
A Framework for the
Specification of
Acquisition Models

December 2001

B. Craig Meyers

Patricia Oberndorf

TECHNICAL REPORT
CMU/SEI-2001-TR-004
ESC-TR-2001-004

Pittsburgh, PA 15213-3890

A Framework for the
Specification of
Acquisition Models
CMU/SEI-2001-TR-004
ESC-TR-2001-004

B. Craig Meyers
Patricia Oberndorf

December 2001

Unlimited distribution subject to the copyright.

Dynamic Systems Program

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document
for external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract . ix

Executive Summary . xi

1 Introduction . 1

2 Framework Specification . 5
2.1 Data Specification . 5

2.1.1 Activities . 5
2.1.2 Events . 6
2.1.3 Requirements . 7
2.1.4 System . 8

2.2 Relations Among Basic Elements . 9
2.2.1 Relations Among Activities . 10
2.2.2 Relations Among Activities and Events . 11
2.2.3 Relations Between Requirements and System Instances 13
2.2.4 Additional Considerations . 15

2.3 Predicates . 16
2.3.1 Activities . 16
2.3.2 Events . 18
2.3.3 Requirements . 20
2.3.4 System . 22

2.4 Execution Character . 23
2.4.1 Basic Execution Model . 23
2.4.2 Concurrency Considerations . 25

2.5 Completeness Considerations . 25
2.5.1 Specification Completeness . 26
2.5.2 Execution Completeness . 27

2.6 Summary . 30

3 An Example: The Waterfall Model . 33
3.1 Basic Specification Elements . 33
3.2 Predicates . 37
3.3 Timing Properties . 38
3.4 Completeness Considerations . 42

3.4.1 Execution of Activities Is Well Specified . 42
3.4.2 Treatment of External Events . 42
3.4.3 Treatment of Internal Events . 42
3.4.4 All Requirements Satisfied . 42

3.5 Reasoning About the Specification . 43
 i

3.6 Summary . 43

4 Discussion . 45

5 Possible Extensions to the Framework . 49
5.1 Elaboration of Acquisition Activities and Events . 49
5.2 Requirements . 50
5.3 Participants . 51
5.4 Artifacts . 54
5.5 Entrance and Exit Criteria . 56
5.6 Phases . 59

5.6.1 Sequential Phases . 60
5.6.2 Other Choices . 62

5.7 Execution of Acquisition Activities . 63
5.7.1 Serial Models . 63
5.7.2 Parallel Models . 64
5.7.3 Precedence Relations . 67

5.8 Additional Considerations . 68
5.8.1 Promotion . 68
5.8.2 Operational Refinement . 69
5.8.3 Data Refinement . 70

6 Summary . 73

References . 75

Appendix A Summary of Framework Specification . 77

Appendix B A Quick Tour of the Language Nestor . 89
B.1 Overview . 89
B.2 Data Types . 91

B.2.1 Free Types . 91
B.2.2 Sets . 91
B.2.3 Sequences . 92
B.2.4 Time . 92
B.2.5 Dynamic Data Typing . 93

B.3 Relations . 94
B.4 Predicates . 96
B.5 Expressions . 98
B.6 Execution Semantics . 99

Appendix C Guidelines for Model Development . 101
C.1 Conformance to the Framework. 101
ii

C.2 Basic Data Types . 103
C.3 Relations . 104
C.4 Predicates . 105
C.5 Timing Properties . 107
C.6 Possible Extensions . 107
C.7 Assertions Over the Specification . 108

Appendix D Additional Comments on the Waterfall Model . 109
D.1 Elaboration of Activities . 109
D.2 Artifacts . 110

Appendix E Index of Mathematical Formulas . 113
 iii

iv

List of Figures

2-1 Interaction of Acquisition Activities . 10
2-2 Mapping Internal Events to Acquisition Activities . 11
2-3 Mapping External Events to Acquisition Activities . 12
2-4 Mapping Requirements to a Single System Instance . 14
2-5 Mapping Requirements to Multiple System Instances 14
2-6 State Transition Diagram for an Activity . 23
2-7 Different Mechanisms for Handling External Events . 27
2-8 Intuitive Relation of Overall Acquisition Model Elements 31
3-1 Basic Representation of Waterfall Model . 33
3-2 Matrix Representation of Activity Relations in the Waterfall Model 36
4-1 Acquisition Models . 45
5-1 Development of Approval Relation . 52
5-2 Relation Between Entrance and Exit Criteria and Activities 57
5-3 Theory Component for Entrance and Exit Criteria . 60
5-4 Illustration of an Acquisition Phase . 62
5-5 Specification of a Serial Phase . 63
5-6 Types of Activity Execution . 65
6-1 Multi-Project Acquisition . 73
B-1 Process for Specification Development . 89
B-2 Relating Internal Events to Acquisition Activities . 94
C-1 Simple Model for Development of Relations . 104
C-2 Relation of Extensions to Framework Specification . 108
 v

vi

List of Tables

2-1 Guide to Framework Relations . 9
3-1 Valid Activity Sequences in the Waterfall Model . 41
3-2 Completeness Considerations for Waterfall Model . 42
4-1 Comparing Different Acquisition Models . 46
B-1 Set Notation . 92
C-1 Developing Relations for a Particular Acquisition Model 104
 vii

viii

Abstract

This report describes a framework for the specification of acquisition models. The
exposition is formal in nature. The framework is defined in terms of activities,
events, requirements, and instances of a system. In addition, various relations
among these items, such as the relation between acquisition activities and acqui-
sition events, are defined. The timing properties associated with the items receives
special treatment.

The value of a framework is that one can develop specifications of various acquisi-
tion models, such as waterfall, spiral, or incremental, as instances of that frame-
work. Formalizing the specification of an acquisition model has benefit in that one
can reason about the characteristics of the domain addressed by the model. When
this is done for multiple acquisition models, each derived from the same frame-
work, it is possible to compare different acquisition approaches.
 ix

x

Executive Summary

System acquisition—the set of activities performed to procure, develop, and main-
tain a system—is a daunting challenge. This is particularly true for large, complex
systems. There is ample evidence of routine cost and schedule overruns, not to
mention acquisition failures.

As acquisition has increased in scale and complexity, new approaches have been
developed to meet the challenges. Such approaches to acquisition are based on
some model. For many years a waterfall model was applied (largely in a develop-
ment context), although now one hears of spiral, incremental, and evolutionary ac-
quisition models. Although such models are popular, they are often lacking in a
precise specification.

Our goal in this report is to develop a specification of a general acquisition frame-
work. The key elements of the framework are activities, events, requirements, and
instances of a system. In addition, various relations among the key elements, such
as the relation between acquisition activities and acquisition events, as well as
timing properties, receive special treatment. We believe that from a specification
of a framework, one can develop specifications of a particular acquisition model as
an instance of that framework. This in turn allows one to perform a formally based
comparison of various acquisition models, although to do so, we recognize it may
be necessary to extend the specification of the framework to treat characteristics
unique to a particular model.

The approach to the specification of the framework is mathematical in nature. The
value of such a formal approach is that it provides a clear, consistent, concise spec-
ification of the framework. We believe there are additional practical benefits that
can be obtained as a result of a formal specification of a framework and the speci-
fication of models based on that framework. For example, we believe it should be
possible to use the framework developed here as a means to develop practical pol-
icies, procedures, and guidelines that can help acquisition managers. With the
framework as a basis, it is possible to identify relevant acquisition activities and
their associated events that are of interest to an acquisition manager. In addition,
the timing properties concerning when acquisition activities are performed can
also be addressed. But first things first.
 xi

xii

1 Introduction

Recent years have witnessed the development of different approaches to system
acquisition. For many years, a waterfall approach was common, but that was su-
perseded by other approaches. Currently a number of different approaches are
popular, including spiral, evolutionary, and incremental. However, many such ap-
proaches are only loosely specified, rather than presented on a well-defined foun-
dation.

We define acquisition to be the set of activities performed to procure, develop, and
maintain a system. This takes a broad view of acquisition. Some might prefer to
equate acquisition with contracting activities, but we feel such a view is too limit-
ing. Further, our concern is for the life of a system, not just from initiation to con-
tract award, or just development.

All acquisition is performed in the context of some overall model, whether or not
that model is clearly specified. The use of an explicit acquisition model helps guide
an acquisition project in the manner in which the acquisition is conducted. Despite
the prevalence of popular acquisition models such as those mentioned above, we
have not seen a clear, precise specification of these various models. The lack of a
well-specified model has numerous consequences. Among them, we mention the
possible confusion that may arise when one attempts to conduct an acquisition
based on a loosely specified approach.

Intended Audience

The intended audience for the material presented in this report consists of persons
interested in

• how one specifies a framework that can be used to describe
different acquisition models

• using the framework specified here to develop a formal
specification of a particular model

• comparing different acquisition models

In addition, because the specification developed here is formal in nature, persons
with an interest in formal approaches may also gain value from it. We recognize
that persons who are managing an acquisition project may not approach their
problems from a mathematical perspective. To aid the reader, in Appendix B we
provide some background on the language and approach used in this report.

Certainly there has been much work done that is oriented toward various facets of
software development processes. Examples of this include the Rational Unified
1 Introduction 1

Process (RUP),1 as well as development of standards for the software life-cycle pro-
cess [4]. Our work differs from these, and others, in that our focus is toward formal
specification of an acquisition framework that can then be used to develop partic-
ular acquisition models.

Acquisition Frameworks and Models

Our goal here is to develop an acquisition framework that may be applied to the
specification of different acquisition models. The acquisition framework is a gen-
eral specification of

• acquisition activities

• acquisition events

• requirements2

• instances of a system

• relations among the above entities, such as between activities, and
among activities and events

• operational semantics (especially timing properties) arising from
activities and events and their relations

The acquisition events may be internal or external, depending upon whether they
are initiated within or outside the scope and control of the acquisition project.

Using the acquisition framework, it is possible to define an acquisition model as
an instance of that general framework. We recognize that a particular acquisition
model may require additional concepts and details that are not included in the
framework. Inclusion of such model-specific information supplements the specifi-
cation of the framework.

Use of Formal Approach

Our approach to specifying the framework will be formal in nature.3 The use of a
formal approach allows us to develop a clear, concise specification of the semantics

1. See http://www.rational.com/products/rup/index.jsp.

2. At first, the reader may find it surprising that requirements are included in the framework.
The reason for inclusion of requirements will be made clear in Section 2.3.3 on page 20.

3. We will use a second-order predicate calculus that is under development and known as
Nestor. Readers who have general familiarity with predicate calculus or with formal lan-
guages such as Z should not have difficulty reading the specification developed here.
Where necessary, we will provide notes to explain the language semantics. Appendix B
contains an overview of the language used to develop the specification of the framework.
2 1 Introduction

of the acquisition framework. From this common framework, different acquisition
models can be developed. The resulting models, also formal in their specification,
gain the advantages of a formal specification of the framework, e.g., clarity and
precision of specification. Further, the use of a formal specification allows us to
compare different models and gain deeper understanding of the fundamental
characteristics of a given model. Thus, the use of a formal approach allows us to
develop a solid foundation on which to reason about the domain of acquisition.

We further believe that as acquisition becomes more complicated, so does the un-
derlying model, though the model is often not fully defined. It is hoped that a for-
mal approach will allow for a greater understanding of the semantics of different
acquisition models. The use of a formal approach is valuable to analyze the de-
scription of a specification, whether it be for a model of a software system or a mod-
el of an acquisition.

We admit that the amount of effort to develop formal specifications is nontrivial.
But this is like any other formal specification: it takes time to develop an under-
standing of the textual description and then to architect and cast that in a formal
manner. One response to the approach taken here might be to reject it outright be-
cause it forces one to address details that one would perhaps rather not. Our reply
is that acquisition models deserve the same treatment that is expected of systems:
their specifications should be clear, concise, consistent, and correct. We should ex-
pect no less of the specification of an acquisition model!

Practical Considerations

Although the approach taken in this report is mathematical in its presentation, we
believe there are several practical benefits. From a well-specified framework, one
can develop a well-specified model for a particular acquisition approach. From a
well-specified model, it should be possible to develop policies, procedures, and
guidelines that are based on a sound foundation.

For example, the framework defined here includes a specification of the notion of
an activity. Some practical issues that arise when managing a real acquisition
project that need to be considered are:

• What are the activities that will be performed?

• How does a given activity relate to other activities?

• Are there criteria that must be satisfied in order to initiate an
activity? If so, what are they?

• Are there criteria that must be satisfied in order to terminate an
activity? If so, what are they?

• Can two different activities be performed at the same time?
1 Introduction 3

Resolution of questions such as the above are of importance to the practical man-
agement of an acquisition. Recognition of such questions is derived from the spec-
ification of a framework and its associated instance for a particular acquisition
model. In Appendix C we provide some guidance on how the framework may be
used to specify a particular model. Associated with the specification of the model
there can be corresponding guidelines, policies, and procedures relating to how the
model is implemented.

A question related to the specification of an acquisition model is the execution of
that specification.4 That is, given the specification, how is it performed, by mem-
bers of an acquisition team that may include program office staff, contractors, and
other organizations? A given specification of an acquisition model can be per-
formed in different ways. Our focus here, however, is with the development of a
specification more than the execution of that specification.

Organization

This report is organized in the following manner. The following section contains a
specification of the acquisition framework. In Section 3 we illustrate an applica-
tion of the framework to a waterfall model. Then, in Section 4 we provide some
general discussion about various acquisition approaches and the utility of a formal
specification. Several topics that are possible extensions to the framework are de-
scribed in Section 5. A brief summary of the report appears in Section 6.

A number of appendices accompany this report. Appendix A provides a summary
of the mathematical exposition of the framework. Appendix B provides a brief tour
of the language Nestor, which is used to develop the specification of the acquisition
framework. Appendix C provides guidance for those who may be interested in us-
ing the framework developed here to specify a particular acquisition model. Ap-
pendix D provides some additional discussion concerning a specification of the
waterfall model. Finally, Appendix E contains an index of the mathematical oper-
ations and data types that are present in the report.

We gratefully acknowledge discussions with colleagues Jim Smith, Patrick Place,
Eileen Forrester, Rick Barbour, and Jack Ferguson.

4. A relevant analogy is the following: There is a difference between the specification of a
computer program (the code) and the manner in which that specification may be executed.
For example, the code can be executed on a single processor or multiple processors in par-
allel.
4 1 Introduction

2 Framework Specification

In this section we will describe the specification of the acquisition framework. This
includes specification of data types, relations, predicates, and timing properties.
We will also describe some completeness requirements placed on the framework.
As part of developing the specification of the framework, we will show some small
examples to indicate how the framework can be used to develop particular acqui-
sition models.

2.1 Data Specification

The development of the specification for the acquisition framework will begin by
considering various data types that will be used. (Some background on data types
in Nestor can be found in Section B.2 on page 91.)

2.1.1 Activities

To begin, we need to specify a general acquisition activity. We write this as a free
type declaration:

[ACTIVITY]

We want to deal with sets of acquisition activities. These are declared as:

Acq_Activities[t]: {ACTIVITY}

The presence of the subscripted [t] denotes that the data object is dynamic. That
is, the elements of the data object change in time. If a data object is declared with-
out such a notation, it means it is static and its elements cannot change with time.

We also require that the set of acquisition activities must not be empty.5 In other
words:

#Acq_Activities[t] > 0 (2.1)

As a brief example of how activities may be used in the specification of some acqui-
sition model, the following illustrates how some activities can be declared:

5. One might argue that the set of acquisition activities should be allowed to be empty. How-
ever, were that to be the case, there would be no model!
2 Framework Specification 5

2.1 Data Specification

Requirements_Management,
System_Design,
System_Test,
Risk_Management,
Contract_Management,
System_Maintenance,
System_Deployment,
Budget_Planning: ACTIVITY (2.2)

We can represent the above activities as a set by writing

Acq_Activities[t] = {Requirements_Management, System_Design, System_Test,
Risk_Management, Contract_Management, System_Maintenance,
System_Deployment, Budget_Planning}

Furthermore, suppose we were interested in separating the above activities into
development activities and management activities. We can do this by declaring
two sets and then requiring that they be disjoint, as follows:

Development_Activities[t] = {Requirements_Management, System_Design, System_Test,
System_Maintenance, System_Deployment}

Management_Activities[t] = {Risk_Management, Contract_Management, Budget_Planning}

 Development_Activities[t] ∩ Management_Activities[t] = ∅

2.1.2 Events

The second major element of the framework is the notion of an event. It is impor-
tant to distinguish between internal and external events. The differentiation is
based on whether an event is initiated within or outside the scope of a particular
acquisition project, respectively. We declare the following two basic data types:

[INTERNAL_EVENT, EXTERNAL_EVENT]

We can also declare sets of these events as:

Internal_Events[t]: {INTERNAL_EVENT}
External_Events[t]: {EXTERNAL_EVENT}

It is assumed that the set of external events represents those external events that
are relevant to a particular application of the framework to a given model. We re-
quire that the set of internal and external events do not have any events in com-
mon. Mathematically, this requires

Internal_Events[t] ∩ External_Events[t] = ∅ (2.3)
6 2 Framework Specification
2.1 Data Specification

Note that we do not place a restriction on the cardinality of the sets of internal and
external events. For example, one model may deal with external events, while an-
other may not. Hence, specifying in the framework a cardinality restriction on
events would be considered over-specification.

To illustrate an application of internal and external events, here is an example of
some internal events:

Requirements_Review_Scheduled,
Budget_Reviewed,
Design_Review_Initiated,
Contract_Award: INTERNAL_EVENT

Note that each of the above is an event that is within the scope of an acquisition
project, in the sense that the project controls when the event happens, as well as
what other activities may be performed in response to that event.

External events, on the other hand, are those that are initiated outside the scope
of an acquisition project. The following is an example of how we could declare some
external events:

New_Standard,
Standard_Revision,
Standard_Withdrawal: EXTERNAL_EVENT

New_COTS_Product,
COTS_Product_Upgrade_Available,
COTS_Product_Unsupported: EXTERNAL_EVENT

We have separated the above external events into those dealing with standards
and commercial off-the-shelf (COTS) products, respectively. We do this so that we
can reason about each of them independently.

2.1.3 Requirements

One characteristic of an acquisition is that the resulting system must satisfy a
specified set of requirements. To develop this notion in the framework, we intro-
duce a free type to denote a requirement, namely:

[REQUIREMENT]
2 Framework Specification 7

2.1 Data Specification

A set of requirements is simply represented as6

Requirements[t]: {REQUIREMENT}

We require that the set of requirements be non-empty, that is

#Requirements[t] > 0

Examples of how requirements may be declared are similar to the preceding dis-
cussion of events. For example, we can declare some set of requirements as follows:

Database_Requirements,
Security_Requirements,
Fault_Tolerance_Requirements: REQUIREMENT (2.4)

When we introduced the data type to represent a requirement, namely REQUIRE-
MENT, we did so without further comment. Our assumption in developing the
framework is that a requirement is atomic in nature. This is tantamount to a well-
specified condition. For example, we do not assume that a requirement is con-
tained in some other requirement. Removing the atomic-like nature of a require-
ment would require a different approach to the development of the framework,
e.g., additional operations would be necessary to separate a given requirement
into its constituent sub-requirements. In practice, requirements may not always
be specified in such an ideal way; in the framework we may remove such a condi-
tion. We would argue, however, that requirements specified in an atomic-like
manner should be a goal of an acquisition project.

2.1.4 System

There are many ways in which an acquired system can be realized. In particular,
there can be multiple instances of a system, each with perhaps different function-
ality. Another choice is for there to be an instance of a system, which then evolves
in time, as a result of changes to its requirements. To accommodate these various
options, we simply introduce a free type

[SYSTEM_INSTANCE]

Recognizing that a given acquisition may produce, either initially or as a result of
its evolution, multiple instances of a system, we represent these different instanc-
es as a set:

6. Note that the choice of a set (as opposed to a bag) guarantees uniqueness of the require-
ments; i.e., there are no duplicate requirements.
8 2 Framework Specification
2.1 Data Specification

System[t]: {SYSTEM_INSTANCE}

We do not require that the set System must be non-empty; that is we do not require
#System > 0. The reason is that initially, the set System may indeed be empty.

As a simple example, consider the case where a system is being developed in a se-
ries of (incremental) builds. Suppose it is intended that there will be three builds.
Each build represents an instance of the system, and we can declare

Build_1, Build_2, Build_3: SYSTEM_INSTANCE (2.5)

We emphasize that the above specification is that for data types and not function-
ality associated with those data types. For example, we recognize that the func-
tionality of an instance of a system could overlap with other instances of that
system. Nothing in the preceding would prevent such a functional specification
from being developed.

2.2 Relations Among Basic Elements

There are a number of relations that can be defined with respect to the acquisition
activities, events, requirements, and system instances that are the basic data
types used in the framework. Relations help to associate, or couple, the basic data
types (some background on relations in Nestor can be found in Section B.3 on page
94). Some guidance on the specification of these relations is provided in Table 2-1.

Table 2-1: Guide to Framework Relations

Activities Events Require-
ments System

Activities

Section 2.2.1 Section 2.2.2 Not specified
in framework
(see Section
2.2.4)

Not specified
in framework
(see Section
2.2.4)

Events

Not permitted Not specified
in framework
(see Section
2.2.4)

Not specified
in framework
(see Section
2.2.4)

Require-
ments

Not specified
in framework
(see Section
2.2.4)

Section 2.2.3

System

Not specified
in framework
(see Section
2.2.4)
2 Framework Specification 9

2.2 Relations Among Basic Elements

Of the possible relations one could construct, we need only be concerned with those
along the diagonal or the upper diagonal indicated in Table 2-1. Note that the
framework does not permit relations among events; it is assumed that events are
always coupled to an activity.

2.2.1 Relations Among Activities

First, we will define a relation between two acquisition activities. The require-
ments that we impose on this relation are as follows:

• A given activity may be related to one or more activities.

• Every activity must be related to at least one other activity.

• An activity cannot be related to itself.

The relation satisfying the above requirements is specified below:

Activity_Relation: Acq_Activities[t] <-----> Acq_Activities[t]
 ∀ ai, aj ∈ Acq_Activities[t]

• Activity_Relation (ai , aj)
ai ≠ aj (2.6)

An example of this relation is shown in Figure 2-1.

Figure 2-1: Interaction of Acquisition Activities

The characteristics of the relation, represented by the symbol “<---->”, indicate
that the relation is total over both the domain and range (i.e., the relation must be
defined for all elements of the set of acquisition activities). It furthermore indi-
cates that the relation is many-to-many. In other words, a given acquisition activ-
ity may relate to multiple other activities, and, furthermore, a given acquisition
activity may be related to multiple other activities.

For example, consider the activities declared in Eq. (2.2). To indicate that there is
a relation between the activities requirements management and system test, we
simply write:

Acquisition_Activity
10 2 Framework Specification
2.2 Relations Among Basic Elements

Activity_Relation (Requirements_Management, System_Test)

As another example, suppose we wanted to declare relations between risk man-
agement and both system design and system test. We can write these as

Activity_Relation (Risk_Management, System_Design)
Activity_Relation (Risk_Management, System_Test)

In reality we would need to specify more relations. Although it is practical to do so,
it is required by the framework in the manner in which the relation in Eq. (2.6) is
declared. In particular, Eq. (2.6) requires that every activity be related to at least
one other activity. This can be viewed as imposing a conformance requirement on
all acquisition models that claim to conform to the framework.

2.2.2 Relations Among Activities and Events

The next relation that we need to specify is that involving events and acquisition
activities. First, we specify this for the internal events by defining:

Internal_Event_Activity_Relation: Internal_Events[t] <---|-> Acq_Activities[t]
 ∀ ei ∈ Internal_Events[t] • ∃ aj ∈ Acq_Activities[t]

• Internal_Event_Activity_Relation (ei , aj) (2.7)

This mapping is shown in Figure 2-2.

Figure 2-2: Mapping Internal Events to Acquisition Activities

The basic requirements for the mapping of internal events to acquisition activities
include the following:

• Every internal event must be mapped to some acquisition activity;
this is a completeness requirement.

• The same internal event can be mapped to different acquisition
activities.

• Not all acquisition activities are required to be associated with
some internal event (i.e., the relation is partial over the range).

Internal Events Acquisition_Activity
2 Framework Specification 11

2.2 Relations Among Basic Elements

For example, earlier we specified an internal event for budget review and an ac-
tivity for budget planning. Using the above relation, we can declare a relation be-
tween these two as follows:

Internal_Event_Activity_Relation (Budget_Review, Budget_Planning)

Or suppose one wanted to have a budget review associated with the activity of a
design review; we can declare this by

Internal_Event_Activity_Relation (Budget_Review, Design_Review)

The second group of relations included in the framework are those that relate ex-
ternal events and acquisition activities. This mapping is defined as

External_Event_Activity_Relation: External_Events[t] <-|---|-> Acq_Activities[t]
 ∃ ei ∈ External_Events[t], aj ∈ Acq_Activities[t]

• External_Event_Activity_Relation (ei , aj) (2.8)

We show the character of this mapping below.

Figure 2-3: Mapping External Events to Acquisition Activities

The relation given in Eq. (2.8) is very similar to that in Eq. (2.7). However, there
is an important difference. In Eq. (2.8), the relation for external events need not
be defined for all possible external events that can exist outside the scope of the
project. Mathematically, the relation is partial over the domain, rather than total.
The choice for having the relation be partial over the set of external events simply
recognizes that there may be external events that may not be of relevance to a par-
ticular acquisition project. For example, the existence of a new COTS product (an
event) that is not relevant to a particular acquisition is not an external event of
interest to the project.

To illustrate how the relation between external events and activities may be used
in a particular model, suppose we wanted to declare a relation between a revision

External Events Acquisition_Activity
12 2 Framework Specification
2.2 Relations Among Basic Elements

of a standard and the activity associated with requirements management. We can
write this as

External_Event_Activity_Relation (Standard_Revision, Requirements_Management)

Similarly, we may also want to relate the existence of an upgrade of a COTS prod-
uct to requirements management. This would be declared by the relation

External_Event_Activity_Relation (COTS_Product_Upgrade, Requirements_Management)

2.2.3 Relations Between Requirements and System Instances

A feature that distinguishes one instance of a system from another is the require-
ments a given instance must satisfy. This suggests, and practicality dictates, that
there is a function that relates requirements to one, or possibly more, instances of
a system. In the present case the relation must satisfy the following: it must per-
mit that

• a given requirement may be mapped onto one, or possibly more,
instances of a system

• there may be more than one mapping of a requirement onto either
one or more instances of a system

• each requirement must be mapped to some instance of a system

The result of the preceding is that the mapping of requirements is many (require-
ments) to many (system instances). It is, furthermore, total over both the domain
and range.

The mathematical representation of the preceding relation between requirements
and a system is defined as

Requirements_Mapping: Requirements[t] <----> System[t]
 ∀ ri ∈ Requirements[t] • ∀ sj ∈ System[t]

• Requirements_Mapping (ri , sj) (2.9)

One example of the relation between requirements and a system is shown in Fig-
ure 2-4. Here, we show a set of requirements that are associated with one instance
of a system. Note also that, in this particular case, the mapping is many-to-one;
that is, each requirement is mapped to only one instance of the system.
2 Framework Specification 13

2.2 Relations Among Basic Elements

Figure 2-4: Mapping Requirements to a Single System Instance

A second example is shown below in Figure 2-5. Here, there are two instances of a
system, denoted 1 and 2. Note that some of the requirements are mapped to each
instance of the system, while others are only mapped to one instance of the system.

Figure 2-5: Mapping Requirements to Multiple System Instances

The relation indicated in Figure 2-5 can represent two different alternatives.
First, it may be the case that there are two distinct (unrelated) systems that hap-
pen to satisfy the requirements as indicated. A second alternative is that System
1 satisfies a subset of the total requirements, which then evolves to satisfy the oth-
er requirements, resulting in System 2. There is not sufficient information speci-
fied in the figure to determine which of these two alternatives is intended.

Let us illustrate the notion of requirements mapping. Earlier, in Eq. (2.5) we de-
clared three builds as being instances of a system. We had also identified some re-
quirements (see Eq. (2.5)). Suppose we wanted to specify that the database
requirements are related to build 1 and the security requirements are related to
build 2. We can specify these relations as:

Requirements_Mapping (Database_Requirements, Build_1)
Requirements_Mapping (Security_Requirements, Build_2)

Requirements System

Requirements System

1

2

14 2 Framework Specification
2.2 Relations Among Basic Elements

We recognize, from a practical perspective, that the preceding relations are not
complete. The reason is that we have requirements for fault tolerance, and no re-
lation for how these requirements are related to an instance of a system has yet
been specified. This illustrates some of the practical considerations of applying a
general framework to a particular model with regard to completeness of require-
ments specification. Formal consideration of completeness criteria will be present-
ed in Section 2.5 on page 25.

2.2.4 Additional Considerations

In developing the framework, we did not specify all possible relations involving the
basic framework elements that are noted in Table 2-1 on page 9. The following pro-
vides some brief rationale for the relations that were not specified.

2.2.4.1 Activities and Requirements

A relation between activities and requirements was not included in the framework
because we felt it was at a lower level of specification, and thus is more relevant
perhaps in the specification of a particular model.

2.2.4.2 Activities and System Instances

It could be possible to specify a relation between an activity and an instance of a
system. The interpretation of such a relation might be that some activity is per-
formed in the context of a particular system instance. For example, it may be re-
quired to perform system test (an activity) for some instance of a system. However,
we felt that such a specification was more relevant to development of a model than
the framework.

2.2.4.3 Events and Requirements

It did not appear appropriate to specify a relation between an event and a require-
ment. An example of how such a consideration may be of relevance is if the occur-
rence of some event could cause a change to a requirement. This consideration can
be handled by building on the relation between events and activities and then com-
posing them with operations that couple activities and requirements.

2.2.4.4 Events and System Instances

The reason that a relation was not declared that relates events and an instance of
a system is similar to that described above in Section 2.2.4.2. Further, events are
coupled to activities that can then be related to operations performed on an in-
stance of a system.
2 Framework Specification 15

2.2 Relations Among Basic Elements

2.2.4.5 Requirements and Requirements

The intended use of relations can be realized in different ways. That is, one can
explicitly define a relation among requirements, or the same functional semantics
can be achieved through the use of predicates. We chose to describe the relation
among requirements using predicates to indicate, for example, that one require-
ment may depend on another requirement (see further Section 2.3.3).

2.2.4.6 System Instances and System Instances

Similar to the reasoning above, we have used predicates to indicate the relation
between system instances. For example, we will later provide a mechanism to de-
clare that one instance of a system depends on another instance (see further Sec-
tion 2.3.4).

2.3 Predicates

The major building block for specification of operations in the language Nestor is
a predicate. (Some background on predicates in Nestor can be found in Section B.4
on page 96.) Predicates can be represented in a number of ways including

• as a simple declaration: A simple example is a statement that a
requirement has been tested. One can think of this as an axiom
that is used to develop a specification.

• presence of a pre-condition clause: A predicate can include a
specification of the conditions that must be satisfied in order for the
predicate to be true. Such conditions are known as pre-conditions.

• presence of post-conditions: Given that a predicate has the value
true, the post-conditions specify what happens under this
circumstance. For example, one can say that if a requirement is not
satisfied, then system testing is not completed.

While predicates are primarily used to specify operations associated with a speci-
fication, they can also be used as inquiry functions. In this case, one can declare a
predicate that states that a requirement is satisfied. This fact (represented by the
predicate) can then be used in the development of other predicates. A predicate
may contain arguments; time is provided as a built-in capability.

2.3.1 Activities

Activities are a basic data type used in the specification of the acquisition frame-
work. As such, it is useful to specify operations on the activities. Examples of this
might include
16 2 Framework Specification
2.3 Predicates

• add an activity to the set of activities

• modify an existing activity

• remove an existing activity

Using the specification of an activity, we can write predicates for each of the above
as follows:

Add_Activity (ai: ACTIVITY; t, t’) → Boolean
|⇒

Acq_Activities[t] = Acq_Activities[t’] ∪ {ai}
t > t’ (2.10)

In the above equation the parameters t and t’ are present as arguments; these in-
dicate values of time, which is a built-in data type in the language Nestor. In effect,
Eq. (2.10) states that at the time t, the specified activity is added to the set of ac-
tivities that existed at a time t’, which must, of course, have been an earlier instant
of time.

Modify_Activity (ai: ACTIVITY; t) → Boolean (2.11)

Delete_Activity (ai: ACTIVITY; t, t’) → Boolean
|⇒

Acq_Activities[t] = Acq_Activities[t’] \ {ai}
t > t’ (2.12)

The first and third predicates above contain a specification of a post-condition. For
example, if an activity is deleted, the result is that the specified activity should be
removed from the set of acquisition activities. The second predicate has neither a
pre- nor post-condition. It is interpreted simply as a declaration.

Note that the predicates declared above are associated with a Boolean value. This
indicates the result of application of the predicate. For example, in the case where
we can modify an activity, defined by Eq. (2.11), if a specified activity is modified,
then the predicate assumes the value true. Hence, consider:

Modify_Activity (Requirements_Management; t) → True

The result of the above operation is that it assumes the value true.

Each of the predicates specified above contains an argument (the symbol “t” ap-
pearing after the semi-colon) which is used in Nestor to denote time. We include
time in the specification of a predicate in order to account for the dynamics of an
acquisition. For example, we could use such an approach to state that “after a cer-
tain time no acquisition activity can be added to the set of acquisition activities.”
2 Framework Specification 17

2.3 Predicates

The ability to specify the model dynamics is fundamental to the specification of
any acquisition.

There are a number of inquiry functions that may prove valuable for the develop-
ment of a particular acquisition model. These are provided below.

Activity_Started (ai: ACTIVITY; t) → Boolean (2.13)

Activity_in_Progress (ai: ACTIVITY; t) → Boolean (2.14)

Activity_Suspended (ai: ACTIVITY; t) → Boolean (2.15)

Activity_Completed (ai: ACTIVITY; t) → Boolean (2.16)

The above predicates are true at a time t if an activity has been started, is in
progress, has been suspended, or is complete, respectively. The inquiry functions
can be used to construct other statements. For example, consider the following
question: If an acquisition activity is in progress, can that activity be deleted? We
would hope that the answer is no.7, 8

2.3.2 Events

In our basic declaration of events (see Section 2.1.2 on page 6), we provided for in-
ternal and external events. The difference between these two events was whether
the event was initiated within or outside the scope of an acquisition project. There
are a number of predicates relevant to a description of both these classes of events.

2.3.2.1 Internal Events

We begin by considering internal events. We define a predicate to create an event:

7. Incidentally, the answer to the question “if an acquisition activity is in progress, can it be
deleted?” is no. The reason is that operations are assumed to be atomic in nature; that is,
once they start to execute, they complete without interruption. See Section B.6 on page 99
for further discussion of this.

8. Some cases are fairly straightforward to develop, but there are subtle considerations one
must account for. To digress a bit, consider the case where there is some external event.
Assume further that the external event is related to some acquisition activity, as given by
Eq. (2.8) on page 12. What behavior should an acquisition manifest if the activity associat-
ed with the event is deleted? In other words, if an external event arises (such as the exist-
ence of an upgrade to a COTS product that is used in a system) and there is no activity
present to deal with the COTS product upgrade, what happens? Is the acquisition model
specified correctly? It is through the use of not simply a formal mathematical language, but
rather, the use of an approach that is based on formalism, logic, and completeness that
leads one to develop (and consider) questions such as these.
18 2 Framework Specification
2.3 Predicates

Create_Internal_Event (e: INTERNAL_EVENT; t, t’) → Boolean
|⇒

Internal_Events[t] = Internal_Events[t’] ∪ {e}
t > t’ (2.17)

If this predicate is true it means that the specified internal event has been created
at the time t. It is then added to the set of internal events.

Another useful operation is to modify an existing event; we define this as

Modify_Internal_Event (e: INTERNAL_EVENT; t) → Boolean

A third operation is that which deletes some internal event; this is specified as

Delete_Internal_Event (e: INTERNAL_EVENT; t, t’) → Boolean
|⇒

Internal_Events[t] = Internal_Events[t’] \ {e}
t > t’

It is also helpful to specify a predicate that, if true, indicates that some internal
event has occurred. This is a form of inquiry function, and we write it as

Internal_Event_Occurred (e : INTERNAL_EVENT; t) → Boolean (2.18)

We also need to be able to initiate, or raise, an internal event. We write this as

Generate_Internal_Event (e: INTERNAL_EVENT; t) → Boolean
|⇒ Internal_Event_Occurred (e : INTERNAL_EVENT; t)

In the preceding we have included a post-condition. That is, if some internal event
is generated, it means that the predicate indicating that the event has occurred
becomes true.

2.3.2.2 External Events

External events are those events that are specified in the context that lies outside
of the scope of the acquisition project. At first one might think that we can simply
replicate the operations associated with internal events, appropriately replaced
instead by external events. However, such an approach is inappropriate. The rea-
son is that from the perspective of the acquisition project, there are operations that
can occur that are outside its scope. For example, the acquisition project cannot
generate some external event. Instead, external events are generated by some
2 Framework Specification 19

2.3 Predicates

(unspecified) agent that lies outside the scope of the acquisition project.9 Including
external events in the framework allows a coupling to items that are outside the
scope of the acquisition project.

One operation that can be specified is that which indicates some external event
has occurred. We write this as

External_Event_Occurred (ei: EXTERNAL_EVENT; t) → Boolean
|→

∃ aj: ACTIVITY •
External_Event_Activity_Relation (ei , aj) (2.19)

Note the presence of a pre-condition here, in contrast to the corresponding opera-
tion for internal events (see Eq. (2.18)). That is, we are only interested in the oc-
currence of those external events such that they are related to an acquisition
activity. In effect, the pre-condition clause serves to filter only the external events
of interest to the acquisition project.

2.3.3 Requirements

Requirements management is a fundamental aspect of any acquisition, and the
framework addresses requirements. One especially important consideration is
that the ability to relate requirements to different instances of a system is of par-
ticular importance in acquisition (think of the difference between a waterfall mod-
el and an incremental mode, for example).

The predicates that will be included in the framework to perform operations can
be developed from those for dealing with activities (see Eq. (2.10) ff.).

Add_Requirement (ri: REQUIREMENT; t, t’) → Boolean
|⇒

Requirements[t] = Requirements[t’] ∪ {ri}
t > t’ (2.20)

Modify_Requirement (ri: REQUIREMENT; t) → Boolean (2.21)

9. One could attempt to develop a specification of some relevant aspects of the external en-
vironment associated with some acquisition project. For example, one could develop a
specification of a COTS marketplace. The integration of that specification and one based
on the framework specified here would be achieved through the predicates defined here for
dealing with such external events, as well as relations between the external events and the
(internal) acquisition activities that are performed. Although the development of a specifi-
cation for some external aspects of acquisition may be interesting and challenging, they are
beyond the scope of the framework specified here. For some discussion of an acquisition
model that includes COTS products, see [5].
20 2 Framework Specification
2.3 Predicates

Delete_Requirement (ri: REQUIREMENT; t, t’) → Boolean
|⇒

Requirements[t] = Requirements[t’] \ {ri}
t > t’ (2.22)

There are other operations that can be performed on requirements and warrant
consideration as part of the framework. First, it is useful to know if some require-
ment has been satisfied. We can write a predicate for this as

Requirement_Satisfied (ri: REQUIREMENT; t) → Boolean (2.23)

A second operation deals with the specification of dependencies among require-
ments. We can define this by the following predicate:

 Requirement_Dependency (ri, rj: REQUIREMENT; t) → Boolean (2.24)

If the above predicate is true, it indicates that requirement ri depends on require-
ment rj at a time t. For example, this could mean that requirement rj would have
to be included in the system before requirement ri. Using Eq. (2.24) it is also pos-
sible to develop requirements chains; that is, a sequence of dependencies. Thus,
we could specify that requirement r1 depends on requirement r2, which depends
on requirement r3. This ability may be useful, in particular, to evolutionary acqui-
sition models.

Given the ability to specify a dependency between requirements, we need to spec-
ify that there is not a pairwise dependency between requirements. In other words,
if requirement x depends on requirement y, then we shall require that require-
ment y cannot depend on requirement x. Such a statement must hold for all re-
quirements and is written as:

∀ ri ∈ Requirements •
Requirement_Dependency (ri, rj: REQUIREMENT; t)

⇒
¬ Requirement_Dependency (rj, ri: REQUIREMENT; t) (2.25)

The above is an expression in the language Nestor. It involves a quantification over
all requirements and results in an assertion about the specification regarding re-
quirements dependencies. As a practical application of this expression, suppose a
specification of an acquisition model contained the following text:

Requirement_Dependency (Security_Requirements, Security_Requirements; t)
Requirement_Dependency (Security_Requirements, Security_Requirements; t)

By virtue of Eq. (2.25) the preceding declarations would be invalid.
2 Framework Specification 21

2.3 Predicates

2.3.4 System

We will define a predicate to indicate that some instance of a system depends on
another instance of the system. This is written as

System_Dependency (si, sj: SYSTEM; t) → Boolean (2.26)

One of the important aspects of a system is in terms of how it relates to require-
ments. We define an operation that indicates that a particular requirement is sat-
isfied by some instance of the system.

Requirement_Satisfied (ri: REQUIREMENT, sj: SYSTEM; t) → Boolean (2.27)

If the above predicate is true it implies that the specified requirement is satisfied
by a particular instance of the system. The framework does not specify the details
of how a requirement is satisfied, as this is more a property of the system. Howev-
er, we would expect that if a requirement has been satisfied, most likely it would
mean that some testing has been done to verify the requirement.

Eq. (2.27) could be used to specify the time-phasing of requirements. For example,
if we have two requirements denoted r1 and r2, then consider the following:

Requirement_Satisfied (r1: REQUIREMENT, sj: SYSTEM; t)
Requirement_Satisfied (r2: REQUIREMENT, sj: SYSTEM; t’)

t’ > t

The above specifies that requirement r2 is satisfied at a later time than require-
ment r1.

Finally, we can define a predicate that states that some instance of a system is sat-
isfied. The pre-condition for such a predicate is that every requirement that is as-
sociated with a particular instance of a system must be satisfied. Mathematically,
we have

System_Instance_Satisfied (si: SYSTEM; t) → Boolean
|→

∀ rj ∈ Requirements •
Requirements_Mapping (rj, si) •

Requirement_Satisfied (rj; t) (2.28)

In developing the preceding predicate we have used the relation between require-
ments and instances of a system, Eq. (2.9), and the predicate to indicate that a
specified requirement has been satisfied, Eq. (2.23).
22 2 Framework Specification
2.3 Predicates

2.4 Execution Character

The specification developed thus far is largely static in nature. In reality, an ac-
quisition has an execution characteristic, and we will now discuss this general top-
ic. We will later develop several types of execution character that may be applied
to a particular instance of the framework.

2.4.1 Basic Execution Model

In developing the predicates for the temporal evolution of an activity we will use
a state model. We consider the following states of an activity: null (the initial
state), in_progress, suspended, and completed. The state transition diagram ap-
pears in Figure 2-6.

Figure 2-6: State Transition Diagram for an Activity

The state transition model shown in Figure 2-6 is simple, but it will serve our need
for a specification in the framework. The first predicate we will declare is that
which specifies the initiation of some acquisition activity. This is defined as

Initiate_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

¬ Activity_in_Progress (ai: ACTIVITY; t)
|⇒

Activity_in_Progress (ai: ACTIVITY; t) (2.29)

The presence of the pre-condition states that an acquisition activity cannot be ini-
tiated unless it is not already in progress. The presence of a post-condition in Eq.
(2.29) simply states that when an acquisition activity is initiated it is in progress.

We will also provide the capability to suspend and resume an acquisition activity.
These are defined as:

Null In_Progress

SuspendedCompleted

Meaning of State Transitions

1 Activity is started
2 Activity is completed
3 Activity is suspended
4 Activity is resumed
5 Activity completes

1

2 34

5

2 Framework Specification 23

2.4 Execution Character

Suspend_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

∃ t’ < t • Initiate_Acquisition_Activity (ai: ACTIVITY; t’)
|⇒

¬ Activity_in_Progress (ai: ACTIVITY; t) (2.30)

Note that there is a pre-condition associated with suspending an acquisition activ-
ity; namely, the activity had to be started at a previous time. Note also the post-
condition: if an activity is suspended, it is no longer in progress.

Resume_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

∃ t’ < t • Suspend_Acquisition_Activity (ai: ACTIVITY; t’)
|⇒

Activity_in_Progress (ai: ACTIVITY; t) (2.31)

The predicate to resume an acquisition activity also has the pre-condition that the
specified activity had to be suspended at an earlier instant in time. Also, the post-
condition specifies that after an activity is resumed, it is now in progress.

Similarly, we define

Terminate_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

∃ t’ < t • Initiate_Acquisition_Activity (ai: ACTIVITY; t’)
|⇒

¬ Activity_in_Progress (ai: ACTIVITY; t) (2.32)

As an aside, note that the specification of the predicate for suspending an acquisi-
tion activity is the same as the predicate for terminating an acquisition activity.
When two predicates are identical we say that they are underdefined. This means
that further specification, known as refinement, must be added to distinguish
their semantics. In Section 5.8.3 on page 70 we will show how these predicates can
be resolved by explicitly accounting for the state in their definition. Doing so re-
moves the underdefined character of the specification.

We may also combine the predicates that define the initiation and termination of
an activity to specify the execution of some acquisition activity in the following
manner:
24 2 Framework Specification
2.4 Execution Character

Execute_Acquisition_Activity (ai: ACTIVITY; t, t’) → Boolean
|→

Initiate_Acquisition_Activity (ai: ACTIVITY; t)
Terminate_Acquisition_Activity (ai: ACTIVITY; t’)

t’ > t (2.33)

The above predicate is defined in terms of two values of time t and t’, which repre-
sent the initial and terminal times associated with the execution of the activity,
respectively. The predicate Execute_Acquisition_Activity is true if and only if
the predicates for the initiation and termination of the activity are also true. Note
however, that it is possible for the predicate to be true even if the acquisition ac-
tivity was suspended and resumed during the course of its execution.

2.4.2 Concurrency Considerations

A second facet to the execution of acquisition activities deals with the need to ad-
dress concurrency considerations. It is a reality that acquisition frequently in-
volves cases where multiple activities may be ongoing at the same time. In the
framework it is thus relevant to specify operations related to concurrency.

The first operation that we will define is one that indicates that two different ac-
quisition activities may be concurrent in nature. This is expressed as

Concurrency_Permitted (ai, aj: ACTIVITY) → Boolean (2.34)

The preceding predicate is assumed true if activities ai and aj are permitted to exe-
cute concurrently. One may also want to define an operation that specifies that
two activities may not be concurrent, and we can write this as:

Concurrency_Prohibited (ai, aj: ACTIVITY) → Boolean (2.35)

It is also possible to develop an operation that is stronger in intent than that ex-
pressed by Eq. (2.34). That is, there may be occasions where it is required that cer-
tain activities execute concurrently; this can be expressed as

Concurrency_Required (ai, aj: ACTIVITY) → Boolean (2.36)

2.5 Completeness Considerations

It is important to assess whether an acquisition model is complete, and we will
now develop an approach to this problem. Intuitively, it may appear clear what the
notion of completeness means. However, one of the reasons for developing a formal
specification is to be able to precisely define some aspect of a model. Hence, we will
now formally describe what we believe is a reasonable definition of completeness
2 Framework Specification 25

2.5 Completeness Considerations

of a general acquisition model. There are two aspects to completeness: of the spec-
ification and of an execution of that specification.

2.5.1 Specification Completeness

In general, the specification completeness indicates some property of the specifi-
cation of an acquisition model as an instance of the framework. Several of such
considerations have already been defined. For example, in the development of the
relation between internal events and acquisition activities given in Eq. (2.7) on
page 11 we required that every internal event must be related to some acquisition
activity. This means that if an acquisition model declares an internal event, and
that specified event is not related to some acquisition activity (through the speci-
fication of an instance of the relation), then the model is not complete.

As another example, we required that the sets of internal and external events have
to be disjoint, i.e., have no members in common. This was defined in Eq. (2.3)
where we stipulated:

Internal_Events[t] ∩ External_Events[t] = ∅

Hence, if a specification of a model had the same event in both sets, then the spec-
ification of the model would be incorrect.

To illustrate something that is not specified in the framework, we had considered
adding a requirement that every acquisition activity had to be reachable from ev-
ery other acquisition activity. This would mean there should be no “loose ends” in
the way acquisition activities are related to each other. To assess the reachability
criteria, consider the acquisition model “architectures” shown in Figure 2-7.

In part (a) of Figure 2-7 an external event is related to an acquisition activity, as
required in the framework as described in connection with Eq. (2.8). However, if
we required that each activity be related to some other acquisition activity, that is
illustrated in connectivity of the activities shown in Figure 2-7(a). In contrast, con-
sider part (b) of Figure 2-7. As required, there is still a relation between the exter-
nal event and an acquisition activity. However, in this case, the indicated
acquisition activity is not related to any other activity. Instead, there is a relation
to an internal event, which then serves as an intermediary to other acquisition ac-
tivities.
26 2 Framework Specification
2.5 Completeness Considerations

Figure 2-7: Different Mechanisms for Handling External Events

Hence, if we required a reachability property over the set of acquisition activities,
it would preclude an architectural model such as that in part (b) of Figure 2-7. For
this reason, we have not included a reachability property in the framework. An ac-
quisition model may, however, impose such a condition without adverse effect on
the framework specification. For a further elaboration of this point, see the discus-
sion dealing with conformance of a model to the framework in Section C.1.

2.5.2 Execution Completeness

There is a second view of completeness of a model, and that is with respect to the
execution of the model. From a practical perspective, we are talking about the
manner in which the model is performed.

We begin by declaring two instants of time that denote an interval over which an
acquisition takes place. These may be interpreted as the “beginning” and “end” of
the acquisition. The declaration for these instants is

tstart, tstop: Time

From an operational view, we state that an acquisition model is execution-com-
plete on the interval [tstart, tstop] if the following conditions are satisfied:

External Events

Internal
Events

Acquisition
Activities

External Events

Acquisition
Activities

(a) (b)
2 Framework Specification 27

2.5 Completeness Considerations

• The execution of acquisition activities is well specified on the
interval. By this we mean that no activity starts before the time
tstart, and that all activities must be terminated prior to the time
tstop.

• For every external event that may be initiated in the interval and
that is related to some acquisition activity, that acquisition activity
must be initiated before the end of the interval. The preceding item
further implies that the activity associated with the external event
must also complete.

• For every internal event that may be initiated in the interval, the
event is related to some acquisition activity, and its associated
acquisition activity is initiated.

• For every requirement that exists at the end of interval tstop, the
requirement is satisfied.

Well Specified

The criterion of well specified may be stated as

∀ ai ∈ Acq_Activities[t]
∃ t1 ≥ tstart • Initiate_Acquisition_Activity (ai: ACTIVITY; t1) ∧

∃ t2 ≤ tstop • Terminate_Acquisition_Activity (ai: ACTIVITY; t2)
tstart < tstop (2.37)

Note that the preceding does not mean that an activity cannot be suspended and
then resumed (perhaps multiple times) during the interval [tstart, tstop]. The key
point is that the activity be terminated before the end of the time interval in con-
sideration.

External Events

The next condition for execution completeness is that for those external events
that may occur (as defined by the relation between external events and acquisition
activities) during the interval, the associated acquisition activity must be initiat-
ed.10 The necessary formalization of this condition is as follows:

10. There is one potential loose end, namely, if an external event occurs before the start time
of the interval, but the acquisition activity that deals with the event does not start until after
the beginning of the interval; hence, a possible overlap. However, as we shall see, if a mod-
el is execution complete on an interval, then it is not possible for the above situation to occur
on any other than the first interval.
28 2 Framework Specification
2.5 Completeness Considerations

∀ ei ∈ External_Events[t] •
Time_of [External_Event_Occurred (ei: EXTERNAL_EVENT; t)] ∈ [tstart, tstop]

∃ aj: ACTIVITY •
External_Event_Activity_Relation (ei , aj)

∧
Initiate_Acquisition_Activity (aj: ACTIVITY; t)

t ∈ [tstart, tstop] (2.38)

Note the presence of Time_of in Eq. (2.38). This is a built-in function in Nestor that
extracts the time associated with the evaluation of its argument. In this case, the
operation Time_of returns the value of time t associated with the operation
External_Event_Occurred; in other words, it returns the time when the exter-
nal event occurred.

We make an important note concerning Eq. (2.38). From Eq. (2.37) we see that if
an acquisition activity is started on the interval, it must be completed. The speci-
fication of Eq. (2.38) only states that the acquisition activity is started. However,
it follows from these two equations that the activity associated with the external
event must also terminate. This is an example of reasoning over a specification,
which is an important consideration for more advanced work.

Internal Events

The next condition is that associated with internal events. This condition may be
specified in a manner similar to that for external events, described above. We have

∀ ei ∈ Internal_Events[t] •
Time_of [Internal_Event_Occurred (ei: INTERNAL_EVENT; t)] ∈ [tstart, tstop]

∃ aj: ACTIVITY •
Internal_Event_Activity_Relation (ei , aj)

∧
Initiate_Acquisition_Activity (aj: ACTIVITY; t’)

t ∈ [tstart, tstop] (2.39)

The interpretation of Eq. (2.39) is easily discerned from that described above for
external events.

Requirements

Our final condition for execution completeness is that all requirements that exist
at the end of the interval must be satisfied. This condition may be specified as fol-
lows:

∀ ri ∈ Requirements[tstop] •
Requirement_Satisfied (ri; tstop) (2.40)
2 Framework Specification 29

2.5 Completeness Considerations

Note the power achieved through the use of the dynamic data type used to repre-
sent requirements. In particular, Requirements[tstop] denotes the members of the
set of requirements at the time tstop. We then simply require that each of these re-
quirements must be satisfied. Note further, if a requirement is deleted before tstop
then it will not be in the set Requirements[tstop] and we need not be concerned with
it. Furthermore, if some requirement is added prior to tstop it will remain in the set
(unless otherwise deleted) and must therefore also be satisfied. Hence, we do not
care what changes are made to the set of requirements, either through addition,
deletion, or modification. We simply require that all the requirements at the end
of the interval must be satisfied.

Summary

The preceding has described an approach that allows us to specify that an execu-
tion of some acquisition model is complete with respect to some time interval. We
have developed this approach in terms of activities, internal and external events,
and satisfaction of requirements.

We have not addressed the seemingly innocuous question of when an execution of
a model is entirely complete; i.e., when is it done? There are different ways to de-
fine overall completeness, including when

• all of the requirements are satisfied

• all activities have terminated

• the latter of the above completes

Any of the above are reasonable definitions of when an execution of a model com-
pletes. Because each is acceptable, we do not include, in the framework, a defini-
tion of when an execution of a model is done. Instead, that choice is left to the
developers of a particular model specification.

We conclude by noting a practical benefit to the concept of execution completeness.
For example, consider an acquisition model that is based on an incremental or spi-
ral approach. When is an increment or spiral complete? It is the use of a specifica-
tion such as presented above that allows us to address this concern. When recast
in the context of an acquisition program, performed according to a particular ac-
quisition model, then the question becomes very relevant in a practical sense.

2.6 Summary

By means of summary, and largely from an intuitive perspective, the following fig-
ure summarizes the relations between acquisition activities, internal and external
acquisition events, and requirements and instances of a system.
30 2 Framework Specification
2.6 Summary

Figure 2-8: Intuitive Relation of Overall Acquisition Model Elements

The relations developed in Section 2.2 on page 9 are indicated in the above figure.
For example, there are relations between external events and acquisition activi-
ties. Note also the relation among different acquisition activities is illustrated in
Figure 2-8. The structure presented in Figure 2-8 is static in nature, and does not
show the dynamics associated with the framework.

A summary of the framework from a mathematical perspective may be found in
Appendix A on page 77. There we group together the various mathematical as-
pects of the framework.

We should reiterate our interest in developing the framework specification and the
question of scope; that is, what amount of detail does one include in the frame-
work, as opposed to a model based on that framework? Later, in Section 5 on page
49, we will address possible extensions that could be incorporated in the frame-
work. However, at this point we believe the framework satisfies the proper balance
in terms of its ability to express (and later refine) acquisition concepts and the
need for additional detail that is required for treatment of a particular acquisition
model based on the framework.

External Events Acquisition_Activity

Internal Events System

Requirements

Scope of Acquisition Project
2 Framework Specification 31

2.6 Summary

32 2 Framework Specification
2.6 Summary

3 An Example: The Waterfall Model

To provide an illustration of the application of this formal approach, we will con-
sider how a (pure) waterfall development model can be specified. Originally spec-
ified by Royce [6], this model was a mainstay of systems development for many
years. It has fallen out of favor in recent years, yet is still applied in the context of
other, more recently developed, acquisition models. In the following we will devel-
op a specification of the waterfall model in the context of the acquisition frame-
work. Some extensions to the waterfall model specification, based on extensions to
the framework, are described in Appendix D.

3.1 Basic Specification Elements

Activities

The waterfall model [6] is characterized by a set of activities. Its simplest repre-
sentation is shown in Figure 3-1.

Figure 3-1: Basic Representation of Waterfall Model

 System
Requirements

 Software
Requirements

Analysis

Program
Design

Coding

Testing

Operation
3 An Example: The Waterfall Model 33

3.1 Basic Specification Elements

The choice of presentation in Figure 3-1 is meant to indicate, in its simplest case,
that the activities are performed in the order shown; hence the term waterfall. The
arrows shown in Figure 3-1 represent relations between the indicated activities.

The set of activities shown in Figure 3-1 may be represented in the framework as
follows:

Acq_Activities: {System_Requirements_Definition, Software_Requirements_Definition,
Analysis, Program_Design, Coding, Testing, Operation} (3.1)

Note that we do not include a subscript [t] on the above. The lack of the subscript
[t] means that the data object is static, which is the case for the activities defined
for the waterfall model.

Events

The second aspect of the framework is the specification of events. The first group
of events are those that are internal to the scope of the project. For the waterfall
model, there are items described that we will interpret as events. These are re-
views defined in the context of interaction with the customer, and we can declare
them as

Preliminary_Software_Review, Critical_Software_Review, Final_Software_Acceptance_Review:
INTERNAL_EVENT

Internal_Events: {Preliminary_Software_Review, Critical_Software_Review,
Final_Software_Acceptance_Review} (3.2)

The second group of events are those that are external to the scope of the project.
In the case of the pure waterfall model there are no such external events; this con-
straint is specified by

#External_Events = ∅

The fact that there are no external events indicates the development does not in-
volve external factors, such as the use of COTS products.

Requirements

In terms of requirements, we introduce the following:
34 3 An Example: The Waterfall Model
3.1 Basic Specification Elements

[REQUIREMENT]

Requirements: {REQUIREMENT}
NUMBER_REQUIREMENTS: Number
#Requirements > 0
#Requirements = NUMBER_REQUIREMENTS

The preceding specifies a finite set of requirements whose number is defined by
the constant NUMBER_REQUIREMENTS. It is important to note that the number of
requirements is assumed constant. This is in keeping with the assumption of the
waterfall model, in that there is a fixed set of requirements that are then used to
develop the system. This further implies that, in the development of operations
that might be performed on requirements, that one cannot either add or delete a
requirement. Hence, such operations are not necessary in the waterfall model, al-
though they remain useful in the context of a framework.

System

We specify the system as follows:

[SYSTEM]
System: {SYSTEM}
#System = 1

The above declares that there is only one instance of the system. In recognition
that the system needs to be maintained, we could specify a set of system instances
where a given instance of a system is determined by the changes that it incorpo-
rates during maintenance. We shall not take this approach however, because it
does not lend anything of interest to the model. Furthermore, recall that the em-
phasis on the specification of the waterfall model in [6] was development, and we
continue that emphasis here.

Relations Among Activities

As for the relations among the activities, based on Figure 3-1 one might assume
that the relations should be defined for only “nearest neighbor” activities. In other
words, there would be a relation defined between Program Design and Coding, but
not a relation between Software Requirements Definition and Coding. However,
the representation shown in Figure 3-1 is the currently popular rendition of the
waterfall model and does not account for its original specification. In particular,
the original specification admitted not only “nearest neighbor” relations, but rec-
ognized the necessity for other relations among activities. The basic specification
of a relation among activities applies here, that is
3 An Example: The Waterfall Model 35

3.1 Basic Specification Elements

Activity_Relation: Activities <-----> Activities
 ∃ ai, aj ∈ Activities

• Activity_Relation (ai , aj)
ai ≠ aj (3.3)

The preceding specifies that every activity is related to every other activity except
itself. Another way to represent relations, whether that defined above or in gener-
al, is to use a matrix representation of the relation. In this case, we would have

Figure 3-2: Matrix Representation of Activity Relations in the Waterfall Model

It is assumed that the rows and columns in Figure 3-2 are ordered in correspon-
dence with the activities declared in Eq. (3.1). The value unity denotes a relation
exists between the indicated activities, and the value zero means there is no rela-
tion specified.

Relations Among Events and Activities

The second type of relation in the framework is that between events and activities.
In terms of reference [6] the relation can be declared as

Project_Review: Internal_Events ----> Acq_Activities
 ∃ ei ∈ Internal_Events, aj ∈ Acq_Activities

• Project_Review (ei , aj) (3.4)

The character of the relation in Eq. (3.4) is one-to-one: each internal event must
relate to some activity, but not all activities must be related to an event.

111110

111101

111011

110111

101111

011111
36 3 An Example: The Waterfall Model
3.1 Basic Specification Elements

The internal events declared in Eq. (3.2) are related to certain activities as dis-
cussed in [6]. In particular, the following relations for project reviews are de-
scribed:

Project_Review (Preliminary_Software_Review, Preliminary_Program_Design) (3.5)

Project_Review (Critical_Software_Review, Coding) (3.6)

Project_Review (Final_Software_Acceptance_Review) (3.7)

For example, the first relation indicates a relation between an internal event (the
preliminary software review) and its related activity (preliminary program de-
sign).

Because there are no external events associated with the waterfall model, there
are no such relations that we need to consider.

3.2 Predicates

In Section 2.1.1 on page 5 we defined predicates for activities that are part of the
framework. For example, we provided predicates to add, modify, or delete an ac-
quisition activity. In the case of the waterfall model, such predicates are not nec-
essary. The reason is that the activities are pre-defined, hence there is no need to
define operations to change them.

For internal events, the framework specification accounts for predicates that allow
us to add or modify an internal event. Again, because the internal events are pre-
defined in the waterfall model, it is not necessary to define predicates that perform
such operations. However, two predicates that may be useful in the specification
of the waterfall model are the following:

Internal_Event_Occurred (e : INTERNAL_EVENT; t) → Boolean

Generate_Internal_Event (e: INTERNAL_EVENT; t) → Boolean
|⇒ Internal_Event_Occurred (e : INTERNAL_EVENT; t) (3.8)

For example, using the above predicates it may be possible to indicate that when
some activity completes, a certain internal event is started.

Because the waterfall model does not include external events, it is not necessary
to define predicates that deal with external events.

For requirements it will be useful to carry over the following predicates from the
framework specification:
3 An Example: The Waterfall Model 37

3.2 Predicates

Modify_Requirement (ri: REQUIREMENT; t) → Boolean (3.9)

Requirement_Satisfied (ri: REQUIREMENT; t) → Boolean (3.10)

Although it is assumed that the requirements on the system are known at the out-
set of the project, we need to include a predicate that allows us to modify a require-
ment. It was recognized that there may be a need to go back and modify an initial
requirement. However, we have not included predicates to create or delete a re-
quirement because their number is assumed fixed.

Finally, for the specification of predicates related to the system, since there is only
one instance of the system, we need not define predicates that relate to various
system considerations.

The preceding discussion of predicates in the context of the waterfall model has
turned out to be quite simple and straightforward. The reason for this is because
so many aspects of the model are based on inherently simple considerations. For
example, a fixed set of requirements and only one instance of the system is quite
easy to deal with.

3.3 Timing Properties

To begin a discussion of the timing properties associated with the waterfall model,
we define the times when an implementation of the model starts and stops:

tstart, tstop: Time

We begin a specification of the timing properties of the waterfall model by carrying
over the definitions to initiate and complete an acquisition activity.

Initiate_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

t ≥ tstart (3.11)

Terminate_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

∃ t’ < t • Initiate_Acquisition_Activity (ai: ACTIVITY; t’)
t’ ≥ tstart
t ≤ tstop (3.12)

Note the pre-conditions placed on the above equations. The operation to initiate an
acquisition activity requires that the time at which the activity is initiated must
be later than the time when the project started. Similarly, the time at which an
activity terminates must be earlier than the time at which the project completes.
38 3 An Example: The Waterfall Model
3.3 Timing Properties

To specify the initiation of a waterfall development, we require that the first activ-
ity performed is that associated with system requirements. In other words, at a
time equal to tstart the system requirements activity must be initiated. Mathemati-
cally, this can be specified as:

Initiate_Acquisition_Activity (System_Requirements_Definition; tstart) → Boolean

Given that the model implementation is initiated, the permitted activities that
may later be formed are those activities that are related to the activity just com-
pleted. It is through the coupling of activities, specified by the relation defined in
Eq. (3.3), that defines the activities that can be performed. This requirement can
be specified as follows:

∀ t ∈ (tstart, tstop) •
Terminate_Acquisition_Activity (ai: ACTIVITY; t)

⇒
Initiate_Acquisition_Activity (aj: ACTIVITY; t)

• Activity_Relation (ai , aj)
ai ≠ aj (3.13)

Hence, when some activity terminates, the next activity that may be performed is
one such that it is related to the activity that completed. This is a general form of
constraint on the execution characteristics associated with a model. In the case of
the waterfall model, however, once an activity terminates, any other activity can
be performed. The reason for this is because the relation between acquisition ac-
tivities is that every activity is related to every other activity (except itself). Al-
though most diagrams representing the waterfall model only show activities
coupled in a nearest-neighbor fashion, as shown in Figure 3-1, the specification of
the model in [6] is more general.

An interesting question is: When does the implementation of the waterfall model
end? On the one hand, one could say “never” because a system goes into operation
and maintenance after it is developed! In the definition of activities for the water-
fall model, the last two activities are associated with testing and operation. We
will assume that the implementation of the model ends when both of the following
two requirements are met:

• all requirements are satisfied

• the activity of operation begins

The framework includes an operation that specifies that a given requirement is
satisfied (see Eq. (2.23) on page 21). To specify that all requirements are satisfied
we promote the operation that a given requirement is satisfied over the set that
includes all the requirements. We can introduce an expression for this case as fol-
lows:
3 An Example: The Waterfall Model 39

3.3 Timing Properties

All_Requirements_Satisfied (t*) → Boolean
|→

 ∃ t* •
∀ ri ∈ Requirements •

Requirement_Satisfied (ri: REQUIREMENT; t)
t ≤ t* (3.14)

In other words, the above states that there is a time t* when every requirement
has been satisfied.

We may now use the result in Eq. (3.14) to specify the condition that an implemen-
tation of the waterfall model is complete. We have:

Waterfall_Model_Complete (t*) → Boolean
|→

All_Requirements_Satisfied (t*)
Initiate_Acquisition_Activity (Operation; t*)

t* ≤ tstop (3.15)

As indicated earlier, other interpretations of what it means for an implementation
of a model to be complete can be provided. It could be the first time that all require-
ments associated with the system are satisfied, as was the choice represented in
Eq. (3.15). One could refine the model to account for deployment of a system and
assume that the time of deployment is when the model is complete. Or, yet another
choice would be to define the completion time as when the system is retired.

From the preceding we have specified the timing properties associated with the
waterfall model. An interesting question is to address the sequence of activities
that are performed as part of a waterfall acquisition. We will not provide the math-
ematics of this (although it is simple to do so). Instead, in Table 3-1 we show three
possible sequences of activities for a waterfall model.11

The first column of Table 3-1 represents the basic (ideal) model presented in Fig-
ure 3-1. The second column shows activities that include the iteration between
some of the nearest-neighbor activities. For example, after performing the design,
coding, and test, it may be necessary to go back and perform some coding activity.
The last column of Table 3-1 shows a more general case where activities may be
performed in an arbitrary order. After performing the activities in the basic ap-
proach, after testing it may be necessary to go back to the software requirements
definition and then start the sequence over again.

11. A specification of a sequence of activities is known as a trace.
40 3 An Example: The Waterfall Model
3.3 Timing Properties

Table 3-1: Valid Activity Sequences in the Waterfall Model

Finally, we consider the timing properties of internal events. By defining the rela-
tion between an internal event and some activity as we did in Eq. (3.4), we know
which events are associated with a given activity. We now require that the inter-
nal event occurs at some time during the execution of its associated activity. This
can be specified as

∀ ai ∈ Acq_Activities •
Project_Review (ei , aj)

∃ t* ∈ Duration {Execute_Acquisition_Activity (ai: ACTIVITY; t, t’)} •
Internal_Event_Occurred (ei , aj)

The above simply states that for every activity that has an associated event, the
event occurs at some time during the execution of that activity. No further require-
ment is placed on the actual time at which the event occurs during the activity.12

Basic Nearest Neighbor General

1 System Requirements
Definition

System Requirements
Definition

System Requirements
Definition

2 Software Requirements
Definition

Software Requirements
Definition

Software Requirements
Definition

3 Analysis Analysis Analysis

4 Program Design Program Design Program Design

5 Coding Analysis Coding

6 Testing Program Design Testing

7 Operation Coding Software Requirements
Definition

8 Testing Analysis

9 Coding Program Design

10 Coding

12. The function of Duration is a projection operator that extracts the times associated with the
predicate on which it operates. This is a built-in function provided by the language Nestor.
3 An Example: The Waterfall Model 41

3.3 Timing Properties

3.4 Completeness Considerations

The specification of the framework contains an important discussion about the
completeness criteria associated with a particular model. A brief summary of the
completeness criteria and an index to where they are discussed for the waterfall
model is provided in Table 3-2.

Table 3-2: Completeness Considerations for Waterfall Model

3.4.1 Execution of Activities Is Well Specified

The criterion of well specified means that no activity begins at a time before the
model starts, and no activity ends after the model completes. This is described in
connection with Eq. (2.37) on page 28. The criteria for well-specified for the water-
fall model are expressed as the pre-conditions associated with Eqs. (3.11) and
(3.12).

3.4.2 Treatment of External Events

It is easy to handle this criterion for the waterfall model: The model does not admit
external events. Hence, this requirement does not apply.

3.4.3 Treatment of Internal Events

The waterfall model only specified three internal events, namely preliminary soft-
ware review, critical software review, and final software acceptance review. The
completeness requirement for internal events, as expressed by Eq. (2.37) on page
28, is that every internal event must be related to some acquisition activity. This
criterion is satisfied by Eq. (3.4) and following.

3.4.4 All Requirements Satisfied

The last completeness criterion is that all requirements must be satisfied. This
was specified in Eq. (3.14) on page 40. Furthermore, the specification that all re-
quirements were satisfied was used as part of the pre-condition to the specification
that the model is complete.

Topic Section

Execution of activities is well specified 3.4.1

Treatment of external events 3.4.2

Treatment of internal events 3.4.3

All requirements satisfied 3.4.4
42 3 An Example: The Waterfall Model
3.4 Completeness Considerations

3.5 Reasoning About the Specification

One of the advantages of a formal, mathematical approach is that it lends itself to
reasoning in a precise manner. This is typically described under the ability to
state, and complete, proofs about some aspect of a specification. Our intent here is
not to go into details about application of proof-theoretic techniques about the
specification of the waterfall model. However, let us consider some small examples
that deal with reasoning about the specification.

Can the same activity be executed immediately after it has terminated?
No. The reason is evident from Eq. (3.13) and the restriction that ai ≠ aj. An activ-
ity can be initiated only if it is related to another activity, and an activity is not
defined as relating to itself.

Must every activity be executed at most one time? No. The specification of
the waterfall model does not make any such restriction. An implementation of the
specification of the waterfall model may, however, exhibit such behavior.

If an implementation of the model completes, what happens if a require-
ment is later changed? The specification is silent on this point. That is, there is
an assumption that all the requirements are known at the start of the model and
thereafter constant. There are not operations in the specificaiton of the waterfall
model to add or delete a requirement, although there is an operation that allows a
requirement to be modified.

What happens if an acquisition activity is suspended; can there be times
when no activity is in progress? Again, the specification is silent on this point.
While the general specification of the framework does provide operations for an ac-
tivity to suspend and resume, those operations are not incorporated in the specifi-
cation of the waterfall model. The reason is that the specification is silent with
respect to this question.

The above illustrates simple cases where one can pose a question of the specifica-
tion and obtain a response that can be substantiated mathematically. It is this
point—the ability to formally reason over the domain of a specification—that is so
valuable to a formal approach.

3.6 Summary

There are a number of points that should be noted as a summary of a formal spec-
ification of a waterfall model. Two key points include the following:

• The formal specification serves to validate the utility of the
framework. The specification of activities, events, and their
relations, as well as execution character, has allowed a precise
3 An Example: The Waterfall Model 43

3.5 Reasoning About the Specification

specification of the waterfall model. Note that not all of the
framework capabilities were required to specify the waterfall
model.

• The development of the formal specification has required us to
carefully define the model with the precision required of a
mathematical approach. This is one of the well-known benefits of a
formal approach.

We believe that the formal approach taken here can also be applied to other mod-
els that are used for an acquisition. Some of these will be noted in the following
section. If one can develop a formal specification of an acquisition model based on
the framework developed in Section 2, with possible extensions, it allows one to
compare the different acquisition models in a more enlightened manner. This, in
turn, helps one gain deeper understanding of an acquisition model.
44 3 An Example: The Waterfall Model
3.6 Summary

4 Discussion

The framework that has been developed in this report is purposefully general in
nature. The intent is that the framework can serve as the basis for the develop-
ment of particular acquisition models, which are instances of this framework. This
approach is indicated in the following figure:

Figure 4-1: Acquisition Models

Figure 4-1 shows some possible acquisition models that could be specified in terms
of the acquisition framework. We recognize and expect that it may be necessary to
add additional details to the basic framework specification as one applies the
framework to a particular model. The models indicated here are:

• waterfall model: the well-known model based on the work of Royce
[6], which was illustrated in Section 3

• spiral model: another well-known model, based on the work of
Boehm [1]

• incremental models, also sometimes considered to be evolutionary
in nature

• other possible acquisition models

Although the above represent some of the well-known models that are discussed
today, they can be embellished in different ways. For example, if one seeks to per-
form an acquisition that places heavy emphasis on the use of open systems and
COTS products, this introduces additional considerations that must be accounted
for in the model; see [5] for further discussion of this point.

A simplified comparison of the above models, in terms of concepts employed in the
framework developed here, is summarized in Table 4-1.

Incremental

Acquisition Framework

 Models
Waterfall
 Model

 Spiral
Model

Other Possible
 Models
4 Discussion 45

Table 4-1: Comparing Different Acquisition Models

We emphasize the simplified view presented in the above table. It is more illustra-
tive of the characteristics of these models, as opposed to details associated with
them. No doubt proponents of one model or another may cry foul at the simplifica-
tion. In response we would welcome well-specified definitions of these models in
the context of the framework defined here.

Framework
Element Waterfall Spiral Incremental

Requirements Assumed known at
start of project

Developed as the
project progresses
with each iteration
of the spiral

Assumed known at
start of project

Activities System Require-
ments, Software
Requirements,
Analysis, Program
Design, Coding,
Testing, Operation

Top level specifica-
tion includes plan-
ning, risk
management, engi-
neering, and cus-
tomer evaluation

Various choices
possible; e.g.,
those associated
with the waterfall
model

Events Preliminary soft-
ware review, criti-
cal software review,
final software
acceptance review

Various choices
possible

Various choices
possible

Relations Arbitrary coupling
between activities
permitted, but
mainly expected to
be between nearest
neighbors

Coupling between
each activity in a
cycle and end of
one cycle to next
cycle

Various, based on
activities chosen

Timing Prop-
erties

Activities per-
formed serially

Activities per-
formed serially
within repetitive
cycles

Activities per-
formed serially;
each increment
adds more func-
tionality (i.e., satis-
fied requirements)

System
Instances

Focus on only one
instance of the sys-
tem

Multiple instances
determined during
execution of acqui-
sition model

Pre-planned multi-
ple system
instances
46 4 Discussion

One of the primary differentiators of the models shown in Table 4-1 is the manner
in which the requirements are satisfied by an instance of a system over time. In
the waterfall model, for example, all requirements are assumed known at the out-
set, and one proceeds to develop the (hopefully) final instance of the system. In
contrast, a spiral development approach adds requirements over time that are im-
plemented in different instances of the system over time, leading to a desired final
instance of the system.

Although the approach to satisfying requirements as part of a system acquisition
is a differentiating characteristic, there are others that deserve attention. We
would suggest that the increased emphasis on how open standards and COTS
products are addressed in an acquisition is another key characteristic of an acqui-
sition model. In particular, consideration of standards and their relation to COTS
products leads one to deal with models where external events (such as the upgrade
of a COTS product) are crucial to the acquisition. Further discussion of open stan-
dards, COTS-based acquisition may be found in [5].

Each of the above models is comprised of different activities, events, and relations
among the activities, including their operational semantics. We believe there
would be significant value in the formal specification of the above models. Being
able to compare the models in a formal context adds value not only in understand-
ing the model itself, but how one model relates to other models.13 Furthermore,
the development of a robust specification could be used to help manage an acqui-
sition project, and we would expect a work breakdown structure could be derived
from a formal model.

It is out of the scope of this report to develop a formal specification for all the mod-
els listed above. We would hope, however, that this framework can be applied to
various acquisition models, which are often only loosely stated. The existence of a
formally specified acquisition model, such as a spiral model, for example, would al-
low one to then speak of a theory of spiral acquisition. It is through the application
of a formal approach that we are allowed not only to specify but to reason about
various acquisition models.

13. To illustrate some of the confusion that exists, we recently reviewed a document consisting
of over 3,000 supposedly completed requirements for a system. That was fine, until the
claim was made that this was going to be a spiral acquisition!
4 Discussion 47

48 4 Discussion

5 Possible Extensions to the Framework

Our goal in specifying the framework in Section 2 was to take a minimalist ap-
proach. That is, we wanted to limit the scope of the specification with respect to
the amount of detail present. There are other possible topics that could be included
in the framework, although we have chosen not to take that approach. One of the
basic problems in specifying any type of framework is to know when to stop! Clear-
ly, there are other topics that could be relevant for a model specification based on
the framework defined here. In this section we will illustrate some other possible
considerations.

5.1 Elaboration of Acquisition Activities and Events

The framework does not specify any particular set of acquisition activities. The
reason is that the choice of activities is deemed relevant to a particular model
based on the framework. Although we could have attempted to declare a particular
set of activities, we realize there is always the case where model developers will
require perhaps different activities.

Furthermore, we have not explicitly specified that an acquisition activity could be
divided into a set of other activities. For example, consider an activity Code Con-
struction. We could envision that this activity be further refined to include more
detailed activities such as Code Development, Code Inspection, Code Guideline De-
velopment, and so on. There is nothing in the framework that prevents an activity
from being defined as a subset of other activities. If this approach is required, it
can be easily incorporated in a particular model.

In a similar manner, if deemed necessary, one could partition the acquisition ac-
tivities into two subsets. One subset would be used to represent technical activi-
ties, while the other would be for management activities. We would then define

Technical_Activities[t]: {ACTIVITY}
Management_Activities[t]: {ACTIVITY}
Technical_Activities[t] ∩ Management_Activities[t] = ∅

The last line requires that the sets of technical and management activities have
no activity in common.

One reason for treating management and technical activities separately is to rec-
ognize their separate importance. Taking this view allows for a “divide and con-
quer” approach. Additionally, we note that the technical activities are typically of
bounded duration, while the management activities are performed over the entire-
ty of a project life cycle.
5 Possible Extensions to the Framework 49

5.1 Elaboration of Acquisition Activities and Events

The preceding discussion also applies to the events that are included in the frame-
work. That is, we do not feel it is appropriate to attempt to specify each possible
event that could be included in the framework.

We do believe, however, that the separation of events into internal and external
events is fundamental and does belong in the framework (as well as the relations
between events and activities). One of the characteristics of current acquisition
practice is the need to deal with standards and commercial off-the-shelf (COTS)
products. There are events associated with each of these activities; for example,
the revision to some COTS product would be represented as an external event.
Further discussion of standards-based COTS acquisition can be found in [5].

5.2 Requirements

The framework postulates a finite set of requirements and specifies that those re-
quirements are related to one (or possibly more) instances of a system. There are
a number of operations that can be performed on requirements that are not part
of the core framework specification. For example, one could define the following
operations:

Requirement_Correct (ri: REQUIREMENT; t) → Boolean

Requirement_Self_Consistent (ri: REQUIREMENT; t) → Boolean

Requirements_Consistent (ri, rj: REQUIREMENT; t) → Boolean

We did not include the above predicates in the core framework specification be-
cause such predicates are more focused toward a specification of an acquisition
model. Recall that the main concern in specifying the framework is to include
those operations and data structures that are useful in the characterization of dif-
ferent acquisition models, and for which one can compare different models. In that
sense, the operations defined above do not appear to warrant consideration in the
basic framework.

We have assumed a set of requirements without dealing with them in any further
detail. One area of possible consideration deals with requirements semantics. For
example, one could require that the semantics of a requirement be unique with re-
spect to other requirements. The formalism applied here permits such a specifica-
tion, and while perhaps of general interest, we chose not to include it.14

14. The language Nestor includes some powerful operations for dealing with semantics of
predicates and associated state data.
50 5 Possible Extensions to the Framework
5.2 Requirements

5.3 Participants

Acquisition is performed in a context that has multiple participants, each possibly
assuming different roles. For example, one could consider

• end-user

• developer

• project manager

Another choice might be to consider

• end-user

• project manager

• developer agent

• prime contractor

• sub-contractor

In the latter case, the roles of prime contractor and sub-contractor are similar to
that of the developer, which appears in the first set of alternatives. Furthermore,
it is also possible to refine the roles of the project manager. For example, one could
have a test manager, budget analyst, and so on.

Recognizing the many possible choices to delineate various roles on a project, we
have chosen to remain silent about these roles in the specification of the frame-
work. Of course, a particular set of roles could be included in the development of a
particular acquisition model.

Another reason for not including the roles is based on a separation principle of
what versus who. Our prime concern is what activities are performed, rather than
who performs that activity. While we recognize the possibility of including a par-
ticular role, we believe that is outside the scope of the core framework.

The following provides some guidance, if one were interested in specifying partic-
ipants in a specification of an acquisition model. We would begin by declaring a
free type to represent a participant, namely:

[PARTICIPANT]

Next, we need to identify who the particular participants are. For example, from
the perspective of a project office that is responsible for management of the acqui-
sition, we could include the following:
5 Possible Extensions to the Framework 51

5.3 Participants

Project_Manager, System_Engineering, Software_Engineering, System_Test: PARTICPANT

Project_Management_Staff[t]: {Project_Manager, System_Engineering, Software_Engineering,
System_Test}

From the developer perspective, we might wish to define the following set of par-
ticipants:

Developer_Manager, Developer_System_Engineering: PARTICIPANT

Given the basic set of participants, there are now operations that we can perform
on these basic declarations. For example, suppose we wanted to specify a joint In-
tegrated Project Team, whose members were acquisition project managers and the
manager of the developer effort. We could do this in the following manner:

Joint_Management_Team[t]: {Project_Manager, Developer_Manager}

Also, for purposes of illustration, we can create a joint team for system engineer-
ing, namely:

Joint_System_Engineering_Team[t]: {System_Engineering, Developer_System_Engineering}

Hence, given the basic type declaration for a participant, we can declare and com-
bine them in ways that are appropriate to the particular concerns of the model. For
example, suppose we were interested in including an operation in the acquisition
model that specified the approval of some acquisition activity. This can be repre-
sented as a relation between participants and activities, as shown in Figure 5-1.

Figure 5-1: Development of Approval Relation

There are different ways in which the approval process can be modeled. For exam-
ple, suppose we have the following model:

• Every activity must have at least one participant who can approve
the activity (the relation is total over the range).

Participant Activity
52 5 Possible Extensions to the Framework
5.3 Participants

• A given participant may approve more than one activity (the
relation is many-to).

• A given activity may be approved by only one participant (the
relation is to-one).

• Not all participants need to have approval authority for an activity
(the relation is partial over the domain).

The specification of a relation satisfying the characteristics above is as follows:

Approval_Authority: Participants[t] <--|----- Activities[t]
∃ pi ∈ Participants[t], aj ∈ Activities[t] •

Approval_Authority (pi , aj) (5.1)

Given the specification of the above relation, we can declare those ordered pairs
that are members of the relation. For example, suppose we were concerned with
activities of requirements management and system development. The relevant re-
lations could be declared as:

Approval_Authority (Project_Manager, Requirements_Management)
Approval_Authority (System_Engineering, System_Development)
Approval_Authority (Developer_System_Engineering, System_Development) (5.2)

Note that the above permits two different participants to have approval authority
for the system development activity, namely either a project or developer agent
who is responsible for system engineering. It does not, however, permit the overall
project manager to have approval authority for system development.15

We may use the above notion of approval authority to refine the specification of
what it means to initiate some acquisition activity. In the development of the
framework we included an operation that specified the initiation of some acquisi-
tion activity (see Eq. (2.29) on page 23). We include the concept of approval author-
ity as a pre-condition to initiating some activity; in other words, an activity cannot
begin until there is a participant who has approval authority for the activity.
Hence, we modify Eq. (2.29) as follows:

Initiate_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

∃ pi ∈ Participants[t] •
 Approval_Authority (pi , aj) (5.3)

15. The degree to which this choice is appropriate will not be further speculated upon here!
5 Possible Extensions to the Framework 53

5.3 Participants

Hence, Eq. (5.3) means that an acquisition activity cannot be initiated unless there
is a participant who has approval authority for that particular activity. This is a
reasonable approach to dealing with approval requirements for acquisition activi-
ties, although we recognize that other approaches are possible. For example, the
project manager could have a “veto” power and ability to approve any acquisition
process. If this is the desired approach, however, the specification must account for
the application of a veto power by the acquisition manager.

5.4 Artifacts

As part of an acquisition there are many artifacts that are developed or used. We
use the term artifact to denote some document or product that is developed or used
in an acquisition. Examples of artifacts can include

• software development plan

• contract

• software requirements document

• standard

• COTS product16

• budget

Clearly, as indicated above, artifacts can be of different types and serve different
purposes. Furthermore, artifacts can be used in different ways in the same acqui-
sition.

We do not include artifacts in the specification of the framework. Our reason is
that a specification of artifacts, relations among them, and predicates associated
with their use is not fundamental in order to compare different acquisition models
that can be created as an instance of the framework. That is, many different mod-
els can be used that employ artifacts, but the manner in which the artifacts are
used, we believe, is not fundamental to the ability to characterize key differences

16. It may be more likely that COTS products, as well as standards, are treated in an indepen-
dent manner; i.e., not as a subset of general artifacts. The choice to be made relates to the
importance one wishes to attribute to standards and COTS products in an acquisition mod-
el.
54 5 Possible Extensions to the Framework
5.4 Artifacts

among different acquisition models.17

It would be possible to include some general operations on artifacts in the frame-
work. Toward this end, we could specify a data type

[ARTIFACT]

We could then specify a set of artifacts and perform operations on a general arti-
fact like create_artifact, modify_artifact, and so on. A similar approach was taken
in the way we dealt with requirements, for example (see Section 2.1.3 on page 7).

However, consider the case where one is interested in a specification of an acqui-
sition model that places emphasis on the use of COTS products. While a COTS
product can be viewed as a type of artifact, assume that we wish to treat it as a
first-class object. In this case, we make the declaration:

[COTS_PRODUCT]

We can also declare a set whose elements are all COTS products (as opposed to
also including artifacts of other types) as

COTS_Products[t]: {COTS_PRODUCT}

Taking the above approach allows us to concentrate on aspects of the acquisition
model that are specific to the use of COTS products. For example, some predicates
that we may find useful in describing an acquisition model that emphasizes COTS
products include18

New_COTS_Product_Available (ci: COTS_PRODUCT; t) → Boolean

COTS_Product_Evaluated (ci: COTS_PRODUCT; t) → Boolean

COTS_Product_Acceptable (ci: COTS_PRODUCT; t) → Boolean

17. One could make the same argument for requirements. However, we note the following im-
portant point: The manner in which a set of requirements is mapped onto different builds is
indeed a key characteristic that allows comparison among different acquisition models. For
example, a key difference between a waterfall model and an incremental model is the man-
ner in which the requirements are mapped onto different instances of a system. Hence, re-
quirements must be included in the framework in order to make the comparison among dif-
ferent acquisition models.

18. Further consideration of acquisition models that include COTS products can be found in [5].
5 Possible Extensions to the Framework 55

5.4 Artifacts

COTS_Product_Upgraded (ci: COTS_PRODUCT; t) → Boolean

The predicates defined above represent only a small sample of what could be spec-
ified in a particular acquisition model. The important point is that the framework
provides the necessary constructs to develop an approach for dealing with artifacts
appropriate to a given acquisition model.

5.5 Entrance and Exit Criteria

There are cases where an acquisition includes a specified set of entrance and exit
criteria. These criteria represent conditions that must be satisfied in order to ei-
ther initiate or complete a specified activity, respectively. The following are exam-
ples of such criteria:

• There must be no high-priority defects in any software component
prior to entering system testing.

• There must be no outstanding change requests against a
requirements document in order to complete a requirements
specification activity.

Specification and operations on entrance and exit criteria have not been included
as part of the framework. This choice was made for two reasons:

1. In many cases the entrance and exit criteria are rather trivial. For exam-
ple, it is often the case that the entrance criteria for an activity are asso-
ciated with the completion of the previous activity. Similarly, the exit cri-
teria for an activity may be principally associated with the completion of
the activity. To include material at a lower level of specification was
deemed unsuitable in the framework.

2. The framework already contains implicit mechanisms to incorporate
entrance and exit criteria. For example, the predicate to delete an
acquisition activity was defined by Eq. (2.12) on page 17:

Delete_Activity (ai: ACTIVITY; t’) → Boolean
 |⇒
 Acq_Activities[t’] = Acq_Activities[t] \ {ai}
 t’ > t

Note that there is no pre-condition associated with the operation that
deletes an acquisition activity. If one wanted to account for entrance
criteria in the above predicate, the natural approach would be to add a
pre-condition that specifies that the desired criteria must be satisfied.19

Thus, the framework already provides mechanisms by which entrance

19. For example, one might reasonably argue that an acquisition activity should not be deleted
if the activity is in progress.
56 5 Possible Extensions to the Framework
5.5 Entrance and Exit Criteria

and exit criteria may be included as part of a refinement of the framework
in the context of a particular model.

We recognize, however, that there are indeed cases where treatment of entrance
and exit criteria is important. Some examples of such cases were illustrated above.
To specify such criteria in the framework, we introduce a criterion and then define
relevant sets as

[CRITERION]
Entrance_Criteria[t]: {CRITERION}
Exit_Criteria[t]: {CRITERION}

We could have required that the sets Entrance_Criteria and Exit_Criteria be dis-
joint. However, we believe that in the context of a framework, as opposed to an in-
stance of that framework, such a requirement would be overly constraining. In
other words, there may be some criteria that are used both as entrance criteria and
exit criteria.

It is appropriate to specify the relation between the criteria and acquisition activ-
ities. We assume the following general conditions apply to both entrance criteria
and exit criteria:

• Each criterion must be related to at least one activity.

• A given criterion may apply to more than one activity.

• Not all activities need have criteria associated with them.

• A given activity may have multiple criteria.

A diagram of the relation between criteria and activities that satisfies the above
conditions is shown in Figure 5-2.

Figure 5-2: Relation Between Entrance and Exit Criteria and Activities

The relations between the criteria and acquisition activities, representing the
above conditions, are:

Criteria Activity
5 Possible Extensions to the Framework 57

5.5 Entrance and Exit Criteria

Entrance_Criterion_Activity_Relation: Entrance_Criteria[t] <---|-> Acq_Activities[t]
 ∃ ei ∈ Entrance_Criteria[t], aj ∈ Acq_Activities[t]

• Entrance_Criterion_Activity_Relation (ei , aj) (5.4)

Exit_Criterion_Activity_Relation: Exit_Criteria[t] <---|-> Acq_Activities[t]
 ∃ ei ∈ Exit_Criteria[t], aj: Acq_Activities[t]

• Exit_Criterion_Activity_Relation (ei , aj) (5.5)

In the above we have defined a relation for each of the relevant types of criteria.20

It is also helpful to introduce some operations on entrance and exit criteria. We
would like to be able to specify that some criterion is satisfied at a time t. We write
these in the following manner:

Entrance_Criterion_Satisfied (ei: ENTRANCE_CRITERIA, aj: ACTIVITY; t) → Boolean (5.6)

Exit_Criterion_Satisfied (ei: EXIT_CRITERIA, aj: ACTIVITY; t) → Boolean (5.7)

To determine whether, for example, some entrance criterion is not satisfied, we
can simply negate the predicate in Eq. (5.6).

How can we incorporate the entrance and exit criteria in terms of the basic frame-
work specification developed above? This is a fairly straightforward matter if we
recognize that these criteria can be considered to be pre-conditions on other pred-
icates.

For example, to initiate some acquisition activity, we need to include a pre-condi-
tion to the predicate Initiate_Acquisition_Activity defined in Eq. (2.29) on page
23. The statement of the pre-condition is that, in order to initiate an acquisition
activity, all of the entrance criteria for that activity must be satisfied. We can rep-
resent this requirement as follows:

Initiate_Acquisition_Activity (aj: ACTIVITY; t) → Boolean
|→

∀ ei ∈ Entrance_Criteria • Entrance_Criterion_Activity_Relation (ei , aj)
Entrance_Criterion_Satisfied (ei: ENTRANCE_CRITERIA, aj: ACTIVITY; t’)

t’ < t (5.8)

In a similar manner, we can develop the specification for the exit criteria in terms
of the termination of an acquisition activity as follows:

20. It would be possible to write the relations in Nestor in terms of a generic and then instantiate
the generic mapping for each case, but we have chosen not to follow that approach.
58 5 Possible Extensions to the Framework
5.5 Entrance and Exit Criteria

Terminate_Acquisition_Activity (aj: ACTIVITY; t) → Boolean
|→

∀ ei ∈ Exit_Criteria • Exit_Criterion_Activity_Relation (ei , aj)
Exit_Criterion_Satisfied (ei: EXIT_CRITERIA, aj: ACTIVITY; t’)

t’ < t (5.9)

Note that if there are no criteria associated with an activity, the above expressions
are equivalent to those developed earlier. That is, for example, if there are no en-
trance criteria associated with an activity, then Eq. (5.4) is identical to Eq. (2.29).

As a means of summary, in Figure 5-3 on the next page we present a specification
for treating entrance and exit criteria as part of the acquisition framework.

We emphasize that this represents a candidate specification for entrance and exit
criteria. We believe that it is sufficiently general that it can be the basis for other
possible refinements Some items of possible interest include the following:

• If some entrance criteria are satisfied when an acquisition activity
is initiated, is it necessarily true that the same entrance criteria
are also satisfied when the activity terminates?

• Can exit criteria for some activity be changed during the execution
of that activity? In other words, should it be possible to modify the
exit criteria?

• Can an exit criterion be deleted during the execution of its
associated activity? If so, what should happen?

• During the execution of some activity, can new entrance criteria be
added that are related to the activity in progress?

The above questions illustrate issues that may be worth considering as possible
extensions to the framework. The questions also apply if one seeks to include en-
trance and exit criteria in the development of an acquisition model.

5.6 Phases

In some acquisition approaches one encounters the concept of an acquisition
phase. Loosely speaking, a phase is a collection of related acquisition activities.
There are different approaches to specifying a phase.
5 Possible Extensions to the Framework 59

5.6 Phases

Figure 5-3: Theory Component for Entrance and Exit Criteria

5.6.1 Sequential Phases

One approach to specifying an acquisition phase is to define it as a sequence of ac-
tivities where the activities that comprise the phase are performed serially. To for-
malize this approach to a phase, we begin by defining a phase as

Phase[t]: sequence {ACTIVITY}
#Phase > 0

Theory Entrance_Exit_Criteria

[CRITERION]
Entrance_Criteria[t]: {CRITERION}
Exit_Criteria[t]: {CRITERION}

Entrance_Criterion_Activity_Relation: Entrance_Criteria[t] ---> Acq_Activities[t]
 ∃ ei ∈ Entrance_Criteria[t], aj ∈ Acq_Activities[t]

• Entrance_Criteria_Activity_Relation (ei , aj)

Exit_Criterion_Activity_Relation: Exit_Criteria[t] ---> Acq_Activities[t]
 ∃ ei ∈ Exit_Criteria[t], aj ∈ Acq_Activities[t]

• Exit_Criterion_Activity_Relation (ei , aj)

Entrance_Criterion_Satisfied (ei: ENTRANCE_CRITERIA, aj: ACTIVITY)
→ Boolean

Exit_Criterion_Satisfied (ei: EXIT_CRITERIA, aj: ACTIVITY) → Boolean

Initiate_Acquisition_Activity (aj: ACTIVITY; t) → Boolean
|→

∀ ei ∈ Entrance_Criteria[t] • Entrance_Criterion_Activity_Mapping (ei , aj)
Entrance_Criterion_Satisfied (ei: ENTRANCE_CRITERIA, aj: ACTIVITY)

Terminate_Acquisition_Activity (aj: ACTIVITY; t) → Boolean
|→

∀ ei ∈ Exit_Criteria[t] • Exit_Criterion_Activity_Mapping (ei , aj)
Exit_Criterion_Satisfied (ei: EXIT_CRITERIA, aj: ACTIVITY)

end Entrance_Exit_Criteria
60 5 Possible Extensions to the Framework
5.6 Phases

We require that the number of activities in the phase must be greater than zero.
Note that the above definition of a phase does not require that each activity be per-
formed only once.

We next define the start and end of a phase as follows:

tstart, tstop: Time
tstart → Time_of [Initiate_Activity (Head(Phase[t]))]
tstop → Time_of [Terminate_Activity (Tail(Phase[t]))]

The start and stop times are obtained from the times when the first and last activ-
ities in the phase are initiated and terminated, respectively.21 These are obtained
by applying the function Time_of to a predicate.22

The requirement that only one activity may be performed at a time is specified by

∀ t • tstart ≤ t ≤ tstop
∃ 1 ai ∈ Phase[t] •

Activity_in_Progress (ai; t) (5.10)

The above expression says that for all times between the start and stop time of a
phase, there exists only one activity (denoted by the symbol ∃ 1) that is in progress
at any time.

It is also useful to define the property that an acquisition phase is well defined. By
this we mean that the end of one activity corresponds to the beginning of the next
activity. This is specified by the following:

∀ i ∈ 1 … #Phase[t] - 1
Terminate_Acquisition_Activity (ai: ACTIVITY) =

Initiate_Acquisition_Activity (ai+1: ACTIVITY)) (5.11)

In other words, for every acquisition activity in the sequence from the first to the
next to last (as indicated by the use of the ellipsis) the termination of one activity
coincides with the start of the next activity. This implies that there is no “idle
time” between the end of one activity and the initiation of another activity.

21. When an acquisition phase is represented as a sequence, the operations Head and Tail
return the first and last element in the sequence, respectively.

22. The function Time_of is a built-in function in the language Nestor. It is technically referred
to as a temporal projection operator.
5 Possible Extensions to the Framework 61

5.6 Phases

The preceding approach to an acquisition phase is illustrated graphically in Figure
5-4.

Figure 5-4: Illustration of an Acquisition Phase

Figure 5-4 shows three acquisition activities that are performed serially. The ar-
rows between activities denote relations between the indicated activities. The
starting and stopping times of the phase are also indicated. Figure 5-4 illustrates
some of the criteria we specified for a serial phase; for example, the end of one ac-
tivity corresponds to the beginning of the next activity. Note however, that the pre-
ceding development does not specify the number of times a given activity can be
performed in a phase. That is, a particular activity could be performed one time or
repeated times during an acquisition phase.

A summary of the formal specification of a sequential phase is shown in Figure 5-
5 on the next page.

5.6.2 Other Choices

The sequential model of a phase is perhaps the most intuitive, but certainly other
approaches are possible. One would expect a general requirement that there be
transitive closure of the activities that comprise a phase, regardless of how the ac-
tivities in the phase are executed on some interval.

One other choice for a specification of a phase is that it consist of a set of related
activities, as opposed to a sequence of activities. This is tantamount to “a model
within a model.” There is considerable freedom in how such an acquisition phase
could be specified. Because it can be viewed as a general model, limited only by its
start and stop of execution time, we shall not discuss this choice any further. Rec-
ognition of the “model in a model” context can be used to construct the desired fea-
tures for what is included in a particular phase. It should be clear that a major
characteristic of the use of phases in an acquisition deals with the timing of when
activities are performed. Some further discussion concerning timing properties ap-
pears in Section 5.7.

Activity-1

Activity-2

Activity-3

tstart tstop
62 5 Possible Extensions to the Framework
5.6 Phases

Figure 5-5: Specification of a Serial Phase

In closing, let us note that it is also possible to specify a relation between entrance
and exit criteria (discussed in Section 5.5) and various formulations of an acquisi-
tion phase. For example, the material developed in Section 5.5 can be integrated
with the specification of phases so that one achieves a specification of entrance and
exit criteria for an acquisition phase.

5.7 Execution of Acquisition Activities

One of the differentiators among a set of models is their operational semantics. In
particular, timing of the performance of various acquisition activities is a signifi-
cant factor. In this section we expand on this topic. Our purpose is to illustrate how
a formal approach can help in the specification of this aspect of an acquisition mod-
el.

5.7.1 Serial Models

First, suppose we wanted to define a sequential acquisition model. We can state
this in the following manner:

Theory Serial_Phase

[ACTIVITY]
Phase[t]: sequence {ACTIVITY}
#Phase > 0

tstart, tstop: Time
tstart → Time_of [Initiate_Activity (Head(Phase[t]))]
tstop → Time_of [Terminate_Activity (Tail(Phase[t]))]

∀ t • tstart ≤ t ≤ tstop
∃ 1 ai ∈ Phase[t]

Activity_in_Progress (ai; t)

∀ i ∈ 1... #Phase[t] - 1
Terminate_Acquisition_Activity (ai: ACTIVITY)) =

Initiate_Acquisition_Activity (ai+1: ACTIVITY))

end Serial_Phase
5 Possible Extensions to the Framework 63

5.7 Execution of Acquisition Activities

Sequential Acquisition Model: An acquisition model is sequential on
some interval [t, t’] iff only one acquisition activity may execute at
any one time.

A formal definition of a sequential model can be obtained by considering the fol-
lowing predicate:

Sequential_Acquisition_Model (t, t’) → Boolean
|→

∀ t* ∈ [t, t’]
∃ 1 ai ∈ Acq_Activities[t] •

Execute_Acquisition_Activity (ai: ACTIVITY; t, t*)

This is stated as a conditional predicate, in that if there exists only one activity
that may execute at a given time, the model is sequential.

A possibly useful inquiry function when developing a model is the ability to deter-
mine if two different acquisition activities are performed in a serial manner. This
would mean that the termination of one activity would coincide with the beginning
of another activity. Such a function can be written as:

Serial_Activities (ai, aj: ACTIVITY) → Boolean
|→

Instant [Terminate_Acquisition_Activity (ai: ACTIVITY; t)] =
Instant [Initiate_Acquisition_Activity (aj: ACTIVITY; t’)]

An example of the application of this acquisition activity serialization is to the
specification of the traditional waterfall model [6], where some set of activities is
performed serially. In fact, a formal specification of the waterfall model would
have a serialization requirement placed on the execution of acquisition activities.

5.7.2 Parallel Models

The more interesting case is where parallelism is present in the execution of ac-
quisition activities. To begin, we define two operations that will prove useful,
namely

Acquisition_Activity_Start (aj: ACTIVITY; t) → Time
⇒ Instant [Initiate_Acquisition_Activity (aj: ACTIVITY; t)]

The operation Acquisition_Activity_Start is of type time; the function instant is
a projection operator that extracts the value of time for a predicate that has a sin-
gle argument of type Time. Hence, the result expressed above simply provides the
time some activity started, namely t.
64 5 Possible Extensions to the Framework
5.7 Execution of Acquisition Activities

In a similar manner we define the time at which an activity stops as

Acquisition_Activity_Stop (ai: ACTIVITY; t) → Time
⇒ Instant [Terminate_Acquisition_Activity (ai: ACTIVITY; t)

To develop the specification for parallel execution in an acquisition model, first let
us define a predicate that indicates that two activities execute in parallel. We do
this as

Parallel_Activities (ai, aj: ACTIVITY) → Boolean
|→

∀ t* ∈ [t, t’] • Execute_Acquisition_Activity (ai: ACTIVITY; t, t’)
∃ aj ∈ Acq_Activities •

Initiate_Acquisition_Activity (aj: ACTIVITY; t*) ∨
Terminate_Acquisition_Activity (aj: ACTIVITY; t*) (5.12)

In other words, activities ai and aj are parallel if, during the execution of activity ai,
activity aj either starts or stops.

It is possible to distinguish between different types of execution. The first we shall
denote as closed parallel execution, and the second will be denoted as open parallel
execution. These are illustrated in Figure 5-6.

Figure 5-6: Types of Activity Execution

Each panel in Figure 5-6 shows the execution of three hypothetical acquisition ac-
tivities. Time increases to the right along each line. The left-hand panel of Figure
5-6 shows the case of sequential execution.

a1

a2

a3

a1

a2

a3

a1

a2

a3

Sequential Closed Parallel Open Parallel
5 Possible Extensions to the Framework 65

5.7 Execution of Acquisition Activities

5.7.2.1 Closed Parallel Models

The center panel in Figure 5-6 illustrates the case of closed parallel execution.We
define this as follows:

Closed Parallel Execution: An acquisition activity ai exe-
cutes in a closed parallel manner with respect to acquisition
activity aj iff the execution interval for activity aj is wholly
contained within the execution interval of activity ai.

We have introduced the concept of an execution interval in the above definition.
This is the set of times when an acquisition activity is executing.

We may develop a predicate to indicate whether two different acquisition activities
are executed in a closed parallel manner:

Closed_Parallel_Activities (ai, aj: ACTIVITY) → Boolean
|→

Acquisition_Activity_Start (ai: ACTIVITY; t) ≤
Acquisition_Activity_Start (aj: ACTIVITY; t)

∧
Acquisition_Activity_Stop (ai: ACTIVITY; t) ≥

Acquisition_Activity_Stop (aj: ACTIVITY; t)
ai ≠ aj (5.13)

5.7.2.2 Open Parallel Execution

The other case of parallel execution of two acquisition activities is shown in the
right panel of Figure 5-6. Note that in this case, some activities overlap in (the
time of) their execution. We define this as

Open Parallel Execution: An acquisition activity ai executes
in an open manner with respect to acquisition activity aj iff
(i) the activities execute in parallel, and (ii) the execution in-
terval for activity aj is not wholly contained within the execu-
tion interval of activity ai.

We may formally define these concepts as follows. The specification for this case
can be developed for the case of closed parallel execution. We have

Open_Parallel_Activities (ai, aj: ACTIVITY) → Boolean
|→

Acquisition_Activity_Start (ai: ACTIVITY; t) ≤
Acquisition_Activity_Start (aj: ACTIVITY; t)

∨
66 5 Possible Extensions to the Framework
5.7 Execution of Acquisition Activities

Acquisition_Activity_Stop (ai: ACTIVITY; t) ≥
Acquisition_Activity_Stop (aj: ACTIVITY; t)

ai ≠ aj (5.14)

The above result has been obtained by replacing an and operator by an or operator
to join the pre-condition clause in Eq. (5.13).

The preceding discussion has focused on different ways parallel execution of dif-
ferent acquisition activities may be addressed in the development of an acquisition
model.

5.7.3 Precedence Relations

There may be cases where it is desirable to specify precedence relations for the ex-
ecution of acquisition activities. Examples of this include the following:

• An acquisition activity must be executed after some other activity.

• An acquisition activity must not be executed after some other
activity.

It is possible to refine these to incorporate notions of strong and weak precedence.
For example, strong precedence would be defined as the case where an acquisition
activity must be executed immediately after some other activity. Weak prece-
dence, on the other hand, is where there may be intervening activities between the
(ordered) execution of two different activities.

It is possible to develop specifications for precedence relations based on results
specified in the framework. For example, consider the case of weak precedence for
some activities ai and aj where activity aj must execute after activity ai. A specifi-
cation of this case would be as follows:

Weak_Activity_Precedence (ai, aj: ACTIVITY) → Boolean
|→

∀ t • Initiate_Acquisition_Activity (aj: ACTIVITY; t)
∃ t’ < t • Terminate_Acquisition_Activity (ai: ACTIVITY; t’)

Note that the preceding is a specification of weak precedence. It can easily be mod-
ified to account for the notion of strong precedence. It is also possible to specify the
contrary position in regard to precedence. That is, one can specify that some acqui-
sition activity must not precede some other activity.

We have not included operations in the framework for dealing with precedence of
execution of acquisition activities. The simple reason for this is that it is possible
to specify such conditions using operations that are already included in the frame-
5 Possible Extensions to the Framework 67

5.7 Execution of Acquisition Activities

work specification. Hence, a model can easily construct the necessary operations
from what is provided in the framework.23

5.8 Additional Considerations

The discussion in the preceding sections has largely focused on the functional ex-
tensions that may warrant consideration when developing an acquisition model
based on the framework. There are other approaches that take a different ap-
proach than that of adding functionality. The following describes some approaches
that are based on standard formal method approaches.

5.8.1 Promotion

Many of the predicates described in Section 2 are specified in the context of ele-
ments of a set. For example, in Section 2.3.3 we specified a predicate that indicated
that a requirement was satisfied, that is

Requirement_Satisfied (ri: REQUIREMENT) → Boolean (5.15)

The above predicate is defined for one element of the set of requirements. We can
promote the specification over the entire set of requirements by introducing a pre-
condition in the following manner:

All_Requirements_Satisfied → Boolean
|→

∀ ri ∈ Requirements[t] •
Requirement_Satisfied (ri: REQUIREMENT) (5.16)

As indicated in Eq. (5.16), the predicate All_Requirements_Satisfied will be
true iff each requirement in the set of requirements is satisfied.

Promotion in the preceding example in Eq. (5.16) is a simple and powerful tech-
nique that can be used to extend a basic specification over a larger scope. However,
we have not included operations in the framework based on a promotion princi-
ple—such as Eq. (5.16)—for a simple reason: they can be directly inferred from the
base specification. Hence, it is not required to include them in the framework, as
they can be easily specified when needed.

23. We also do not account for the assertions that may be developed from the precedence con-
siderations. For example, if activity ai must precede activity aj and activity aj must precede
activity ak, then it follows that activity ai must precede activity ak.
68 5 Possible Extensions to the Framework
5.8 Additional Considerations

5.8.2 Operational Refinement

The first form of refinement we will briefly describe is that of operation refine-
ment. In this case, one adds additional details to some operation; the details are
typically characteristic of the model one is developing.

Note that most of the operations defined in the framework do not have pre-condi-
tions or post-conditions. This choice was made on purpose. The presence of either
pre- or post-conditions can often represent additional levels of detail that we would
prefer not be included in the framework because they are more specific to a partic-
ular model.

For example, consider the predicate to indicate that some requirement is satisfied.
The meaning of such a predicate is self-explanatory (at least intuitively!), but it
can be specified to a greater level of detail. There are different ways to state that
a requirement has been satisfied, for example, through the use of

• analytic verification

• simulation

• system testing

For each of the different approaches, we can define a predicate.

Requirement_Analyzed (ri: REQUIREMENT) → Boolean
Requirement_Simulated (ri: REQUIREMENT) → Boolean
Requirement_Tested (ri: REQUIREMENT) → Boolean

If, during the development of a particular acquisition model, one of the above ap-
proaches may be considered sufficient to represent that a requirement is satisfied,
then we can easily write:

Requirement_Satisfied (ri: REQUIREMENT) → Boolean
|→

Requirement_Analyzed (ri: REQUIREMENT) ∨
Requirement_Simulated (ri: REQUIREMENT) ∨

Requirement_Tested (ri: REQUIREMENT) (5.17)

We will not argue the validity of the semantic choice that was made above, as that
is a property of the model. The point is, however, it is possible to add additional
details to the specification of a model that are derived from the base framework
specification. Stated differently, refining the specifications of the operations that
are included as part of the framework is one approach that can (and perhaps
should) be followed in the development of a particular acquisition model.
5 Possible Extensions to the Framework 69

5.8 Additional Considerations

5.8.3 Data Refinement

A second form of refinement is that known as data refinement. In this case, addi-
tional details about data are added to a specification. The result is that the speci-
fication becomes more concrete or, correspondingly, less abstract.

To illustrate how the principle of data refinement can be applied, consider the case
where we introduced a (free) data type to represent an activity, namely

[ACTIVITY]

The fact that the data type is declared as above means that there is no specifica-
tion of either the structure or semantics of the data type. Suppose, however, that
one wanted to develop some details of the information associated with the data
type for the activity. Some candidate elements that can be associated with an ac-
tivity might include

• Last_Start_Time: The time when the activity was last started.

• Cumulative_Execution_Time: The total amount of time that the
activity has taken.

• Current_Activity_State: An indication of the state, where the state
could be null, in_progress, suspended, or completed. Such a model
was used when we described the execution character of activities
(see Section 2.4 on page 23).

The above data types can be specified as follows:

Last_Start_Time: Time
Cumulative_Execution_Time: Time

Activity_State: null | in_progress | suspended | completed

Recall that the type time is a built-in type in the language we are using. The spec-
ification of the activity state is represented as a choice, being one of the two values
specified.

The above data types can now be used to refine the specification of an activity in
the following manner:

ACTIVITY[t]: {Last_Start_Time, Cumulative_Execution_Time, Activity_State}

The above declares that a particular activity is a set of the indicated elements. Us-
ing the above it is possible to perform operations such as
70 5 Possible Extensions to the Framework
5.8 Additional Considerations

• Whenever an activity is initiated, the time that the activity was
started will be saved.

• Whenever an activity is terminated, the cumulative execution time
will be calculated and updated. Or, the most recent amount of
execution time could be computed and saved.

• Whenever an activity is initiated, its state is set to the value of
in_progress, and whenever the activity is suspended, its state is set
to suspended.

Each of the preceding can be stated as part of the post-condition for the appropri-
ate predicate. To do so we refine the notion of an ACTIVITY as follows:

ACTIVITY[t]: sequence {Activity_State, Last_Start_Time,
Cumulative_Execution_Time}

The above simply takes the data type ACTIVITY and refines it so that an activity
is now a sequence of data items. In particular, information about the state and the
time the activity was last started will be maintained for each activity.

As a simple example of how the data refinement principle can be applied, consider
the following modification to the predicate for initiation of an acquisition activity:

Initiate_Acquisition_Activity (a: ACTIVITY; t) → Boolean
⇒

a.Activity_State = in_progress
a.Last_Start_Time = t
a.Cumulative_Execution_Time = 0

Note the use of the dotted notation in the above expression as a selector mecha-
nism for the specified activity. The result is that the operation
Initiate_Acquisition_Activity sets the value of the activity state to the value of
in_progress, sets the time when activity was started to the current time, and ini-
tializes the cumulative execution time to zero.

The specification of the framework has not included any data refinement opera-
tions. To do so would be equivalent to defining data representation and semantics
that would be imposed on all models derived from the framework. Clearly such a
choice would be an over-specification. It is the choice of the model developer as to
how such data refinement would be used in a particular model development.
5 Possible Extensions to the Framework 71

5.8 Additional Considerations

72 5 Possible Extensions to the Framework
5.8 Additional Considerations

6 Summary

In this report we have developed a general framework for the specification of ac-
quisition models. The framework is intended to be minimalist in nature and is
based on acquisition activities, events, requirements, and instances of a system as
well as relations between these elements.

The value of an acquisition framework is that one can develop acquisition models
that are based on the framework, possibly with extensions. This then allows one
to gain a deeper understanding of the behavior of the model, as well as to compare
different acquisition models.

We leave the reader with a final comment. The world moves ever more quickly to-
ward the perspective of systems of systems. The interoperability of such systems is
now a major issue in the ability to accomplish an overriding mission. Interopera-
bility among systems is regarded as a technical issue, and rightly so. But there is
another question that is very relevant, and we illustrate it in the following.

Figure 6-1: Multi-Project Acquisition

Figure 6-1 shows two acquisition projects, denoted A and B, whose acquisition is
based on models A and B, respectively. It is required that the systems produced,
denoted A and B, are required to interoperate, shown by the solid line at the bot-
tom in the figure.24

24. A diagram such as that presented in Figure 6-1 is known as a four-corner diagram.

System A

Project A

System B

Project B

 Technical

 Programmatic
Interoperability

Interoperability

Model A Model B
6 Summary 73

Our final comment, then, is really a challenge: What does it mean, formally, to in-
tegrate individual acquisition models, in order to achieve programmatic interoper-
ability? This is a question of serious concern, as well as ongoing work.
74 6 Summary

References

[1] Boehm, Barry W. “A Spiral Model of Software Development and En-
hancement.” IEEE Computer 21, 5 (May 1988): 61-72.

[2] Department of Defense. DoD Instruction 5000.2, Operation of the De-
fense Acquisition System. Washington, D.C.: June 2001.

[3] Department of Defense. DoD Interim Regulation 5000.2-R, Mandatory
Procedures for Major Defense Acquisition Programs and Major Auto-
mated Information systems Acquisition Programs. Washington, D.C.:
June 2001.

[4] International Organization for Standardization, ISO/IEC 12207: Infor-
mation Technology—Software life-cycle processes, Geneva, Switzerland,
1997).

[5] Meyers, B. Craig & Oberndorf, Patricia. Managing Software Acquisi-
tion: Open Systems and COTS Products. Reading, Mass.: Addison-Wes-
ley, 2001.

[6] Royce, Winston, W. “Managing the Development of Large Software Sys-
tems,” 1-9. Proceedings of IEEE WESCON, August 1970. San Francisco:
Institute of Electrical and Electronics Engineers, 1970.
 75

76

Appendix A Summary of Framework Specification

In this Appendix we provide a summary of the mathematics used to describe the
acquisition framework presented in Section 2. The base specification is provide be-
low and it serves to reference other elements of the specification which appear on
the following pages.

Theory Acquisition_Framework

with Framework_Activities,
Framework_Internal_Events,
Framework_External_Events,
Framework_Requirements,
Framework_System,
Framework_Relations,
Framework_Execution,
Framework_Execution_Concurrency,
Framework_Specification_Completeness,
Framework_Execution_Completeness

end Acquisition_Framework
A Summary of Framework Specification 77

Theory Framework_Activities

[ACTIVITY]
Acq_Activities[t]: {ACTIVITY}
#Acq_Activities[t] > 0

Activity_Relation: Acq_Activities[t] <-----> Acq_Activities[t]
 ∀ ai, aj ∈ Acq_Activities[t]

• Activity_Relation (ai, aj)
ai ≠ aj

Add_Activity (ai: ACTIVITY; t, t’) → Boolean
|⇒

Acq_Activities[t] = Acq_Activities[t’] ∪ {ai}
t > t’

Modify_Activity (ai: ACTIVITY; t) → Boolean

Delete_Activity (ai: ACTIVITY; t, t’) → Boolean
|⇒

Acq_Activities[t] = Acq_Activities[t’] \ {ai}
t > t’

Activity_Started (ai: ACTIVITY; t) → Boolean

Activity_in_Progress (ai: ACTIVITY; t) → Boolean

Activity_Suspended (ai: ACTIVITY; t) → Boolean

Activity_Completed (ai: ACTIVITY; t) → Boolean

end Framework_Activities
78 A Summary of Framework Specification

 .

Theory Framework_Internal_Events

[INTERNAL_EVENT]
Internal_Events[t]: {INTERNAL_EVENT}

Create_Internal_Event (e: INTERNAL_EVENT; t, t’) → Boolean
|⇒

Internal_Events[t] = Internal_Events[t’] ∪ {e}
t > t’

Modify_Internal_Event (e: INTERNAL_EVENT; t) → Boolean

Delete_Internal_Event (e: INTERNAL_EVENT; t, t’) → Boolean
|⇒

Internal_Events[t] = Internal_Events[t’] \ {e}
t > t’

Internal_Event_Occurred (e: INTERNAL_EVENT; t) → Boolean

Generate_Internal_Event (e: INTERNAL_EVENT; t) → Boolean
|⇒ Internal_Event_Occurred (e: INTERNAL_EVENT; t)

end Framework_Internal_Events
A Summary of Framework Specification 79

Theory Framework_External_Events

[EXTERNAL_EVENT]
External_Events[t]: {EXTERNAL_EVENT}

External_Event_Occurred (e: EXTERNAL_EVENT; t) → Boolean

end Framework_External_Events
80 A Summary of Framework Specification

Theory Framework_Requirements

[REQUIREMENT]
Requirements[t]: {REQUIREMENT}
#Requirements[t] > 0

Add_Requirement (ri : REQUIREMENT; t, t’) → Boolean
|⇒

Requirements[t] = Requirements[‘t] ∪ {ri}
t > t‘

Modify_Requirement (ri: REQUIREMENT; t) → Boolean

Delete_Requirement (ri: REQUIREMENT; t, t') → Boolean
|⇒

Requirements[t] = Requirements[t’] \ {ri}
t > t'

Requirement_Satisfied (ri: REQUIREMENT) → Boolean

 Requirement_Dependency (ri, rj: REQUIREMENT; t) → Boolean

∀ ri ∈ Requirements[t] •
Requirement_Dependency (ri, rj: REQUIREMENT; t)

⇒
¬ Requirement_Dependency (rj, ri: REQUIREMENT; t)

end Framework_Requirements
A Summary of Framework Specification 81

Theory Framework_System

[SYSTEM]
System[t]: {SYSTEM}

System_Dependency (si, sj: SYSTEM; t) → Boolean

Requirement_Satisfied (ri: REQUIREMENT, sj: SYSTEM; t) → Boolean

System_Instance_Satisfied (si: SYSTEM; t) → Boolean
|→

∀ rj ∈ Requirements[t] •
Requirements_Mapping (rj, si) •

Requirement_Satisfied (rj; t)

end Framework_System
82 A Summary of Framework Specification

Theory Framework_Relations

Internal_Event_Activity_Relation: Internal_Events[t] <---|->Acq_Activities[t]
 ∀ ei ∈ Internal_Events[t] • ∃ aj ∈ Acq_Activities[t]

• Internal_Event_Activity_Relation (ei , aj)

External_Event_Activity_Relation: External_Events[t] ---> Acq_Activities[t]
 ∃ ei ∈ External_Events[t], aj ∈ Acq_Activities[t]

• External_Event_Activity_Relation (ei , aj)

Requirements_Mapping: Requirements[t] <----> System[t]
 ∀ ri ∈ Requirements[t] • ∀ sj ∈ System[t]

• Requirements_Mapping (ri , sj))

end Framework_Relations
A Summary of Framework Specification 83

Theory Framework_Execution

Initiate_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

¬ Activity_in_Progress (ai: ACTIVITY; t)
|⇒

Activity_in_Progress (ai: ACTIVITY; t)

Suspend_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

∃ t’ < t • Initiate_Acquisition_Activity (ai: ACTIVITY; t’)
|⇒

¬ Activity_in_Progress (ai: ACTIVITY; t)

Resume_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

∃ t’ < t • Suspend_Acquisition_Activity (ai: ACTIVITY; t’)
|⇒

Activity_in_Progress (ai: ACTIVITY; t)

Terminate_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

∃ t’ < t • Initiate_Acquisition_Activity (ai: ACTIVITY; t’)
|⇒

¬ Activity_in_Progress (ai: ACTIVITY; t)

Execute_Acquisition_Activity (ai: ACTIVITY; t, t’) → Boolean
|→

Initiate_Acquisition_Activity (ai: ACTIVITY; t)
Terminate_Acquisition_Activity (ai: ACTIVITY; t’)

t’ > t

end Framework_Execution
84 A Summary of Framework Specification

Theory Framework_Execution_Concurrency

Concurrency_Permitted (ai, aj: ACTIVITY) → Boolean

Concurrency_Prohibited (ai, aj: ACTIVITY) → Boolean

Concurrency_Required (ai, aj: ACTIVITY) → Boolean

end Framework_Execution_Concurrency
A Summary of Framework Specification 85

Theory Framework_Specification_Completeness

Internal_Events[t] ∩ External_Events[t] = ∅

end Framework_Specification_Completeness
86 A Summary of Framework Specification

Theory Framework_Execution_Completeness

∀ ai ∈ Acq_Activities[t]
∃ t1 ≥ tstart • Initiate_Acquisition_Activity (ai: ACTIVITY; t1) ∧

∃ t2 ≤ tstop • Terminate_Acquisition_Activity (ai: ACTIVITY; t2)
tstart < tstop

∀ ei ∈ External_Events[t] •
Time_of [External_Event_Occurred (ei: EXTERNAL_EVENT; t)] ∈ [tstart, tstop]

∃ aj: ACTIVITY •
External_Event_Activity_Relation (ei , aj)

∧
Initiate_Acquisition_Activity (aj: ACTIVITY; t)

t ∈ [tstart, tstop]

∀ ei ∈ Internal_Events[t] •
Time_of [Internal_Event_Occurred (ei: INTERNAL_EVENT; t)] ∈ [tstart, tstop]

∃ aj: ACTIVITY •
Internal_Event_Activity_Relation (ei , aj)

∧
Initiate_Acquisition_Activity (aj: ACTIVITY; t’)

t ∈ [tstart, tstop]

∀ ri ∈ Requirements[tstop] •
Requirement_Satisfied (ri; tstop)

end Framework_Execution_Completeness
A Summary of Framework Specification 87

88 A Summary of Framework Specification

Appendix B A Quick Tour of the Language Nestor

The specification of the acquisition framework presented in this paper is based on
a language called Nestor. This language is being developed to express the seman-
tics of dynamic systems. We provide here a very brief description of a subset of
Nestor that is used in this report. It is hoped that such a description will allow
readers who are not familiar with these concepts to gain some understanding of
the mathematical approach we have taken.

B.1 Overview

An overview of the language Nestor and a process perspective for how it is applied
is presented in Figure B-1.

Figure B-1: Process for Specification Development

The four columns of the first row in Figure B-1 represent the main elements of a
Nestor specification, namely, data types, relations, logical predicates, and mathe-

R
o
l
e

of

T
i

m
e

Data Types Relations Logical
Predicates

Mathematical
Functions

I
n
v
a
r
i
a
n
t
s

Free Types

Sets

Sequences

Declarations

Compositions

Inverses

Generic

Simple
predicates
(Axioms)

Conditional
Predicates

Schema
Predicates

Generic

Functions

Temporal
Operations

Expressions

Promotion

Robustness

Collections (Encapsulation)

Proof assertions and theorems

Refinement
B A Quick Tour of the Language Nestor 89

B.1 Overview

matical functions. These can be viewed as building blocks to create a specification.
In general the process of developing a specification involves the following activi-
ties:

• Basic components: The development of a specification typically
begins with specifying basic components. These may include data
types, relations, logical predicates, and mathematical functions.

• Expressions: The basic specification components can be used to
develop expressions. For example, one could write a logical
expression that involved relations between sets, as well as pre-
conditions specified in terms of a mathematical function.

• Promotion: Promotion is the process in which some statement, over
a primitive data type, is generalized to other members of the data
type. For example, an expression may be developed for an element
of the set and then promoted to all members of the set.

• Robustness: A complete specification must account for possible
erroneous conditions, either in data or from an operational
perspective. Robustness refers to the set of activities performed to
handle such situations.

• Collections: A collection is a syntactic mechanism that allows one
to encapsulate basic components and expressions. Collections may
be used to partition different aspects of a specification.

• Proof assertions: It is possible to specify a theory construct that is
another form of encapsulation mechanism. The components that
make up the theory specification can include various statements.
The theory construct enables one to make assertions about the
theory. For example, given some theory and an arbitrary
statement, are there inconsistencies present?

For each of the activities described above to develop a specification, there are two
considerations that apply. These are shown by the shaded first and last columns
of Figure B-1.

• Role of time: A Nestor specification has explicit built-in support for
time, as well as temporal operations on predicates and functions
with respect to time. We provide such capabilities because the
envisioned domain of this language is for dynamic systems.

• Invariants: There are cases where there may be a property over
data, or operations, that must be invariant. For example, if some
set is required to have less than a specified number of members,
this would be expressed as an invariant. Such invariants can be
stated at different levels of a specification.
90 B A Quick Tour of the Language Nestor
B.1 Overview

It must be emphasized that the development of a specification typically involves a
refinement process. That is, from a given level of specification, one may develop
further aspects of that specification by considering various refinement techniques.
In Nestor these include data refinement, operation refinement, and temporal re-
finement. Each successive refinement adds additional detail to the specification.

In the sections following, we briefly describe some of the elements of the language
that are particularly relevant to the development of the specification in this report.

B.2 Data Types

B.2.1 Free Types

A free type is a data type that is specified without any further consideration. Free
types are frequently used in the construction of other data types.25 Such types are
often used to denote a basic type in the language and are enclosed in brackets. For
example, to declare a free type to denote a requirement, we define it as:

[REQUIREMENT]

Multiple free types can be declared in one statement. Thus, to declare data types
for entrance and exit criteria, we may write this as:

[ENTRANCE_CRITERIA, EXIT_CRITERIA]

B.2.2 Sets

A set is a collection of objects that have some relation to each other. In Nestor a set
is represented by enclosing curly braces around the data element that comprises
the set. For example, we introduced above the notion of a free type to represent a
requirement. If we then wanted to be able to speak of a set of requirements, we can
do this as follows:

Requirements: {REQUIREMENT}

Or, to denote sets of entrance and exit criteria, we can simply declare them as:

Entrance_Criteria: {ENTRANCE_CRITERIA}
Exit_Criteria: {EXIT_CRITERIA}

25. More specifically, a free type denotes a set of all possible values of the defined instance.
B A Quick Tour of the Language Nestor 91

B.2 Data Types

The cardinality of a set is the number of members in the set, and is denoted by the
symbol “#”. Thus, #Requirements denotes the number of requirements.

If an element x is a member of a set X, then we write this as x ∈ X. Conversely, if
x is not a member of the set X, then this is written as x ∉ X.

The usual mathematical operations on sets are provided. These are summarized
in Table B-1.

Table B-1: Set Notation

B.2.3 Sequences

A sequence is a list of ordered elements. We might speak of a list of names or a list
of addresses. In an acquisition context, we might have a sequence of activities, and
this might be declared as

[ACTIVITY]
Activity_List: Seq {ACTIVITY}

Because a sequence is ordered, it allows us to reference the first or last element in
the sequence. The first element is known as the head of the sequence and denoted
head {Activity_List}. Similarly, the last item in the sequence, known as the tail, is
denoted tail {Activity_List}. The number of elements in the sequence is denoted
#{Activity_List}.

B.2.4 Time

Because Nestor is being developed to handle systems that are inherently dynamic
in nature, it is important to deal with operations related to time. Hence, it is nec-

Name Symbol Example Meaning

Null set ∅ A = ∅ The set A has no members.

Union ∪ C = A ∪ B
C = {c | c ∈ A ∨ c ∈ B}

The members of the set C are
members of either the set A or
the set B.

Intersection ∩ C = A ∩ B
C = {c | c ∈ A ∧ c ∈ B}

The members of the set C are
members of both sets A and B.

Difference \ C = A \ B
C = {c | c ∈ A ∧ c ∉ B}

The members of the set C are
those elements that are a
member of set A and not a
member of set B.
92 B A Quick Tour of the Language Nestor
B.2 Data Types

essary to declare data types of type time. The word “time” is built-in for this pur-
pose; thus, for example, the following declares identifiers t and t’ to be of type time:

t, t’: Time

B.2.5 Dynamic Data Typing

A further consideration regarding the desire to specify a dynamic system is to rec-
ognize that values of data types may change in time. The preceding causes us to
account for what we call dynamic data typing: a declaration of a data object that
may change in time. This is achieved by including subscripted brackets in the dec-
laration of a data type. For example, if the set of requirements that we introduced
earlier may change in time, this can be specified as

Requirements[t]: {REQUIREMENT}

The presence of a subscripted [t] denotes a dynamic data type.26 There are two rea-
sons for the explicit provision of dynamic data types. First, it is a simple reminder
to the specification developer (and the reader) that the values of the type may
change with time. Second, it allows for operations to be performed using the dy-
namic data types at different instants of time.27 This ability turns out to be a very
powerful means of reasoning over the dynamic behavior of a specification.

For example, consider the following:

r: REQUIREMENT

Requirements[t’] = Requirements[t] ∪ {r}
t’ > t

The preceding declares some requirement called r. We then define the set of re-
quirements at a time t’ to be the union of requirements at an earlier time t and the
requirement r. Note that we require t’ to be greater than t.

26. The presence of a parameter within the subscripted brackets when a data type is declared
is optional and carries no semantic importance.

27. Hence, one may think of a dynamic data type as a family of instances of a basic data type
that are mapped onto time. For example Requirement[t] and Requirement[t’] denotes the set

of requirements at two different instants of time t and t’. It is in this sense that a dynamic
data type may be considered to be a mapping of a base type onto instants of time.
B A Quick Tour of the Language Nestor 93

B.2 Data Types

B.3 Relations

Relations are used to specify the association, or coupling, of two sets. For example,
in the framework there is a set of internal events, i.e., those events that are raised
within the scope of the acquisition project. There is also a set of acquisition activ-
ities. These are declared as follows:

[INTERNAL_EVENT]
Internal_events: {INTERNAL_EVENT}

[ACTIVITY]
Acquisition_Activities: {ACTIVITY}

It is desirable to specify the fact that there is a relation from an internal event to
an acquisition activity. Frequently, this notion is depicted in a diagram, such as
the following:

Figure B-2: Relating Internal Events to Acquisition Activities

The presence of the arrows in Figure B-2 denotes the relation between the internal
events and the acquisition activities.

Formally, a (binary) relation is a set of ordered pairs. The relation is characterized
by a set of source elements (the internal events in Figure B-2) known as the do-
main. It is also characterized by a set of destination elements (the acquisition ac-
tivities in Figure B-2) known as the range.

There are two points about the number of elements in the domain and range of a
relation that are relevant. The first point concerns whether the relation is total or
partial, and is defined as follows:

• If the relation is defined for all elements of the domain, it is said to
be total over the range. Conversely, if the relation is only defined
for some elements of the domain, then the relation is said to be
partial over the domain.

• A similar remark applies to the range: If the relation is defined for
all elements of the range, it is total over the range. Conversely, if

Internal_Events Acquisition_Activities
94 B A Quick Tour of the Language Nestor
B.3 Relations

the relation is defined for some of the elements in the range, it is
partial over the range.

With reference to Figure B-2, the relation between internal events and acquisition
activities is total over the domain (of internal events) and partial over the range
(of acquisition activities).

The second point concerns the number of elements of the source and destination
sets that are a member of the relation. These are distinguished by these proper-
ties:

• If there is at least one element of the domain that is related to more
than one element in the range, then the relation is many-to.

• Conversely, if each element in the domain appears only once in the
relation, the relation is one-to.

A similar remark applies to the range:

• If a member of the range can be related to more than one element
in the domain, then the relation is to-many.

• Conversely, if a member of the range can appear only once in the
relation, then the relation is to-one.

The relation indicated in Figure B-2 is many-to-one, total over the domain, and
partial over the range. Although the use of figures to convey the notion of a partic-
ular relation is interesting, note that such figures do not substitute for the math-
ematical specification of the relation!

The preceding concepts can be combined to give different characteristics of a rela-
tion. For example, a relation may be many-to-one and total over both the domain
and range.

When a relation is written in Nestor, it is necessary to account for the above con-
cepts. For example, we will use the relation between internal events and acquisi-
tion activities to illustrate how relations are written. In this case, the relation
would be declared as

Internal_Event_Activity_Relation: Internal_Events <----|-> Acquisition_Activities
∀ ei ∈ Internal_Events • ∃ aj ∈ Acquisition_Activities

• Internal_Event_Activity_Relation (ei, aj) (B.3)

The following is an interpretation of the relation shown above:

• The first line declares the

• name of the relation (Internal_Event_Activity_Relation),
• set that represents the domain (Internal_Events)
B A Quick Tour of the Language Nestor 95

B.3 Relations

• set that represents the range (Acquisition_Activities)
• characterization of the relation as denoted by the symbol “<----|-

>”. The structure of this symbol is interpreted as follows:
• The presence (absence) of the “<” on the left-hand side

indicates that the relation is many-to (one-to) over the
domain.

• The presence (absence) of the symbol “>” on the right-hand
side indicates that the relation is to-many (to-one).

• the presence (absence) of a “|” on the left-hand side indicates
that the relation is partial (total) over the domain.

• the presence (absence) of the “|” on the right-hand side
indicates that the relation is partial (total) over the range.

• The second line identifies the parameters in the relation, namely ei
and aj. If a parameter is preceded by a universal quantifier symbol
(∀), it means the relation is total with respect to that parameter. If
the relation is partial with respect to a parameter, then the
parameter is preceded by an existential quantifier (∃). The symbol
“•” is read as “such that.”

• The third line repeats the name of the declaration with its
associated parameters.28

Note that there is a certain amount of redundancy in the declaration of a relation;
that is, whether the relation is partial or total is indicated by the symbol charac-
terizing the relation (e.g., <----|->) and the operator that appears on the second
line of the declaration. This choice is purposeful, as the symbol (<----|->) is a sug-
gestive reminder of the character of the relation.

B.4 Predicates

Predicates are the means to specify operations in the language Nestor. A predicate
can assume either the value true or false. There are four basic types of predicates.
The first type of predicate is simply a declaration. For example, we can specify a
predicate that indicates that some requirement is satisfied:

Requirement_Satisfied (r: REQUIREMENT) → Boolean

28. A verbal statement of the relation specified in Eq. (B.3) might be as follows: “There is a re-
lation called Internal_Event_Activity_Relation that is from internal events to acquisition ac-
tivities. The relation is many-to-many, total over the domain (of internal events) and partial
over the range (of acquisition activities).”
96 B A Quick Tour of the Language Nestor
B.4 Predicates

In the above expression, we assume that the parameter r is of type requirement.
The predicate can assume a Boolean value, that is, either true or false. As another
example, we used a simple predicate to declare that some acquisition activity was
in progress. Such a predicate was developed in Eq. (2.13) on page 18, namely

Activity_in_Progress (ai: ACTIVITY; t) → Boolean

Note the presence of the symbol “t” in the above predicate. When a predicate is de-
clared, the parameters may include those of type time. Such parameters are iden-
tified by following the semi-colon in the predicate declaration. More than one
parameter of type time may be present. Time is a built-in data type to the lan-
guage Nestor.

The second type of predicate is a conditional predicate because it contains a clause
that defines the condition(s) that must be satisfied in order for the predicate to as-
sume the value True. For example, suppose we wanted to define an operation to
initiate some acquisition activity at a time t. What is the pre-condition for such an
operation? We suggest that an acquisition activity cannot be initiated unless it is
not already in progress. This can be specified as follows:

Initiate_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

¬ Activity_in_Progress (ai: ACTIVITY; t)

The symbol “|→” denotes the beginning of a pre-condition clause. The symbol “¬ ”
represents negation.

The third form of predicate is called an unconditional predicate. In this case there
is only a post-condition clause present. We used a predicate of this type in Eq.
(2.17) on page 19 where we declared a predicate to create an internal event:

Create_Internal_Event (e: INTERNAL_EVENT; t) → Boolean
|⇒

Internal_Events[t’] = Internal_Events[t] ∪ {e}
t’ > t

The parameter e is of type INTERNAL_EVENT. The symbol “|⇒ ” introduces the
post-condition-clause; that is, the text appearing after the “|⇒ ” defines the post-
condition clause. The result of the post-condition clause is that the parameter e is
simply added to the set of internal events. Note that the set of internal events is a
dynamic data type, as indicated by the presence of the subscripted “[t]” notation.

Finally, the last form of predicate is called a schema predicate. In this case there
is both a pre- and post-condition specified. We used such a predicate when we
B A Quick Tour of the Language Nestor 97

B.4 Predicates

wanted to specify an operation to terminate an acquisition activity (see Eq. (2.32)
on page 24). Thus, we declared the following:

Terminate_Acquisition_Activity (ai: ACTIVITY; t) → Boolean
|→

∃ t’ < t • Initiate_Acquisition_Activity (ai: ACTIVITY; t)
|⇒

¬ Activity_in_Progress (ai: ACTIVITY; t)

We read this as follows: The predicate Terminate_Acquisition_Activity as-
sumes the value true at a time t, if there is an earlier time t’ when the activity was
initiated. If so, the predicate denoting Activity_in_Progress assumes the value
false.

B.5 Expressions

Expressions are statements in Nestor that may be constructed from predicates and
data types and operations on those quantities. In many cases an expression can
involve quantification of a predicate. For example, suppose one wants to specify
that a requirement is satisfied. This predicate may be written as

Requirement_Satisfied (r: REQUIREMENT) → Boolean

Now suppose there was a set of requirements that was declared as

Requirements: {REQUIREMENT}

The predicate Requirement_Satisfied applies to only one requirement. If one
wants to specify that every requirement in the set of requirements was satisfied,
this can be specified as

∀ r ∈ Requirements
Requirement_Satisfied (r: REQUIREMENT)

The above is an example of a simple expression. It is also an example of what is
called promotion, in that we have taken a predicate that applies to one element of
a set and promoted (that is, applied) that predicate over all members of the set.

Earlier, we indicated that predicates can be thought of as the building blocks of a
specification. If so, then the expressions can be considered to be the glue that ties
the building blocks together. There are many cases where expressions can be ap-
plied in the development of a specification. Most importantly, in the framework we
use expressions when we develop the notion of timing completeness; see Section
2.5.2 for that discussion.
98 B A Quick Tour of the Language Nestor
B.5 Expressions

B.6 Execution Semantics

It is fundamentally important to distinguish between the specification per se and
an execution of that specification. The latter refers to the operational semantics.
We will briefly provide some discussion about this point.

A basic premise in the language Nestor (like many formal specification languages)
is that the execution of a particular specification statement, such as a predicate,
is assumed to be atomic in nature. That is, once the statement enters execution, it
completes without interruption.

The existence of an atomicity property is especially important in the development
of a specification. In our case, it means, for example, that when we developed the
specification of the framework we did not have to consider possible interference be-
tween operations when they execute. This means, for example, that if the predi-
cate that initiates an acquisition activity were executed, during the time that the
predicate executes (i.e., the initiation of an acquisition activity), no other predicate
(such as one that might terminate the acquisition activity) is permitted to execute.

The connection between the semantics of a specification and the manner in which
that specification could be executed is often subtle. However, imposing an atomic-
ity requirement allows us to develop the specification without reference to the
manner in which the specification was executed. In other words, what the specifi-
cation states is different from how that specification may be implemented.
B A Quick Tour of the Language Nestor 99

B.6 Execution Semantics

100 B A Quick Tour of the Language Nestor
B.6 Execution Semantics

Appendix C Guidelines for Model Development

One of the basic reasons for developing the formal specification of an acquisition
framework was to allow for the specification of acquisition models. In that sense,
an acquisition model is an instance of the framework. Specification of different
models allows a more formal comparison of them, as well as gaining a deeper un-
derstanding of their semantics and behavior.

In this Appendix, we provide some notes to aid others who may wish to develop a
specification of an acquisition model based on the framework defined here. These
are intended to provide guidance to the developer; the specification of the waterfall
model in Section 3 on page 33 also illustrates the application of a general approach
for a simple model. The following discussion is not intended to be a primer on the
approach to developing formal specifications; interested readers should consult
relevant sources for such broader information.

A key aspect of the development of an acquisition model is identification of the
boundary of the scope of the model. This can be more subtle than one might first
think. The intended scope of the model determines what activities are performed
and other associated properties the model must address, such as relations among
activities. In the context of DoD acquisition there is a typical hierarchy of Program
Executive Level and Program Office level. But there is also the question of spon-
sorship. And users. The list can go on; however, the critical point of the scope and
boundary of the model must be carefully considered at the outset.

C.1 Conformance to the Framework

Before we discuss model-specific considerations it is worth spending some time ex-
amining the notion of conformance to the framework. Recall that one of our goals
was to be able to specify the framework such that it could be used in the specifica-
tion of acquisition models. Loosely speaking, a specification of a model may add
new data, operations, and expressions, or refine existing data, operations, and
specifications, provided that the model does not contradict the framework specifi-
cation. Some examples of these cases are described below.

With regard to data specified in the framework, the following apply:

• A model cannot change the specification of a framework data
element if such a change would violate the framework. For
example, in Eq. (2.1) on page 5 we specified that the number of
acquisition activities must be greater than zero. Hence, it would be
erroneous for an acquisition model to specify a contradiction to this
C Guidelines for Model Development 101

C.1 Conformance to the Framework

declaration (e.g., that the number of acquisition activities was
zero).

• A model may include specification of new data types that are not
included in the framework. For example, in Section 5 we discussed
possible extensions to the framework that involved data types not
defined in the framework, such as entrance and exit criteria.

• A model may refine the specification of data types that are included
in the framework. An example of this was discussed in Section 5.8.3
on page 70 where we added detail regarding the structure of an
acquisition activity. Note however that dynamic data types
declared in the framework (i.e., those with a subscript [t]) may not
be converted to static data types and vice versa.

With regard to relations defined in the framework:

• A model may introduce new relations, involving either new data
types or data types defined in the framework, provided that they do
not contradict relations defined in the framework.

• A model may refine the specification of a relation defined in the
framework. Refinement of relations was not used in the
development of the framework; an example of where this might be
possible would be to state the constraint that a requirement applies
to an instance of a system only if the requirement has been
approved.29

With regard to operations defined in the framework the following apply:

• A model may add new operations that are not present in the
framework, provided such operations do not contradict the
operations defined in the framework.

• A model may refine the semantics of an operation that is specified
in the framework (this is known as operational refinement). For
example, the framework includes a predicate Requirement_Satisfied
that indicates some requirement is satisfied. It does not, however,
provide details of the conditions under which the requirement is
satisfied. In Section 5.8.2 on page 69 we illustrated an example of
how the operation might be refined in the context of a particular
model.

• A model is required to resolve the cases in the framework where
there are operations whose semantics are underdetermined. There
is only one such case in the framework where this arises. In our

29. Including constraint clauses in a relation is an advanced feature of the language Nestor.
102 C Guidelines for Model Development
C.1 Conformance to the Framework

discussion of the semantics associated with suspending and
terminating an acquisition activity, the specification of these
operations was identical, i.e., underdetermined. A model is
required to add additional material to resolve this consideration.
See the discussion on this topic following Eq. (2.32) on page 24.

With regard to expressions, the discussion above concerning operations applies.
That is, the specification of a model may introduce new expressions, or refine ex-
isting expressions, provided that the result does not contradict the specification of
the framework. The principal case where expressions are defined in the frame-
work is discussed in connection with model completeness (see Section 2.5 on page
25).

C.2 Basic Data Types

The framework includes a number of basic data types, namely, activities, events,
requirements, and instances of a system. Specification of these data types for a
particular model is a good starting point. We would suggest that the following
questions be resolved:

• What are the basic activities that will be included in the model?
What is the reason for the choices made? Is it relevant to separate
these activities into different sets, such as technical and
management activities, or other possible combinations?

• What are the relevant events that the model should include? In
particular:

• What are the events that are internal to the scope of the project?
Typical candidates here include events for reviews.

• What are the external events that are of interest? Treatment of
external events is of special importance because it represents
the interaction of the project with the external environment.
This may include the need to handle events associated with
standards or COTS products, for example.

• How will requirements be treated in the model? In particular, do we
consider a single set of requirements or, perhaps, multiple,
independent sets of requirements? The coupling of requirements,
represented by dependency relations (or through specification of
predicates) needs to be addressed.

• What approach will be used to specify the system? Do we consider
a single instance of a system, or do we include multiple instances of
a system? The latter question is a classic differentiator between a
waterfall model and an incremental model.
C Guidelines for Model Development 103

C.2 Basic Data Types

Developing approaches to resolve the above questions helps to point us in the di-
rection in which the model development will proceed.

C.3 Relations

Related to the specification of basic data types is the consideration of how the dif-
ferent data types are coupled. This coupling is specified by relations. In the devel-
opment of the text, we indicated various basic relations that can be formed among
the data types.

As a guide to the development of relations it is useful to consider a table, as indi-
cated in the following:

Table C-1: Developing Relations for a Particular Acquisition Model

Each cell in Table C-1 represents a possible source of relations that can be speci-
fied for a particular model. Throughout the text we have used relations to help
specify the framework. Many times the relations are developed from a simple dia-
gram such as shown in Figure C-1:

Figure C-1: Simple Model for Development of Relations

A number of items that should be considered when developing relations between
a set of source elements and another set of destination elements (which can be the
same, of course) are:

Activities Events Require-
ments

System
Instances

Activities

Events

Requirements

System
Instances

Source Destination
104 C Guidelines for Model Development
C.3 Relations

• Can multiple source elements be included in the same relation, or
does the relation involve only one source element?

• Can multiple destination elements be included in the same
relation, or does the relation involve only one destination element?

• Must the relation be defined over all elements in the set of source
elements?

• Must the relation be defined over all elements in the set of
destination elements?

The above questions are related to identifying the character of a particular rela-
tion such as many-to-many or one-to-one. It also involves consideration of whether
a relation is total or partial over the set of source and/or destination elements.30

C.4 Predicates

Predicates are the main building blocks of the operations that are associated with
a specification. Loosely speaking, predicates can be grouped into the following
classes:

• axioms: basic statements associated with the model.

• inquiry functions: A predicate can be used to determine the state of
some data or operation. For example, in the framework we use
inquiry functions (a particular type of predicate) to determine
whether an activity is in progress (see Eq. (2.13)) or whether a
requirement has been satisfied (see Eq. (2.23)).

• conditional predicates: A conditional predicate is one that has a
pre-condition clause that specifies the conditions that must be
satisfied in order for the predicate to be true. For example, we used
a conditional predicate to specify that in order for an activity to be
terminated, it must have been started at some earlier time (see Eq.
(2.32)).

• unconditional predicates: An unconditional predicate is one that
has only a post-condition clause; no pre-condition clause is present.
We used a predicate of this type when we discussed adding a
requirement to the set of requirements (see Eq. (2.20)).

30. As an advanced consideration, it is worth considering whether there are constraints in-
volved in the relation. For example, does the relation hold over all elements in the source
set or only over some (implicitly defined) subset of the source elements, where the subset
is specified by a constraint? For example, one could define a relation between people, with
the constraint that it holds only for people under the age of 12.
C Guidelines for Model Development 105

C.4 Predicates

• schema predicates: A schema predicate is a predicate that has both
a pre-condition and a post-condition. The pre-condition clause
specified the state that must be satisfied in order to initiate the
operation, as described above. The post-condition clause specifies
the operations or state that must hold upon completion of the
operation specified by the predicate.

As noted, predicates are used to specify operations on state data, such as the re-
quirements associated with the model or operations that can be performed, such
as initiating some acquisition activity. Identification of the necessary predicates is
largely determined by what is desired to be stated for some aspect of the model.

In addition to predicates, there are expressions that can be developed that assert
some property over a specification. For example, the completeness criteria (see
Section 2.5) for the framework are presented as expressions. In particular, the cri-
terion that every external event must be associated with some activity (see Eq.
(2.38)) is an example of a general expression.

Given the above mechanisms that can be used to develop a specification, some of
the questions worthy of consideration include:

• What are the operations that can be applied to the basic data types,
such as activities or events? For example, in Section 2.1.1 we
included operations that create, modify, and delete a particular
acquisition activity. Are these simple operations sufficient for
relevant data types, or are more complex operations necessary to
develop a model specification?

• What are the operations that couple the different data types? A
hint of the relevant operations can be obtained by assessing the
relations. As another case, in Eq. (2.27) on page 22 we developed a
predicate to indicate that some requirement was satisfied by an
instance of a system. This amounts to a coupling of requirements
and the system (instance) that manifests those requirements.

• What are the operations that must hold over the entire
specification? For example, when we discussed dependencies
between requirements, say x and y, we required that for every
requirement, if x depended on y, then y did not depend on x (see Eq.
(2.25) on page 21). This choice was made to prevent circular
dependencies. The fact that this is an assertion over the entire
specification is especially important.

Needless to say, the specification of predicates helps to bring out the operational
nature of the acquisition model.
106 C Guidelines for Model Development
C.4 Predicates

C.5 Timing Properties

Timing properties are a crucial element in the specification of the framework and
are equally crucial in the development of a model as an instance of the framework.
It is consideration of timing properties that leads to a specification of the dynamic
character of an acquisition model. In particular, timing properties allow us to spec-
ify which activities are serial in nature and which activities can be performed in
parallel.

When developing timing properties for a model, some of the relevant issues are:

• What are the criteria for when a given activity may be initiated or
terminated?

• What are the criteria for when multiple activities may be
performed at the same time? This question is especially important;
for example, if one compares a waterfall model with a spiral model.
Another example of where parallelism occurs is dealing with
external events, such as may be defined for dealing with standards
and COTS products. Some work toward this end is discussed in [5].

• Given the possibility of concurrent activities, what is the
synchronization between them? For example, if a model specified
entrance criteria that depend on multiple concurrent activities,
what happens if one activity is complete, but another is not?

There are various timing properties that can be associated with a particular mod-
el. It was recognition of this fact that caused us to specify some of these in greater
detail. See Section 5.7 on page 63 for some ideas on different timing properties that
can be specified.

C.6 Possible Extensions

The intent of the framework specified in this report was that it be of sufficient
breadth that it can be used to develop multiple acquisition models. At the same
time, however, we have tried not to overly constrain the specification. It was the
need for balance that led us to consider possible additional items that one could
include in the specification of a model. These possible extensions were discussed
in Section 5.

The relation between the extensions and the basic framework specification is
shown in Figure C-2. The center of the figure shows the (core) framework specifi-
cation. It is surrounded by possible extensions, many of which were described in
Section 5. Another item that has been mentioned in the text is how an acquisition
model would need to account for standards and COTS products. But also shown in
Figure C-2 is an indication that other topics can be defined as part of developing a
specification of an acquisition model. The significance of the arrows leading to the
C Guidelines for Model Development 107

C.5 Timing Properties

framework simply indicates that the extensions are integrated into the basic spec-
ification of the framework.

Figure C-2: Relation of Extensions to Framework Specification

It is difficult to give specific guidance on additional specification that could be in-
cluded in a particular model. Recognition of the need to state some property asso-
ciated with the model is what will determine whether additional specification is
required that is outside the scope of the core framework. Thus, treatment of exten-
sions is very model dependent.

C.7 Assertions Over the Specification

The ultimate utility of a formal approach to the specification of an acquisition
model is that it should be possible to reason about the specification in a formal
manner. From a mathematical point of view, this deals with the development of
assertions which can then be established by a proof technique.

The ability to state, and then prove, assertions about a formal specification is very
powerful. In the discussion of the waterfall model (Section 3.5 on page 43) we gave
some instances where it was possible to reason about a model specification. The
ability to pose questions about a model, and then to be able to resolve the questions
through application of a formal approach, is very useful. While a discussion of
proof techniques is beyond the scope of this report, we want to make the reader
aware that such approaches do exist and are of considerable value.

Framework
Specification

Entrance and
 Exit CriteriaParticipants

Artifacts
Acquisition
 Phases

Execution Character
 of Activities

Other
Topics

Standards and
COTS Products
108 C Guidelines for Model Development
C.7 Assertions Over the Specification

Appendix D Additional Comments on the Waterfall
Model

In Section 3 we provided a specification of the traditional waterfall model in terms
of the basic acquisition framework described in Appendix D. There is additional
material in reference [6] concerning the waterfall model that we did not address
earlier. In particular, the additional specification statements concerning the wa-
terfall model can be viewed as refinement to the basic specification. Our goal here
is to address the refinement issues for two topics, namely, elaboration of activities
that are included in the model and a specification of artifacts associated with the
model.

D.1 Elaboration of Activities

The activities described for the waterfall are specified at a high level. It is possible
to refine those activities, which amounts to the addition of detail to a specification.
In the case of the waterfall model, the activity of preliminary design included the
following activities:

• Document system overview.

• Design database and processors.

• Allocate subroutine storage.

• Allocate subroutine execution times.

• Describe operating procedures.

We can declare the above items as activities as

Document_System_Overview, Design_Database, Allocate_Subroutine_Storage,
Allocate_Subroutine_Execution_Time, Describe_Operating_Procedures:

ACTIVITY

Next, we declare the above to be members of a set of design activities:

Design_Activities = {Document_System_Overview, Design_Database,
Allocate_Subroutine_Storage, Allocate_Subroutine_Execution_Time,
Describe_Operating_Procedures}

It is now possible to relate the above activities to those defined in Section 3. In par-
ticular, we earlier defined an activity for program design:

Design_Activities ⊃ Program_Design
D Additional Comments on the Waterfall Model 109

D.1 Elaboration of Activities

D.2 Artifacts

The description of the waterfall model also included a number of artifacts that are
created during the development process. Specification of artifacts is not part of our
core framework; however, in Section 5.4 we described an approach to dealing with
artifacts.

We begin with a description of a free type to represent an artifact:

[ARTIFACT]

In the description of the waterfall model provided in [6], a number of artifacts are
described. These are documents that are produced during the development effort.
We can declare these to be artifacts as follows:

Software_Requirements_Document, Preliminary_Design_Specification,
Interface_Design_Specification, Final_Design_Specification, Test_Plan_Specification,
Operating_Instructions: ARTIFACT

We now declare a set of artifacts that we will denote as documents:

Documents: {ARTIFACT}

Documents: Software_Requirements_Document, Preliminary_Design_Specification,
Interface_Design_Specification, Final_Design_Specification, Test_Plan_Specification,
Operating_Instructions

It is also necessary to relate the documents to a particular activity in the model.
The character of the relation is that every document must be related to at least one
activity, but not all activities need to have an associated document. The specifica-
tion of the necessary relation is then

Document_Relation: Documents <----|-> Activities
 ∃ di ∈ Documents, aj ∈ Activities

• Document_Relation (di , aj)

A declaration of the relations for the above documents with their associated activ-
ities are defined as:

Document_Relation (Software_Requirements_Document, Software_Requirements);
Document_Relation (Preliminary_Design_Specification, Program_Design);
Document_Relation (Interface_Design_Specification, Program_Design)
110 D Additional Comments on the Waterfall Model
D.2 Artifacts

Document_Relation (Final_Design_Specification, Program_Design)
Document_Relation (Test_Plan_Specification, Testing)
Document_Relation (Operating_Instructions, Operations)
D Additional Comments on the Waterfall Model 111

D.2 Artifacts

112 D Additional Comments on the Waterfall Model
D.2 Artifacts

Appendix E Index of Mathematical Formulas

The following index references data types and operations that appear in this re-
port. Page numbers appearing in bold font are associated with the basic frame-
work.

—A—
Acq_Activities 5, 10, 11, 17, 28, 34, 36, 56, 58, 64, 83, 87
Acquisition_Activity_Start 64, 66
Acquisition_Activity_Stop 65, 66, 67
Activities 36, 53, 110
ACTIVITY 5, 60, 63, 70, 109
Activity_Completed 18
Activity_in_Progress 18, 23, 24, 61, 63, 78, 84, 97
Activity_Precedence 67
Activity_Relation 10, 36, 39, 78
Activity_State 71
Activity_Suspended 18, 78
Add_Activity 17
Add_Requirement 20
All_Requirements_Satisfied 40, 68
Approval_Authority 53
ARTIFACT 55, 110

—C—
Closed_Parallel_Activities 66
Concurrency_Permitted 25, 85
Concurrency_Prohibited 25, 85
Concurrency_Required 25, 85
COTS_PRODUCT 55
COTS_Product_Acceptable 55
COTS_Product_Evaluated 55
COTS_Product_Upgraded 56
COTS_Products 55
Create_Internal_Event 19
CRITERION 57, 60

—D—
Delete_Activity 17
Delete_Internal_Event 19
Delete_Requirement 21
Document_Relation 110
Documents 110
 113

—E—
Entrance_Criteria 57, 58, 60
Entrance_Criterion_Activity_Mapping 60
Entrance_Criterion_Activity_Relation 58, 60
Entrance_Criterion_Satisfied 58, 60
EVENT 34
Execute_Acquisition_Activity 25, 41, 64, 65
Exit_Criteria 57, 58, 59, 60
Exit_Criterion_Activity_Mapping 60
Exit_Criterion_Activity_Relation 58, 59, 60
Exit_Criterion_Satisfied 58, 59, 60
EXTERNAL_EVENT 6, 20
External_Event_Activity_Relation 12, 29, 87
External_Event_Occurred 20, 29, 87
External_Events 6, 12, 29, 34, 87

—G—
Generate_Internal_Event 19, 37

—I—
Initiate_Acquisition 61
Initiate_Acquisition_Activity 23, 24, 25, 28, 29, 38, 39, 40, 53, 58, 60, 63, 64, 65, 67, 71, 84,
87
Initiate_Activity 63
INTERNAL_EVENT 6, 19, 37
Internal_Event_Activity_Relation 11, 83
Internal_Event_Occurred 19, 29, 37, 41, 87
Internal_Events 6, 11, 19, 29, 34, 36, 83, 87

—M—
Modify_Activity 17
Modify_Internal_Event 19
Modify_Requirement 20, 38

—N—
New_COTS_Product_Available 55
NUMBER_REQUIREMENTS 35

—O—
Open 66
Open_Parallel_Activities 66

—P—
Parallel_Activities 65
PARTICIPANT 51
Participants 53
114

Phase 60, 61, 63
Project_Review 36, 41

—R—
REQUIREMENT 7, 35
Requirement_Analyzed 69
Requirement_Correct 50
Requirement_Dependency 21
Requirement_Satisfied 21, 22, 38, 40, 68, 69
Requirement_Self_Consistent 50
Requirement_Simulated 69
Requirement_Tested 69
Requirements 8, 13, 21, 35, 40, 68, 83
Requirements_Consistent 50
Requirements_Mapping 13, 83
Resume_Acquisition_Activity 24

—S—
Sequential_Acquisition_Model 64
Serial_Activities 64
Suspend_Acquisition_Activity 24
SYSTEM 35
System 9, 13, 35, 83
System_Dependency 22
SYSTEM_INSTANCE 8

—T—
Terminate_Acquisition_Activity 24, 25, 28, 38, 39, 59, 60, 61, 63, 64, 65, 67, 87
Terminate_Activity 63

—W—
Waterfall_Model_Complete 40
 115

116

ll

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

6. AGENCY USE ONLY (leave blank) 7. REPORT DATE

December 2001

8. REPORT TYPE AND DATES COVERED

Final

9. TITLE AND SUBTITLE

A Framework for the Specification of Acquisition Models

10. FUNDING NUMBERS

C — F19628-00-C-0003

11. AUTHOR(S)

B. Craig Meyers and Patricia Oberndorf
12. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

13. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-TR-004

14. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

15. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2001-004

16. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This report describes a framework for the specification of acquisition models. The exposition is formal in
nature. The framework is defined in terms of activities, events, requirements, and instances of a system. In
addition, various relations among these items, such as the relation between acquisition activities and
acquisition events, are defined. The timing properties associated with the items receives special treatment.

The value of a framework is that one can develop specifications of various acquisition models, such as
waterfall, spiral, or incremental, as instances of that framework. Formalizing the specification of an
acquisition model has benefit in that one can reason about the characteristics of the domain addressed by
the model. When this is done for multiple acquisition models, each derived from the same framework, it is
possible to compare different acquisition approaches.

14. SUBJECT TERMS

acquisition; acquisition process; formal model

15. NUMBER OF PAGES

132
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Executive Summary
	1 Introduction
	2 Framework Specification
	2.1 Data Specification
	2.1.1 Activities
	2.1.2 Events
	2.1.3 Requirements
	2.1.4 System

	2.2 Relations Among Basic Elements
	2.2.1 Relations Among Activities
	2.2.2 Relations Among Activities and Events
	2.2.3 Relations Between Requirements and System Instances
	2.2.4 Additional Considerations
	2.2.4.1 Activities and Requirements
	2.2.4.2 Activities and System Instances
	2.2.4.3 Events and Requirements
	2.2.4.4 Events and System Instances
	2.2.4.5 Requirements and Requirements
	2.2.4.6 System Instances and System Instances

	2.3 Predicates
	2.3.1 Activities
	2.3.2 Events
	2.3.2.1 Internal Events
	2.3.2.2 External Events

	2.3.3 Requirements
	2.3.4 System

	2.4 Execution Character
	2.4.1 Basic Execution Model
	2.4.2 Concurrency Considerations

	2.5 Completeness Considerations
	2.5.1 Specification Completeness
	2.5.2 Execution Completeness

	2.6 Summary

	3 An Example: The Waterfall Model
	3.1 Basic Specification Elements
	3.2 Predicates
	3.3 Timing Properties
	3.4 Completeness Considerations
	3.4.1 Execution of Activities Is Well Specified
	3.4.2 Treatment of External Events
	3.4.3 Treatment of Internal Events
	3.4.4 All Requirements Satisfied

	3.5 Reasoning About the Specification
	3.6 Summary

	4 Discussion
	5 Possible Extensions to the Framework
	5.1 Elaboration of Acquisition Activities and Events
	5.2 Requirements
	5.3 Participants
	5.4 Artifacts
	5.5 Entrance and Exit Criteria
	5.6 Phases
	5.6.1 Sequential Phases
	5.6.2 Other Choices

	5.7 Execution of Acquisition Activities
	5.7.1 Serial Models
	5.7.2 Parallel Models
	5.7.2.1 Closed Parallel Models
	5.7.2.2 Open Parallel Execution

	5.7.3 Precedence Relations

	5.8 Additional Considerations
	5.8.1 Promotion
	5.8.2 Operational Refinement
	5.8.3 Data Refinement

	6 Summary
	References
	Appendix A Summary of Framework Specification
	Appendix B A Quick Tour of the Language Nestor
	B.1 Overview
	B.2 Data Types
	B.3 Relations
	B.4 Predicates
	B.5 Expressions
	B.6 Execution Semantics

	Appendix C Guidelines for Model Development
	C.1 Conformance to the Framework
	C.2 Basic Data Types
	C.3 Relations
	C.4 Predicates
	C.5 Timing Properties
	C.6 Possible Extensions
	C.7 Assertions Over the Specification

	Appendix D Additional Comments on the Waterfall Model
	D.1 Elaboration of Activities
	D.2 Artifacts

	Appendix E Index of Mathematical Formulas

