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Abstract

This report presents an extended analysis of CERT Coordination Center incidents data (from
1988 to 1995) and applies the results to simulate attacks and their impacts on network sites.
The data were “sanitized” prior to the analysis to ensure complete anonymity. A model for the
incidents process is discussed and extended. It consists of three parts: a stochastic process for
the random occurrence of incidents at sites, a model for the state transition process for an at-
tacked system given a level of defense, and a method of estimating the expected survivability
of the system given possible degradations due to these attacks. This approach leads to the
estimation of a survivability/cost function, which shows the tradeoffs involved between cost
and system survivability. Information Systems (IS) managers can use this to determine the
most appropriate level of defense for the network systems of their organizations.

The stochastic process was simulated based on parameter values obtained from actual re-
ported data. Extensive sensitivity analyses are reported that indicate how expected surviv-
ability would change with varying parameter analysis results values. The report concludes
with a discussion of future work to be done and the appendix has details of the simulation
model and further data.

                                                
 CERT and CERT Coordination Center are registered in the U.S. Patent and Trademark Office.
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1 Introduction

The pervasiveness of network systems in today’s world is certainly well recognized. Moreo-
ver, with the growth of the World Wide Web and other communications links between com-
puters and information systems, many networks have become unbounded. That is, no one
user has full knowledge of all the connections that comprise the network [Ellison 97, Fisher
99]. Concurrently, more and more elements of society are becoming increasingly dependent
on information networks. The vulnerability of these networks is increasing because greater,
open access necessarily subsumes greater access for potential attackers. [Baker 95, Gollman
99].

Since it is virtually impossible to control users in unbounded networks such as the Internet,
malicious attacks will inevitably occur. Some of these attacks may cause damage to systems
and loss to their owners. The magnitude of damages done and costs incurred as a result of
such attacks have been estimated at varying levels, but it is clear that even by conservative
estimates, they are considerable [CSI 98, Boni 99]. Therefore it has become imperative for
systems managers and researchers to consider methods for improving the security of Infor-
mation Systems (ISs).

It is probably futile to hope for an absolute security for any network system such that no pos-
sible attack will cause any damage. Almost certainly, as the sophistication of attackers in-
creases (something we are witnessing) any open system can be compromised to some degree
or other. The real issue is the level to which we deploy defense mechanisms against these
random attacks. Stronger defenses will imply higher costs, and we have to consider tradeoffs
between security and costs, where costs could include possible functional limitations to the
system. That is, while we need to enhance security, we also need to decide by how much to
enhance it—given the costs to the organization that owns the system. In other words, we have
to determine how to enhance network security for ISs efficiently. We would like to achieve
the most appropriate level of security based on the organizational needs, financial abilities,
and potential threats [Cameron 98, Bernstein 96].

In view of this, a cost/benefit analysis of network systems security is clearly important. The
costs will be those of deploying and maintaining various defense mechanisms to protect a
system or site against attacks, including the costs of any constraints on the system imposed
by the defense mechanism. For example, some desired characteristic such as remote accessi-
bility or simple search abilities may conflict with increased security requirements. The bene-
fits will be those of increased survivability of the system or site. Survivability means the
ability of systems to recover from attacks, and in particular, the degree to which they recover
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[Ellison 97]. However, there are many dimensions to survivability, as we shall discuss later.
Cost/benefit analysis should lead to methods for improving the security and survivability of
network systems in appropriate, cost-effective ways.

As part of such an effort, we need to model the occurrence of attacks on systems and their
impacts. Then we can simulate alternative scenarios to examine how different parameters
affect system survivability. In this paper, we develop a model and simulate it to analyze net-
work survivability based on available data.

A primary objective of this research is to develop and apply a reasonably realistic simulation
model that can help systems managers and CIOs (Chief Information Officers) to understand
survivability issues better and evaluate the tradeoffs involved in decisions about network
systems design, including their defense mechanisms. One such model has already been de-
veloped and reported [Moitra 00]. Here we extend the model to make it more realistic, and
we run the simulations based on parameter values estimated from analysis of data on actual
incidents recorded at CERT (at the Software Engineering Institute, Carnegie Mellon Univer-
sity). Furthermore, we wish to

• analyze CERT data at the site level rather than at incident level

• develop heuristics for moving towards “optimal” security strategies

• suggest how this simulation model could be embedded in a Decision Support Systems
(DSS) to manage systems security and survivability

The incidents process can be viewed as a random process where a system is subjected to a
series of random attacks over time (with incidents and attacks as defined above). Since we
wish to assess the survivability of systems, we need to model the process of occurrence of
incidents from the point of view of a system or site that experiences this process over time, as
shown in Figure 1. This is equivalent to a stochastic point process where incidents occur at
random points in time. Therefore we need to simulate a stochastic point process. The surviv-
ability also depends on how the system responds to an incident. This will depend on the sys-
tem configuration, that is, its design and defense mechanisms as defined above. Thus we also
need to model this response as a function of the incident type and configuration. The model
will involve a transition matrix that will give the probabilities of the system ending up in any
of its possible states after experiencing an incident. These probabilities will depend on the
incident type and system configuration. A minor incident will probably cause relatively little
damage. Also, the stronger the defense mechanism, the less the damage that will be inflicted
by a given incident. Next, the degree to which the system has survived will have to be meas-
ured. This will be a function of the state in which it ends up and will be related to the amount
of compromise that has occurred. For this purpose, we use a new survivability measure
[Moitra 00] that takes into account the different dimensions of survivability, that is, the dif-
ferent functionalities and services that can be compromised.

                                                
 CERT and CERT Coordination Center are registered in the U.S. Patent and Trademark Office.
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Modeling Approaches for Managing Survivability of Networks

Figure 1: The Components of the Simulation Model

With this simulation model we can analyze the costs and benefits of alternative defense
mechanisms under various scenarios. Such analyses can assist systems managers in making
decisions regarding the system configuration that best suits their needs. The advantage of this
systems simulation approach is that a large variety of scenarios may be explored. Alternative
incident processes, different systems configurations, various state transition probabilities, and
additional survivability measures may all be investigated with such a model. Thus, given the
high degree of uncertainty regarding future attacks and their impacts, this method provides a
practical approach to assess and manage survivability.

The rest of the paper is organized as follows. The next section reviews the literature in this
area and the following two sections summarize the model that has been previously reported
and the input data required to run it. After that we describe the data analysis and the main
results. The results of the simulation are discussed next. The final section outlines some of
the future work that should be done. Further details of the model and data analysis are given
in the appendix.

Model to forecast attacks
and incidents: (marked
point processes

 -coordinated and multisource

System characteristics:
(specific security and
Defense mechanisms)

- response

- costs

Survivability: as measured
bynew measures based on
systemsdesign and protocols

System states and
transition matrix

Heuristics to
improve network
survivability
cost-effectively

Survivability/cost
.

(integrate with
telecommunication
work)



4 CMU/SEI-2000-TR-021



CMU/SEI-2000-TR-021 5

2 Literature Review and Taxonomy

Survivability has been studied in telecommunications where the impacts of link or node fail-
ures have been considered [Moitra 97]. There is also some literature on the survivability of
network information systems [Howard 95, Ellison 97, Linger 98, Fisher 99]. Howard has un-
dertaken an extensive survey of the nature of attacks on computer systems and reports on the
analysis of data on computer security violations. Ellison discusses the issue of survivability in
the context of network systems and proposes a set of future research needs. Linger expands
on the problems in analyzing survivability of network systems and explains the requirements
for system survivability. Fisher suggests an alternative method for increasing survivability by
applying emergent algorithms based on a distributed system.

A simulation model to track the impact of attacks on network systems has been proposed
[Cohen 99] and it is demonstrated that shortening the response-to-attack time can have major
benefits. A detailed model of the incidents process has been developed [Moitra 00] and has
been simulated to provide a method to explore the costs and benefits of varying defense
mechanisms. Moitra and Konda also provide a methodology to measure survivability. In ad-
dition there is a burgeoning literature on e-commerce and the security issues related to it
[Baker 95, Bernstein 96, Boni 99, Cameron 98, Gollman 99].

One of the key issues is the taxonomy that is to be used in discussing network security inc i-
dents and survivability. Many alternative terms have been used, and here we follow the at-
tempt to develop a common language for computer security incidents Howard and Longstaff
define a number of terms, in particular, an attack and an incident [Howard 98]. An attack is
defined as

“a series of intentional steps taken by an attacker to achieve an unauthorized result.”

An incident is defined as

“a group of related attacks that can be distinguished from other attacks because
    of the distinctiveness of the attackers, attacks, objectives, sites, and timing.”

It would be useful to add some additional terms. We define an episode as the combination
[incident + response], that is the whole process of a set of attacks and the system’s response
to the incident. We consider a system to be the collection of all the relevant computers and
network elements at a site . Finally we will refer to the system’s configuration as the combi-
nation of its design and its defense mechanism.
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3 Model Development

As illustrated in Figure 1, we shall develop models of the incidents process, the response of the
system, and its survivability. In order to forecast incidents, we model the process as a marked,
stochastic point process, where the incidents are the events that occur at random points in time,
and the event type is the mark associated with an incident [Snyder 91]. The mark is used to
identify random quantities associated with the point it accompanies. The mark, or event type in
our case, has to take into account the severity of the incident and the possibility of single, or
multiple and simultaneous attacks. This is because we are modeling a process that is taking
place in an unbounded environment [Ellison 97]. Therefore the mark space will be two-
dimensional, characterized by type (severity) and number of attackers. However, since no data
on the distribution of the number of attackers per incident were available, only severity was
used in the simulations. A marked point process is illustrated in Figure 2.

           |   τ 1   |         τ 2           |      τ 3       |

           t0         t1                       t2                t3                                                                          time
           j0         j1                       j2                j3

τ ~ inter-incident time;
t ~ times at which incidents occur;
j ~ marks associated with each incident (incident type).

Figure 2: The Marked Stochastic Point Process

Next we need to characterize the system designs under consideration and the potential de-
fense mechanisms that may be employed within the systems. That is, we need to define the
set of designs/architectures of the system, and the defense mechanisms. The combination of a
system design and defense mechanism will be called the configuration (or posture). The de-
sign could include distributed subsystems with different defenses for the subsystems. Each
possible combination of design and defense would be a configuration. In this paper we con-
sider only one design since specific data on system designs were not available. When infor-
mation exists on different designs, any number of designs may be analyzed. We also assume
five hypothetical levels of defense mechanisms, and cost increasing with the strength of the
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defense. In general, many complex designs and defense mechanisms can exist, and our model
can accommodate such complexity whenever the data are available.

The response prediction model will predict the transition of the system to a new state after an
attack/incident has occurred, and will be a function of the incident type and the configuration.
Thus, given an incident-type j and initial system state r, the subsequent state s may be any
one of the set {S} of possible states that the system can be in, such as normal, under attack,
compromised, recovered, or nonfunctional. The actual states may be different, of course, for
different configurations. The transition matrix T will probabilistically map r to s given j. That
is, each element of T is the probability of the system of that configuration going to another
(possibly compromised) state when subjected to an incident of type j. In general, the incident
type j will be a vector of severity level and number of attackers. But as mentioned above,
since data on the number of attackers were not available, j is taken to be severity only in the
simulations conducted here.

As discussed earlier, survivability is the key issue we wish to investigate with the simulation
model. Therefore it is necessary to develop a measurable concept of survivability. There has
been considerable work done on survivability in telecommunications [Moitra 97] that is es-
sentially at the network topology level. Here we employ analogous measures of survivability
based on concepts suitable to information systems and networks.

Survivability is the degree to which a system has been able to withstand an attack or attacks,
and is still able to function at a certain level in its new state after the attack. This new state s
will generally be a compromised state, and is the state in which the system ends up before
any full-fledged recovery or repairs are done to restore it to its normal state. At the conceptual
level, we propose that survivability be measured as

SURV = (performance level at new state s) / (normal performance level)

The main issue is the measurement of performance levels. In telecommunications, it is gener-
ally taken as the traffic that is still carried relative to the offered traffic the network could
carry under normal conditions. An analogous approach could be taken for computer systems,
in that the different functionalities and services could be considered separately, and an as-
sessment could be made as to what extent each functionality has survived in the new system
state after an attack. For example, if a given functionality has survived intact, its value would
be 1, and if the system were completely nonfunctional with respect to that service, then its
value would be 0. Intermediate states would have values in between. Further details are given
in the appendix. For additional measures of survivability see Moitra, Oki and Yamanaka
[Moitra 97].
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4 Data Analysis

We shall use the following notation. Additional notation will be introduced as needed.

i] i, j = index for incident type, i, j in {J}. We consider actual,
unauthorized incidents only. i denotes the prior incident and j the sub-
sequent (or current) one.
ii] P(j) = probability that an incident is of type j.
iii] τ (i,j) = inter-incident times between incidents i and j.
iv] a = arrival rate of incidents = 1/τ   .
v] r, s = index for system state, r, s in {S}.
vi] T = transition probability matrix with elements {p(r,s)}, where
p(r,s) is the probability of going from state r to state s.

The data required for the simulation is as follows:

• the distribution of the τ’s to determine the functional form of f(t)

• the parameters for f(t): {a}. For example, a = arrival rate, a’ = trend (if any), etc.

• total number of incident types = J, and a taxonomy of types {j}

• probabilities P(j) of incidents of each type occurring for all j in J

• number of defense mechanisms and the costs for each. (Costs will be scaled from 1 to
100)

• number of possible states of the system = S. At this stage, we will consider only “long-
term” end states, not the “transient” ones that a system may go through when attacked.

• transition probabilities in T: p(r,s | j). This may be obtained from observed data, from ex-
pert judgement, or from a (tree) model that estimates the probabilities of end states based
on transitions through all possible intermediate states.

• vector of SURV(s) for all (end) states

With the data collected by CERT, we only have information on recorded incidents. We can
use this data to estimate (and forecast) the incidents process that an individual network site
would experience. However, detailed data on system responses and defense mechanisms are
not available to date. Therefore we first focus on estimating the model for the stochastic point
process for incidents. Then we simulate the incidents process based on these estimates.

We estimate the following from CERT data:

1. the functional form for inter-event times (f)
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2. the parameters of “f”

3. whether f = f(i,j) or f(j) or f(i)

4. the stationarity of the form of the distribution function

5. correlations between inter-incident times and incident types, τ(i,j)

6. the stationarity of τ

7. the dependence of τ on (victim) site type

8. correlations between consecutive incident types ρ(i,j)

However, there are a number of ambiguities in the data and taxonomy. For example, it is not
always clear whether a reported incident is a truly unauthorized event. Also there may be am-
biguities in incident identification, MO (method of operation) identification, etc. We should
also note that the incidents in data are twice filtered; that is, they are based upon detection
and then reporting. Also such recorded data is typically both right-censored and left-censored.
That is, data collection starts at some point in time after the process has started, and ends at a
point in time while the process is still going on. This creates some biases in the estimation
process. To partially overcome this problem we have selected those sites that have experi-
enced at least three incidents, thus providing us with at least two τ’s. Other issues will be dis-
cussed in their contexts and also in Section 5 on future research.

In order to simulate the incidents process realistically, we need to estimate the relevant pa-
rameters and correlations as delineated above. First we briefly describe the CERT data that is
available and then we describe the data analysis.
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5 Data Description

The CERT data analyzed here presents reported incidents between 1988 and 1995. For each
incident, the variables recorded are: SD (start date), ED (end date), NS (number of sites in-
volved), NM (number of messages), LV (level of the incident), MO (a vector of methods of
operation used), CA (corrective action), NT (notes), RS (a vector of reporting sites), and OS
(a vector of other sites involved). The data are described in detail in Howard [Howard 95].

For the purposes of this analysis only the following variables were needed:

SD

NS

LV (coded from [1-7])

MO

RS + OS (which were considered together as victim sites).

The attack characteristics are given by {SD, NS, LV, MO}, and the site characteristics are
given by the domain identified in RS and OS. There is a likelihood of high correlation be-
tween LV and the MOs because the most frequently occurring MOs correspond to one or
more “level” categories, as shown below:

Level MO

1 = root break-in 001

2 = account break-in 002

3 = denial-of-service 017, 221, etc.

4 = corruption of information several

5 = access attempt several

6 = disclosure of information several

Since there is a redundancy in the information contained in “level” and the MOs, we shall use
the variable “level” only.
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6 Results

We emphasize again that we are looking at the attack-incidents from the point of view of a
victim site. We are essentially reconstructing and forecasting the victimization experience of
individual sites over time. Also the data analysis reported here is at the exploratory level and
further statistical testing will be required for confirmatory analysis in the future.

The first issue we investigate is the functional form of the distribution for the inter-incident
times. To this end, we plot histograms of the frequency distributions of the τ ’s for different
time units. The smallest granularity of time is a day. So Figure 3 (next page) shows the fre-
quencies for τ = 0 days (number of incidents occurring the same day), 1 day (incidents oc-
curring one day apart), 2 days, etc. up to 9 days. We see that the distribution is not very dif-
ferent from an exponential in shape. The mean is at 84 days. The values are given in Table 1
for up to 29 days.

Table 1: Frequency Distribution of τ by Time Interval D (D in days)

D  f(τ) D   f(τ) D   f(τ)

0 1723 10  303 20  187
1   869 11  292 21  229
2   786 12  291 22  177
3   693 13  333 23  188
4   576 14  304 24  165
5   543 15  256 25  130
6   493 16  207 26  178
7   507 17  227 27  152
8   374 18  191 28  181
9   466 19  248 29  168

We also plot the frequency distribution for time intervals equal to weeks, months and quarters
in Figures 4 to 6 respectively. All these figures support the hypothesis of an exponential dis-
tribution.

However, the tail of the distribution is rather long, as can be noticed from Table 1. That is, the
frequencies decay very slowly. Therefore it might be worth investigating a mixed exponential,
or even a triangular distribution for the τ ’s in the future. In particular, we note in Figure 3 that
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there is a slight spike at D = 0, which means there is a higher probability of two incidents
occurring the same day than would be predicted by an exponential distribution. This has a
substantive interpretation in that if a site is attacked, its vulnerability might be exposed, and
this information may attract another attack on the same site almost immediately (within one
day). This may be simulated by a “point mass” probability for τ = 0, together with an expo-
nential (or triangular) distribution for all values (including τ = 0). For now we will use the
exponential distribution since that is quite close to the actual distributions.

Figure 3: Frequencies by Day

Figure 4: Frequencies by Week
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Figure 5: Frequencies by Month

Figure 6: Frequencies by Quarter

Next we need to examine whether the distribution (that is the shape of the histograms)
changes over time (from year to year). Table 2 gives the frequencies by year for each of the
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use the exponential form throughout the simulation horizon.

Table 2: Frequency Distributions of τ’s by Year
Year

D 88 89 90 91 92 93 94 95
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8 1 2 24 19 12 12 0 0
9 1 13 91 59 21 5 0 0
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Having decided upon the distributional form, we now consider the mean inter-incident time,
or, equivalently, the arrival rate (a) of incidents. The first question that arises is whether they
are constant over time, or whether they have trends. Table 3 has the average τ’s by year, and
it is clear that there is a decreasing trend in the τ’s, which implies an increasing trend in the
arrival rates. This should be reflected in the simulation.

Table 3:  Average τ's by Year

Yr Freq. Average τ

88 41 243.6
89 278 185.9
90 1055 249.0
91 1549 144.8
92 2688 116.0
93 3942 74.6
94 7205 70.1
95 5047 34.5

The estimated regression equation is

Ave. τ = 278 – 30*Year,

with the slope coefficient significant at the .001 level. It is important to realize that there
could be a bias in the trend value (slope coefficient) due to the data being right-censored.
Those τ's included in the sample that is cut off in Year 8 (1995) will tend to have a dispropor-
tionate number of small values in them, since larger values would not be in such a sample.
Nevertheless, the data do suggest a consistent trend. The actual trend value should be com-
puted more carefully for future work. For our purposes, we are simply interested in detecting
the existence of a trend. In the appendix, we discuss the issues further.

A related question is whether this trend varies by incident type. For example, is the trend for
root break-ins different from that of account break-ins? Table 4 gives the average inter-
incident times by year and incident type, and we see no significant difference in trend by
type. Apart from 1988 and 1989, when we have very little data, all types have a generally
decreasing trend, and. The three major types (1, 2, and 5) have a similar trend.
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Table 4: Average τ's by Type (j) and by Year

Year
(j) 88 89 90 91 92 93 94 95

1 262.1 224.0 364.1 149.0 129.0 87.6 80.2 41.3
2 199.2 134.1 174.5 158.1 103.4 61.6 53.9 26.5
3 - - 68.2 4.5 106.9 67.1 62.1 32.0
4 - 22.5 225.9 79.6 106.4 55.5 50.3 33.2
5 - 174.3 145.7 109.4 92.2 58.8 51.1 32.7
6 40.0 - 8.3 240.8 111.1 59.5 52.6 32.7
7 - 217.5 112.6 189.1 136.5 95.1 62.0 28.7

The inter-incident times may in general depend on both the prior incident type and the subse-
quent type. That is, the time between pairs of incidents may depend on the incident types. To
explore this, we show the average τ (i,j)’s in Table 5 where τ (i,j) is a time interval between
an incident of type i and type j. The result is somewhat difficult to interpret because the num-
bers in many cells are small, and the types are dominated by 1 (root break-in) and 2 (account
break-in). The only other type that is relatively frequent is 5 (access attempt). However, it
appears that the τ ’s do depend on incident type; if confirmed this has important implications
because it means that the interval between two incidents is correlated with incident type, par-
ticularly with the next incident type. In general, it indicates that the past history of attacks at a
site may be a predictor of future experience, and thus is important to model. The grand mean
is 84 days, which is the order of magnitude of a quarter. The row marginals give the average
time from a type, and the column marginals give the average to a type. Thus the average time
from a Type 1 incident (root break-in) to any other type is relatively long at 97 days, which is
the same as the average time to a Type 1 incident from any other type. The inter-incident
times between Type 1 incidents are also quite long. The average times between Type 1 and
Type 2 incidents is about the same (90 and 94 days). However the times between Type 2 inci-
dents is relatively short at 40.5 days. Thus for these two types, both the prior and subsequent
types affect the inter-incident times. The average time from a Type 5 incident to Type 1 is 94
days, 69 days to a Type 2 incident, and 46 days to another Type 5 incident. The diagonal ele-
ments represent times between the same types of attacks, and they would be expected to be
shorter than average. This is true for Types 2 and 5 but not for Type 1. The frequencies of
other types of incidents are much smaller than these three, and no firm conclusions can be
drawn about them. Type 7 is actually a false alarm, and it is not surprising that its marginals
are large, as well as the average time to a Type 1 incident.
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Table 5: Average τ (i,j)'s
(i) j=1 2 3 4 5 6 7 All

1 103.5 90.3 78.3 72.8 85.2 99.6 94.9 97.0
2 93.9 40.5 54.1 67.2 79.5 83.5 58.6 71.0
3 50.8 46.9 35.3 62.5 46.5 57.8 133.0 51.0
4 61.1 57.3 35.2 37.6 44.5 56.8 64.0 53.0
5 93.5 69.0 27.3 66.7 45.6 65.3 64.9 71.0
6 69.1 54.6 44.7 44.5 78.7 37.9 52.0 60.0
7 114.1 84.9 37.3 15.3 57.2 11.9 66.1 88.0
M 97.0 67.0 60.0 63.0 69.0 81.0 79.0 84.1

We also looked at the average τ  as a function of the domain type, but for the four major do-
mains (edu, com, net, and gov) there was no significant difference. Finally we looked at the
averageτ for cases where there was only one site involved, two sites involved, and more than
two sites involved. When more than two sites are involved, the time tends to be slightly
longer.

Now we turn to the incident types. These are the “marks” of the point process; that is, when-
ever an incident occurs, there is a type associated with it. Here we take “level” as represent-
ing the type of the incident. Alternatively, the MOs might also have been taken as indicating
type; and finally, the number of attackers should also be considered as another dimension for
incident type. However, the set of MOs is very large and the most common MOs are collinear
with “level.” Also, there were no direct data on the number of attackers in the CERT data
analyzed here. Therefore we took “level” to be type. The type of incident has very important
consequences for the attacked system of course, so it has to be included in the simulation
model. The frequencies of and interaction between the types are best analyzed with the con-
tingency table and the type-switch matrix respectively. The contingency table has elements
N(i,j) where N(i,j) = the number of pairs of incidents where type j occurred after type i. The
type-switch matrix gives the probability of type j occurring next, given type i has occurred.
These are shown in Tables 6a and 6b. The last row of Table 6a gives the totals, and the last
row of Table 6b gives the marginal probabilities; that is, the fraction of times each type oc-
curred.

Table 6a: Frequency of Incidents by Prior (i) and Subsequent (j) Types
(i) j=1 2 3 4 5 6 7 All

1 6407 2184 153 127 1401 592 307 11171
2 2212 1797 51 58 588 274 109 5089
3 134 53 7 11 31 23 5 264
4 109 55 11 29 53 13 11 281
5 1350 604 36 37 1024 116 115 3282
6 531 290 26 19 91 184 23 1164
7 278 95 9 9 112 14 37 554

T 11021 5078 293 290 3300 1216 607 21805
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Table 6b: Type-Switch Matrix (i)
(i) j=1 2 3 4 5 6 7

1 0.57 0.20 0.01 0.01 0.13 0.05 0.03
2 0.43 0.35 0.01 0.01 0.12 0.05 0.02
3 0.51 0.20 0.03 0.04 0.12 0.09 0.02
4 0.39 0.20 0.04 0.10 0.19 0.05 0.04
5 0.41 0.18 0.01 0.01 0.31 0.04 0.04
6 0.46 0.25 0.02 0.02 0.08 0.16 0.02
7 0.50 0.17 0.02 0.02 0.20 0.03 0.07

P(j) 0.51 0.23 0.01 0.01 0.15 0.06 0.03

There are a number of points to be made regarding these tables. As far as the frequencies are
concerned, we have already noted that Types 1 (root break-in), 2 (account break-in), and 5
(access attempt) dominate the sample. Examining the type-switch matrix, we can see that the
marginals are indeed quite different between different types. We also note that the columns
generally have the same values except for the diagonal elements, which are larger. Thus the
probability of an incident of type j appears to be independent of the previous type (i). Since
the types are ordered by severity with 1 being the most severe and 7 the least, the lower trian-
gle below the diagonal represents escalation: from less serious to more serious. But in this
sample it is somewhat confounded by the fact that the two most serious types are also the
most frequent. However, there still seems to be some evidence of a general escalation in seri-
ousness of incidents but this needs to be verified more rigorously.

Finally, we check whether the marginal probabilities vary with time. Their values by year are
given in Table 7, and we can see that they are reasonably stable over time. In particular, after
1989, the values are quite stable.

Table 7: P(j)’s by Year
Year

(j) 88 89 90 91 92 93 94 95

1 0.81 0.50 0.46 0.34 0.51 0.48 0.62 0.44
2 0.12 0.33 0.18 0.36 0.26 .027 0.13 0.31
3 0.00 0.00 0.01 0.00 0.00 0.01 0.02 0.02
4 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.03
5 0.00 0.11 0.31 0.23 0.14 0.15 0.14 0.11
6 0.05 0.00 0.00 0.02 0.06 0.05 0.06 0.06
7 0.00 0.05 0.03 0.03 0.02 0.03 0.02 0.02

This completes the exploratory data analysis needed for estimating the inputs to the simula-
tion model as far as the incidents process is concerned. As noted above, this is the informa-
tion that can be extracted from the CERT data now available. The rest of the required simula-
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tion inputs will be estimated from secondary or tertiary data and expert judgement. In the
next section, we proceed with the simulation.
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7 Simulation Results

The simulation model has been developed and reported previously [Moitra 00]. Here we run
the model with inputs estimated from the CERT data. One extension to the previous simula-
tion model is that trends are included in the incidents process. Also, other changes have been
instituted such as three incident-types (root break-in, account break-in, access attempt), and
the actual correlations between the inter-incident times and incident types, τ(i,j). The unit of
time is taken as one quarter, since the average τ is 84 days.

Our interest is to observe how well a system survives when subjected to a series of attacks.
This will obviously depend on both the severity levels of the attacks as well as the level of
defense that is built into the system. The stronger the defense system, the more likely it is to
withstand an attack; that is, to stay in its normal state, and the less likely it is to end up in a
compromised state. In other words, the transition probabilities of the system are a function of
the defense mechanism, and this functional relationship drives the expected survivability of
the system in any attack scenario. Therefore simulation was carried out for different prob-
abilities of the attack types, and different relationships between the cost of the defense
mechanism and the probabilities of the system ending in the various possible states (from
normal to nonfunctional).

Some additional notation will be needed to discuss the simulation results, and we list them
below.

a0 = initial arrival rate of incidents (per quarter),

a’ = trend in arrival rate,

π1, χ1,  π3, χ3 = parameters determining the system transition probabilities,

SURV(s) = vector of survivability ratings of the states, initially = {1, .8, .6, .4, 0}

surv = expected survivability

dmg = average damage

AVS = average of the survivability ratings of state 2, 3, and 4.

A large number of simulations can be carried out with our model to investigate a wide variety
of issues related to managing survivability, since we can observe the impact of any model
parameter on the system survivability. Another quantity of interest is the “average damage
caused per unit time.” This is computed by taking the total damage (= Σ (1-survivability) over
all episodes) and dividing by the total time elapsed during the simulation. In this paper, we
present some of the possible sensitivity analyses to illustrate what can be done. In the absence
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of data for the transition probabilities, the model described in the appendix was used to gen-
erate them, and values for survivability ratings were assumed. The results are presented in
Tables 8 to 17 where the survivabilities are given as fractions. First we investigate the impact
of varying the relative probabilities of the serious and mild incidents. The results are given in
Table 8.

Table 8: Expected Survivability/Average Damage and P(j)

a0 = 1.0, a’ = .001, π1 = .15, χ1 = .008,  π3 =  .25, χ3 = .075

cost P(1)=.55 P(1)=.65

surv dmg surv dmg
5 0.704 0.473 0.6908 0.479
10 0.7364 0.421 0.7192 0.434
25 0.7686 0.369 0.7512 0.385
50 0.7868 0.34 0.7708 0.354
75 0.8056 0.31 0.79 0.324
100 0.8224 0.283 0.8094 0.294

While the survivability increases with the cost of the defense mechanism as expected from
the relation of the transition probabilities to cost, the survivability does not appear to decrease
significantly with increases in the probability of occurrence of serious incidents. This is
somewhat surprising, and this particular result is most likely related to the method of genera-
tion of the p(r,s)’s in T. This method does not vary the p(r,s)’s very much with j. With some
other set of {p(r,s)}, we may well find greater sensitivity of survivability to the P(j)’s since
there is a nonlinear relationship between them.

Table 9 shows how survivability changes with the parameter π1, which determines p(1,1|m),
the probability of remaining normal under attack given a defense mechanism m.

Table 9: Expected Survivability/Average Damage and π1

P(1)=.55, a0 = 1.0, a’ = .001, χ1 = .008,  π3 =  .25, χ3 = .075

cost π1 =.1 π1 =.15 π1 =.2

surv dmg surv dmg surv dmg
5 0.6848 0.504 0.704 0.473 0.719 0.449
10 0.722 0.444 0.7364 0.421 0.748 0.402
25 0.7628 0.379 0.7686 0.369 0.7702 0.367
50 0.7864 0.341 0.7868 0.34 0.7868 0.34
75 0.8054 0.31 0.8056 0.31 0.8056 0.31
100 0.8224 0.283 0.8224 0.283 0.8224 0.283
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At low cost levels survivability increases slightly and damage decreases slightly as surviv-
ability ratings rise. However, both become stationary at high cost levels, indicating that sur-
vivability has most likely saturated.

Table 10 gives the survivabilities as χ1 varies. χ1 determines p(1,s|m) for s>1; that is, the
probabilities of going to compromised states, including the nonfunctional state.

Table 10: Expected Survivability/Average Damage and χ1

P(1)=.5, a0 = 1.0, a’ = .001, π1 = .15, π3 =  .25, χ3 = .075

cost χ1 =.006 χ1 =.008 χ1 =.010
surv dmg surv dmg surv dmg

5 0.703 0.475 0.704 0.473 0.7054 0.471
10 0.7352 0.423 0.7364 0.421 0.7382 0.418
25 0.764 0.377 0.7686 0.369 0.7722 0.364
50 0.7794 0.352 0.7868 0.34 0.7968 0.324
75 0.7932 0.33 0.8056 0.31 0.8186 0.289
100 0.8056 0.31 0.8224 0.283 0.8402 0.255

Here the variation of survivability with χ1 is slight at low cost values but is significantly
higher at high cost values. Overall it increases with cost and χ1 as we would expect.

Tables 11 and 12 show the effect of varying π3 and χ3 respectively.

Table 11: Expected Survivability/Average Damage and π3

P(1)=.55, a0 = 1.0, a’ = .001, π1 = .15, χ1 = .008, χ3 = .075

cost π3 =.20 π3 =.25 π3 =.3
surv dmg surv dmg surv dmg

5 0.7094 0.464  0.704 0.473 0.6992 0.481
10 0.7438 0.409 0.7364 0.421 0.7332 0.426
25 0.774 0.361 0.7686 0.369 0.7628 0.379
50 0.7944 0.328 0.7868 0.34 0.7818 0.348
75 0.8114 0.301 0.8056 0.31 0.7994 0.32

100 0.8292 0.272 0.8224 0.283 0.8172 0.291

π3 determines the levels of the transition probability p(1,1) as cost changes. Thus the higher
the value of π3, the higher the chances that the system will stay in the normal state; thus the



24 CMU/SEI-2000-TR-021

survivability will be higher. This is what we observe from Table 11, where survivability de-
creases with π3, and we also notice that the impact is relatively greater at lower costs than at
higher costs.

Table 12: Expected Survivability/Average Damage and χ3

P(1)=.55, a0 = 1.0, a’ = .001, π1 = .15, χ1 = .008,  π3 =  .25.

χ3 =.070 χ3 =.075 χ3 =.080
surv dmg surv dmg surv dmg

5 0.7094 0.464 0.704 0.473 0.6992 0.481
10 0.7438 0.409 0.7364 0.421 0.7332 0.426
25 0.774 0.361 0.7686 0.369 0.7628 0.379
50 0.7944 0.328 0.7868 0.34 0.7818 0.348
75 0.8114 0.301 0.8056 0.31 0.7994 0.32
100 0.8292 0.272 0.8224 0.283 0.8172 0.291

Table 12 shows the variations in expected survivability and average damage with χ3.

χ3 determines the levels of the transition probabilities p(1,s) for s > 1, that is, the compromise
probabilities. Thus a (slightly) higher value of χ3 leads to lower values of survivability as
should be expected. The relative impact is not insignificant, since the change in χ3 is very
small, and the impact is constant over the values of cost.

Table 13: Expected Survivability/Average Damage and AVS

P(1)=.55, a0 = 1.0, a’ = .001, π1 = .15, χ1 = .008,  π3 =  .25.

cost AVS =.60 AVS =.37 AVS =.30
surv dmg surv dmg surv dmg

5 0.704 0.473 0.5489 0.722 0.5045 0.793
10 0.7364 0.421 0.601 0.638 0.5602 0.704
25 0.7686 0.369 0.6495 0.56 0.6131 0.619
50 0.7868 0.34 0.6772 0.516 0.644 0.569
75 0.8056 0.31 0.705 0.471 0.6742 0.521
100 0.8224 0.283 0.7308 0.43 0.7024 0.476

Next we investigate the effect of an increase in the arrival rate. If the rate of arrivals of inc i-
dents is increased, this simply amounts to accelerating the time scale, and expected surviv-
ability remains the same. This is because expected survivability is measured per incident, and
increasing the number of incidents makes no difference to this measure. However, the aver-
age damage done changes because this does depend on time, and this can be seen in Table
14.
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Table 14: Average Damage and Arrival Rate a0

P(1)=.55, a’ = .001, π1 = .15, χ1 = .008,  π3 =  .25, χ3 = .075

cost a0=0.75 a0=1.00 a0=1.25
5 0.548 0.473 0.402

10 0.488 0.421 0.358
25 0.428 0.369 0.314
50 0.394 0.34 0.29
75 0.359 0.31 0.264

100 0.328 0.283 0.241

A similar situation arises when considering the impact of a possible correlation between the
arrival rates and the incident type. So far we have not assumed any such correlation, but Ta-
ble 5 suggests that it does exist. In fact, τ appears to depend on both the prior and the subse-
quent incident types. Therefore, we included that effect in our simulation and the arrival rates
were adjusted according to the data in Table 5. Again, the expected survivability does not
change, because the (less serious) incidents simply happen faster and the system responds in
the same way. However, the average damage done increases, and would have increased even
more if the more serious incidents had occurred faster (instead of the less serious ones). In
this case, the damage done saturates with higher defense levels, and does not increase. The
results are shown in Table 15.

Table 15: Average Damage and a’

P(1)=.55, a0 = 1.0, π1 = .15, χ1 = .008,  π3 =  .25, χ3 = .075

a’
cost 0.00075 0.001 0.00125

5 0.449 0.473 0.495
10 0.4 0.421 0.441
25 0.351 0.369 0.386
50 0.323 0.34 0.356
75 0.295 0.31 0.324

100 0.269 0.283 0.296

The tables above show the absolute changes in expected survivability when some parameter
is varied. To fully understand the impact of a parameter on expected survivability, we need to
examine the relative changes. These are reflected in the elasticities, which give the percent
changes in expected survivability when the parameters are varied by 100 percent. Thus these
relative changes give a more accurate measure of the impacts of the parameters and allow the
impacts to be compared. The relative changes or elasticities are given in Table 16.
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Table 16: Relative Changes in Expected Survivability with Respect to Parameters

Parameter P(1) π 1 π3 χ1 χ3 SURV(s)
Relative change in
survival

-0.123 0.002 0.104 0.036 -0.128 .317

Table 16 confirms what we noticed before with respect to the insensitivity of survivability to
P(1). Survivability appears to be most sensitive to π  3 and χ3. That is, the initial level of the
transition probabilities is most important, rather than how they change with m.

Table 17: Relative Changes in Average Damage with Respect to Parameters

Parameter a0 a’ SURV(s)
Relative change in
average damage (η)

0.556 0.179 -0.883

The relative changes or elasticities of average damage with respect to the parameters a0, a’
and SURV(s) are given in Table 17. Here we see that the signs are in the expected directions,
and average damage is quite sensitive to a0 and SURV(s).

In the above simulations, we have assumed a Poisson process for the incidents, which is a flexible
model and commonly used in point processes. However, any other distribution may be used in the
model, and the distribution of the τ’s at time intervals of one day suggests that perhaps a mixed
distribution should be tried. This distribution would be as follows.

After a τ has been generated, with some probability, say β , the next τ will
be set to 0. Otherwise (with probability 1-β) another random τ will be
generated for the time to the next incident. The parameter β reflects the
probability that the first attack spurs another attack soon afterwards (in
one day, since that is the granularity of our data).

Also, the mixed exponential may be investigated. For example, a mixture of two exponentials
may be reasonable. This could arise from there being two types of attackers (amateur and experi-
enced), each with their own rate of attacking. Then {f(t) = f(t; a1, a2, α )}, where a1 may be the
aggregate attack rate for amateurs, a2 the rate for experienced attackers, and α  the proportion of
amateurs to experienced attackers.

The above results are just a small subset of all the possible analyses that can be done with this
simulation model but they demonstrate the potential of this model and this approach.  Any inci-
dents process can be generated, and any system-response may be inserted in the model through
the transition matrix T. Thus we can investigate the survivability and the damage done for any
scenario for any set of defense mechanisms. Given the costs of these mechanisms, we can derive
a survivability/cost function as shown below, and achieve a cost-effective level of security.
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In Figure 7, we have plotted the expected survivability against cost for P(1)=.55 and P(1)=.65
with other parameter values as in Table 1. The plot shows the relationship between cost and sur-
vivability. As cost increases, survivability increases rapidly at first, and then more slowly. Such a
plot can provide a systems manager with the ability to make an informed decision about the level
of defense that is most appropriate for his or her organization since it shows the tradeoff involved
between cost and expected survivability.

Figure 7: Survivability/Cost Curves

When survivability is not critical, the organization may choose a lower point on the tradeoff
curve, but when survivability is critical, the organization may well choose a point higher up
on the curve. In the case when the “indifference curve” can be estimated, we can actually
choose an optimal or “best” point on the curve. However, even if we are not aiming for opti-
mality, we can still use the curve to find the most appropriate point in the tradeoff between
cost and survivability.

Figure 7. Surv./Cost Curves
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8 Future Research

There are many areas in which further work would be useful. They can be classified into the
following groups: further data analysis, modeling, and the value of security to business.

In the area of data analysis, it would be worthwhile to analyze more recent data to identify
current trends. More statistical testing should be done to follow up on the exploratory analy-
sis done here. In particular, standard deviations and confidence intervals need to be estimated.
The wide variation in the inter-incident times should also be analyzed. For example, there
might be a difference associated with long intervals versus short intervals. Generally, further
pattern analysis should be done to find out which kinds of incidents different sites/systems
(i.e., organizations/environments) are likely to experience. For example, do certain sites “at-
tract” certain attacks (such as abuse of trust relationships)? We can investigate such questions
by mapping patterns of incidents to sites, and also by some other methods such as cluster
analysis. The various possible interactions among the variables in the data may be explored
through techniques like data mining. Ideally we would like a model of patterns of incidents
that could be forecast, so that managers could use the information to decide on appropriate
defenses. The simulation model should also be run to conduct more sensitivity analysis and to
understand the interactions among the parameters.

Further modeling would provide a better understanding of the whole process. For example,
one might consider simulating a pattern where the “end” state s of a system influences the
time to the next attack. This is plausible if success in penetrating a system instigates another
attack sooner than otherwise. However, further modeling will require more detailed data. The
data that is needed to better model and understand survivability has been outlined in another
report [Moitra 00]. In particular, we should try alternative models for the incidents process,
get a better understanding of the transitions of systems when under attack, and develop a vi-
able measure for survivability. We need good and reliable metrics for security and survivabil-
ity of network systems.

This model should eventually be embedded into a DSS that IS managers could use to manage
the security and survivability of their ISs. For this, we need to understand how managers in
organizations view their information systems and what is valuable or critical to them. It
would be extremely useful to conduct a survey of managers in various organizations and to
model their decision-making processes. A number of methodologies in decision analysis and
operations research exist which could be utilized for such applications.
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Appendix

Details of the Simulation Model and Survivability
Measures

We present the notation again.

i] i, j = index for incident type, i, j in {J}. We consider actual, unauthorized inci-
dents only. i denotes the prior incident and j the subsequent (or current) one.

ii] P(j) = probability that an incident is of type j.

iii] τ (i,j) = inter-incident times between incidents i and j.

iv] a = arrival rate of incidents = 1/τ   .

v] r, s = index for system state, r, s in {S}.

vi] d = index for system design, d in design space {D}.

vii] m = index for defense mechanism, m in the set {M}.

viii] configuration = design x mechanism in configuration space{D x M}.

ix] T = transition probability matrix with elements {p(r,s)}, where {p(r,s)}possibly
being functions of i, j, d, m.

x] l = (victim) sites, l in {L}.

xi] h(l) = index for incidents at individual site l: h(l) = 1,2,3, ….

xii] H(l) = total number of incidents at site l.

xiii] t(h(l),l) = time of h-th incident at l

      = ∑
=

=

hk

k

k
1

)(τ , where τ (k) = t(k) – t(k-1).

xiv] n = number of simultaneous attacking sites in an incident.

xv] g(n | ν) = probability density function for n with parameter ν.

In order to forecast incidents, we model the process as a marked, stochastic point process,
where the incidents are the events that occur at random points in time, and the event type is
the mark associated with an incident [Snyder 91]. The mark is used to identify random quan-
tities associated with the point it accompanies. As shown in Figure 2, each occurrence time tk

of the kth incident in a temporal point-process has a mark jk associated with it, where jk will
have values in a specified space. The mark, or event type in our case, has to take into account
the severity of the incident and the possibility of single, or multiple and simultaneous attacks.
This is because we are modeling a process that is taking place in an unbounded environment
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[Ellison 97]. Therefore the mark space will be two-dimensional, characterized by type (se-
verity) and number-of-attackers. That is, it will be in the {J x N} space. Although this 2-D
marked point process model was developed, no data on the distribution of the number of at-
tackers per incident were available, so only a 1-D mark space with severity was used in the
simulations.

A stochastic point process can generally be represented as {x(t): t ∈ T}, that is, as a family of
random variables indexed by a parameter t that takes values in a parameter set T called the
index set of the process. In our case, t represents time, and since T is a subset of R, it is a
continuous-parameter process. For the purposes of this analysis, we limit our attention to the
probability density function of the “inter-incident times”  (τ ’s) which we denote by f(t). That
is,

f(t) = Pr{t ≤  τ  ≤  t + dt}.

When the process is Poisson, the density function is given by

f(t) = a*e-at

where a is the rate of occurrence of incidents, and the distribution function is given by

F(t) = 1 - e-at .

We should note here that the incidents recorded in the data are twice filtered: that is they are
conditional upon detection, and then, reporting. Also, the data are doubly censored data, that is,
both right and left censored. This means that the process had already started before data collec-
tion began, and the process had not finished when data collection was stopped. Censoring may
introduce biases in parameter estimates, and it is important to take note of this. In the simula-
tion we included a trend and a correlation between τ and j. This was done by having

a = (a0 – a’*t) * ρ(i,j), where ρ(i,j) represents the correlation factor which is a function of
both i and j.

Next we define the design/architecture space {D} of the system, and the defense mechanism
state space {M}. The combination of a system design and defense mechanism will be called
the configuration (or posture) space, {D x M}.

The response prediction model predicts the transition of the system to a new state after an
attack/incident has occurred, and will be a function of the incident type and the configuration,
or p(r,s) = p(r,s | j,d,m). The transition matrix T will probabilistically map r to s given j, d, m.
That is, each element of T is the probability of the system of design d and defense mechanism
m going to another (possibly compromised) state when subjected to an incident of type j. In
general, the incident type j could be a vector of any number of characteristics of the incident.
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We assume the following structure for T. Without any loss of generality, we assume that the
states are ordered by degree of compromise, that is, from s = 1 = normal (totally functioning)
to s = S = (totally) nonfunctional. Given an incident, the system can never go to a “better”
state; therefore the lower triangle below the diagonals will have structural zeros as shown
below.
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We also impose the following constraints on the elements of T, {p(r,s)}, in terms of their de-
pendence on s, j, and m.

p(r,s) ↓  s , ∀  s > r , holding j, m constant, that is, same severity level and same defense;

this implies graceful degradation: the probability of going to a much worse state is lower than
going to a slightly worse state.

p(r,s) ↑  r , ∀  s > r , holding j, m constant, that is, same severity level and same defense;

vulnerability increases with level of degradation.

Assuming that the j’s are ordered from most severe to least severe,

p(1,1) ↑  j , holding m constant, that is, same defense level;

probability of staying normal is higher if the incident is less severe.

p(1,s) ↓  j , ∀  s > 1 , holding m constant, that is, same defense level;

probability of degradation is lower if the incident is less severe.

p(r,s) ↓  m , ∀  s > r , holding j constant, that is, same severity level;

probability of degradation is lower if the defense is stronger.
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p(r,r) ↑  m , ∀  r , holding j constant, that is, same severity level;

probability of staying in the same state and not degrading is higher if the defense is stronger.

p(r,s) ↑  n, ∀  s > r , holding all else constant;

probability of degradation increases with the number of attackers.

Finally,  ∑
s

srp ),(  = 1, ∀  r.  implies that the system must end up in some state or other.

Currently, no reliable data are available on the times to transition to different states, or the
time to fully recover. The CERT data indicate that the mean time between incidents at a site
is greater than one month. Since it may be reasonably expected that recovery times will be
shorter than that on the average [Cohen 98], in these simulations we have assumed that the
system would always fully recover before the next incident occurred. So the initial state r was
always set equal to 1. However, the model includes the possibility of the system still being in
a compromised state when the next incident occurs. We can simulate these conditions given
data on system transition times.

The p(r,s)’s could be estimated from observations of the responses of actual systems to at-
tacks. A simple representation of the successive stages of compromise that a system might
undergo is given in Figure 8. This is based on the model of the three distinct phases on intru-
sion: penetration, recovery, and exploitation [Ellison 97].

Figure 8: Successive Stages of Compromise
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If we had data on the times these transitions occurred, we could estimate the p(r,s)’s. In the
absence of data, we developed a model to generate the p(1,s)’s, such that

 p(1,s) = p(s, j, cost(m); π 0 , χ 0, π 1, χ 1, π 2, χ 2).

There are two cases, s = 1 and s > 1.

p(1,1) = π 2*(1-e-π
1

(cost(m) - π
0

) ) for s =1, and

p(1,s) = χ 2 *(e- χ
1

(cost(m) - χ
0

) ) for s > 1.

These are simple but commonly used functional forms that are concave and convex respec-
tively, and so reflect decreasing returns with cost. π 1 and χ 1 are the critical shape coeffi-

cients that determine the relationship of the transition probabilities with the cost of the de-
fense mechanisms cost(m). This in turn determines how the survivability varies with cost.

π 2  =  π 2 (j) which is modeled as a linear function = π 3*j , and

χ 2  = χ 2(j,s) = χ 3*((6-s) – (.4*j)), again linear in s and j.

The scale coefficients π 3 and χ 3 as well as the constants were calibrated to give reasonable

values of the transition probabilities subject to all the restrictions given above. The location
coefficients π 0 and χ 0 were set to 0, and π 1, χ 1, π 3, χ 3 were varied during the simula-

tion runs.

We measure survivability as

SURV = (performance level at new state s) / (normal performance level)

The main issue is the measurement of performance levels. If a given functionality has sur-
vived intact, the value of its performance level could be set to 1. If the system is completely
nonfunctional with respect to that service, then its value could be 0. Intermediate states would
have values in between. Let ϕ (s,k) be degree to which the compromised function/service k

has survived in state s, and let w(k) be the importance level of function/service. Then one
possible measure of survivability might be in the form of a weighted sum:

SURV(s) = ∑
k

kskw ),(*)( ϕ

This assumes that a complete set of states {S} of the system has been defined, and that a
systems analyst or IS manager can assess ϕ (s,k) for each s and k. In view of the data re-

quirements, it may be necessary to aggregate the state space {S}, and the different function-
alities and services {K}. The states in {S} may be {normal, under attack, compromised, re-
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covered, nonfunctional}, for example, or {normal, minor compromise, significant compro-
mise, very serious compromise, nonfunctional}. Then ϕ (s,k) could be the average level to

which function or service k survives in each of those states s. This is a flexible approach, and
can be applied in many situations. For example, there might be a particular function that an
organization values very highly (such as protecting the confidentiality of a database in a fi-
nancial services company). Then the weight on this would be very high and also the surviv-
ability of this function could be rated low even for a slight compromise. Then any defense
mechanism that protected this function would give a high expected survivability, and thus a
high benefit, while a defense that did not protect this function would give very low value for
expected survivability, and thus very low benefits.

This is a standard multicriteria approach to assessing survivability. While this approach has
been used widely, there can be difficulties and biases associated with such a measure. These
can be mostly overcome through careful analysis. The weights w(k) are such that

0 ≤  w(k) ≤  1, and ∑
k

[w(k)] = 1;

The ϕ (s,k)’s may also be normalized measures 0 ≤ ϕ (s,k)≤  1. Then SURV(s) will be be-

tween 0 and 1, where 0 means total failure and 1 means completely normal.

Additional Data Analysis
This paper has presented analyses of incidents data collected by CERT. The body of the paper
has the analyses relevant to estimating the parameters of the simulation model. Some addi-
tional data analysis was done and it is reported here since it provides a more complete under-
standing of the CERT data.

A. Summary Statistics
Starting dates = [1988 – 1995];

Number of sites per incident = [1 – 1699];

Modes of Operation [22 types reported more than a hundred times];

Top 5 MOs = [root break-in (1188), login attempt (1131), account break-in (865),

password file (598), and password cracking (450)];

Number of unique sites in the data set = 6684;

Number of sites with at least 3 incidents = 1818;
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Maximum value of τ = 2056 days;

Total number of inter-event times in sample of sites with at least 3 incidents = 21805.

Table 18 gives the frequency distribution of the number of incidents that individual sites ex-
perienced. Thus 3891 sites had experienced only one incident, 975 sites had experienced two
incidents, and so on.

Table 18: Frequency Distribution of Number of Incidents per Site

H        f(H)

1 3891

2   975

3   481

4   280

5   180

6   126

7     94

8     72

9     56

10     43

The maximum number of incidents at any one site is 1675. The numbers of incidents experi-
enced by the next top nine sites are [153, 155, 160, 167, 177, 206, 222, 321, 458].

B. Frequency Distribution of Number of Incidents per Day
In the paper the focus was on the inter-incident times. However, the count data is also im-
portant for understanding stochastic point processes. Count data refers to the number of oc-
currences within each unit of time. Here the unit of time is one day, so we would be inter-
ested in how many incidents occur each day. These counts will have a frequency distribution,
and this is given in Table 19. We can see that there are 1298 days in which nothing occurred.
There were 8 days when only one incident occurred, 342 days when two incidents occurred.
These are for all sites in the sample. We see that there is high volatility in the data. However,
if we smooth the data out, and consider the number of days when one or two incidents oc-
curred, the number of days when three or four incidents occurred, and so on, the distribution
looks much smoother. This is shown in Figure 9 and appears approximately Poisson. The
great disparity between the frequency of one incident per day and two incidents per day war-
rants further study.
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Table 19: Frequency Distribution of Number of Incidents per Day

Number of      Frequency

Incidents per day

--------------------------------------------

0 1298

1       8

2   342

3     86

4   197

5     95

6   111

7     78

8     68

9     49

Figure 9: Number of Incidents per Day

C. Average τ Disaggregated
Next we present Average values of τ disaggregated by domain and the number of sites in-
volved. The major domains were {com, net, gov, edu} and the frequencies of occurrences of
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Table 20: Average τ by Domain
Domain Frequency Average τ
edu 10158 64
com 2931 101
net 916 76
gov 881 79

Table 21: Average τ by Number of Sites
No. of sites Frequency Average τ
1 53 63.3
2 4552 63.7

3 or more 17205 89.5

The average time between incidents is longest for “com” and shortest for “edu.” It is also
relatively long for incident-pairs where the first incident involved three or more sites.

Finally, we present another view of the trends in average τ. Table 22 shows the trend in the
τ’s when they are disaggregated by the time of the next incident. This removes the bias in the
τ’s when they are disaggregated by the time of the previous incident. In that case, we had
noted that there might be a bias in the trend because shorter τ’s would be disproportionately
frequent in the later years. Now we see that there probably was a bias, and now the τ’s appear
stationary; that is, constant over time. However, this procedure also has its own bias, and we
tentatively conclude that there is a small trend towards shorter but it is not as strong as it ap-
pears to be from Table 3.

Table 22: Average τ by Year (Year 1 = 1988)

Year Freq. Ave. τ

  1         13     11.1

  2      147     74.1

  3      750     73.7

  4   1337     99.7

  5   2431     90.4

  6   3647     97.2

  7   7165     77.4

  8   6314     80.0
  9            1   117.0
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