factor Analysis of Information Risk (FAIR)

Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) Allegro from SEI

RMATION SYSTEMS • PUBLIC POLICY • MANAGEMENT

Threat Assessment & Remediation Analysis (TARA) from MITRE

NIST Cybersecurity Framework

NIST SP 800-53 controls

Expected Outputs

Cybersecurity strategy development

Prioritization of compliance, plans, and investments

Risk based decision making

Budget allocation & justification

How does ECI&RA helps CISOs?

Macroprocess

Stage I: Risk Tolerance

Pre-Defined Risk Events for Stage II

The project will consist of a list of predefined loss events that are depicted from MITRE impact and exfiltration tactics.

The events will consist of MITRE tactics, techniques, and procedures (TTPs) to complete a cyber kill chain for each.

MITRE - Tactics and Cyber Kill-Chain

Carnegie Mellon University Heinzcollege

MITRE - Techniques and Mitigation

Factor Analysis of Information Risk (FAIR)

Stage II: Risk Analysis

Background

Carnegie Mellon University Heinzcollege

Stage II: Risk Event Questionnaire

Frameworks

OCTAVE Allegro templates

Questionnaires

Amended OCTAVE Allegro templates

For Event X

what is your expected losses and threat event frequency (TEF)

Q&A

Output

For each risk event

Upper and lower boundaries for impact

Threat Event Frequency (TEF)

Process

Background

Carnegie Mellon University Heinzcollege

Stage II: Compliance Questionnaire

Frameworks

NIST 800.53 controls

Questionnaires

Controls compliance questionnaire *For Control X*

What is your compliance level?

Factor Analysis of Information Risk (FAIR)

Inputs for Vulnerability Estimation

TTPs - MITRE Mitigations - NIST 800.53

TTP ID	Subtechnique	ID	Techniques Name	Mitigation ID	Mitigation Name	Nist Controls
<u>T1110</u>		<u>T1110</u>	Brute Force	M1036	Account Use Policies	IA-5
T1110	0.001	T1110.001	Password Guessing	M1036	Account Use Policies	IA-5
T1110	0.003	T1110.003	Password Spraying	M1036	Account Use Policies	IA-5
T1110	0.004	T1110.004	Credential Stuffing	M1036	Account Use Policies	IA-5
T1134	0.005	T1134.005	Access Token Manipulation: SID-History Injection	M1015	Active Directory Configuration	CM-2
T1606	0.002	T1606.002	Forge Web Credentials: SAML Tokens	M1015	Active Directory Configuration	CM-2
T1003		T1003	OS Credential Dumping	M1015	Active Directory Configuration	CM-2
T1003	0.006	T1003.006	DCSync	M1015	Active Directory Configuration	CM-2
T1003	0.005	T1003.005	Cached Domain Credentials	M1015	Active Directory Configuration	CM-2
Τ́	1072	<u>T1072</u>	Software Deployment Tools	M1015	Active Directory Configuration	CM-2
T	1558	T1558	Steal or Forge Kerberos Tickets	M1015	Active Directory Configuration	CM-2
T1558	0.001	T1558.001	Golden Ticket	M1015	Active Directory Configuration	CM-2
T	1552	<u>T1552</u>	Unsecured Credentials	M1015	Active Directory Configuration	CM-2
T1552	0.006	T1552.006	Group Policy Preferences	M1015	Active Directory Configuration	CM-2
T1550	0.003	T1550.003	se Alternate Authentication Material: Pass the Tick	M1015	Active Directory Configuration	CM-2

MITRE Mitigations - NIST Controls - FAIR Factors

Mitigation ID	Mitigation Name	Nist Controls	Nist Controls	Nist Controls	Nist Controls	FAIR Factor
M1031	Network Intrusion Prevention	SI-4	SC-7	SI-10		Diff
M1015	M1015 Active Directory Configuration		AC-2			Diff
M1043	Credential Access Protection	AC-2	AC-4	SI-12		ТСар
M1017	M1017 User Training		AT-3	AT-4	AT-5	тСар

Carnegie Mellon University Heinzcollege

Inputs for Vulnerability Estimation

MITRE ATT&CK TTPs- Threat Communities

Threat groups classification

Threat groups and attack techniques

Threat Community

			MITRE ATT&CK TTPS		State Sponsored	Cybercriminial
37-001	uses-T1059-003	uses-T1203	uses-T1083	uses-T1036-005	admin@338	APT18
9-005	uses-T1105	uses-T1036-004	uses-T1571	uses-T1027	APT-C-36	APT32
37-001	uses-T1583-001	uses-T1560-001	uses-T1119	uses-T1059-003	APT1	BlackTech
8-003	uses-T1203	uses-T1566-001	uses-T1204-002	uses-T1	APT12	Blue Mockingbird
ses-T1	584-004				APT16	Bouncing Golf
3-006	006 uses-T1585				APT17	Carbanak
1-001	uses-T1071-004	uses-T1547-001	uses-T1059-003	uses-T1133	APT19	Charming Kitten
1-001	uses-T1547-001	uses-T1059	uses-T1059-001	uses-T1543-003	APT28	Cobalt Group
4-001	uses-T1583-001	uses-T1071-003	uses-T1071-001	uses-T1560	APT29	Darkhotel
8-002	uses-T1583-006	uses-T1547-001	uses-T1547-009	uses-T1059-001	APT3	DarkHydrus
37-001	uses-T1098	uses-T1560-001	uses-T1547-001	uses-T1110-002	APT30	DarkVishnya
6-001	-001 uses-T1204-002				APT33	Dragonfly
37-001	uses-T1071-001	uses-T1071-003	uses-T1560	uses-T1547-001	APT37	DragonOK

uses-T1036-005	uses-T1083	uses-T1203	uses-T1059-003	uses-T1087-001	admin@338	
uses-T1027	uses-T1571	uses-T1036-004	uses-T1105	uses-T1059-005	APT-C-36	
uses-T1059-003	uses-T1119	uses-T1560-001	uses-T1583-001	uses-T1087-001	APT1	
uses-T	uses-T1204-002	uses-T1566-001	uses-T1203	uses-T1568-003	APT12	
			584-004	uses-T1	APT16	
		T1585	uses-	uses-T1583-006	APT17	
uses-T1133	uses-T1059-003	uses-T1547-001	uses-T1071-004	uses-T1071-001	APT18	
uses-T1543-003	uses-T1059-001	uses-T1059	uses-T1547-001	uses-T1071-001	APT19	
uses-T1560	uses-T1071-001	uses-T1071-003	uses-T1583-001	uses-T1134-001	APT28	
uses-T1059-001	uses-T1547-009	uses-T1547-001	uses-T1583-006	uses-T1548-002	APT29	
uses-T1110-002	uses-T1547-001	uses-T1560-001	uses-T1098	uses-T1087-001	APT3	
		204-002	uses-T1	uses-T1566-001	APT30	
uses-T1547-002	uses-T1560	uses-T1071-003	uses-T1071-001	uses-T1087-001	APT32	

Process

Carnegie Mellon University HeinzCollege **INFORMATION SYSTEMS • PUBLIC POLICY • MANAGEMENT**

Q&A

Background

Scope

Threat Communities - TARA Susceptibility

TTP ID	Techniques Name	States APT groups	Cybercriminal Orgs APT groups	How many
<u>T1110</u>	Brute Force	0.0577	0.0351	states APT
T1110	Password Guessing	0.0192	0.0000	groups used this
T1110	Password Spraying	0.0769	0.0000	technique
T1110	Credential Stuffing	0.0000	0.0000	
<u>T1134</u>	Access Token Manipulation: SID-History Injection	0.0000	0.0000	Total number of
<u>T1606</u>	Forge Web Credentials: SAML Tokens	0.0192	0.0000	
<u>T1003</u>	OS Credential Dumping	0.0769	0.0877	States AFT
T1003	DCSync	0.0192	0.0000	groups
T1003	Cached Domain Credentials	0.0769	0.0000	
<u>T1072</u>	Software Deployment Tools	0.0000	0.0526	

Q&A

Background

Scope

Process

Inputs for Vulnerability Estimation

Stage II: Vulnerability Estimation

Output

For each event

Average effectiveness of NIST 800.53 controls (Avr. Eff.) Vulnerability factor (= (1-Avr. Eff.) * TCap)

Factor Analysis of Information Risk (FAIR)

Stage II: Compute Risk

Simulation inputs

Vulnerability factor

Upper and lower bounds for impact

Threat Event Frequency (TEF)

=> Probability = Vuln. * TEF

Stage II: Compute Risk

Loss Event VULN and TEF factors => Prob(LossEvent)

TEF (Threat Event Frequency	VULN (Prob(Event Threat))	Prob	
5	2.62%	13.08%	

Factor Analysis of Information Risk (FAIR)

Stage II: Compute Risk

Ransomware Also impacts Confidentiality. 30% of Ransomware incidents exfiltrate information before encrypting

Only

Disp

Only

Conf/Int

Background

0%

From External research and customer **Elicitation**

Stage II: Compute Risk

Calculations

Monte Carlo simulation for all events

Output

Estimated risk (\$) for each event Loss exceedance curve for all events

Carnegie Mellon University Heinzcollege

Stage II: Loss Exceedance Curve

Expected Losses Assuming 90% CI in elicitation or customer estimations:

INFORMATION SYSTEMS • PUBLIC POLICY • MANAGEMENT

Stage III: Compliance Prioritization Strategy

Stage III: Prioritize Risk Events

Process

Select and rank high impact risks

Output

Suggest the set of controls that need to be improved to address these risk

Stage III: Prioritize Risk Events

Impact ID	Loss Event	Final Result
T1486 and T1537	Ransomware and possible exfilteration	\$1,150,943
T1565	Data Manipulation	\$785,981
T1498	Network Denial of Service	\$231,864
T1561	Disk Wipe	\$57,233

Stage III: Identify Mission Critical Controls

Process

Select the associated controls for the previously identified impact risks

Output

List the controls that address the risk events and ask the user to reenter improved compliance values

INFORMATION SYSTEMS • PUBLIC POLICY • MANAGEMENT

Thank you

