

TECHNICAL REPORT
CMU/SEI-2001-TR-019

ESC-TR-2001-019

 Perspectives on
Open Source
Software

Scott Hissam
Charles B. Weinstock
Daniel Plakosh
Jayatirtha Asundi

November 2001

Pittsburgh, PA 15213-3890

Perspectives on
Open Source
Software

CMU/SEI-2001-TR-019
ESC-TR-2001-019

Scott A. Hissam
Charles B. Weinstock
Daniel Plakosh
Jayatirtha Asundi

November 2001

Internal Research and Development

Unlimited distribution subject to the copyright.

printed 3/20/2002 7:58 AM finalV / pw

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2001-TR-019 i

Table of Contents

Abstract vii

1 Introduction 1

1.1 OSS at the Software Engineering
Institute 1

1.2 Organization of This Report 2

2 What Is Open Source Software (OSS) 3

2.1 OSS—A Formal Definition 3

2.2 What’s Not OSS 4

2.3 The History of OSS 5
2.3.1 Birth of OSS 7

2.4 Perceptions of OSS 9
2.4.1 OSS Is the Best Thing Since… 10

3 Case Studies 13

3.1 AllCommerce Case Study 14
3.1.1 Objective of the Study 14
3.1.2 Conducting the Study 15
3.1.3 Summary 16

3.2 Apache Case Study 16
3.2.1 Objective of the Study 17
3.2.2 Conducting the Study 17
3.2.3 Summary 21

3.3 Enhydra Case Study 22
3.3.1 Objective of the Study 24
3.3.2 Conducting the Study 24
3.3.3 Summary 30

3.4 The NAIS Case Study 30
3.4.1 Objective of the Study 31
3.4.2 Conducting the Study 31
3.4.3 Summary 34

3.5 Teardrop Case Study 35

ii CMU/SEI-2001TR-019

3.5.1 Security Through Obscurity 35
3.5.2 Linus’s Law: A Premise of OSS 36
3.5.3 From the Cyber Terrorist’s

Workbench 37
3.5.4 Teardrop: One Perspective of

the Attack 40
3.5.5 Summary 43

4 Lessons Learned/Observations 45

4.1 Trends Towards OSS Use and
Development 45

4.2 What It Takes for a Successful OSS
Project 47

4.3 The OSS Development Model 49

4.4 The Relationship of OSS to CSS 50
4.4.1 The World Before OSS 50
4.4.2 The World After OSS 51
4.4.3 OSS as a Black Box 51
4.4.4 OSS as a White Box 52
4.4.5 Summary 53

4.5 Acquisition Issues 53

4.6 Security Issues 55

5 Conclusions 57

5.1 Making Lightning Strike Twice 57

5.2 In Closing… 58

References/Bibliography 61

Appendix A The NAIS Questionnaire 71

Appendix B Open Source Definition,
Version 1.8 77

Appendix C Acronym List 81

CMU/SEI-2001-TR-019 iii

List of Figures

Figure 1: Cumulative Distribution of Modification
Requests 19

Figure 2: Cumulative Distribution of File Types 20

Figure 3: Fragmentation Flaw 41

iv CMU/SEI-2001TR-019

CMU/SEI-2001-TR-019 v

List of Tables

Table 1: Open and Available Software Predating
OSS 7

Table 2: Equivalence of Roles in Software
Projects 18

Table 3: Comparison of Architectural and
Nonarchitectural Changes 21

Table 4: Parts of the Lutris Comparison of
Commercially Packaged and OSS
Versions of Enhydra [Lutris 01b] 26

Table 5: C Modules Failing to Check MALLOC
Return Values in C Source Code 28

Table 6: Examples of Ignored Exceptions in
Java Source Code 29

Table 7: Examples of Unimplemented
Functionality in Java Source Code 30

vi CMU/SEI-2001TR-019

CMU/SEI-2001-TR-019 vii

Abstract

Open source software (OSS) is emerging as the software community’s next “silver bullet”
and appears to be playing a significant role in the acquisition and development plans of the
Department of Defense (DoD) and industry. Yet, as with all previous silver bullets, there are
problems with blindly embracing the OSS paradigm.

To become familiar with the benefits and pitfalls of using OSS, the Software Engineering
Institute (SEI) undertook an internally funded study looking at it from various perspectives:

• the user of OSS

• the developer of OSS

• the organizations looking to deploy software systems comprised (partially or completely)
of OSS components

During the period of this study, members of the SEI technical staff hosted meetings, con-
ducted interviews, participated in open source development activities, workshops, and con-
ferences, and studied available literature on the subject. Through these activities, the authors
have been able to support and sometimes refute common perceptions about OSS. This report
is the result of their study.

viii CMU/SEI-2001-TR-019

CMU/SEI-2001-TR-019 1

1 Introduction

As the modern software industry has evolved, there have been a myriad of innovations, some
successful and some not so successful. Early successes such as structured analysis and design
have been wonderful stepping-stones to more modern, spiral-development approaches. In the
past, failures appeared as exciting prospects for software and software engineering as a whole
but only ended up as a short-lived “blip” on the radar screen. The Ada language and CASE
(computer-aided software engineering) tools are two that immediately come to mind. Brooks,
acknowledging Ada as something less than a revolutionary advance, states that the philoso-
phy behind Ada (e.g., modularization, abstract data types, and hierarchical structuring) is
more an advance than the language itself [Brooks 87]. Be it an early success that laid the
groundwork for future innovation, or a spent “silver bullet” in the chamber of software engi-
neering, each contributed to a greater understanding of the software community.

Now there is a would-be silver bullet with the words open source software (OSS) embla-
zoned on the side of it. This bullet may indeed be the next innovation or great leap forward in
the way the software community develops software; however, it may also be a dud—and
without a crystal ball it is hard to tell at this time. So until it becomes possible to see into the
future, we (i.e., the software community) can only analyze the current situation to gain an
understanding of what OSS is, how it is developed, and how it is contributing to the way we
develop software, and to learn where we can apply OSS in the overall science of software
engineering.

1.1 OSS at the Software Engineering Institute
In 1999, the Software Engineering Institute (SEI) initiated a study to look at OSS. The pur-
pose of the study was to get a broad understanding of not only OSS itself, but moreover the
development methods involved (which included those from the developer community) as
well as the users of OSS. The study was geared towards an eye on a practical perspective of
what open source really is, with the goal of differentiating between hype and reality.

The SEI partnered with Carnegie Mellon University’s Software Industry Center (SWIC) to
aid in the study. The SWIC is the 16th industry center established by the Alfred P. Sloan
Foundation to identify and sift through industry trends, separating the ephemeral from the
lasting focus on innovation and competition, software-development practice, talent, work-
force, and human capital.

2 CMU/SEI-2001-TR-019

To that end and over the course of the study, the members of the SEI technical staff and the
SWIC hosted meetings, conducted interviews, participated in open source development ac-
tivities, workshops, and conferences, and studied available literature on the subject. Through
these activities we have been able to support and sometimes refute common perceptions
about OSS. This report is the result of our study.

1.2 Organization of This Report
This report is organized as follows:

• In Section 2, we introduce OSS in its many forms and talk briefly about its history.

• In Section 3, we discuss the various case studies conducted by the SEI and SWIC and
highlight important findings from those studies.

• In Section 4, we expand on those case studies, glean observations on the state of practice
of OSS, and make recommendations that will be helpful to those wanting to get involved
in the OSS community.

• In Section 5, we summarize this report.

CMU/SEI-2001-TR-019 3

2 What Is Open Source Software (OSS)

The term open source software at the most basic level simply means software for which the
source code is open and available. Open and available is meant to convey two concepts:

• open—The source code for the software can be read (seen) and written (modified). Fur-
ther, this term is meant to promote the creation and distribution of derivative works of the
software.

• available—The source code can be acquired either free of charge or for a nominal fee
(e.g., media and shipping charges or online connection charges).

Today, making source code available can be as simple as posting the code on the World Wide
Web (WWW) or posting it in an online newsgroup. Making the software open is also sim-
ple—place no restrictions on how the software is actually used or by whom.

2.1 OSS—A Formal Definition
Others have gone to great lengths to define OSS. In fact an entire group, the Open Source
Initiative (OSI), formed and established the Open Source Definition (OSD). The OSD is a
formalization of what it means to distribute software that is open source, namely

1. Free Distribution (i.e., license cannot restrict selling or giving away)

2. Source Code (included) (i.e., software includes unobfuscated source code)

3. Derived Works (i.e., software can be modified and distributed by others)

4. Integrity of the Author’s Source Code (i.e., know who gets credit for the source code)

5. No Discrimination Against Persons or Groups (e.g., ethnic groups, religious groups)

6. No Discrimination Against Fields of Endeavor (e.g., genetic research)

7. Distribution of License (i.e., forbidding the addition of further restrictive licensing)

8. License Must Not Be Specific to a Product (i.e., rights cannot depend on a particular
distribution)

9. License Must Not Contaminate Other Software (e.g., both licensed software and OSS
can coexist in the same distribution) [OSI 01a]

The complete text and rationale of the OSD are included in Appendix B.

Under OSI (strictly speaking) a software product is in fact open source if and only if it con-
forms to the OSD [OSI 01b]. Upon reviewing the complete text of the OSD, it is interesting

4 CMU/SEI-2001-TR-019

to point out that the definition does not pertain specifically to the source code itself, but
rather to the license under which the source code is distributed. Therefore, in strict confor-
mance to the OSD written by the OSI, a software product that conforms to only eight of the
nine criteria is not OSS. As a means to differentiate between OSS and non-OSS, the OSI has
established a legal certification mark called the OSI certification mark. Under the OSI Certi-
fication Mark Program, software that is distributed under an OSI-approved license can be
labelled as OSI Certified. The complete notice is

“This software is OSI Certified Open Source Software.
OSI Certified is a certification mark of the Open Source Initiative” [OSI 01b].

As of October 2001, there are 23 OSI-approved licenses.1 A software distribution can adopt
one of these licenses, unchanged, and be OSI certified immediately. Alternatively, a company
can apply to have its license included on the OSI-approved list of licenses by submitting the
license for review to the OSI (at which point it has to be accepted).

It is vital to point out that the OSI certification mark does not talk to, espouse, or certify any-
thing about the actual software itself. That includes anything about the quality of the software
(robustness, security, integrity, maintainability, usability, etc.). Nor does it include anything
about the methods, process, or techniques used to develop the software (testing, analysis or
design, review, configuration management, documentation, etc.). It would be a mistake to
assume that any OSS distribution, touting an OSI certification mark, is either of high quality
and developed under rigorous methods or of low quality and developed under ad hoc meth-
ods.

In Section 2.4, we discuss more about the motivation behind using and the perceptions of
OSS.

2.2 What’s Not OSS
In stark contrast to OSS is commercial off-the-shelf software (COTS) or better, closed-source
software (CSS). In this report we prefer to refer to software in which the source code is not
open and available as CSS. COTS is typically a binary distribution of software which,
through its licensing agreement (one that you agreed to by purchasing and installing the soft-
ware), legally bars the purchaser of the software from disassembling and/or reverse engineer-
ing the software, and furthermore from taking any such (illegally) derived works and modify-
ing them for any purpose whatsoever. In that vein COTS is typically CSS. Other forms of
CSS include shareware and royalty-free libraries (e.g., the runtime library for a compiler).
These are virtually never distributed with source code, often have restrictive licenses, and
usually require the payment of a fee.

1 This is according to the Open Source Initiative’s Web site located at

<http://www.opensource.org/licenses/index.html>.

CMU/SEI-2001-TR-019 5

It would be wrong not to recognize that there are real COTS products that do actually come
with source code both in read-only and read-write form. But such products are still consid-
ered CSS because they do not promote (and their licenses explicitly forbid) the creation and
distribution of any derived works.

CSS often violates many tenets of the OSD (discussed above). For example once you acquire
a CSS product, you are often forbidden to redistribute that software in nearly any form (re-
gardless of whether you actually paid for the product). Often software licenses forbid the use
of the software in safety-critical and even in military environments (criteria #6 of the OSD).
An interesting case in point is the license for the Java Development Kit (JDK) version 1.3
from Sun Microsystems, which explicitly states (in paragraph 2 of the LICENSE file) that the
development kit

“… is not designed, licensed or intended for use in the design, construction, op-
eration or maintenance of any nuclear facility.”

Such a statement discriminates emphatically against a field of endeavor regardless of the ra-
tionale that leads Sun Microsystems to include such a clause in its license agreement.

In Section 4.4, we take a closer look at OSS and its ties to CSS.

2.3 The History of OSS
Software source code that is open and available has been around since the earliest days of
modern computing [Arief et al. 01]. Feller and Fitzgerald provide a good historical account of
open and available source code from the 1940s to the contemporary advocacy campaign of
the OSI [Feller et al. 02]. In their book, Feller and Fitzgerald acknowledge some of the earli-
est code-sharing activities between scientists working on some of the earliest computers, such
as the Electronic Numerical Integrator and Calculator (ENIAC); formalized groups that share
software, such as the Project for Advancement of Coding Techniques (PACT); and published
articles including source code, such as “Algorithms” in the Communications of the ACM
[Feller et al. 02, Leonard 00].

 Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems,

Inc. in the U.S. and other countries.

6 CMU/SEI-2001-TR-019

Many trace the beginnings of the modern open source movement back to the University of
California at Berkeley’s software distribution of Unix (BSD Unix) and later to the formation
of the GNU (“GNU’s Not Unix”) Project and the establishment of the Free Software Founda-
tion (FSF) by Richard Stallman. The purpose of the GNU Project was to create a free version
of Unix and Unix tools not impaired by the restrictions of licensing and distribution. Stallman
explains that the term free software meant free as in freedom and not price (as in free beer).
Further, Stallman clarifies that a program is free software if

“You have the freedom to run the program, for any purpose.

You have the freedom to modify the program to suit your needs. (To make this
freedom effective in practice, you must have access to the source code, since
making changes in a program without having the source code is exceedingly dif-
ficult.)

You have the freedom to redistribute copies, either gratis or for a fee.

You have the freedom to distribute modified versions of the program, so that the
community can benefit from your improvements” [Dibona et al. 99].

Although GNU did not actually produce a free Unix kernel under the FSF, it did produce
(adapting from Unix implementations) a host of free utilities that essentially make a Unix
system what it is, everything from Internet utilities, servers, and clients, to compilers and edi-
tors. Today the FSF boasts the collaboration of the Linux kernel and the GNU tools suite as
having met the goal of achieving a free version of Unix [Stallman 98].

Perhaps most importantly, the GNU Project produced the General Public License agreement
that is commonly referred to as the GPL or Copyleft License. That license, perhaps more than
anything else, was the instrument that facilitated the development of all the tools that are now
commonly used in Linux as well as many commercial variants of Unix and further non-Unix
operating systems. The GPL permitted the redistribution of source code for unfettered use
and access so long as those reusing (and redistributing) the source code continue to do the
same and so long as any changes are also available in source form and subject to the same
license.

The ideas of Richard Stallman and their formalization embedded in the GPL are a keystone in
the movement to keep software open and available to facilitate innovation and the advance-
ment of computer science.

Before the term open source was used as readily as it is today, software that was open and
available existed. Constructing an exhaustive list of software that could be categorized as

CMU/SEI-2001-TR-019 7

open and available would be difficult. Some of the predominant names that would appear in
that list (with apologies to those not listed) are shown in Table 1.

Table 1: Open and Available Software Predating OSS

Operating Systems
Linux
FreeBSD
NetBSD
OpenBSD

GUI
X-Windows

Languages
Perl
tcl/tk
Python
TeX

Compilers
GCC

Internet
FTP
Sendmail
BIND

Editors
Emacs
Vi

Web Server/Browser
Apache
Mosaic
Lynx

The formalization and definition of what OSS is would come later.

2.3.1 Birth of OSS

As presented earlier, software for which the source code is available predates the contempo-
rary campaign of OSS. A number of events are attributed to the eventual birth of the modern
OSS movement. The highlights of those events include

• Shortly after AT&T developed and released the first Unix, the university and user com-
munity began to create software (Unix tools and utilities) that ultimately became “stan-
dard” in almost every Unix distribution.

• In 1984, Richard Stallman founded the GNU Project and shortly thereafter founded the
FSF (discussed above).

• In 1991, Linus Torvalds released Linux version 0.01 as an existence proof of a rudimen-
tary Unix kernel free from any intellectual property. Linus was motivated to demonstrate
that a single monolithic kernel was just as portable as a microkernel architecture [Dibona
et al. 99].

• In 1992, USL (Unix Systems Lab, a subsidiary of AT&T) sued BSDI (a commercial start-
up) and the Regents of the University of California, claiming that portions of the Net/2
release of BSD-Unix contained AT&T-copyrighted code and intellectual property [Salus
94].

• In 1993, FreeBSD, a patchkit for the 386BSD from Bill Jolitz, was released, but this ver-
sion was still based on the Net/2 BSD code [Hubbard 95].

• In 1994, Linus Torvalds officially released Linux version 1.0.

• In 1994, FreeBSD version 2.0 was released free from any BSD code [Hubbard 95].

8 CMU/SEI-2001-TR-019

• In 1995, Apache HTTP Web Server version 1.0 (based on the NCSA httpd version 1.3
Web Server) was released [Apache 99].

• In 1996 and 1997, Microsoft Corporation’s Internet Explorer version 3.0 (1996) was re-
leased, followed by version 4.0 (1997). Meanwhile Netscape Communicator (Netscape
Communications Corporation’s Web browser) continued to lose market share in the
Internet Web browser market [Barksdale 99, Schnoll 01].

• In 1997, Eric Raymond wrote Cathedral and the Bazaar, documenting his successful
open source project, fetchmail, and explaining the open source movement and the
motivations for getting involved in it [Raymond 99].

Through this brief history, an interesting pattern is visible—first with Unix (a product of
AT&T) and then later (see below) with the Netscape Communicator—the growth and
development of an open, available, and free (as in free beer) software product was instigated
by the wranglings of a large commercial company. In the USL v. BSDI suit, AT&T claimed
that its intellectual property was contained in the Net/2 BSD2 release of Unix (developed by
the Regents of the University of California). This lawsuit was ultimately settled when it was
revealed that the AT&T distribution of Unix incorporated a serious amount of code developed
at Berkeley. Later Microsoft Corporation dominated the personal computer software market
while exercising its ability to offer a free Internet Web browser at the expense of another
company (Netscape Communications Corporation in this case).

The precipitating event in February 1998 that heralded the birth of OSS was the unprece-
dented release of the commercial source code for Netscape Communicator version 5.0, for
free licensing on the Internet (i.e., Project Mozilla). In that same move, Netscape also made
the current Netscape Communicator version 4.0 standard edition—in its binary form, not
OSS—free to all users (for which it had been charging roughly $30) [Netscape 98]. Net-
scape’s approach and subsequent decision to release the source code for its next-generation
browser to the Internet was inspired by the 1997 writings of Eric Raymond. This was an at-
tempt by Netscape to engage a community of developers (those same developers who con-
tributed to the success of Linux, Apache, and a host of other open and available software
products) to build a better Internet Web browser—and to compete against the market infiltra-
tion of Microsoft Corporation’s IE (which threatened the existence of Netscape).

Soon after Netscape Communication Corporation’s announcement, Tim O’Reilly and other
leaders from other free software projects participated in the first Free Software Summit in
March of 1998 (now called the Open Source Summit) and adopted the term open source
[Raymond 99]. Key in their strategy was to coordinate a complete media blitz and tout the
successes of the (now) open source poster children, including Linux and Apache, with Net-
scape’s announcement as the most recent battle cry to encourage other corporations to take
the same road. Further, the Open Source Web site opened up for business, complete with the
first version of the OSD (discussed in its present form in Section 2.1).

 Netscape is a registered trademark of Netscape Communications Corporation.
2 For the definition of this and other acronyms in this document, see Appendix C.

CMU/SEI-2001-TR-019 9

The open source movement and the OSD were now alive and well.

2.4 Perceptions of OSS
How OSS came to be labelled as a silver bullet is a matter of opinion and speculation. Much
of any opinion (including ours) would be based on the attention that OSS has received in the
mainstream press. Growth in the software industry, fueled by the explosion of e-commerce
and dot-com companies—all in response to the overwhelming acceptance and interest of the
WWW—through the 1990s, warranted such coverage. The list of companies that grew from
literally nothing to companies whose stock was worth millions of dollars on Wall Street gave
credence to what then appeared as a phenomenon whose potential was limited only by those
investors who were willing to dump money into dot-com companies. The premium example
of this explosion came with the initial public stock offering for Red Hat Software.

Red Hat Software, founded by Robert Young and Marc Ewing in January 1995, was (and still
is) the leading seller of Linux-based operating systems. Their basic business model was to
give the Linux software away for free (as permitted by the OSD) but to sell support services
and provide superior packaging and distribution, making it easy for users to acquire, install,
and use something as complex as a Unix-based workstation/desktop environment. Red Hat
Software’s initial public offering occurred in August 1999. Its stock opened at $14 per share
and closed the day at $52 1/16, stunning the technology markets3. Other companies emerged
to make a business from OSS. Following on the success of the Red Hat Software IPO, VA
Linux, which sold products and services around the open source Linux operating system but
included hardware as part of its product suites, had an initial public offering in December
1999 that soared close to 700% in one day, settling close to $242 per share.4

These tremendous starts, which garnered national and worldwide attention, brought OSS and
the companies that intended on making a business from OSS into the mainstream.

3 Shares of Red Hat Software stock peaked just above a closing of $136 per share and through the

softening technology markets of 2000 and 2001 fell to under $4 per share.
4 As of this writing, VA Linux no longer sells hardware and its stock is hovering just above $1 per

share.

10 CMU/SEI-2001-TR-019

2.4.1 OSS Is the Best Thing Since…

It is not surprising, given the attention that OSS has received, that myths about OSS—
positive and negative—have come out.

The first myths we’ll discuss are about the software itself. The first three items in the list be-
low stem from the idea that OSS, being under constant peer review by developers around the
world and around the clock, must therefore be of higher quality, that is, it must be

• (more) reliable

• (more) robust

• (more) secure (or no security through obscurity)

Raymond makes two basic arguments that support this notion [Raymond 99]. The first is that
hackers (OSS developers), knowing in advance that others will see the code that they write,
will be more likely to write the best code that they can possibly write—out of fear of embar-
rassment from community shame for writing anything less.

The second argument is asserted as Linus’s Law: “Given enough eyeballs, all bugs are shal-
low” [Raymond 99]. Again the notion is that because there are thousands of developers re-
viewing OSS code, 24x7x365, a flaw in the code will be obvious (hence shallow) to someone
(who will either report or fix it). Based on those two premises, the common community belief
is that OSS is of higher quality, in the sense that it applies to all of the ‘ilities.5

In fact there is open and available software, which is good software and, by many measures,
high-quality software. Much of the software listed specifically in Table 1 on page 7 would fit
into that category. The question posed in this report and addressed in the case studies in Sec-
tion 3 is whether all OSS should share the same status as high-quality software.

The next myth about OSS that predominates the community is the sense of control you have
when you have the source code for an OSS product. Such control means the ability to read
and modify the source code for your own purposes. Such an edge is viewed as the main ad-
vantage over CSS. In CSS, if the vendor for a CSS product goes out of business, what would
happen to the software already purchased (with respect to support, future versions, and bug
fixes)? The response to such a scenario in the OSS realm is that there is no vendor to go out
of business. And even if there were such a vendor, you have the source code. What more
could you want? In the OSS realm, you have omnipotent control. In Section 4.4, we explore
this myth further.

5 The term ‘ilities is often used to refer to various properties of systems and components in general,

such as scalability, reliability, security, and adaptability.

CMU/SEI-2001-TR-019 11

Closely related to this notion is the myth that OSS (without a traditional vendor as in the CSS
realm) has poor documentation and little support. The idea of poor documentation comes
from the assumption that hackers are off coding wildly and have neither the time nor the mo-
tivation to document what they produce—either the code-level documentation or the end-user
documentation. The concern that there is little support for OSS comes from the sense that
there is no one to phone when there is a problem (since there is no traditional vendor in the
contact). O’Reilly discusses this myth briefly [O’Reilly 99]. The premise of O’Reilly’s re-
sponse to such a myth is based on software that has been around for 10 or 20 years. One posi-
tive note is that there is a trend that any quality gaps in support and/or documentation are be-
ing filled by support companies like Red Hat and VA Linux. But again, should this always
apply to all OSS?

Other myths about OSS are targeted towards the hackers themselves rather than the software:
for instance, the myth that there is a world’s worth of hackers sitting around waiting and ea-
ger to work on an OSS project free of charge (free as in no cost). Such an image gives the
false impression that anyone can get an army of programmers to work on a problem free of
charge and forego the traditional development costs associated with traditional software-
development activities. Unfortunately, there is a disturbing trend that some companies are
trying to benefit from the generosity and culture of the OSS community, which we report in
Section 3. But also, on a positive note, there are trends that are working towards linking up
eager hackers, for cost, with companies that want to obtain freelance programming talent
(discussed in Section 4.1). The old adage “You can lead a horse to water, but you can’t make
him drink” best describes the OSS community—that is, “You can put the code out in the
community, but you can’t make a hacker code.” The likelihood that an OSS product will be
successful (or that the hackers will help you) is based on the characteristics discussed in Sec-
tion 5.1 (which are not guaranteed).

The last myth that we cover in this report is that those hackers out in the OSS community are
a group of mavericks working in an unorganized, haphazard, ad hoc fashion. Given the global
reach of the Internet and therefore distributed nature of hacker-based development, this might
be a foregone conclusion. For some, this is the allure of the OSS development process—that
is that there is no “process-monger” or program manager hanging over the progress of the
development effort (hence the process is unpredictable and progress is immeasurable). As
shown in the Apache6 case study in Section 3.2, not only is the OSS development highly
organized and controlled, but many characteristics of the design and architecting process
mimic that which is typically seen in commercial organizations.

6 The Apache HTTP Web server is considered to be one of the top three successful OSS products to

date.

12 CMU/SEI-2001-TR-019

CMU/SEI-2001-TR-019 13

3 Case Studies

One of the ways in which we attempted to understand the OSS phenomenon was to actually
get involved in or research several efforts/events. There were five such studies:

• AllCommerce—an e-commerce storefront solution

• Apache—an open source Web server

• Enhydra —a Java-based application server

• NAIS—a NASA-operated Web site that switched from Oracle to MySQL

• Teardrop—a successful Internet attack affecting OSS and CSS

The purpose in selecting these specific OSS projects was to take varying perspectives of
OSS, in terms of software development, the products themselves, and users.

The AllCommerce case study focused on software development in the OSS paradigm. A
member of the SEI technical staff got involved in the process of hacking the product to dis-
cover bugs and add new features to the product. The express purpose of this case study was
to obtain firsthand experience in working on an OSS product from the inside, that is, to learn
the process by which changes are actually proposed, tracked, selected/voted on, and accepted.

The Apache case study takes an academic, research perspective (actually the result of a doc-
toral thesis) of the OSS-development process. This case study looked at the individual contri-
butions made to the Apache Web server over the past five years and whether that contributor
was from core or non-core Apache developers.

From a purely product-centric perspective, the Enhydra case study focused on the qualitative
aspects of an OSS product and looked at coding problems found in the product by conducting
a critical code review.

The NAIS case study, which focused on the end user, looked at a real application developer
who switched from a commercially acquired software product to an OSS product. Specifi-
cally, this case study examined how and why that particular OSS product was selected, the
degree to which the application developer was engaged with the OSS development commu-
nity, and the level of satisfaction that the NAIS had with the selected OSS product.

 Enhydra is a trademark of Lutris Technologies, Inc.

14 CMU/SEI-2001-TR-019

Finally, the Teardrop case study looked into one of the predominant axioms of OSS: that OSS
is more secure than software developed under more traditional means. This case study takes
apart one of the most successful distributed denial-of-service (DDoS) attacks, and looks at
the role that OSS played in the propagation of that attack on CSS and the response by the
OSS community.

Each of these case studies is discussed in the remainder of this section.

3.1 AllCommerce Case Study
AllCommerce is an open source package that implements a storefront on the Web. The com-
plete package, written in Perl and dependent upon MySQL (or some other relational database
system), is released under the GPL and is free to anyone to use and/or modify. The complete
package promises to provide a storefront complete with purchasing, inventory, shipping, bill-
ing, and sales capabilities.

AllCommerce was developed originally with support from a company called OpenSales,
which later became Zelerate. This case study is based upon our observations of this product
and its development over an approximately 10-month period. As we had no visibility into the
internal operations of OpenSales/Zelerate, some of what follows is based upon conjecture,
which we have been unable to have officially confirmed or denied.

3.1.1 Objective of the Study

With AllCommerce we wanted to look at OSS from the inside. The objective of this was to
see what it took to be accepted by the community, to learn how changes really get handled for
those who aren’t core developers, and to look for the benefits and deficiencies of the OSS
model.

Zelerate provided support in the form of employees and resources for developing AllCom-
merce. Apparently Zelerate employees did the initial design. The Web site that hosted All-
Commerce was provided by Zelerate, which also provided ongoing development in the form
of employee time. Zelerate apparently intended to make money through consulting services
related to AllCommerce, including customizations, installation, maintenance, and so forth.
This appears to be a common way in which companies attempt to profit from OSS. It is also
increasingly apparent that this is a difficult business model to execute properly. Zelerate
folded in the middle of this study but, due to the open source nature of its product, AllCom-
merce lives on.

CMU/SEI-2001-TR-019 15

It is not entirely clear what motivated Zelerate to make AllCommerce open source in the first
place. Possible reasons include

• to obtain community help in developing a very complex product

• to create an installed base, which may lead to customers for its commercial services

• to capitalize on the hype around OSS

3.1.2 Conducting the Study

We became aware of AllCommerce shortly before beginning our effort. We began by obtain-
ing a copy of the software and attempting to install it on a local Solaris server. Our intention
was to evaluate the software and see where we might be in a position to contribute. Installa-
tion went fairly smoothly, but in our initial tests of the product, we discovered a bug in how
credit cards were dealt with—something that we fixed and submitted back to the maintainers.
Our fix was included in the next release of the product.

We then turned to evaluating the features of the product. It soon became apparent that this
was a work in progress, not ready for prime time—although there were many sites purporting
to use it as an e-commerce solution, and it even garnered an extremely positive review from
ZDNet.7 In fact, we never were able to fully install this system in a useable way on our e-
commerce Web site. While we had no products to sell, we found that setting up our dummy
store took much too much effort and required us to adapt to a business model that was not
relevant to our products (SEI-logo merchandise).

After considering many of the things that needed to be done to make it useable for our store,
we decided to focus on shipping models. As installed on our systems, AllCommerce had the
concept of warehouses, but had implemented only the ability to specify a single warehouse.
Its shipping model was to charge the actual cost based upon the weight of the object being
shipped and the distance it had to travel. To accomplish this, tables were built from informa-
tion supplied by shipping companies (e.g., USPS, UPS, Federal Express). Shipping to other
countries was not implemented.

Because this model does not work well for all types of businesses, we sat down and specified
what we believed was a complete shipping model for AllCommerce. This included the ability
to drop-ship from multiple warehouses, charge several different ways (e.g., by the piece, a
flat rate, or weight and distance), and ship to foreign countries. The resulting one-to-two-page
document was submitted to Zelerate and quickly placed on the Web site as a project. A mail-
ing list for the project was created and we were added to it. Unfortunately no one else seemed
interested in pursuing this aspect of AllCommerce. A short while later Zelerate folded and

7 This is according to the article located on ZDNet’s Web site at <www.zdnet.com/products/stories

/reviews/0,4161,2629084,00.html>.

16 CMU/SEI-2001-TR-019

AllCommerce development was transferred to SourceForge.net’s Web site. Along the way,
the shipping model document disappeared.

Although AllCommerce lives on at SourceForge.net and the mailing lists associated with it
are still somewhat active, it appears that little or no development is taking place. The mes-
sages on the mailing lists mostly have to do with installation and configuration problems by
people attempting to use AllCommerce. The last stable release as shown on SourceForge.net
is from March 2001. The listed alpha release predates that and has the same version number.
Attempts to get a status from the listed project administrators have been met with silence.
The conclusion is that AllCommerce is an open source solution that has failed.

3.1.3 Summary

While it was relatively easy to get involved in this effort while there was active development,
it seems apparent that there was no real developer community (as opposed to a user commu-
nity) outside of Zelerate. Once Zelerate was unable to provide support for development, what
activity there was stopped. This fits with a conjecture of ours that open source efforts succeed
when the developers are also the users of the product and/or when there are substantial re-
sources being allocated to the project. With the loss of Zelerate’s support, it seems that nei-
ther of these conditions is true any longer.

3.2 Apache Case Study
A popular public domain Web server was developed at the National Center for Supercomput-
ing Applications (NCSA), located at the University of Illinois, Urbana-Champaign, during
the early 1990s. When most of the developers of the NCSA Web server left to join Netscape,
the support group for the NCSA Web server was depleted. This resulted in the creation of the
Apache (read a-patchy) Web server project by a number of independent noncommercial de-
velopers who were interested in maintaining and enhancing the NCSA Web server. An early
task of the founding group was to test and integrate the various patches written by Webmas-
ters everywhere. It has been six years since the conception of the Apache project, and because
so many architectural changes have been made to the original Web server, it hardly resembles
the old NCSA Web server.

Apache is managed jointly by a group of volunteers who are known as the Apache Group.
This project is now a project of the Apache Software Foundation, which provides support to a
number of open source software projects. The foundation accepts contributions in the form of
development support as well as money.8

8 See the Apache Software Foundation at <http://www.apache.org>.

CMU/SEI-2001-TR-019 17

3.2.1 Objective of the Study

The research was carried out to examine the question, Are open source projects any different
from commercial projects? The issue is analyzed from the perspective of the development
process, the contributors, and the type and distribution of their contributions. Reports in the
popular press portray OSS projects as consisting of a maverick group of hackers, organized
haphazardly and adding code to the project in an ad hoc manner (“babbling bazaar of differ-
ing agendas and approaches” [Raymond 99]). Other notions include the evolution of architec-
tural designs through public interaction and a large number of people looking through the
code base (“Given enough eyeballs, all bugs are shallow” [Raymond 99]). We structure our
argument around addressing all of these popular notions, draw comparisons between com-
mercial software and OSS development, and show that they are in fact not true.

3.2.2 Conducting the Study

Important artifacts of any OSS project are the public email distribution lists. The distribution
lists are for purposes of announcement and discussion. The discussion of improvements, bug
fixes, and the future direction of the software are carried out on the list called new-httpd. The
apache-cvs list sends email to all subscribers whenever source code is committed to the con-
current version system (CVS) source tree. The apache-bugdb distribution list announces to
subscribers the various bug reports submitted by users. This list is a good indicator of all the
available beta testers for Apache and provides a forum for bug reporting and problem dis-
semination. All emails have been archived and provide a wealth of information on the evolu-
tion of the software. We have used the information contained in these archives for our analy-
sis. There are also other distribution lists such as: apache-docs, announce, current-testers,
gui-dev, mirrors, modproxy-dev, and stable-testers. These lists are discussions about topics
related to Apache or discussions about related modules that are not explicitly part of the core
server. For this reason, we do not use these archives for our analysis.

The popular notion assumes that there is no organization or clearly defined hierarchy in OSS
projects. On the contrary, the structure of the Apache server project as described by Fielding
[Fielding 99] is quite similar to that of successful commercial organizations [Cusumano et al.
95]. Our observed equivalence of development roles between Apache and commercial or-
ganizations is shown in Table 2, but with a difference: the roles that Apache developers as-
sume are volunteered,9 not appointed, and all participants in the Apache server project also
contribute as testers of the product.

9 In contrast to commercial development, Apache developers volunteer or appoint themselves into

one or more various roles, which are ultimately accepted by the community for a project.

18 CMU/SEI-2001-TR-019

Table 2: Equivalence of Roles in Software Projects

Commercial Projects Apache Server Project
Project manager Release manager
System architects Senior members of the core group
Project members Core group
Testers All developers of the project

A central CVS repository is used to manage the source code and an active core-group mem-
ber carries out the day-to-day maintenance. Mockus and associates outline the peer review
process of the Apache project by which problems are discovered, assigned, fixed, and incor-
porated [Mockus et al. 00]. The process describes how any change must be voted in by at
least three core-group members so that it can be committed to a source tree. It is assumed that
every new change is tested for compilation problems and works according to the specifica-
tion. The approach to development is incremental and very similar to the synchronize and
stabilize concept (described by Cusumano and Selby [Cusumano et al. 95]) that was adopted
at Microsoft Corporation. This incremental approach is similar to those adopted at many
other commercial organizations like Hewlett-Packard, EDS, TRW, and Motorola.

It is a common perception that the larger the number of people working on an OSS project,
the more likely the detection of bugs in the source code will be. OSS is therefore perceived to
be relatively more bug free than commercial software that would not see so many testers be-
fore commercial release. A detailed analysis suggests a different interpretation. We believe
that there are three types of errors in any software: coding errors, logical errors, and architec-
tural flaws. Coding and logical errors are usually business-context independent and are easy
to spot and eliminate. An analysis of the number of people reporting bugs and those contrib-
uting patches shows that against a total of 5,116 testers reporting bugs, there are only 200
contributing patches. Testers typically report problems they observe while running the soft-
ware, but rarely look into the source code to identify the source of the problem. On the other
hand, patch writers may scrutinize source code and make changes to fix errors. Hence, the
free availability of source code does not automatically imply the scrutiny of the source code
by all testers, but rather only by a subset of them. The number of patch submitters could be
considered a proxy for the number of source-code scrutinizers. The ratio of source-code scru-
tinizers (~200) to the number of active project participants (~50 core-group members) is still
much higher (~4:1) than that observed in commercial organizations (at the maximum 1:1).
Thus we see that Apache differs from commercial development in the area of testing, as it has
a larger number of users willing to report bugs in a structured manner. The ability to spot and
fix bugs does not automatically lead to a more secure software product. McGraw argues that
because a software product is a continually evolving and dynamic system, security bugs are
difficult to eliminate because they are generated continuously [McGraw 00]. Schneider, on
the other hand, suggests that since security holes are due to design and architectural flaws, the
availability of source code alone is inadequate to eliminate these security holes [Schneider
00]. Architectural flaws are business-context dependent and require extensive knowledge of
the software system. A more detailed understanding of the architecture and design would be

CMU/SEI-2001-TR-019 19

required for an individual to be able to find and fix these flaws. As discussed later, this com-
petence is not widely available among OSS developers.

Commercial software-development organizations face a major challenge in the distributed
development of software. Herbsleb and Grinter studied the development of a commercial
product at geographically distributed locations [Herbsleb et al. 99]. Their results suggested
that distributed development leads to time delays and frequent miscommunication amongst
developers due to cultural and time differences. Mockus and associates showed that 85% of
the modification requests (MRs) came from the top 15 developers whom they considered to
be members of the core group. We performed this analysis counting the number of contribu-
tions from core-group members. Our analysis (shown in Figure 1) indicates that 51 core-
group members accounted for ~93% of the MRs. Analysis by various file types (shown in
Figure 2) shows that ~94% of the code and header files and ~98% of the engineering envi-
ronment (ENGENV) files (like build files and configuration files) were contributed by the
core group. Even though 500 individuals contributed to the project, the core group dominates
in MRs, thus guiding the direction of development.

0
15
30
45
60
75
90

1 10 100 1000

Number of Contributors (log scale)

Pe
rc

en
ti

le
(%

)

51

Figure 1: Cumulative Distribution of Modification Requests

20 CMU/SEI-2001-TR-019

0

15

30

45

60

75

90

1 10 100 1000
N umbe r of Contributors (log scale)

Pe
rc

en
til

e(
%

)

CODE
DOC
ENGENV
OTHER

51

Figure 2: Cumulative Distribution of File Types

Software architecture forms the heart of any software system. Traditionally very few, mostly
collocated individuals work on architecture design, and this effort is not shared widely. We
looked for anecdotal evidence of major architectural changes to the system and tried to map
the source of these changes to developers. To preclude the possibility that while selecting an-
ecdotal evidence we could have selectively sampled only those design changes that are made
by a few people, we randomly chose a sample set of changes to the system and divided them
into architectural and nonarchitectural changes on the basis of expert voting. To differentiate
the contributors to architectural and nonarchitectural changes, we compared the number of
contributors for the change as well as the number of similar changes documented in the
apache-cvs distribution list. In the Apache project, developers readily acknowledged help
obtained from other developers, and this helped us to identify the people involved in effecting
the change.

Anecdotal evidence on the following products shows that a few individuals perform architec-
ture design independently:

• Shambhala or Apache version 0.8

• Netscape Portable Runtime (NSPR)

• Multi-Process/Multi-Threading Model (MPM)

The community is notified and invited to contribute once the broad structure is laid out. The
implementation details are then fine-tuned, and the server is tested extensively. This suggests
that, for the Apache server project, a coherent architecture is maintained by a small select
group of individuals and the development is not chaotic. Similarly, in commercial develop-

CMU/SEI-2001-TR-019 21

ment projects, we observe only a small number of collocated individuals working on the ar-
chitecture design.

The 30 sampled changes (six changes from every year) were categorized by experts and
compared using the following measures obtained from the apache-cvs distribution list ar-
chive:

1. the number of times a change similar in context to the sampled change is committed. A
similar-context change is defined as a change that performs an operation on objects or
components that are altered in the sampled change. This roughly measures the amount of
collaboration between various developers either over time or over geographical loca-
tions. This number would be high if the developers share their changes or design docu-
ments or in an open development process where the changes or designs are open for
public scrutiny and alteration.

2. the number of unique persons who have worked or are working on a change, similar in
context to the sampled change, from dispersed locations.10 This counts all the contribu-
tors for the sampled or similar-context changes that are not collocated.

Table 3: Comparison of Architectural and Nonarchitectural Changes

 Similar Change Number of Contributors
Type of Change N Mean

(Std Dev)
Median Mean

(Std Dev)
Median

Architectural 4 1.25 (0.43) 1 1.25 (0.43) 1
Nonarchitectural 26 4.96 (5.95) 3 2.85 (2.38) 2
T-Stat (d.o.f) 3.1311 (18.79) 3.1011 (100.6)

The results obtained are shown in Table 3. We can reject the null hypothesis that architectural
and nonarchitectural changes involve the same number of developers and have the same
number of similar-context changes. The results obtained above show us that architectural
changes are carried out by fewer, possibly collocated, developers. The smaller number of
contributors could indicate that fewer developers possess the ability to perform architecture
design.

3.2.3 Summary

Apache as an example of OSS is developed, not by a random set of hackers angry at what
they see as commercial exploitation of information and knowledge, but by professionals
working in different sectors, from government organizations and universities to commercial
enterprises. Care seems to have been exercised in the formation of a core group and the proc-

10 We count individuals from all past similar-context changes instead of just counting the individuals

in that particular change itself to protect ourselves from instances of selective attribution. This
would happen if individuals do not acknowledge similar contributions more than a few weeks
prior to their own changes.

11 p < 0.10

22 CMU/SEI-2001-TR-019

ess for accepting or rejecting changes to the software. The core group appears to be con-
cerned with issues relating to the schedule and size of the software. The responsibility for
architectural changes is typically in the hands of a few individuals. In other words, Apache
seems to have been organized and developed as though by a commercial software vendor.

3.3 Enhydra Case Study
Enhydra is an open source e-business application server that was designed for the develop-
ment and deployment of Java-based Extensible Markup Language (XML) applications using
servlets. The term application server can mean many different things depending on the con-
text in which it is used. In this case it can be thought of as an application that provides ser-
vices for other applications. Applications are typically built on top of application servers.

Enhydra was not always open source; initially it was developed by Lutris Technologies, Inc.
to assist Lutris Consulting in building Web applications. Lutris decided to build its own ap-
plication server because when it needed this type of technology, the commercially available
products were very immature.

On January 15, 1999, after four years of development, Lutris open-sourced Enhydra, assumed
the role of the open source maintainer/product champion, and also began the role of being a
support provider for its open source product. Lutris sells it own productized version of Enhy-
dra that includes professional documentation, platform certification for popular hardware
configurations, installation support, and maintenance updates. Enhydra customers can also
purchase additional technical support and training.

When a commercial business is trying to profit from an OSS product, the business will often
make outlandish claims with respect to the quality of the product. The OSS movement itself
also fuels these claims (see Section 2.4). For example, the text below comes directly from a
Lutris white paper titled “The Enhydra™ Competitive White Paper:”

“Benefits of the Open Source Process
The open source process means quality implementations driven by real-world
needs. Open source efforts such as Enhydra.org ensure that the technology will
support meaningful features as driven by a plugged-in community of consultants
and end users. The same community ensures that the code base evolves with
the highest possible quality. With thousands of eyes having access to source
code, no algorithm is safe from scrutiny. Enhydra undergoes 24x7 worldwide
code review. To paraphrase Sun’s Bill Joy, most of the smart people in the world
don’t work for you or Sun or Microsoft. With open source, you are using code
that has been scrutinized by the best and brightest” [Young 01].

CMU/SEI-2001-TR-019 23

The general premise that open source efforts support meaningful features driven by those in
the community is fair. However, a claim that the Enhydra code base is of the highest quality
since it is under the scrutiny of thousands of eyes that never sleep is outlandish. A Lutris Web
page makes the following claim:

“Industry leaders recognize that open source methodology results in highly reli-
able, stable code. A thriving worldwide community reviews source code, contrib-
utes fixes, and reviews designs. The result is reliability that surpasses that of any
single, private development and quality assurance team” [Lutris 01a].

Again, feeding the assumptions that all open source products are highly reliable, stable, and
of the highest quality, and conversely that all high-quality software must be open source, will
most likely place you in a precarious position.

And finally a Lutris sales brochure states the following:12

“Open Source Software:
Lower Risk: Complete access to the code means you don’t have to take anyone
else’s word that there are no back doors, viruses, bugs, or other time bombs wait-
ing to explode. Only Lutris Enhydra can promise the unparalleled security of Lu-
tris product support, training and consulting services right alongside an Open
Source community of more then 10,000 Enhydra developers who are always
ready to help.

Puts you in control: Open Source software gives you complete control over the
success of your Internet applications. Instead of spending most of your budget on
software licenses, Lutris Enhydra lets you redirect dollars where they really
count: development and support of your applications.

Ensures the highest quality standards: Only the Open Source peer review proc-
ess can promise that quality code is always maintained and that decisions are
made based on quality standards, not market forces or other pressures.”

These claims that OSS is of the highest quality are quite astonishing. Naturally, they are in-
tended to convince prospective users of OSS that it is better than conventional (and yes, more
expensive) commercial products. With more than 10,000 Enhydra developers as the Lutris
sales brochure claims, or for that matter even 1,000 developers (an order of magnitude less
than Lutris claims), you would believe that a cursory review of the source and documentation
would not uncover any obvious coding errors, poor programming practices, or documentation
deficiencies.

12 This was an unsolicited direct-mail marketing piece received by our office during February 2001.

Copies are available by request.

24 CMU/SEI-2001-TR-019

3.3.1 Objective of the Study

Since it was difficult to believe that the people who were writing OSS for free would change
their coding habits between home and work, we conducted a cursory review of the Enhydra
source code and documentation to determine if the claim that Enhydra, being OSS, is of the
highest quality has merit. It is also important to note that claims of OSS being of the highest
quality have not only been made by Lutris but also by the OSS community itself [Netscape
97, O’Reilly 98, OSI 01c].

3.3.2 Conducting the Study

The Enhydra source code that we decided to use for this study was version 3.1.1b1. During
this study, we reviewed Java and C source-code files, as well as some of the provided docu-
mentation. Our intent in this study was not to do a formal and exhausting code and documen-
tation review but rather to try to determine whether claims that have been made with respect
to software quality and Enhydra were true.

3.3.2.1 Packaging

After unzipping the software, we examined the structure of the source-code directory and the
provided documentation. The code, documentation, and install scripts were laid out in a very
nice and convenient directory-tree structure. This made it very easy to find the relevant mate-
rial for the review.

3.3.2.2 Documentation Review

Next, we reviewed the documentation that was provided in the initial download. Naturally,
we started with the README file to determine how to install the software. To our surprise, this
file directed us to the Lutris Web site for installation information.

On their Web site, additional online documentation is available from Lutris free of charge, as
long as you register by providing your name, address, company, telephone number, and email
address. We suspect that Lutris requires registration to view any documentation so that it can
pursue prospective customers. Lutris also has other documentation available for download-
ing, but only for customers who purchased the commercially packaged version of Enhydra.

CMU/SEI-2001-TR-019 25

We first decided to review the Enhydra documentation that is available through the Internet
to noncustomers (people who didn’t buy the productized version of Enhydra). It appeared to
be well written and comparable with other commercial products that we have reviewed in the
past.

Returning to the documentation packaged with the downloaded software, we continued the
OSS documentation review. This documentation was marginal at best and very limited. It
would be very difficult and time consuming to use this OSS product without the additional
documentation that is available from the Lutris Web site. While it may be possible to use the
downloadable version of the OSS product with the online documentation that is available for
nonpaying customers, it would most likely be best to purchase the commercially packaged
version in order to save a considerable amount of time becoming familiar with the product.
So in this case, it is our determination that the OSS-supplied documentation is inadequate and
far below accepted, commercial standards.

Poor documentation being provided with the OSS version of Enhydra is no accident; Lutris is
well aware of the disparity between the OSS and commercial offerings [Lutris 01b]. This
conclusion is based on the comparison that Lutris provides on its Web site of its commer-
cially packaged and OSS versions of Enhydra. Parts of this comparison are shown in Table 4.

26 CMU/SEI-2001-TR-019

Table 4: Parts of the Lutris Comparison of Commercially Packaged and OSS
Versions of Enhydra [Lutris 01b]

Lutris� Enhydra Enhydra.org

Documentation

• Detailed installation instructions

• Lutris Enhydra Getting Started Guide

• Lutris Enhydra Developer’s Guide

• Lutris Enhydra Wireless Application

• Online VoiceXML documentation

• Lutris Knowledge Base

• Detailed installation instructions

Samples

• Getting started

• Using multiple clients from a single applica-
tion

• Using the included XSLT parser

• Using HTML, Flash, WML, XHTML, cHTML,
J2ME, and VoiceXML with Lutris Enhydra

• Getting started

• Using HTML with Enhydra

Wireless Development Suite

• Support for WML, J2ME, cHTML, XHTML,

VoiceXML

• Comprehensive documentation

• Samples showing the use of HTML, Flash,

WML, cHTML, XHTML, VoiceXML

• Comprehensive Web Mail demo application,
EnhydraMail, with HTML and WML clients

• Support for WML and J2ME

• No documentation

• No bundled tools

• No samples

This comparison points out all of the additional documentation and examples included in the
commercially packaged version of Enhydra. Recall that Lutris is both the caretaker and
champion of this OSS product. Also note that the online installation instructions seem to be
adequate, but appear to be used by Lutris as bait to get potential customers to its commercial
Web site from its OSS Web site.13

 Lutris is a registered trademark of Lutris Technologies, Inc.
13 The Web page located at <http://enhydra.enhydra.org/software/downloads/enhydra311

/index.html#instinstr> says (in part), “Installation instructions are available from Lutris Technolo-
gies as part of their commercial version of Enhydra.”

CMU/SEI-2001-TR-019 27

3.3.2.3 Code Review

One of the most common C-programming errors is the failure to check the return values that
indicate success or failure for system function calls [Miller et al. 00]. This error is quite
common when performing memory allocations and should not be found in code that claims to
be high quality or world class. So, given the claims by Lutris and the OSS community with
respect to the quality of OSS, we did not expect to find this type of programming error in the
Enhydra C source code. Additionally, if this common C-programming error is present, it is
usually a good indication that the software does not have an adequate error-handing model.

We searched the C source for MALLOC function calls to verify that memory-allocation errors
were being handled correctly. We found that a NULL return value from a MALLOC function call
was not handled correctly in the C modules shown in Table 5. This mistake occurred in the C
source over 80 times.

We also noticed the following code commenting/documentation problems while performing
this review:

1. The preamble information in the beginning of the source code (such as the name of the
file) did not always match the filename.

2. There were variations in the format of function descriptions.

3. The quality of function descriptions ranged from acceptable to nonexistent.

4. Overall the code was poorly or sparsely commented.

28 CMU/SEI-2001-TR-019

Table 5: C Modules Failing to Check MALLOC Return Values in C Source Code

C Source File
Number of Occurrences Where a NULL Return
Value from MALLOC Is Not Checked

edir_conf_xml.c

edir_exception.c

edir_ipc.c

edir_kvtable.c

edir_load_choose.c

edir_load_multiproc.c

edir_load_scoreboard.c

edir_load_status.c

edir_mutex_filesys.c

edir_mutex_sysv.c

edir_refcount_simple.c

edir_refcount_sysv.c

edir_shmem_mmap.c

edir_shmem_sysv.c

edir_state.c

edir_string.c

edir_table.c

edir_xml.c

edir_isapi_filter.c

edir_isapi_handler.c

HTMLParser.c

parser.c

xpath.c

edir_nsapi_handle.c

edir_nsapi_init.c

autochange.c

jserv_wrapper_unix.c

2
1
2
6
1
1
1
1
5
4
2
7
6
3
1
9
4
4
3
2
2
4
1
4
3
5
3

Total 87

CMU/SEI-2001-TR-019 29

Next we reviewed the Java source code, examining exception handling as an indication of
good error handling or as a good model for error handling. Often only high-quality software
has really good or exceptional error handling. During our casual review of the exception han-
dling in Java, we found a number of cases where exceptions were caught and subsequently
ignored. Examples are shown in Table 6. The error handling in the Java code does not appear
to conform to any particular model and for the most part appears to be ad hoc. The documen-
tation within Java source code was similar to our review of the C code. We noted the follow-
ing code commenting/documentation problems in the Java code:

1. There were variations in the format of function descriptions.

2. The quality of function descriptions ranged from acceptable to nonexistent.

3. Overall the code was poorly or sparsely commented.

Table 6: Examples of Ignored Exceptions in Java Source Code

Java Source File Code Fragment

CloneableDO.java

lines 88-91
try {

 obj = super.clone();

} catch (CloneNotSupportedException ex) {

 // Should not happen

 }

ContentMD5Module.java

lines 151-152
Catch (IOException ioe)

{ return; } // shouldn’t happen

DefaultAuthHandler.java

lines 705-706
Catch (ParseException pe)

{ }

DefaultAuthHandler.java

lines 1049-1050
Catch (Throwable t)

{ }

DefaultAuthHandler.java

lines 1075-1076
Catch (ArrayIndexOutOfBoundsException aioobe)

{ }

AuthorizationModule.java

lines 213-214
Catch (AuthSchemeNotImplException asnie)

{ /* shouldn’t happen */ }

CharIndexedInputStream.java

line 84
Catch (IOException e) { }

We also discovered a large number of FIXME statements and unimplemented routines. This
type of code is not usually found in high-quality software. Some examples of unimplemented
routines are shown in Table 7.

30 CMU/SEI-2001-TR-019

Table 7: Examples of Unimplemented Functionality in Java Source Code

Java Source File and Problem Code Fragment

RemoteZipResource.java

lines 165-168
Function is not implemented.

public long getCurrentLastModifiedTime() {

 return -1; //FIXME: implement

}

RemoteDirResource.java

lines 117-119
Function is not implemented.

public long getCurrentLastModifiedTime() {

 return -1; //FIXME: IMPLEMENT

 }

HttpsRequest.java

lines 393-395
Function is not implemented.

public String getCharacterEncoding() {

 return null; //FIXME

}

As part of this review, we submitted the coding errors that we found to the Enhydra bug-
reporting email address: bugs@enhydra.org. We found it astonishing that such a large soft-
ware-development community (Lutris claims to have thousands of developers) uses only
email for bug reporting without the support of collaborative bug tracking and updating tools.

3.3.3 Summary

Based on our review of the source code, we concluded that the Enhydra source code is no
better than commercial source code we have reviewed in the past. The code as a whole is not
outstanding, but it is not terrible either; it is simply average. Like any software-development
effort, there are routines that are well written and commented as well as others that are not. It
appears in this case that the many eyes code-review assertion has not been completely effec-
tive, given that our review was casual and tended to look for common coding errors and poor
programming practices.

The documentation provided with the Enhydra source code was far below any commercial
standard. As we stated earlier, we believe that the poor documentation issue is the result of a
business trying to profit from OSS. Other OSS projects that we have looked at in the past
have had much better documentation than that provided with the Enhydra OSS.

3.4 The NAIS Case Study
The NASA Acquisition Internet Service (NAIS) is an Internet-accessible information system
permitting anonymous access to information relating to competitive solicitations and other
procurement-related documentation [NAIS 01]. The NAIS is run by the Marshall Space
Flight Center and has been operating since 1994.

Like many Web sites, the NAIS evolved from a traditional Web site with static pages that had
to be updated manually to one that is updated dynamically. To that end, the NAIS uses Web

CMU/SEI-2001-TR-019 31

servers and Common Gateway Interface (CGI) scripts to broker requests issued from Web
browsers to back-end databases to construct Web pages that are specific to a visitor’s request.
The back-end database of the NAIS was Oracle from Oracle Corporation. In an article to
Government Computer News, John Sudderth wrote that the small operating and maintenance
budget of the NAIS was being threatened by price restructuring for the Oracle database
server [Sudderth 00]. As such, the NAIS began the transition to MySQL14 and completed that
switchover in November 2000 [Trimble 00].

3.4.1 Objective of the Study

One of the predominant axioms of the OSS paradigm is the (potential) involvement of the
end user in the development, maintenance, and debugging of the OSS product. The term user
denotes the person who is downloading or acquiring the OSS product for the purpose of ac-
tual integration and/or use in an operational or business setting. As a user, it is believed that
this person will participate actively in the forward development of the OSS product. That de-
velopment may be as small as reporting bugs or as large as actively developing new features
for the OSS product.

It is this axiom, or perception, that was being evaluated in this case study. And unlike the
other case studies where we focused on a product or some aspect of the open source devel-
opment process, this case study looked to an adopter of an OSS product: in this case, the
NAIS.

3.4.2 Conducting the Study

The switch by the NAIS to an open source database server was precipitated by an increase in
fees for the licensing of and support for a commercial product. However, there was little in-
formation about how the selection of an alternative product was conducted (commercial or
otherwise), what role the database server plays in the overall system, and how experienced
and involved the NAIS is in the open source community.

To obtain that information, we asked the NASA project leader for the NAIS to follow up on
the interviews conducted by the media with the NAIS, so that we could learn more about its
experience using MySQL and the role of that program within its system. This request was
granted, so we sent a list of 27 questions to the NAIS. These questions were designed to help
us understand

• the size of the NAIS itself (in terms of number of users, frequency of Web hits, and data-
base size)

14 MySQL is an open source, relational, database-management system. More information on it is

available at <http://www.mysql.com>.

32 CMU/SEI-2001-TR-019

• the experience that the NAIS gained using MySQL (how it was selected, deployed, and
maintained)

• the explicit involvement of the NAIS in the MySQL open source community

The complete list of questions and the NAIS responses to them are included in Appendix A.

3.4.2.1 The NAIS and the Database Server

The database server plays a significant role in the NAIS system. Predominantly, the data con-
tained in the database is procurement-related data stored in over 1,000 tables. Responses to
queries posed by visitors to the NAIS Web site will involve correlating data across those da-
tabase tables (averaging two to four tables per query). Further, the NAIS reports that it ex-
periences on the order of 1,900 Web hits per day, with each one likely resulting in access to
the back-end database server. Therefore in a given 24-hour period, you should expect the
NAIS to operate at an average rate of about 75-80 database queries per hour. Obviously, the
NAIS serves an important role at NASA, but overall, as an operational system, the NAIS and
its reported database-server access is fairly small.

3.4.2.2 The Selection of MySQL

As mentioned in the media articles above and confirmed in the questionnaire to the NAIS, the
new pricing structure for the existing commercial product instigated the search and subse-
quent evaluation of a new database server. What is interesting though is that the new search
appears to have been limited to only open source products. During the search for a new data-
base server, the NAIS team reported looking at four other open source products (other than
MySQL), namely GNU SQL Server, mSQL, Postgresql, and SQLight. Although it is reason-
able to ask whether other commercial alternatives were considered, the questionnaire re-
sponses indicate that only open source products were. In a question asking how MySQL
compares to commercial database products, NAIS team members responded that they did not
compare test results from MySQL to a range of commercial products (but pointed us to the
MySQL open source site for such comparisons).

Best cost appears to be the overall determining factor for selecting the database server. Para-
mount is the fact that the new database search was started based on cost restructuring im-
posed on the NAIS by the commercial database vendor. To eliminate and/or to reduce that
cost, only open source alternatives were considered (all of which can be downloaded at no
cost). However, the NAIS team did consider support costs in its evaluation, which is a strong
indication that being free was not the overriding concern. The NAIS team did respond that
the availability of support was a criterion for evaluation (along with cost).

After considering cost (essentially normalizing the field of candidates on this point), other
criteria were also considered, including speed, industry acceptance, standard adherence,
maintainability, and ease of use. Although no specific units of measure were provided in the

CMU/SEI-2001-TR-019 33

responses to the questionnaire, it is clear that other factors were addressed in the evaluation,
but there is no indication of the expressed usefulness of the measures that were used. When
asked about the specific advantages of the chosen measures over the others that were evalu-
ated, the NAIS listed speed, robustness, security, and ease of use overall characterizing
those measures as the best match for the needs of the NAIS (in light of deficiencies specific
to MySQL).

3.4.2.3 The NAIS and the OSS Development Community

There is little doubt that the NAIS team is a skilled development and maintenance team. It
has developed the back-end database tables, CGI scripts, and a periphery of Web artifacts
(HTML pages, images, etc.) to support the NAIS mission. However, in the NAIS team’s use
of MySQL, it was essentially treating the program as a black-box component, not unlike the
manner in which it would be forced to treat a commercial product (since such a product does
not come with source code). For instance, source-code inspection was one avenue of evalua-
tion that was not conducted. This is not surprising based on the presumed criticality of the
NAIS system: it is not mission-safety critical. The only dichotomy to this position taken from
the NAIS response is that security played a role in the evaluation of open source database
servers. That is, if security was a criterion in the evaluation, and given the functional specifi-
cations of the product’s security features, the product’s claims could be supported only by a
review of the source-code implementation of those features.15

There are other aspects of the use of MySQL by the NAIS that closely mirror commercial
offerings, such as bug reports, documentation, support, and product modification. Specifi-
cally the NAIS, as a user of MySQL, has reported flaws in the software (i.e., bugs) to
MySQL via the support channel along with other users of MySQL. Next the NAIS relies on
product documentation for day-to-day use and reports having to contact the open source de-
velopers to clarify certain points. Further, the NAIS acquires releases of MySQL through a
Web site provided to all users who have support contracts. Finally, the NAIS has not modi-
fied MySQL for its specific use. This is all typical of commercial software.

Training options for MySQL are also typical of commercial offerings of database servers
with course offerings available from the vendor as well as third parties. Training ranges from
free (online newsgroups) to authorized training partners. In this area the NAIS training for
developers and administrators has been via in-house knowledge (of the subject area) and
available documentation and books on MySQL.

However, there is one aspect that is markedly different in the use of MySQL by the NAIS
with respect to commercial software: it builds the binaries for MySQL from the source code

15 Often OSS supporters claim that security through obscurity is not security at all and want source

code to verify security algorithms and architecture.

34 CMU/SEI-2001-TR-019

rather than downloading the binaries from the MySQL Web site (which is available through
the support contract).

3.4.2.4 The Experience of the NAIS with MySQL

The selection of MySQL by the NAIS certainly addressed the core risk of being “expensed”
out of a commercial product. Based on the responses to the questions asked, the NAIS ap-
pears to be fully satisfied with its selection and subsequent use of MySQL. The NAIS com-
mented numerous times on the cost and speed advantage that it has over the existing com-
mercial offering. Given the frequency of use and dependency on the database server, the high
licensing and support costs for Oracle appear to be overkill for the business application envi-
ronment needed by the NAIS. Further, the advantages afforded by a “slim and trim” database
server having a smaller footprint with respect to memory and CPU resources and lacking the
overhead burden of unused features (such as stored procedures, database triggers, transaction
rollbacks, and row-level locking) underscore a seemingly wise choice for MySQL over Ora-
cle.

3.4.3 Summary

Although troubling but not surprising, the NAIS chose not to evaluate other commercial al-
ternatives to Oracle in its search to replace the database server. Other commercial alternatives
exist which do not necessarily have the same capabilities as Oracle, but are on the same scale
as MySQL, such as Solid’s database Server and Microsoft Corporation’s Access 2000.16
Could other commercial alternatives have supported the needs of the NAIS, perhaps even
better? And given those choices, what would the short-term and long-term costs be, compara-
tively, between MySQL and those commercial databases?

Obviously, the entry costs for OSS, namely MySQL, are far less than just about any commer-
cial alternative (i.e., free), but the entire spectrum of costs, which include development,
integration, maintenance, and sustainment costs, should be considered.

There is no doubt that OSS, as a category, is a viable source for software components from
which to build systems. Large commercial firms such as IBM, Amazon, and Lycos are users
of the Apache open source Web server. NASA and the NAIS project approached their di-
lemma (licensing costs) by turning to the open source marketplace, applying traditional
evaluation techniques in selecting the right product for their application and mission. And in
this case, there seems to be an excellent match between the NAIS and MySQL.

16 The MySQL Web site, located at <http://www.mysql.com/information/benchmarks.html>, lists a

number of open source and commercial closed-source relational databases. The fact that they are
listed there should not be construed as an endorsement.

CMU/SEI-2001-TR-019 35

Cost should not be the only factor to consider when selecting open source products. Con-
versely, software that has no acquisition cost should not be eliminated as a choice. A proper
evaluation of viable alternatives, commercial or otherwise, should be conducted to ensure
that the capabilities of the software match the overall mission needs of the system and its us-
ers.

3.5 Teardrop Case Study
Incidents of security-related attacks have been increasing steadily since the mid-1980s
[CERT 01a]. Although there is no single event that can be identified as the sole contributor to
this increase, it is likely that the ever increasing dominance of the WWW and the estimated
hundreds of millions of people who are now interconnected play a role [Telcordia].

This vast population is made up of a variety of users. Some of those are simply the curious;
others are looking for the next bargain in e-commerce. Many are the architects, designers,
implementers, and the workforce of the digital age—building the systems that are the under-
pinnings of our cities, economies, governments, and national defense. And there are a few,
the cyber terrorists, who seek to wreak havoc on the rest.

The cyber terrorists use information about the software in our systems as ammunition against
us. Just about any piece of information can help a cyber terrorist. This information may in-
clude specific versions of software, for instance a specific version of an operating system,
database, or Web server. Specific knowledge about the behavior of the software when used in
a particular context can be exploited. For example, a specific Web server with this database
on this specific operating system is known to fail in a very specific manner [Hissam 97].
What the cyber terrorist is looking for is information that is key to orchestrating an attack to
achieve some particular purpose, like a service interruption or economic gain, or to make a
socioeconomic/political statement. What the cyber terrorist is looking for is vulnerability.

3.5.1 Security Through Obscurity

Vulnerabilities can come in various forms. Most common are bugs in some specific imple-
mentation of an algorithm. But these are not the only vulnerabilities. Some vulnerabilities can
stem from how a piece of software or an entire system is architected or designed. Vulnerabili-
ties may also come in the form of poor requirements, flawed specifications, or even how the
system is operated [Neumann 95, Ellison et al. 97]. Regardless of the source, the key is being
able to identify and then exploit a vulnerability.

To exploit a vulnerability, the cyber terrorist has to find the information, understand the po-
tential for damage, and then design and perfect an attack. Information about software compo-
nents can come from a variety of sources such as vendor Web sites, bug lists, FAQs, and se-
curity reports. Information can also be obtained through black-box testing and visibility

36 CMU/SEI-2001-TR-019

techniques. What makes this difficult is correlating all the sources of information and raw
data to discover and understand a vulnerability in order to create an attack.

However, there is another source of information about a software component: the source code
itself. If a cyber terrorist has the source code to the software components in a system, the job
of correlating all the sources of information becomes much easier—questions about the im-
plementation and the design can be answered by inspecting the source code itself. When deal-
ing with software components from commercial vendors, access to the source code is rarely
possible. However, systems are coming to rely more upon OSS as a source of components
from which to achieve functionality. This means that cyber terrorists have greater access to
the source.

This does not necessarily mean that systems are more vulnerable because they are comprised
in whole or in part of OSS. What it does mean is that cyber terrorists who want to attack a
system have access to more information about those constituent components than they would
in systems comprised of software where the source code is not available (e.g., CSS). And
with more information, there is more opportunity for discovery.

There is a continuing debate over whether there is security through obscurity. Put another
way, are systems comprised of CSS more secure because the source code is not available for
inspections (hence obscured)? The positions are strong on both sides of the argument [Whit-
lock 01, Lipner 00, McGraw 00, Neumann 00]. But regardless of the side you take, one thing
is clear: with the source code, insight into how an OSS component works and its im-
plementation is there for all to see, scrutinize, and—if you are a cyber terrorist—exploit.

3.5.2 Linus’s Law: A Premise of OSS

Recall Linus’s Law: “Given enough eyeballs, all bugs are shallow.” Essentially, this is stating
that given enough developers looking at any particular piece of source code, any flaw in that
source code will be blatantly obvious (hence shallow) to at least one of them. Although this is
quite a compelling observation, a deeper appreciation of the developer leads to questions
about the scrutiny being used by any one of those pairs of developers’ eyeballs.

Viega points out many of the motivations that drive developers to look at any one piece of
software [Viega 01]. Such reasons include everything from altruism to personal gain; perhaps
the developer has found something of particular use. However, it may be the case that those
who set out to look at the software are often discouraged for a variety of reasons (time, large
amounts of software, lack of necessary knowledge), thereby reducing the number of qualified
eyeballs.

Any latent security vulnerability in a piece of software is, for all intents and purposes, a flaw
(bug) in the code. It is a flaw in that the software behaves in a manner in which it was not

CMU/SEI-2001-TR-019 37

intended to behave. If Linus’s Law holds then, naturally some developer will discover the
shallow bug, proving that “Given enough eyeballs, all security flaws are shallow.” And like
before, at least one developer should be able to inspect, detect, and repair the flaw—hence
the security flaw is obvious to someone.

If this were indeed true, the OSS community should, over time, be producing invulnerable
software as all security flaws are detected and repaired. But for this to be true, you must as-
sume that OSS is in a steady state in that only bugs are being removed and no new (poten-
tially flawed) functionality is being introduced. But this is not the case. While all kinds of
bugs are being squashed, others are being introduced with each new piece of functionality
and new versions of software. So before software becomes invulnerable, latent flaws will
continue to persist.

Lastly, we have to consider Viega’s observations regarding the motivations behind why de-
velopers look at the source code. It may well be the case that the flaw is blatantly obvious,
not to the altruistic developer, but to the cyber terrorist. If the shallow vulnerability is obvious
to the altruistic developer, the vulnerability will be detected, repaired, and returned to the
OSS code base for all to partake. However, if the shallow vulnerability is first obvious to cy-
ber terrorists, they have the opportunity to wreak havoc on the user community and perhaps
even make a name for themselves.

At first brush, Linus’s Law appears to paint a euphoric notion of only the goodness that
comes from OSS development methods by ferreting out software bugs. However, the law
also explains other behaviors and nefarious uses of the source code that come along with
OSS. The law indirectly points out an inherent race condition between the cyber terrorist and
the OSS development community: just exactly who will find the shallow security vulnerabil-
ity first? Will it be the cyber terrorist or the altruistic developer?

3.5.3 From the Cyber Terrorist’s Workbench

Like the OSS developers, the cyber terrorist is a participant in the overall OSS development
activity (whether or not the cyber terrorist chose such a role). Time and time again, attacks
perpetrated by the cyber terrorist are followed by alerts (such as those generated by the CERT
Coordination Center ) and repairs. Interestingly, some view the role of the cyber terrorist as
something close to a liberated quality-control inspector [Thomas et al. 00]!

Aside from such a positive spin, there is no question that the OSS movement has made the
life of the cyber terrorist somewhat easier. Source code gives cyber terrorists additional tools
for their workbench, tools that they can use to carry out attacks that without the source code
would be much more difficult to orchestrate. Although there is some rationale for believing

 CERT and CERT Coordination Center are registered in the U.S. Patent and Trademark Office.

38 CMU/SEI-2001-TR-019

that cyber terrorists are actually helping to make OSS less vulnerable, one has to question the
cost that is being incurred as a result of their QA inspections.

For a moment, we step outside ourselves to take a look at OSS not from the perspective of
the altruistic developer but from that of the cyber terrorist.

3.5.3.1 Cyber Terrorist’s View #1: “What I Like About OSS”

Predominantly the source code is the greatest asset to me. The source code is the blueprint
and the key. I have insight into what the software is supposed to do and what it is not sup-
posed to do. I do not have to rely on documentation to tell me what the software can and can-
not do; I can see that for myself. There is no such thing as undocumented functionality. The
documentation is there, one line at a time. The code also tells me precisely how the soft-
ware’s functionality is carried out—step-by-step and flaw-by-flaw.

Such insight into the software permits me to get as close to the source code as I want. With
such intimacy, I can learn very sophisticated and direct attacks with such pinpoint accuracy it
is like I wrote the software myself. And since I have the source code and the means to build it
myself, I can work diligently in the privacy of my lair fine-tuning my attack without alerting
anyone to my intentions. Once I have verified and tested my attack, I can unleash my lethal
attack on the unsuspecting world.

One other aspect of OSS that is really appealing to me is the voracity with which OSS is re-
leased onto the net. Sometimes it appears as if there is a race going on between many of the
OSS projects today: for instance, who can get out what feature first and beat their competi-
tors. This often means that releases occur often but not necessarily right, resulting in software
containing many bugs.

3.5.3.2 Cyber Terrorist’s View #2: “What I Don’t Like About OSS”

Some of the properties of the OSS community that work to my advantage also work to my
disadvantage, particularly speed and source code. Once I have released my attack on the user
community, fixes or countermeasures are devised quickly. Rather than having to deal with
one individual or one small group of developers, I have to deal with an entire community of
developers acting as cyber sleuths.

Since the source code is available to me, it is also available to my competitors other cyber
terrorists who are motivated to unleash their attacks just as fiercely as I am. It is possible that,
while I spend my energy fine-tuning my attack, cyber sleuths may repair the flaw I plan to
exploit before I get the opportunity to release the attack. It is also possible that other cyber
terrorists have identified the vulnerability and perfected their attack prior to my release. Un-
fortunately, those are the risks that I take in my business.

CMU/SEI-2001-TR-019 39

The ultimate attack is one in which there is no countermeasure. Unfortunately, such a cyber
terrorist’s nirvana is unlikely to appear for quite a long time, as each attack and responding
countermeasure only serves to strengthen and improve the software over time.

3.5.3.3 Cyber Terrorist’s View #3: “Even More Things I Like About OSS”

But even the things that I dislike about OSS also work to my advantage. When a patch is re-
leased for a piece of OSS, whether it is a response to an attack (i.e., countermeasure) or the
repair of a flaw, there is much that can be learned from the patch itself. First, the patch can
sometimes alert me to a vulnerability that was previously unknown to myself and other cyber
terrorists. Furthermore, the patch and the underlying flaw can point me to other similar soft-
ware systems that may exhibit the same flaw. Such a situation can occur in software that ex-
tends from the same root-code base. For instance, a bug discovered and repaired in an OSS
variant of FTP may point to a similar flaw in another OSS variant of FTP. One example of
this is bind’s “nxt record bug” [CERT 01b].

Perhaps less known is the insight that OSS source code can give me into CSS systems such
as COTS software. As in the OSS community, CSS can sometime emanate from the same
root-code base. Knowledge that some particular piece of CSS is shared or perhaps descendant
from a similar piece of OSS gives me clues as to what attacks could be possible against a
CSS system. Again returning to the FTP example, if a commercial offering of an operating
system includes a variant of FTP, possibly a descendant of wu-ftpd,17 it may be susceptible
to flaws already patched in the root-code base for wu-ftpd. I can turn my attention to the
wu-ftpd patches and use what I learn from them to attack the unpatched commercial offer-
ing of FTP.

Finally, given the nature of OSS, the source code to the countermeasure is also available.
With the source, counterattacks to the countermeasure can be devised or abandoned more
quickly. If a review of the source code to a countermeasure shows additional vulnerability,
the design and implementation of a counterattack is much easier to create. If however, the
countermeasure instituted by the OSS community is sound, I can determine, again through
inspection, that my time is better spent working on the next attack for another flaw. I do not
have to spend my time trying to get around the countermeasure in the dark; the countermea-
sure’s implementation is there in the open for me to see.

We now suspend our “out-of-body” experience in the mind of the cyber terrorist and examine
a real attack that occurred a few years ago, to illustrate some of the advantages afforded the
cyber terrorist.

17 Wu-ftpd is the affectionately known name for the OSS FTP daemon, wuarchive-ftpd, that was

developed at Washington University by Bryan P. O’Connor. For more information, go to
<http://www.wu-ftpd.org>.

40 CMU/SEI-2001-TR-019

3.5.4 Teardrop: One Perspective of the Attack

Earlier we surmised the advantages and disadvantages of OSS from the perspective of the
cyber terrorists. Perhaps the most interesting, if not most chilling, issue is the insight into
CSS that can be achieved through OSS. This insight is not limited to situations where both an
OSS and CSS program share the same root-code base, but can occur when both OSS and
CSS share the same architecture, design, or specification. One case in point is the specifica-
tion for the Internet Protocol (IP) [DARPA 81].

Going back to 1997, sparse reports were appearing in the Internet news groups about a de-
nial-of-service (DoS) attack against the Linux operating system. This attack, called Teardrop,
was a full frontal assault on the operating system’s IP stack that is implemented in kernel
space. The essence of the attack was to construct two or more abnormal IP packets and
transmit those packets to an unsuspecting Linux host with the flawed IP stack. Upon receipt
of those packets, the Linux kernel would crash, denying the use of that host until the system
was restarted.

What made this attack attract our attention was the level of intimacy needed with Linux’s
implementation of the IP stack to pull it off. What also made this attack interesting was that it
was a heterogeneous DoS attack in that it not only affected Linux kernels prior to version
2.0.32, but also affected Windows 95 and Windows NT versions 3.5 and 4.0 (prior to service
pack 3). The fact that the perpetrator had to have such intimate knowledge of the
implementation details and its effect on a CSS product truly warranted investigation.

Teardrop worked because the IP packets that it constructed would not be generated normally
by properly functioning IP stacks. What Teardrop did to crash the Linux kernel was to pro-
duce IP packets that were marked as fragmented packets (as per the specification) and intro-
duce incorrect offsets and payload sizes into the IP header. When interpreted by the Linux
kernel, the combination of fragmented IP packets and malformed offsets and sizes caused the
kernel code to generate a negative length (signed integer value) that was actually treated as a
large positive number by the kernel (unsigned integer value). Upon reassembly of the frag-
mented packets, the kernel was then tricked into moving too much data, thereby overflowing
allocated kernel buffers and, in most cases, causing the operating system to crash. Reviewing
the Linux kernel from the period (specifically version 2.0.30), we were able to trace the code
and reproduce the IP fragmentation flaw.

The flaw stems from an ambiguity in the IP specification about how to handle IP fragments
that overlap with prior fragments where the payload is nonexistent or very small (smaller
than the fragment claims to be). The inspection of this anomalous condition is shown in
Figure 3.

CMU/SEI-2001-TR-019 41

1 /* Copy the data portions of
all fragments into the new buffer. */

2 fp = qp->fragments;
3 while(fp != NULL)
4 {
5 if(count+fp->len > skb->len)
6 {
7 NETDEBUG(printk(

"Invalid fragment list: Fragment over size.\n"));
8 ip_free(qp);
9 kfree_skb(skb,FREE_WRITE);

10 ip_statistics.IpReasmFails++;
11 return NULL;
12 }
13 memcpy((ptr + fp->offset), fp->ptr, fp->len);
14 count += fp->len;
15 fp = fp->next;
16 }

Figure 3: Fragmentation Flaw

The programming error that was exploited by the authors of the Teardrop DoS attack is lo-
cated at line number 5 in Figure 3. This code is part of the IP packet assembly logic that takes
a set of fragmented IP packets and combines them into one complete IP packet by copying
each fragment into a contiguous data area. Line 5 of the code verifies that there is enough
space left in the contiguous data area before a fragment is copied to that area. This code ex-
pects that the value of fp->len is greater than or equal to zero and will work fine as long as
that assumption is true. However, if fp->len is less than zero, the code allows the memory
copy in line 13 to occur with the negative value of fp->len being treated as a very large
positive number (used to indicate number of bytes to copy) by the memcpy() function. This
memory copy with erroneous data causes unintended data to be overwritten, thus crashing the
operating system. The programming was corrected by changing line 5 to read

if (fp->len < 0 || count+fp->len > skb->len)

The corrected code now verifies that the length of the IP fragment is valid (greater than or
equal to zero) before the data copy is allowed to occur; otherwise it returns an error.

What is curiously interesting about this attack is that another operating system, Windows
95/NT, was also its victim, making it a heterogeneous attack upon a very specific condition.
It is possible that both IP stack implementations suffered from the ambiguity in the IP speci-
fication and were engineered forward subsequently with the same defect. However it is also
plausible that both IP stack implementations shared a common root ancestry and were distant
cousins, siblings, or twins! But in any case, the perpetrator of Teardrop, knowing precisely
how to crash the Linux kernel IP stack with only a pair of IP fragmented packets, was also
able to initiate an identical DoS attack (only with additional IP fragmented packets) against a
CSS operating system.

42 CMU/SEI-2001-TR-019

This may have just been dumb luck. But something even more interesting occurred after the
OSS community released the patch for Linux. In the patch to ip_fragment.c, there was a
repair of another anomalous condition in the state transition of IP fragment reassembly that
had not been exploited by the cyber terrorists. The OSS community, with forethought of pur-
pose, closed the door on another DoS attack. This is a great example of OSS development at
work and a credit to the patch’s authors.

Initially unofficial patches were released to the Internet newsgroups. Eventually, the official
patch made its way into Linux kernel version 2.0.32. Around that same time the CERT Coor-
dination Center issued an advisory coordinating the announcement with both commercial
vendors and the OSS community whose operation systems may have also been affected
[CERT 01c].

But the OSS patch for the Linux kernel had an unintended side effect. The patch advertised to
the world (or anyone who was reading the newsgroups or looking at the patch source code)
that there was a second flaw in the IP stack that could be vulnerable to variations on the Tear-
drop version of malformed, IP packet fragments. Soon after the release of the CERT advisory,
other variants of Teardrop (counterattacks) began to appear (e.g., Bonk, Boink, NewTear).
Since Linux introduced the patch to this untapped vulnerability, it was immune to these at-
tacks; however Microsoft Corporation (the developer of Windows) was not. The Teardrop
variants quickly ripped through the Microsoft IP stack. To Microsoft Corporation’s credit, it
quickly released a second patch on the heels of the Teardrop variants, repairing that vulner-
ability.

This study reveals that it is possible for cyber terrorists to learn about one or more vulner-
abilities in a CSS product from OSS source code and patches.

CMU/SEI-2001-TR-019 43

3.5.5 Summary

OSS brings an entirely new parameter to the equation for system integrators. OSS is not only
a viable source of components from which to build systems, but the source code enables the
integrator to discover other properties of the component that are not typically available when
using CSS components. Unfortunately there is a cost to this benefit, as cyber terrorists also
gain additional information about those components and discover vulnerabilities at a rate
which is comparable to those looking to squash bugs.

This is not to say that security through obscurity is the answer. There is no doubt that sun-
shine kills bacteria. That is, the openness of OSS development can lead to better designs, bet-
ter implementations, and eventually better software over time. However, until a steady state
in any software release can be achieved, the influx of changes, rapid release of software (per-
haps before its time), and introduction of new features and, invariably, flaws will continue to
feed the vicious cyclic nature of attack and countermeasure.

44 CMU/SEI-2001-TR-019

CMU/SEI-2001-TR-019 45

4 Lessons Learned/Observations

4.1 Trends Towards OSS Use and Development
There is no doubt that industry has accepted and embraced OSS. This is because some OSS
products have proven to be just as reliable and secure as similar commercial products that are
on the market today. Both Linux and Apache have played a big role in gaining industry con-
fidence in OSS.

According to the Netcraft Survey, a survey of Web server software usage on Internet-
connected computers, the Apache Web OSS server has been the predominant Internet Web
server since 1996, with a current market share of about 60% [Netcraft 01]. The survey also
shows the Linux operating system with a current market share of about 30%. These statistics
are a good indicator of industry’s acceptance of and trust in OSS products.

Industries, specifically those in the software-development business, are beginning to support
the idea of development in the style of OSS. For example, Borland, a company that produces
software-development tools such as integrated-development environments, compilers, and
databases, has open-sourced some of its products. To date, Borland has open-sourced its
component library for Kylix, a rapid application development (RAD) environment for the
Linux platform, and a database called Interbase. The idea of commercial companies making
their products open source, as a business practice, has not become mainstream, and it is diffi-
cult to determine whether this will become the trend.

When OSS became popular, companies were created to profit from the OSS movement. The
focus of these companies or their Web sites was usually to profit or promote their products by
providing

1. Web-based collaborative environments for OSS development

2. OSS incubators—Web sites that host OSS projects and provide a Web-based collabora-
tive software-development environment

3. OSS project databases and repositories that catalog information about different OSS pro-
jects

4. third-party support or value-added packaging for a suite of OSS products

CollabNet is an example of a company that sells a product for Web-based, collaborative, OSS
development called SourceCast. CollabNet also offers consulting services to companies that

46 CMU/SEI-2001-TR-019

want to set up collaborative software-development environments and practices based on open
source principles. Initially CollabNet was focused on helping companies set up OSS devel-
opment projects but over time has expanded its scope to include collaborative software de-
velopment within an enterprise.

The development of software within an enterprise is sometimes called corporate-source soft-
ware (in the past, prior to the contemporary OSS advocacy campaign, this was referred to as
distributed software development). Corporate-source software is basically proprietary soft-
ware that is developed usually across globally disparate communities with select customers,
corporate groups, partners, and businesses. The idea of distributed software development has
been around for over 10 years. However, the availability of Web-based COTS tools to facili-
tate distributed software development is a fairly new concept.

Companies that run OSS incubator Web sites, such as SourceForge.net (which is run by VA
Linux), use this Web site to promote OSS and market their OSS collaboration software. The
expense to maintain this free Web site is augmented by additional revenue from advertise-
ments that are embedded within the site’s Web pages. VA Linux also markets its OSS, Web-
based, collaborative software-development environment to industry for use in the develop-
ment of corporate-source software.

The Web sites for OSS project databases and repositories often have advertisement-based
revenue schemes as well. Others run this type of Web site to promote their OSS collaboration
software, such as Freshmeat, which is also funded by VA Linux. It is important to note that
companies such as VA Linux can make the OSS movement look bigger through the creation
and funding of various OSS Web sites.18

The third-party OSS vendor tends to try to profit from OSS by providing professional
documentation, packaging, and support. These types of companies often provide true value to
the OSS product and are often well worth the additional expense. It is also important to note
that some companies occasionally open-source a product that was once being marketed as
commercial (CSS) software, only to turn around and then become a third-party vendor to the
now OSS product. Often in this case, the company is just looking for another way to profit
from a product that for some reason was unable to compete with other commercial products.

18 VA Linux, Inc. owns the trademarks to the Open Source Development Network (OSDN), Fresh-

meat, Geocrawler, Linux.com, LinuxGram, NewsForge, Slashcode, Slashdot, SourceForge.net,
and themes.org all of which are portals to the OSS movement.

CMU/SEI-2001-TR-019 47

Many of the companies that were created as a result of the OSS movement have run into fi-
nancial trouble and are now looking into new ways of marketing their products. At this stage,
it is impossible to determine the fate of OSS and whether it will be the trend of the future, but
at least for the moment, OSS has received a lot of attention from industry and the software
community.

4.2 What It Takes for a Successful OSS Project
In the summer of 2000, we conducted a birds-of-a-feather (Bof) session at the O’Reilly Open
Source Conference in Monterey, California. Approximately 30 people attended the session
and a lively discussion ensued. The session’s purpose was to attempt to learn what it takes to
make an OSS project successful (and by extension, what it means for such a project to be
successful.) The participants consisted mostly of OSS developers and users. The success of
an open source project is determined by several things, which can be placed loosely into two
groups: people and software.

As one participant of the workshop who was paraphrasing Raymond put it, “The best OSS
projects are those that scratch the itch of those who know how to code” [Raymond 99]. This
is saying that a large potential user community is not enough to make an open source project
successful. It also requires a large, or at least dedicated, developer community. Such commu-
nities are difficult to come by, and the successful project is likely to be one that meets some
need of the developer community.

For instance, the development of an OSS accounting system is less likely to be successful
than that of a graphics system. The potential developer pool for the former is much smaller
than that for the latter just because of interest.

The success stories in OSS all seem to “scratch an itch.” Linux, for instance, attracts legions
of developers who have a direct interest in improving an operating system for their own use.
However, it scratches another important “itch” for some of these folks: it is creating a viable
alternative to Microsoft Corporation’s products. Throughout our discussions with groups and
individuals, this anti-Microsoft-Corporation sentiment was a recurring theme.

Another successful open source project is the Apache Web server. Although a core group is
responsible for most of its development, it is the Webmaster community that actually contrib-
utes to its development.

On the other hand, as already detailed in Section 3.1, we found that Zelerate AllCommerce,
without serious corporate sponsorship, was unable to sustain itself as a viable open source
project. Without being paid, there weren’t enough developers who cared deeply enough to
sustain it.

48 CMU/SEI-2001-TR-019

While people issues play a large part in the success of an open source project, there are soft-
ware issues as well that can be divided into two groups: design and tools.

The poorly thought out initial design of an open source project is a difficult impediment to
overcome. For instance, huge, monolithic software does not lend itself very well to the open
source model. Such software requires too much up-front intellectual investment to learn the
software’s architecture, which can be daunting to many potential contributors. A well-
modularized system, on the other hand, allows contributors to carve off chunks on which they
can work.

An example of an open source project that appears to not be working well because of the
structure of the software is Mozilla (the open source Web browser). In order to release
Mozilla, Netscape apparently ripped apart Netscape Communicator, and the result, according
to Bof participants, was a “tangled mess.” Perhaps it is not coincidental that Mozilla is hav-
ing trouble releasing a product that people actually use (though we understand that people do
use pieces of it in other projects).

To its credit, Netscape realized that there was a problem with Mozilla and, in an attempt to
help the situation, created a world-class set of open source tools. These tools, such as Bonsai,
Bugzilla, and Tinderbox, support distributed development and management and help devel-
opers gain insight into Mozilla. While perhaps not true several years ago, the adoption of a
reasonable tool base is required for an open source project to have a significant chance of
success (if only to aid in the distributed-development paradigm and information dissemina-
tion). Tools such as revision-control software and bug-reporting databases are keys to suc-
cess. Fortunately for the community, organizations like SourceForge.net
(www.SourceForge.net) are making such tool sets easily available; this goes a long way to-
wards solving that aspect of the problem.

A final factor in the success of an open source project is time. Corporate software develop-
ment can be hampered by unrealistically short time horizons. OSS development can be as
well. However, in the former case, projects are all too often cancelled before they have a
chance to mature, while in the latter case an effort can continue on (perhaps with reduced
numbers of people involved). The result may be that an apparent failed open source project
becomes a success. Because of this, it is difficult to say that a particular project has failed. As
one of the attendees said regarding the GIMP product (a Photoshop-like piece of OSS), “It
hasn’t failed, it just hasn’t succeeded—yet.” In fact in the ensuing year, it appeared that the
GIMP product was becoming more successful.

CMU/SEI-2001-TR-019 49

4.3 The OSS Development Model
It may not be surprising that the development process for OSS differs from traditional soft-
ware development. What may be surprising to some is how ultimately similar they are.

Traditional software development starts with a detailed requirements document that is used
by the system architect to specify the system. Next comes detailed system design, implemen-
tation, validation, verification and, ultimately, maintenance/upgrade. Iteration is possible at
any of these steps. Successful OSS projects, while not conducted as traditional (e.g., com-
mercial) developments, go through all of these steps as well.

But the OSS development model differs from its traditional cousin. For instance, require-
ments analysis may be very ad hoc. Successful projects seem to start with a vision and often
an artifact (e.g., prototype) that embodies that vision at least in spirit. This seems to be the
preferred way of communicating top-level requirements to the community for an OSS pro-
ject. As the community grows, the list of possible requirements will grow as well. Additional
requirements or new features for an OSS project can come from anyone with a good (or bad)
idea. Furthermore these new requirements actually may be presented to the community as a
full-fledged implementation. That is, someone has what he thinks is a good idea, goes off and
implements it, and then presents it to the community. Usually this is not the case in a tradi-
tional project.

In a traditional project, the system architect will weigh conflicting requirements and decide
which ones to incorporate and which to ignore or postpone. This is not done as easily in an
OSS development effort where the developer community can vote with its feet. However,
successful projects seem to rely on a core group of respected developers to make these
choices. The Apache Web server (see Section 3.2) is one example of such a project. This core
group is taking on the role of a system architect. If the core group is strong and respected by
the community, the group can have the same effect (virtually identical) as determining re-
quirements for a traditional development effort.

Implementation and testing happens in OSS development efforts much as it does for tradi-
tional software-development efforts. The main difference is that these activities are often go-
ing on in parallel with the actual system specification. Individual developers (core or other-
wise) carve out little niches for themselves and are free to design, implement, and test as they
see fit. Often there will be competing designs and implementations, at most one of which will
be selected for inclusion in the OSS system. It is the core group (for systems so organized)
that makes the selections and keeps this whole process from getting out of control.

Finally, to conduct maintenance activities, upgrade, re-release, or port to new platforms, the
open source community relies on sophisticated tools for activities such as version control,

50 CMU/SEI-2001-TR-019

bug tracking, documentation maintenance, and distributed development. The OSS project that
does not have or use a robust tool set (usually open source itself) either has too small a com-
munity to bother with such baggage or is doomed to failure. This is also the case for tradi-
tional development.

4.4 The Relationship of OSS to CSS
Judging from the press it receives, OSS is something new in the world of software develop-
ment. To the limited extent that the press itself is sensitive to the term, there is truth to that
statement. It would be fair to acknowledge that more people (and not just software engineers)
are now sensitive to the term open source than ever before—for which we can also thank the
press. But what makes OSS new to the general, software-systems engineering community is
that we are faced with more choices for viable software components than ever before. But
you may ask yourself, before what?

4.4.1 The World Before OSS

Before OSS became a popular term, software engineers had three generalized choices for
software components. They could be

• built from the ground up

• acquired from another software project or initiative

• purchased from the commercial marketplace

If the component was to be built from the ground up, there were basically two approaches: to
actually undertake the development of the component from within the development organiza-
tion (i.e., in-house), or to negotiate a contract to develop the component via an external soft-
ware-development organization. Essentially the component was custom built. As such, the
software sources were available for the component acquired in this fashion.

One other popular approach was to locate components of similar functionality from other
(potentially similar) software projects. The term often used in this context was reuse or do-
main-specific reuse. If a component could be located, it could then be adapted for the specific
needs of the using software-development activity. In U.S. government vernacular, this was
also referred to as government off-the-shelf (GOTS) software. Typically reuse libraries and
GOTS software would come in binary and source-code form.

Finally, software engineers had the option of looking to the commercial marketplace for
software components. Software-development organizations would undergo market surveys
trying to locate the components that best fit their needs. Evaluations would commence to de-
termine which of the commercial offerings most closely matched, and a selection would be
made. In many instances, the source code was not delivered as part of the component’s pack-
aging. In some cases, the source code may have been available for an additional cost (if at

CMU/SEI-2001-TR-019 51

all). And in the event that the source code could be bought, there were (and still are) very re-
strictive limitations placed on what could and could not be done to those sources.

4.4.2 The World After OSS

With the advent of OSS, the community has an additional source of components, which is
actually a combination of all three of the above choices. OSS and reusable components are
very much alike in that they are both developed by others and often come in binary and
source-code form. But like reusable components, it can be challenging to understand what the
OSS component does [Shaw 96].

Because it comes with the source, OSS is similar to custom-built software. However, it lacks
the design, architectural, and behavioral knowledge inherent to custom-built software. This is
also a problem with commercially purchased software. This lack of knowledge allows us to
draw a strong analogy between OSS and COTS software in spite of the source code being
available for the former and not for the latter.

The SEI has been studying COTS-based systems for a number of years and has learned some
important lessons about them, many of which apply directly to OSS.19

Organizations adopting an OSS component have access to the source, but are not required to
do anything with it. If they choose not to look at the source, they are treating it as a black
box. Otherwise they are treating it as a white box. We discuss both of these perspectives be-
low.

4.4.3 OSS as a Black Box

Treating OSS as a black box is essentially treating it as a COTS component; the same bene-
fits and problems will apply. For instance, an organization adopting COTS products should
know something about the vendor (e.g., its stability and responsiveness to problems), and an
organization adopting OSS should know something about its community.

If the community is large and active, the organization can expect that the software will be
updated frequently, that there will be reasonable quality assurance, that problems are likely to
be fixed, and that there will be people to turn to for help. If the community is small and stag-
nant, it is less likely that the software will evolve, that it will be well tested, or that there will
be available support.

Organizations that adopt COTS solutions are often too small to have much influence over the
direction in which the vendor evolves the product [Hissam et al. 98]. Black-box OSS is

19 See the COTS-Based Systems (CBS) Initiative Web site at <http://www.sei.cmu.edu/cbs>.

52 CMU/SEI-2001-TR-019

probably worse in this regard. A COTS component will change due to market pressure, time-
to-market considerations, the need for upgrade revenue, and so forth. OSS components can
change for similar market reasons, but can also change for political or social reasons (factions
within the community), or because someone has a good idea—though not necessarily one
that heads in a direction suitable to the organization.

Organizations that adopt COTS products can suffer from the vendor-driven upgrade problem:
the vendor dictates the rate of change in the component, and the organization must either up-
grade or find that the version it is using is no longer supported. This same problem exists
with OSS. The software will change, and eventually the organization will be forced to up-
grade or be unable to benefit from bug fixes and enhancements. The rate of change for an
eagerly supported OSS component can be staggering.

Organizations that adopt COTS solutions often find that they have to either adapt to the busi-
ness model assumed by the component or pay to have the component changed to fit their
business model [Oberndorf et al. 99]. We have found that adapting the business model usu-
ally works out better than changing the component [Brownsword et al. 00]. Once you change
a component, you own the solution. If the vendor does not accept your changes, you’ll be
faced with making them to all future versions of the software yourself.

For black-box OSS, it may be easier for a change to make its way back into the standard dis-
tribution. However, the decision is still out of the organization’s control. If the community
does not accept the change, the only recourse is to reincorporate the change into all future
versions of the component.

Because of a lack of design and architectural specifications, undocumented functionality, un-
known pre- or post-conditions, deviations from supported protocols, and environmental dif-
ferences, it is difficult to know how a COTS component is constructed without access to the
source code. As a consequence, it can be difficult to integrate the component. With OSS, the
source is available, but consulting it means that the component is no longer being treated as a
black box.

4.4.4 OSS as a White Box

Because the source is available, it is possible to treat OSS as a white box. It therefore be-
comes possible to discover platform-specific differences, uncover pre- and post-conditions,
and expose hidden features and undocumented functionality. With this visibility comes the
ability to change the components as necessary to integrate them into the system.

However, sometimes the source is the only documentation that is provided. Some consider
this to be enough. Linus Torvalds, the creator of Linux, has said, “Show me the source.” Yet
if this were the case, there would be no need for Unified Modeling Language (UML), use

CMU/SEI-2001-TR-019 53

cases, sequence diagrams, and other sorts of design documentation. Gaining competency in
the OSS component without these additional aids can be difficult.

An organization that treats OSS as a white box has a few key advantages over one that treats
it as a black box. One advantage is the ability to test the system knowing exactly what goes
on inside the software. Another advantage is the ability to fix bugs without waiting for the
community to catch up. A seeming advantage is the ability to adapt the system to the organi-
zation’s needs. But as we’ve already discussed, the rejection of your change by the commu-
nity means that you own the change and have given up many of the benefits of OSS.

4.4.5 Summary

Just as for COTS components, OSS components require substantial skills to understand,
evaluate, use, and integrate. OSS improves upon COTS products because access to the source
lets an organization gain insight into the component and, if warranted, repair it by making
adaptation directly to the source code.

4.5 Acquisition Issues
According to the President’s Information Technology Advisory Committee (PITAC)

“Existing federal procurement rules do not explicitly authorize competition be-
tween open source alternatives and proprietary software. This ambiguity often
leads to a de facto prohibition of open source alternatives within agencies”
[PITAC 00].

The PITAC recommends that the federal government allow open source development efforts
to “compete on a level playing field with proprietary solutions in government procurement of
high-end computing software.” We wholeheartedly endorse that recommendation.

In the presence of such a level playing field, acquiring OSS would not be fundamentally very
different from acquiring COTS software. The benefits and risks would be similar and both
must be judged on their merits.

We’ve already discussed issues such as security in the open source context, so we won’t con-
sider them here. Those sorts of issues aside, there are two risks that an organization acquiring
OSS faces:

• that the software won’t exactly fit the needs of the organization

• that ultimately there will be no real support for the software

We’ll address each of these in turn.

54 CMU/SEI-2001-TR-019

A key benefit of OSS is that the sources are available, allowing them to be modified as neces-
sary to meet the needs of the acquiring organization. While this is, indeed, a benefit, it also
introduces several significant risks. Once the OSS is modified, many open source licenses
require the organization to give the changes back to the community. For some systems this
may not be a problem, but for others there may be proprietary or sensitive information in-
volved. Thus it is very important to understand the open source license being used.

As discussed in the preceding section on CSS, the fact that a modification is given back to the
community does not mean that the community will embrace it. If the community doesn’t em-
brace it, the organization faces a serious choice. It can either stay with the current version of
the software (incorporating the modifications) or move on to updated versions—in which
case, the modifications will have to be made all over again. Staying with the current version
is the easy thing to do, but in doing so you give up some of the advantages of OSS.

With COTS software there is always the risk of the vendor going out of business, leaving the
organization with software but no support. This can be mitigated, somewhat, by contract
clauses that require the escrowing of the source code as a contingency. No such escrow is
needed for OSS. However, in both cases, unless the organization has personnel capable of
understanding and working with the software’s source code, the advantage of having it avail-
able is not clear. Certainly there would be tremendous overhead should there be a need to
actually use the source code; essentially by taking it over, you are now in the business of pro-
ducing that product.

Most government software is acquired through contracts with contractors. A contractor pro-
posing an open source solution in a government contract needs to present risk-mitigation
plans for supporting the software just as it would have to do if it were proposing a COTS
product. In the case of a COTS product, this might include statements regarding the stability
of the vendors involved. No such statement is valid regarding OSS. The community sur-
rounding an open source product is not guaranteed to be there when needed, nor is it guaran-
teed to care about the support needs of the government. Furthermore if the proposing contrac-
tor is relying on the OSS community to either add or enhance a product feature or accept a
contractor-provided enhancement in the performance of the government-funded, software-
development contract, the government should expect a mitigation if the OSS community does
not provide such an enhancement or rejects the enhancement outright. Thus the ultimate sup-
port of the software will fall on the proposing contractor.

There are, of course, unique benefits of OSS—many of which have been discussed elsewhere
in this report. From an acquisition point of view, the initial cost of OSS is low. Also, at least
for significant open source products, it is likely (but by no means guaranteed) that the quality
of the software will be on par with many COTS solutions. Finally, when modifications are
needed, it is guaranteed that they can be made in OSS. For COTS software there is always

CMU/SEI-2001-TR-019 55

the possibility that the vendor will refuse. (But, as we’ve seen, the ability to modify is also a
source of risk.)

4.6 Security Issues
Trust in the software components that are in use in our systems is vital, regardless of whether
the software comes from the bazaar or the cathedral. As integrators, we need to know that
software emanating from either realm has been reviewed and tested and does what it claims
to do. This means that we need eyes that look beyond the source code and to the bigger pic-
ture. That is the holistic and system view of the software—the architecture and the design.

Others are beginning to look at the overall OSS development process [Feller et al. 01, Naka-
koji et al. 01]. More specifically from the Apache case study (above), we observed what type
of contributions have been made to the Apache system and whether those who made them
were core or non-core Apache developers. We learned that a majority (90%) of changes to the
system (implementation, patches, feature enhancements, and documentation) were carried out
by the core-group developers, while many of the difficult and critical architectural and design
modifications came from even fewer core developers. Non-core developers contributed to a
small fraction of the changes. What is interesting is that the Apache core developers are a
relatively small group compared to the non-core developers—in fact the size of the core de-
velopers is on par with the typical size of development teams found in CSS products.

This is not intended to imply that OSS lacks architectural and design expertise. Actually, the
Apache modular architecture is likely central to its success. However, even with the existence
of a large community of developers participating actively in an OSS project, it is questionable
to the extent that many eyes are really critiquing the holistic view of the system’s architecture
and design, looking for vulnerabilities.

This is not just an issue for OSS: it is a problem for CSS as well. That is, in CSS we have to
trust and believe that the vendor has conducted such a holistic review of its commercial soft-
ware offerings. We have to trust the vendor because there is little likelihood that any third
party can attest to a vendor’s approach to ridding its software of vulnerabilities. This specific
point has been a thunderous charge of the OSS community, and we do not contest that asser-
tion. But we caution that just because the software is open to review, it should not automati-
cally follow that such a review has actually been performed (but of course you are more than
welcome to conduct that review yourself—welcome to the bazaar).

56 CMU/SEI-2001-TR-019

CMU/SEI-2001-TR-019 57

5 Conclusions

5.1 Making Lightning Strike Twice
Instances of successful OSS products such as Linux, Apache, Perl, sendmail and much of the
software that makes up the backbone of today’s Web are clear indications that successful OSS
activities can strike often. But like lightning we can ask, “Is it possible to predict where the
next strike will be?” or, “Is it possible to make the next strike happen?”

Continuing with this analogy, we can answer these questions to the extent that science will
permit. Like lightning, meteorologists can predict the likelihood of severe weather in a metro
region given atmospheric conditions. For OSS it may be harder to predict the likelihood of
success for an OSS product or activity, but certain conditions appear to be key, specifically

• It is a working product. Looking back at many of the products, especially Apache and
Linux, none started in the community as a blank slate. Apache’s genesis began with the
end of the National Center for Supercomputing Applications (NCSA) Web server. Linus
Torvalds released Linux version 0.01 to the community in September 1991. Just a prod-
uct concept and design in the open source community has a far less likely chance of suc-
cess. A prototype, early conceptual product, or even a toy is needed to bootstrap the
community’s imagination and fervor.

• It has committed leaders. Equally as important is a visionary or champion of the prod-
uct to chart the direction of the development in a (relatively) forward direction. Although
innovation and product evolution are apt to come from any one of the hackers in the de-
velopment community, at least one person is needed to be the arbiter of good taste with
respect to the product’s progress. This is seen easily in the Apache project (regarding the
Apache Foundation).

• It provides a general community service. This is perhaps the closest condition to the
business model for commercial software. It is unlikely that a commercial firm will bring
a product to market if there is no one in the marketplace who will want to purchase that
product. In the open source community, the same is also true. Raymond points out a few
valuable lessons:

− “Every good work of software starts by scratching a developer’s personal itch.”
− “Release early, release often. And listen to your customers.”
− “To solve an interesting problem, start by finding a problem that is interesting to

you” [Raymond 99].

 From these lessons, there is a theme that talks to the needs of the developers themselves
(e.g., personal itch) and a community need (e.g., customers or consumers who need the
product or service).

58 CMU/SEI-2001-TR-019

• It is technically cool. You are more likely to find an OSS device driver for a graphics
card than an accounting package. Feller and Fitzgerald categorized many of the open
source projects in operation, noting that a high percentage of those were Internet applica-
tions (browsers, clients, servers, etc.), system and system-development applications (de-
vice drivers, code generators, compilers, and operating systems/kernels), and game and
entertainment applications [Feller et al. 02].

• Its developers are also its users. Perhaps the characteristic that is most indicative of a
successful OSS project is the developers themselves also being the users. Typically this is
a large difference between OSS and commercial software. In commercial software, users
tend to convey their needs (i.e., requirements) to engineers who address those needs in
the code and then send the software back to the users to use. A cycle ensues with users
conveying problems and the engineers fixing and returning the code. However in OSS, it
is more typical that a skilled engineer would rather repair the problem in the software and
report the problem along with the repair back to the community. The fact that OSS prod-
ucts are technically cool explains why many of the most popular ones are used typically
by the developer community on a day-to-day basis. (Not many software developers we
know use accounting packages!)

This is not to say that any product or activity exhibiting these conditions will, in fact, be suc-
cessful. But those products that are considered to be successful meet all of them.

This leads us to the next question: “Is it possible to make the next strike happen?” In light-
ning research, scientists use a technique called rocket-and-wire technique to coax lightning
from the skies to the ground for research purposes. In that technique and under the optimum
atmospheric conditions, a small rocket is launched trailing a ground wire to trigger lightning
discharges [UFECE]. For OSS, a comparable technique may involve creating conditions that
are favorable to OSS development but may fail to instigate a discharge from the OSS com-
munity.

At this point, we abandon our lightning analogy and observe (and dare predict) that there will
be other successful OSS products and activities in the coming years. Furthermore, we sur-
mise that such products will exhibit the conditions discussed above. Whether they happen by
chance or by design is difficult to tell.

5.2 In Closing…
The SEI views OSS as a viable source of components from which to build systems. However,
we are not saying that OSS should be chosen over other sources simply because the software
is open source. Rather, like COTS and CSS, OSS should be selected and evaluated on its
merits. To that end, the SEI supports the recommendations of the PITAC subpanel on OSS to
remove barriers and educate program managers and acquisition executives and allow OSS to
compete on a level playing field with proprietary solutions (such as COTS or CSS) in gov-
ernment systems.

CMU/SEI-2001-TR-019 59

Adopters of OSS should not enter into the open source realm blindingly and should know the
real benefits and pitfalls that come with OSS. The fact that OSS is open means that everyone
can know the business logic encoded in the software that runs those systems. That means that
anyone is free to point out and potentially exploit the vulnerabilities with that logic—anyone
could be the altruistic OSS developer or the cyber terrorist. Furthermore, having the source
code is not necessarily the solution to all problems: without the wherewithal to analyze or
perhaps even to modify the software, it makes no difference having it in the first place.

It should not follow that OSS is high-quality software. Just as in the commercial marketplace,
the bazaar contains very good software and very poor software. In this report, we have noted
at least one commercial software vendor that has used its role in the OSS community as a
marketing leverage point touting the “highest quality software” when, in fact, it is no better
(or worse) than commercial-grade counterparts. Caveat emptor (let the buyer beware); the
product should be chosen based on the mission needs of the system and the needs of the users
who will be the ultimate recipients.

60 CMU/SEI-2001-TR-019

CMU/SEI-2001-TR-019 61

References/Bibliography

[Apache 99] The Apache Foundation. “About the Apache HTTP Server Project”
[online]. <http://httpd.apache.org/ABOUT_APACHE.html> (Octo-
ber 2001).

[Arief et al. 01] Arief, B.; Gacek, C.; & Lawrie, T. The Many Meanings of Open
Source (CS-TR-737). Newcastle, England: Department of Com-
puter Science, University of Newcastle upon Tyne, August, 2001.

[Asundi 01] Asundi, J. “Issues in Software Development: Outsourcing, Design
and Organization.” PhD diss., Carnegie Mellon University, 2001.

[Barksdale 99] Barksdale, J. Written Testimony from Netscape Communications
Corporation’s CEO James Barksdale, United States v. Microsoft
Corporation, Civ. No. 98-1232, Paragraphs 47-68.

[Bass et al. 98] Bass, L.; Clements, P.; & Kazman, R. Software Architecture in
Practice (ISBN: 0201199300). Reading, MA: Addison-Wesley,
1998.

[Brooks 87] Brooks, Frederick P. “No Silver Bullet: Essence and Accidents of
Software Engineering.” Computer 20, 4 (April 1987): 10-19.

[Brownsword et al.
00]

Brownsword, L. & Place, P. Lessons Learned Applying Commercial
Off-the-Shelf Products: Manufacturing Resource Planning II Pro-
gram (CMU/SEI-99-TN-015, ADA228027). Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon University, June 1999.
<http://www.sei.cmu.edu/publications/documents/99.reports
/99tn015/99tn015abstract.html>.

[CERT 01a] CERT Coordination Center. “Number of Incidents Reported” [on-
line]. <http://www.cert.org/stats/ cert_stats.html#incidents> (July
2001).

62 CMU/SEI-2001-TR-019

[CERT 01b] CERT Coordination Center. “CERT Advisory CA-1999-14 Multi-
ple Vulnerabilities in BIND” [online]. <http://www.cert.org
/advisories/CA-1999-14.html> (2001).

[CERT 01c] CERT Coordination Center. “CERT Advisory CA-1997-28 IP De-
nial-of-Service Attacks” [online]. <http://www.cert.org/advisories
/CA-1997-28.html> (2001).

[Clements et al. 01] Clements, P.; Kazman, R.; & Klein, M. Evaluating Software Archi-
tectures: Methods and Case Studies. Boston, MA: Addison-Wesley,
2001.

[Cohen 60] Cohen, J. “A Coefficient of Agreement for Nominal Scales.” Edu-
cational and Psychological Measurement 20, 1 (Spring 1960): 37-
46.

[Cusumano et al.
95]

Cusumano, M. A. & Selby, R. W. Microsoft Secrets. New York, NY:
The Free Press, 1995.

[DARPA 81] DARPA. “Internet Protocol, DARPA Internet Program Protocol
Specification” (RFC-791). Marina Del Ray, CA: Information Sci-
ences Institute, University of Southern California, September 1981.
Available FTP: <ftp://ftp.isi.edu/in-notes/rfc791.txt>.

[Dibona et al. 99] Dibona, C.; Stone, M.; Ockman, S.; et al. Open Sources: Voices
from the Open Source Revolution (ISBN: 1565925823). Sebastopol,
CA: O’Reilly & Associates, January 1999.

[Ellison et al. 97] Ellison, R.; Fisher, D.; Linger, R.; Lipson, H.; Longstaff, T.; &
Mead, N. Survivable Network Systems: An Emerging Discipline
(CMU/SEI-97-TR-013, ADA341963). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, November 1997.
<http://www.sei.cmu.edu/publications/documents/97.reports
/97tr013/97tr013abstract.html>.

CMU/SEI-2001-TR-019 63

[Feller et al. 01] Feller, J. & Fitzgerald, B. “A Framework Analysis of the Open
Source Software Development Paradigm,” 58-69. Proceedings of
the International Conference on Information System. Brisbane, Aus-
tralia, December 10-13, 2000. Atlanta, GA: International Confer-
ence on Information Systems, 2001.

[Feller et al. 02] Feller, J. & Fitzgerald, B. Understanding Open Source Software
Development (ISBN: 0201734966). Boston, MA: Addison-Wesley
Professional, UK, March 2002.

[Fielding 99] Fielding, R. T. “Shared Leadership in the Apache Project.” Commu-
nications of the ACM 42, 4 (April 1999): 42-43.

[Fleiss 81] Fleiss, J. L. Statistical Methods for Rates and Proportions. New
York, NY: John Wiley & Sons, 1981.

[Hassan et al. 00] Hassan, A. E. & Holt, R. C. “A Reference Architecture for Web
Servers.” Proceedings of the Working Conference on Reverse Engi-
neering, WCRE 2000. Brisbane, Australia, November 23-25, 2000.
Los Alamitos, CA: IEEE Computer Society, 2000.

[Hecker 99] Hecker, F. “Setting Up Shop: The Business of Open Source Soft-
ware.” IEEE Software 16, 1 (January/February 1999): 45-51.

[Herbsleb et al. 99] Herbsleb, J. H. & Grinter, R. E. “Splitting the Organization and In-
tegrating the Code: Conway’s Law Revisited.” Proceedings of the
21st International Conference on Software Engineering. Los Ange-
les, CA, May 16-22, 1999. New York, NY: Association for Comput-
ing Machinery, 1999.

[Hissam 97] Hissam, S. “Case Study: Correcting System Failure in a COTS In-
formation System.” SEI Monographs on the Use of Commercial
Software in Government Systems (monograph). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, Octo-
ber 1997. <http://www.sei.cmu.edu/cbs/papers /monographs
/case-study-correcting/ case.study.correcting.htm>.

64 CMU/SEI-2001-TR-019

[Hissam et al. 98] Hissam, S.; Carney, D.; & Plakosh, D. SEI Monograph Series: DoD
Security Needs and COTS-Based Systems (monograph). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
September 1998.

[Hubbard 95] Hubbard, J. Part of Ch. 1, “A Brief History of FreeBSD.” FreeBSD
Handbook [online]. <http://www3.au.freebsd.org/handbook
/history.html> (October 2001).

[ISS 01]] Internet Security Systems, Inc. “Teardrop IP Fragmentation” [on-
line]. <http://xforce.iss.net/static/338.php> (2001).

[Leonard 00] Leonard, A. Salon Free Software Project: Chapter 1, “Boot Time”
[online]. <http://www.salon.com/tech/fsp/2000/03/06
/chapter_one_part_2/index.html> (October 2001).

[Lipner 00] Lipner, S. B. “Security and Source Code Access: Issues and Reali-
ties,” 124-125. Proceedings of the IEEE Symposium on Security
and Privacy. Berkeley, California, May 14-17, 2000. Los Alamitos,
CA: IEEE Computer Society, 2000.

[Lutris 01a] Lutris Technologies, Inc. “Deploying Lutris Enhydra Applications”
[online]. <http://www.lutris.com/products/enhydra3_5
/inDepth/deployment.html> (September 28, 2001).

[Lutris 01b] Lutris Technologies, Inc. “Why Buy Lutris Enhydra” [online].
<http://www.lutris.com/products/enhydra3_5/whybuy.html> (Octo-
ber 2001).

[McGraw 00] McGraw, G. “Will Openish Source Really Improve Security?” 128-
129. Proceedings of the IEEE Symposium on Security and Privacy.
Berkeley, CA, May 14-17, 2000. Los Alamitos, CA: IEEE Com-
puter Society, 2000.

[Miller et al. 00] Miller, B.; Koski, D.; Lee, C.; Maganty, V.; Murthy, R.; Natarajan,
A.; & Steidl, J. “Fuzz Revisited: A Re-Examination of the Reliabil-
ity of UNIX Utilities and Services.” Madison, WI: Computer Sci-
ences Department, University of Wisconsin, February 2000.

CMU/SEI-2001-TR-019 65

[Mockus et al. 00] Mockus, A.; Fielding, R. T.; & Herbsleb, J. “A Case Study of Open
Source Software Development: The Apache Server,” 263-272. Pro-
ceedings of the 22nd International Conference on Software Engi-
neering. Limerick, Ireland, June 4-11, 2000. New York, NY: Asso-
ciation for Computing Machinery, 2000.

[NAIS 01] NASA Acquisition Internet Service. “Frequently Asked Questions”
[online]. <http://nais.msfc.nasa.gov/cgi-bin/NAIS/faq.cgi> (Sep-
tember 2001).

[Nakakoji et al. 01] Nakakoji, K. & Yamamoto, Y. “Taxonomy of Open Source Soft-
ware Development,” 41-42. Making Sense of the Bazaar: Proceed-
ings of the 1st Workshop on Open Source Software Engineering
held during the 23rd International Conference on Software Engi-
neering. Toronto, Canada, May 12-19, 2001. Los Alamitos, CA:
IEEE Computer Society, 2001.

[Netcraft 01] Netcraft. “Netcraft Web Server Survey” [online].
<http://www.netcraft.com/survey> (October 2001).

[Netscape 97] Netscape Communications Corporation. “Netscape Communicator
Open Source Code White Paper” [online].
<http://home.netscape.com/browsers/future/whitepaper.html>
(1997).

[Netscape 98] Netscape Communications Corporation. “Netscape Announces
Plans to Make Next-Generation Communicator Source Code Avail-
able Free on the Net” [online]. <http://www.netscape.com
/newsref/pr/newsrelease558.html> (1998).

[Neumann 95] Neumann, P. Computer-Related Risks (ISBN: 020155805X). Read-
ing, MA: Addison-Wesley, October 1995.

[Neumann 00] Neumann, P. “Robust Nonproprietary Software,”122-123. Proceed-
ings of the IEEE Symposium on Security and Privacy. Berkeley,
California, May 14-17, 2000. Los Alamitos, CA: IEEE Computer
Society, 2000.

66 CMU/SEI-2001-TR-019

[Oberndorf et al.
99]

Oberndorf, P. & Foreman, J. “Lessons Learned from Adventures in
COTS-Land,” track 8 on CD-ROM. Proceedings of the 11th Annual
Software Technology Conference. Utah State University, Salt Lake
City, Utah, May 2-6, 1999. Hill AFB, UT: Utah State University-
Extension in cooperation with the Software Technology Support
Center, 1999.

[O’Reilly 98] O’Reilly & Associates. “Open Source Pioneers Meet In Historic
Summit” [online]. <http://press.oreilly.com/opensource.html>
(April 1998).

[O’Reilly 99] O’Reilly, T. “Ten Myths about Open Source Software” [online].
<http://opensource.oreilly.com/news/ myths_1199.html> (1999).

[OSI 01a] Open Source Initiative. “The Open Source Definition Version 1.8”
[online]. <http://www.opensource.org/docs/definition.html> (2001).

[OSI 01b] Open Source Initiative. “OSI Certification Mark and Program”
[online]. <http://www.opensource.org/docs
/certification_mark.html> (2001).

[OSI 01c] Open Source Initiative. “Advocacy: The Open Source Case for
Business” [online]. <http://www.opensource.org/advocacy
/case_for_business.html> (2001).

[Parnas 72] Parnas, D. L. “On the Criteria to Be Used in Decomposing Systems
into Modules.” Communications of the ACM 15, 12 (December
1972): 1053-58.

[PITAC 99] President’s Information Technology Advisory Committee (PITAC):
co-chairs Joy, B. & Kennedy, K. “Report to the President, Informa-
tion Technology Research: Investing in our Future” [online].
<http://www.ccic.gov/ac/report/pitac_report.pdf> (February 1999).

CMU/SEI-2001-TR-019 67

[PITAC 00] President’s Information Technology Advisory Committee (PITAC),
Panel on Open Source Software for High End Computing: co-chairs
Smarr, L. & Graham, S. “Developing Open Source Software to Ad-
vance High End Computing” [online]. <http://www.ccic.gov/pubs
/pitac/pres-oss-11sep00.pdf> (September 11, 2000).

[Raymond 99] Raymond, E. The Cathedral & the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary (ISBN: 1565927249).
Cambridge, MA: O’Reilly & Associates, October 1999.

[Salus 94] Salus, P. A Quarter Century of UNIX (ISBN: 0201547775). Read-
ing, MA: Addison-Wesley Publishing Co., June 1994.

[Schneider 00] Schneider, F. B. “Open Source in Security: Visiting the Bizarre,”
126-127. Proceedings of the IEEE Symposium on Security and Pri-
vacy. Berkeley, California, May 14-17, 2000. Los Alamitos, CA:
IEEE Computer Society, 2000.

[Schnoll 01] Schnoll, S. “The History of Internet Explorer” [online].
<http://www.nwnetworks.com/iehistory.htm> (2001).

[Shaw 96] Shaw, M. “Truth vs. Knowledge: the Difference Between What a
Component Does and What We Know It Does,” 181-185. Proceed-
ings of the 8th International Workshop on Software Specification
and Design. Schloss Velen, Germany, March 22-23, 1996. Los
Alamitos, CA: IEEE Computer Society, 1996.

[Shaw et al. 96] Shaw, M. & Garlan, D. Software Architecture: Perspectives on an
Emerging Discipline. UpperSaddle River, NJ: Prentice-Hall, 1996.

[Stallman 98] Stallman, Richard. “Linux and the GNU Project” [online].
<http://www.fsf.org/gnu/linux-and-gnu.html> (1998).

68 CMU/SEI-2001-TR-019

[Succi et al. 01] Succi, G.; Paulson, J.; & Eberlein, A. “Preliminary Results from an
Empirical Study on the Growth of Open Source and Commercial
Software Products,” [online]. Proceedings of the Third Workshop in
Economics-Driven Software Engineering Research (EDSER-3). To-
ronto, Canada, May 12-19, 2001. Los Alamitos, CA: IEEE Com-
puter Society, 2001. <http://www.cs.virginia.edu/~sullivan/edser3/>
(2001).

[Sudderth 00] Sudderth, J. “NAIS Is Sold on Open Source.” Government Com-
puter News 19, 33 (November 2000): 29. <http://www.gcn.com
/vol19_no33/enterprise/3275-1.html>.

[Telcordia] Telcordia Technologies, Inc. Telcordia Internet Sizer.
<http://www.netsizer.com>.

[Thomas et al. 00] Thomas, B., ed. “A Discussion of Open Source Software.” SEI In-
teractive [online]. <http://interactive.sei.cmu.edu/ Features/2000
/March/Roundtable/Roundtable.mar00.pdf> (2000).

[Trimble 00] Trimble, P. “Open Minds on Open Source” [online]. Federal Com-
puter Week (December 04, 2000). <http://www.fcw.com/fcw
/articles/2000/1204/pol-nasa-12-04-00.asp>.

[UFECE] University of Florida, Electrical and Computer Engineering De-
partment. <http://www.ece.ufl.edu/labs/melemag.html>.

[Viega 01] Viega, J. “The Myth of Open Source Security” [online].
<http://webdeveloper.earthweb.com/websecu/article
/0,,12013_621851,00.html> (2001).

[Whitlock 01] Whitlock, N. “Does Open Source Mean an Open Door?” [online].
<http://www-106.ibm.com/developerworks/linux/library
/l-oss.html> (2001).

 Telcordia is a trademark of Telcordia Technologies, Inc.

CMU/SEI-2001-TR-019 69

[Wilson 99] Wilson, G. “Is the Open Source Community Setting a Bad Exam-
ple?” IEEE Software 16, 1 (January/February 1999): 23-25.

[Young 01] Young, D. “The Enhydra™ Competitive White Paper.” Santa Cruz,
CA: Lutris Technologies, Inc, February 2001.
<http://www.lutris.com/documentation/whitePapers
/competitive_wp_v53.pdf>.

70 CMU/SEI-2001-TR-019

CMU/SEI-2001-TR-019 71

Appendix A The NAIS Questionnaire

Questionnaire & Response

1 NAIS Questions

1. On the whole, what is the operational profile of the NAIS system? That is,
estimated number of daily users? daily queries?

Current average daily hits: ~1900
80-90% of this hits the database in one way or another.
Internal Users: ~ 800
External: ~ 5000 (This number reflects users signed up for email notification. The
actual user count is higher.)

2. How large is the NAIS? Could you please elaborate in terms of estimated
number of static HTML pages, CGI scripts, Web server instances (threads)?

The file count for code behind the NAIS (scripts, images, HTML, libraries, etc.)
is 800+. If you include content files that are not part of the code behind the NAIS,
the number jumps easily into the two-thousand range.

3. How large is the NAIS relational database? That is, number of tables? Num-
ber of entities? Complexity of queries (average number of tables involved in
common NAIS queries)?

Table count is 1000+; new data warehousing efforts could drive it to around
10,000 in the near future.

Query count is high, as the applications do a great deal of verification to the data-
base during processes.

Average table count on queries is 2 - 4.

4. What information is maintained in the NAIS database?

The NAIS stores numerical, character, and binary data. Sizes range from one
character to Blob fields. Data content is procurement related.

72 CMU/SEI-2001-TR-019

2 NAIS and MySQL

5. Was MySQL compared/evaluated against other databases?
Yes

If so then:

5.1. What were the comparison/evaluation criteria?
Speed
Industry acceptance / Standards adherence
Installation / Configuration ease and maintainability
Data recovery ease
Available support
Cost

5.2. What were the other products that were evaluated?

MySQL was compared to other competitive open source products available at
the time of our investigation including Postgresql, mSQL(mini SQL), GNU
SQL Server, and SQLight.

5.3. What were the advantages and disadvantages of MySQL in relation to
the other products?

MySQL was the best match for our needs overall. It lacked some features
such as triggers and stored procedures, but was very fast and robust in other
areas, and provided excellent security features. MySQL had a very low learn-
ing curve, and we were able to become comfortable in a very short period of
time.

6. How was MySQL selected for use in the NAIS? Could you please elaborate
on any testing, evaluations, reviews, inspections, that were conducted?

A test instance was installed, and we ported our most database-intensive applica-
tion to the product, analyzing the process and looking for problems we could ex-
pect to encounter upon use of the product. Upon completion, the software was
load-tested and benchmarked against the existing application. The results of this
activity, coupled with technical opinions from each developer, formulated our end
recommendation.

7. Has the NAIS development team participated or contributed to MySQL de-
velopment? If so, could you please elaborate on the level of participa-
tion/contribution (bug reports, documentation fixes, code fixes, feature en-
hancements, etc.) and whether this involvement is ongoing?

The NAIS has reported bugs, though the number has been small. Most were cor-
rected immediately.

8. Was the MySQL modified in any way for use in the NAIS? If so, please ex-
plain.

No, the source code was not modified for our use.

CMU/SEI-2001-TR-019 73

9. How are any bug and product issues with MySQL resolved?

We handle all issues through the standard reporting methods available to all
MySQL users.

10. How do you acquire MySQL releases?

We acquire releases through the MySQL Web site for all users who have support
contracts.

11. How do you determine when to incorporate a release/upgrade of MySQL
into the NAIS?

We evaluate our software on a regular basis to keep abreast with new functional-
ity and bug fixes. Normally upgrades are performed only if needed, for example,
if a bug has been fixed or a major improvement has been added that would help
our service. This policy guarantees the developers and end users a stable envi-
ronment to work in, with scheduled outages.

12. Do you build the product yourself or do you use a precompiled binary re-
lease?

We build all of our binaries from source code and distribute a binary internally.

13. Do you have a third-party support contract for MySQL? If so, with whom?

We have a support agreement with MySQL, but no third parties at this time.

14. Have members of the NAIS development team reviewed any of the MySQL
source code? If so, what where the results of the review? How would they
rate the quality of the code?

No review of the source code has been performed at this time. We evaluated the
product from a functional standpoint and did not address the style and so forth of
the code itself.

15. How would you rate the quality of the MySQL documentation?

Overall it is acceptable for day-to-day use. We have needed to contact the devel-
opers on a small number of occasions to clarify certain points.

16. Can you quantify the cost of ownership of MySQL as compared to similar
commercial products (i.e., Oracle).

Cost of ownership has declined, as the product is provided at no cost, and the
support contract cost is minimal. The database is a technically simpler product,
with fewer features to master, thus lowering the initial learning curve and annu-
ally required training to continue efficient use. Our prior product cost was in the
$5,000 annual range. The initial estimated cost for the new pricing structure of
our previous product was $750,000 and was later renegotiated. This estimate in-
stigated the new DBMS search. The NAIS was not an issue by the time the con-
tract was completed; therefore the new estimated cost is not available.

74 CMU/SEI-2001-TR-019

3 MySQL as an Open Source Alternative

17. How does MySQL compare to commercial database products? Could you
please elaborate on quality, performance, features, support, scalability, etc.
Which of these are perceived and which are measured?

Our tests did not compare MySQL to a range of commercial products, however
MySQL has performed tests such as this and posts the results for public viewing.

18. What are the major advantages and disadvantages of using MySQL in a de-
velopment effort?

The major advantages include the cost, availability of support through the many
users of the product who participate in online forums, its ease of setup, adherence
to standards, low machine resource requirements, speed, and the availability to
connect to the database through many technologies including C++, ODBC, and
Perl. This helps the product to be very flexible and friendly on any architecture.
In our environment and for our needs, there are no disadvantages.

19. How do your developers receive MySQL training?

To date, it has been in-house, via documentation and books. Most developers had
a SQL background and were able to begin using the product immediately.

20. How do your administrators receive MySQL training?

To date, it has been in-house via documentation. However we have plans to at-
tend classes to aid in tuning and configuration.

21. Please describe any situations where MySQL would not be a good choice as
an open source alternative for a database.

Distributed enterprise applications require certain capabilities that MySQL may
not support, due to its lack of built-in functions, such as enterprise management
features (row-level locking, rollback, etc.). Mirroring of data is possible, but the
mechanisms used are not as powerful as current commercial DBMS packages
provide.

22. Please describe the application environment where MySQL is best suited.

Workgroup to mid-range environments using multi-tier application design, in-
cluding Web development, lend themselves almost naturally to the product.

CMU/SEI-2001-TR-019 75

4 The NAIS and Other Open Source Alternatives

23. According to the interview/article appearing in GCN, plans to evaluate the
Apache Web Server have been/are being made by the NAIS to correct limita-
tions of the current Web Server in use. What are those current limitations
that will be solved by Apache?

Our current Web server software has configuration and operability limitations that
make management difficult. As the number of users has increased, we have found
it more difficult to manage our servers effectively. We hope that Apache will of-
fer us some relief.

24. What lessons have been learned from the integration and application of
MySQL in the NAIS which will (or may be) applied to the selection, integra-
tion, and application of other open source alternatives?

Generally speaking, there are quite a few high-quality options available in open
source software for a number of applications today. This number appears to be
growing at a fast pace. Including open source products in evaluations is currently
the norm within the NAIS technical team. We have found a number of the prod-
ucts to be very stable and capable of production use, and in certain situations
more efficient than their commercial competitors. This appears partly due to the
fact that in open source software, the quality and performance of the product in
many cases are paramount, and the developers do not feel pressured to add un-
necessary features that detract from the product’s original goal. Add to this the
availability of support and the fact that bugs are usually corrected very quickly,
and it’s very hard not to consider open source options seriously when evaluating
products.

76 CMU/SEI-2001-TR-019

CMU/SEI-2001-TR-019 77

Appendix B Open Source Definition,
Version 1.820

The Open Source Definition

Version 1.8

The indented, italicized sections below appear as annotations to the Open Source
Definition (OSD) and are not a part of the OSD. A plain version of the OSD without
annotations can be found here.

Introduction
Open source doesn’t just mean access to the source code. The distribution
terms of open source software must comply with the following criteria:

1. Free Redistribution
The license shall not restrict any party from selling or giving away the soft-
ware as a component of an aggregate software distribution containing pro-
grams from several different sources. The license shall not require a royalty
or other fee for such sale.

Rationale: By constraining the license to require free redistribution, we
eliminate the temptation to throw away many long-term gains in order to
make a few short-term sales dollars. If we didn’t do this, there would be lots
of pressure for cooperators to defect.

2. Source Code
The program must include source code, and must allow distribution in source
code as well as compiled form. Where some form of a product is not distrib-
uted with source code, there must be a well-publicized means of obtaining the
source code for no more than a reasonable reproduction cost–preferably,
downloading via the Internet without charge. The source code must be the
preferred form in which a programmer would modify the program. Deliberately
obfuscated source code is not allowed. Intermediate forms such as the output
of a preprocessor or translator are not allowed.

Rationale: We require access to un-obfuscated source code because you
can’t evolve programs without modifying them. Since our purpose is to make
evolution easy, we require that modification be made easy.

3. Derived Works

20 The Open Source Definition shown here appears exactly as it does on the Open Source Initiative’s

Web site; it has not been edited [OSI 01a].

78 CMU/SEI-2001-TR-019

The license must allow modifications and derived works, and must allow them
to be distributed under the same terms as the license of the original software.

Rationale: The mere ability to read source isn’t enough to support inde-
pendent peer review and rapid evolutionary selection. For rapid evolution to
happen, people need to be able to experiment with and redistribute modifica-
tions.

4. Integrity of The Author’s Source Code
The license may restrict source-code from being distributed in modified form
only if the license allows the distribution of "patch files" with the source code
for the purpose of modifying the program at build time. The license must ex-
plicitly permit distribution of software built from modified source code. The li-
cense may require derived works to carry a different name or version number
from the original software.

Rationale: Encouraging lots of improvement is a good thing, but users have
a right to know who is responsible for the software they are using. Authors
and maintainers have reciprocal right to know what they’re being asked to
support and protect their reputations.

Accordingly, an open source license must guarantee that source be readily
available, but may require that it be distributed as pristine base sources plus
patches. In this way, "unofficial" changes can be made available but readily
distinguished from the base source.

5. No Discrimination Against Persons or Groups
The license must not discriminate against any person or group of persons.

Rationale: In order to get the maximum benefit from the process, the maxi-
mum diversity of persons and groups should be equally eligible to contribute
to open sources. Therefore we forbid any open source license from locking
anybody out of the process.

Some countries, including the United States, have export restrictions for cer-
tain types of software. An OSD-conformant license may warn licensees of
applicable restrictions and remind them that they are obliged to obey the law;
however, it may not incorporate such restrictions itself.

6. No Discrimination Against Fields of Endeavor
The license must not restrict anyone from making use of the program in a
specific field of endeavor. For example, it may not restrict the program from
being used in a business, or from being used for genetic research.

Rationale: The major intention of this clause is to prohibit license traps that
prevent open source from being used commercially. We want commercial
users to join our community, not feel excluded from it.

CMU/SEI-2001-TR-019 79

7. Distribution of License
The rights attached to the program must apply to all to whom the program is
redistributed without the need for execution of an additional license by those
parties.

Rationale: This clause is intended to forbid closing up software by indirect
means such as requiring a non-disclosure agreement.

8. License Must Not Be Specific to a Product
The rights attached to the program must not depend on the program’s being
part of a particular software distribution. If the program is extracted from that
distribution and used or distributed within the terms of the program’s license,
all parties to whom the program is redistributed should have the same rights
as those that are granted in conjunction with the original software distribution.

Rationale: This clause forecloses yet another class of license traps.

9. License Must Not Contaminate Other Software
The license must not place restrictions on other software that is distributed
along with the licensed software. For example, the license must not insist that
all other programs distributed on the same medium must be open source
software.

Rationale: Distributors of open source software have the right to make their
own choices about their own software.

Yes, the GPL is conformant with this requirement. GPLed libraries "contami-
nate" only software to which they will actively be linked at runtime, not soft-
ware with which they are merely distributed.

80 CMU/SEI-2001-TR-019

CMU/SEI-2001-TR-019 81

Appendix C Acronym List

ACM Association of Computing Machinery

Bof birds of a feather

BSD Berkeley Software Distribution

CASE computer-aided software engineering

CEO chief executive officer

CERT/CC CERT Coordination Center

CGI Common Gateway Interface

cHTML Compact Hypertext Markup Language

CMU Carnegie Mellon University

COTS commercial off-the-shelf

CPU central processing unit

CSS closed-source software

CVS concurrent version system

DARPA Defense Advanced Research Projects Agency

DB database

82 CMU/SEI-2001-TR-019

DBMS database management system

DDoS distributed denial of service

d.o.f. degrees of freedom

DoS denial of service

EDSER Economics Driven Software Engineering Research

ENIAC Electronic Numerical Integrator and Calculator

FAQ frequently asked questions

FCW Federal Computer Week

FSF Free Software Foundation

FTP File Transfer Protocol

GCC GNU ‘C’ Compiler

GCN Government Computer News

GIMP GNU Image Manipulation Program

GNU GNU’s Not Unix (a recursive acronym)

GOTS government off-the-shelf

GPL General Public License

GUI Graphical User Interface

HTML Hypertext Markup Language

CMU/SEI-2001-TR-019 83

HTTP Hypertext Transfer Protocol

IBM International Business Machines

IE Microsoft Corporation’s Internet Explorer

IEEE Institute for Electrical and Electronics Engineers

IP Internet Protocol

IPO initial public offering

ISBN International Standard Book Number

J2ME Java 2 Micro Edition

JDK Java Development Kit

MPM Multi-Process/Multi-Threading Model

MR modification request

NAIS NASA Acquisition Internet Service

NASA National Aeronautics & Space Administration

NCSA National Center for Supercomputing Applications

NSPR Netscape Portable Runtime

ODBC open database connectivity

OSD Open Source Definition

OSDN Open Source Development Network

84 CMU/SEI-2001-TR-019

OSI Open Source Initiative

OSS open source software

PACT Project for Advancement of Coding Techniques

PITAC President’s Information Technology Advisory Committee

QA quality assurance

RAD rapid application development

RFC request for comment

SEI Software Engineering Institute

SQL Structured Query Language

SWIC Software Industry Center

UML Unified Modeling Language

USL Unix Systems Lab

WCRE Working Conference on Reverse Engineering

WML Wireless Markup Language

WWW World Wide Web

XHTML Extensible Hypertext Markup Language

XSLT Extensible Stylesheet Language Transformations

XML Extensible Markup Language

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

November 2001

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Perspectives on Open Source Software

5. FUNDING NUMBERS

F19628-00-C-0003
6. AUTHOR(S)

Scott Hissam, Charles B. Weinstock, Daniel Plakosh, Jayatirtha Asundi
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-TR-019

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2001-019

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Open source software (OSS) is emerging as the software community’s next silver bullet and appears to be playing a
significant role in the acquisition and development plans of the Department of Defense (DoD) and industry. Yet, as with
all previous silver bullets, there are problems with blindly embracing the OSS paradigm.

To become familiar with the benefits and pitfalls of using OSS, the Software Engineering Institute (SEI) undertook an in-
ternally funded study looking at it from various perspectives:

• the user of OSS

• the developer of OSS

• the organizations looking to deploy software systems comprised (partially or completely) of OSS components

During the period of this study, members of the SEI technical staff hosted meetings, conducted interviews, participated
in open source development activities, workshops, and conferences, and studied available literature on the subject.
Through these activities we have been able to support and sometimes refute common perceptions about OSS. This re-
port is the result of our study.

14. SUBJECT TERMS

open source software, OSS, free software, FSF, case studies, research, open source
license, COTS

15. NUMBER OF PAGES

96

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 OSS at the Software Engineering Institute
	1.2 Organization of This Report

	2 What Is Open Source Software (OSS)
	2.1 OSS—A Formal Definition
	2.2 What’s Not OSS
	2.3 The History of OSS
	2.4 Perceptions of OSS

	3 Case Studies
	3.1 AllCommerce Case Study
	3.2 Apache Case Study
	3.3 Enhydra Case Study
	3.4 The NAIS Case Study
	3.5 Teardrop Case Study

	4 Lessons Learned/Observations
	4.1 Trends Towards OSS Use and Development
	4.2 What It Takes for a Successful OSS Project
	4.3 The OSS Development Model
	4.4 The Relationship of OSS to CSS
	4.5 Acquisition Issues
	4.6 Security Issues

	5 Conclusions
	5.1 Making Lightning Strike Twice
	5.2 In Closing…

	References/Bibliography
	Appendix A The NAIS Questionnaire
	Questionnaire & Response
	1 NAIS Questions
	2 NAIS and MySQL
	3 MySQL as an Open Source Alternative
	4 The NAIS and Other Open Source Alternatives

	Appendix B Open Source Definition, Version 1.8
	Introduction

	Appendix C Acronym List

