

TECHNICAL REPORT
CMU/SEI-2000-TR-008

ESC-TR-2000-007

 Volume II:
Technical Concepts
of Component-Based
Software Engineering,
2nd Edition

Felix Bachmann
Len Bass
Charles Buhman
Santiago Comella-Dorda
Fred Long
John Robert
Robert Seacord
Kurt Wallnau (Please send questions and comments
regarding this report to Kurt Wallnau at kcw@sei.cmu.edu.)

May 2000

Pittsburgh, PA 15213-3890

Volume II:
Technical Concepts
of Component-Based
Software Engineering

CMU/SEI-2000-TR-008
ESC-TR-2000-007

Felix Bachmann
Len Bass
Charles Buhman
Santiago Comella-Dorda
Fred Long
John Robert
Robert Seacord
Kurt Wallnau (Please send questions and comments
regarding this report to Kurt Wallnau at kcw@sei.cmu.edu.)

May 2000

Internal Research and Development

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col., USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2000 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract vii

1 Nothing New Under the Sun? 1

2 Software Component Technology 3
Summary of Key Points 5

3 Vision Statement 7
Summary of Key Points 8

4 Components 9
Summary of Key Points 10

5 Interfaces 11
5.1 Interface Abstraction and Application

Programming Interfaces 11
5.2 Extending APIs to Extra-Functional

Properties 12
5.2.1 Specifying Behavior 12
5.2.2 Specifying Synchronization 13
5.2.3 Specifying Quality of Service 13

5.3 Credentials 14
5.4 Components and Multiple Interfaces 15
Summary of Key Points 16

6 Contracts 17
6.1 Contracts and Reciprocal Obligations 18
6.2 Two Senses of Contract 20
Summary of Key Points 21

7 Component Models and Frameworks 23
7.1 What are Component Models? 23
7.2 Component Framework 25
7.3 Custom Frameworks and Programmable

Middleware 26
Summary of Key Points 28

CMU/SEI-2000-TR-008 i

8 Composition 29
8.1 Compositional Forms 29
8.2 Binding Time of Composition 32
Summary of Key Points 33

9 Certification 35
9.1 Certification in Component-Based Systems 35
9.2 Certification, Prediction, and Compositional

Reasoning 37
9.3 Compositional Reasoning and Software

Architecture 38
9.4 Certifying Components and Component

Frameworks 39
9.5 Process Certification 40
Summary of Key Points 41

10 Conclusions 43

References 45

ii CMU/SEI-2000-TR-008

List of Figures

Figure 1: The Component-Based Design Pattern 3

Figure 2: Contractually Specified Interface
(Fragment) 18

Figure 3: Extended Contract with More Explicit
Patterns of Interaction 20

Figure 4: Subjects for Certification in
Component-Based Systems 36

CMU/SEI-2000-TR-008 iii

iv CMU/SEI-2000-TR-008

List of Tables

Table 1: Compositional Forms 30

Table 2: Compositional Forms in Illustrative
Component Models 31

CMU/SEI-2000-TR-008 v

vi CMU/SEI-2000-TR-008

Abstract

The Software Engineering Institute (SEI) is undertaking a feasibility study of “component-
based software engineering” (CBSE). The objective of this study is to determine whether
CBSE has the potential to advance the state of software engineering practice and, if so,
whether the SEI can contribute to this advancement. This report is the second part of a three-
part report on the study. Volume I contains a market assessment for CBSE. Volume III out-
lines a proposed course of action for the SEI. Volume II, this report, establishes the technical
foundation for SEI work in CBSE. The paper asserts that the key technical challenge facing
CBSE is to ensure that the properties of a system of components can be predicted from the
properties of the components themselves. The key technical concepts of CBSE that are
needed to support this vision are described: component, interface, contract, component
model, component framework, composition, and certification.

CMU/SEI-2000-TR-008 vii

viii CMU/SEI-2000-TR-008

1 Nothing New Under the Sun?

The whole comprises its parts, and the parts compose the whole. To compose, from the Latin
com- “together” and ponere1 “to put.” The parts that we compose are, etymologically speak-
ing, components. Why this pedagogy? Because, by definition, all software systems comprise
components. These components result from problem decomposition, a standard problem-
solving technique. In the software world, different conceptions about how systems should be
organized result in different kinds of components. Thus, two systems may comprise compo-
nents, but the components may have nothing more in common than the name “component.”
The phrase component-based system has about as much inherent meaning as “part-based
whole.”

This is not to suggest that software component technology has not emerged in recent years as
a significant factor in how systems are built. Indeed, as indicated in a companion volume to
this report, “Market Assessment of Component-Based Software Engineering,” software com-
ponent technology is thriving and most analysts predict continued growth over the next 5-10
years. Unfortunately, these predictions are tainted by a lack of agreement among analysts
about what software components are, and how they are used to design, develop and field new
systems. This lack of agreement among analysts extends also to researchers, technology pro-
ducers, and consumers. But this diversity is to be expected in a new technology, and we
should be careful not exaggerate the extent of this diversity: although there are differences
they are often quite subtle. By and large, there is general agreement on the broad outlines of
what constitutes software component technology, and, by extension, component-based sys-
tems.

It is the task of this report to sharpen these broad outlines into a more coherent and detailed
picture of software component technology by exposing its constituent components: technical
concepts. Our objective is not to develop ironclad definitions of these concepts (a futile ex-
ercise), but rather to highlight what is most significant. To know what is most significant,
however, requires an understanding of how software component technology is used or, more
to the point, how this technology should be used in the service of an overall engineering dis-
cipline based in software components. Not surprisingly, we call this engineering discipline
component-based software engineering (CBSE). Thus, it is also the task of this report to ar-
ticulate a vision for CBSE that we can use to orient the discussion of technical concepts.

In Section 2 we begin with a reference model of software component technology that identi-
fies and relates most, but not all, of the technical concepts underlying software component

1 The American Heritage Dictionary, 1985.

CMU/SEI-2000-TR-008 1

technology. This, we believe, will give the reader the gestalt of software component technol-
ogy that will serve as a touchstone for the more detailed discussions that follow. We then pre-
sent in Section 3 a vision statement for CBSE that provides a context in which the technical
concepts can be elaborated. Sections 4 through 9 examine the technical concepts of software
component technology that support the engineering vision: components, interfaces, contracts,
component models and frameworks, composition, and certification. While none of these con-
cepts is entirely new, their relation to each other and to other technical concepts such as soft-
ware architecture marks this technology as something new. Finally, in Section 10 we summa-
rize the key points and build a bridge to Volume III.

2 CMU/SEI-2000-TR-008

2 Software Component Technology

Component-based systems result from adopting a component-based design strategy, and
software component technology includes the products and concepts that support this design
strategy. By design strategy we mean something very close to architectural style—a high-
level design pattern described by the types of components in a system and their patterns of
interaction [Bass 98]. Software component technology reflects this design pattern, which is
depicted graphically in Figure 1. This reflection is due to the fact that software component
technology does not exist only in development tools but also becomes part of the deployed
application or system. This pattern is found in commercial software component technologies
such as Sun Microsystems’ Enterprise JavaBeans™ and Microsoft’s COM+, as well as in
research prototypes such as the SEI WaterBeans [Plakosh 99] and many others. A high-level
understanding of this design pattern is instrumental to later, more detailed discussions.

 Component
type-specific
interface Component

implementation

 Implements interface
and satisfies contract

 Independent
deployment

 Component
Model

 Component
types and
contracts

 Component Framework

 Coordination services
(transactions, persistence, …)

Figure 1: The Component-Based Design Pattern

A component () is a software implementation that can be executed on a physical or logical
device. A component implements one or more interfaces that are imposed upon it ().This
reflects that the component satisfies certain obligations, which we will later describe as a con-
tract (). These contractual obligations ensure that independently developed components
obey certain rules so that components interact (or can not interact) in predictable ways, and
can be deployed into standard build-time and run-time environments (). A component-
based system is based upon a small number of distinct component types, each of which plays

CMU/SEI-2000-TR-008 3

a specialized role in a system () and is described by an interface (). A component model
() is the set of component types, their interfaces, and, additionally, a specification of the
allowable patterns of interaction among component types. A component framework () pro-
vides a variety of runtime services () to support and enforce the component model. In
many respects component frameworks are like special-purpose operating systems, although
they operate at much higher levels of abstraction.

Figure 1 is a reference model for component-based concepts. But, as with all reference mod-
els, there is a danger of reading too much into the picture. For example, Weck equates com-
ponent model and frameworks, and suggests that the framework may or may not include ser-
vices [Weck 96]. Microsoft’s COM+, on the other hand, embeds the component framework
into the operating system itself obviating the need for a separate entity called “component
framework” [Box 98]. Indeed, it is difficult to find categorical distinctions between compo-
nent frameworks and operating systems, as both provide coordination mechanisms that en-
force a particular model of component interactions. Nevertheless, we assert there are qualita-
tive distinctions; for example, component frameworks will support a more restricted range of
coordination schemes than a general-purpose operating system.

Figure 1 depicts the design pattern, but what is it that motivates this pattern in the first place?
The following appear to be the most significant factors:

• Independent extensions. One problem that plagues legacy software is lack of flexibil-
ity.2 Components are units of extension, and a component model prescribes exactly how
extensions are made. In some cases the framework itself may constitute the running ap-
plication into which extensions (components) are deployed. The component model and
framework ensure that extensions do not have unexpected interactions, thus extensions
(components) may be independently developed and deployed.

• Component markets. Component models prescribe the necessary standards to ensure
that independently developed components can be deployed into a common environment,
and will not experience unanticipated interactions such as resource contention. The inte-
gration of support services in a framework also simplifies the construction of compo-
nents, and provides a platform upon which families of components can be designed for
particular application niches. The Theory Center case study discussed in the companion
Volume I Market Assessment illustrates a component-based product line.

• Reduced time-to-market. The availability of components of the sort just described also
promises to drastically reduce the time it takes to design, develop and field systems. De-
sign time is drastically reduced because key architectural decisions have been made and
are embodied in the component model and framework. Component families such as
those found in the Theory Center obviously contribute to reduced time to market. Even if
such component families are not available in an application domain the uniform compo-
nent abstractions will reduce development and maintenance costs overall.

2 One definition of “legacy” precisely describes it as a system which is no longer sufficiently flexible

to be adapted in a cost-effective way.

4 CMU/SEI-2000-TR-008

• Improved predictability. Component models and frameworks can be designed to sup-
port those quality attributes that are most important in particular application areas. Com-
ponent models express design rules that are uniformly enforced over all components de-
ployed in a component-based system. This uniformity means that various global
properties can be “designed into” the component model so that properties such as scal-
ability, security and so forth can be predicted for the system as a whole. For example,
EJB™ is touted as promising scalable, secure, and distributed transactions by virtue of its
component model and framework services.

It might be argued that there are other benefits that accrue from a component-based approach
to systems (as that approach is discussed here). However, the benefits described here are suf-
ficient to motivate the following discussion. More details on market perceptions concerning
the benefits of component-based software can be found in Volume I of this report.

Summary of Key Points
Software component technology supports building a particular style that includes compo-
nents, component models, and component frameworks. The component model imposes de-
sign constraints on component developers, and the component framework enforces these con-
straints in addition to providing useful services.

CMU/SEI-2000-TR-008 5

6 CMU/SEI-2000-TR-008

3 Vision Statement

As one modern adage has it, “point of view is worth twenty IQ points.”3 Having a point of
view means having a vision of how things are, so that what is important can be sorted from
what is unimportant, and so that the tendency of things can be understood and hence pre-
dicted. It is for this reason that we express a vision statement for CBSE. Through it we hope
to obtain all of these benefits (IQ, perhaps, excluded).

We must decide between a broad or narrow vision. A broad vision will include things such as
organizational models, business models, life-cycle models and processes, engineering roles,
skills, enabling technologies, and so forth. A narrow vision will articulate some aspect of
CBSE that is a lynchpin for a broader vision. The virtue of a broad vision is its inclusiveness,
while its weakness can be lack of focus; a narrow vision of course has complementary
strengths and weaknesses.

We have elected to pursue a narrow vision of CBSE. The vision we describe is focused on
the most fundamental aspect of CBSE–predictable composition–without which CBSE lacks
meaning independent from already established thrusts in software engineering practice, for
example software architecture or use of commercial off-the-shelf (COTS) software. We do
not claim that this vision is novel or unique to the SEI. We do claim, however, that it ex-
presses the nub of what engineering means in any meaningful CBSE practice.

Component-based software engineering is concerned with the
rapid assembly of systems from components where
• components and frameworks have certified properties; and

• these certified properties provide the basis for predicting
the properties of systems built from components

The above statement is minimal but aggressive. The gist of the vision is expressed in the
three underlined stipulations, taken out of order for expository reasons:

• Predicting the property of a solution from its constituent parts is fundamental to all ma-
ture engineering disciplines. The desire to achieve this result for software systems has
motivated much research in software engineering science, for example work in so-called
“formal methods” and software architecture. This stipulation can be viewed as either the

CMU/SEI-2000-TR-008 7

3 Attributed to Adele Goldberg.

“Holy Grail” or sine qua non to a software engineering discipline based on components.
These views are not, incidentally, mutually exclusive, since there is a limit on the scope
and accuracy of system predictions in even the most mature engineering disciplines.

• It is highly improbable that an engineer could predict the property of a system without
having the benefit of knowing the properties of the parts that comprise the system. Certi-
fication of component and framework properties is important because it implies that en-
gineers will be working with software products that are (or have) “known quantities.” It
also implies (but possibly does not mandate) an authoritative industrial approach to ob-
taining trust in the properties of the fundamental building blocks of software systems.

• Rapid assembly is important because, as noted in the Market Assessment, reduced time
to market is a primary motivation for adopting software component technology. It will
little avail us to find a way of satisfying the previous two stipulations if doing so requires
substantially more development time than is already the case. Indeed, it can be argued
that prediction and certification is important precisely because they support the ultimate
objective of reducing the time it takes to design and build software systems.

In the interest of concision many nuances have been omitted from the vision statement. For
example, predicting system properties requires that the properties of the interactions among
components and between components and framework must also be known in addition to the
properties of components and frameworks. There is also a strong connection between the
vision statement and commercial markets in components, frameworks, and certification. The
commercial technology market is driving advances in software component technology, and a
failure to accommodate these market realities in CBSE would be a decisive error.

Summary of Key Points
A vision of an ideal CBSE practice is essential if we are to understand software component
technology and the ways in which this technology supports or hinders sound software engi-
neering practice. The SEI vision for CBSE emphasizes rapid assembly of certified compo-
nents and frameworks into systems whose properties can be predicted beforehand.

8 CMU/SEI-2000-TR-008

4 Components

There is no shortage of definitions of component in the literature. This is not surprising, as
different understandings of problems to be solved and approaches to solving these problems
invariably lead to different understandings of the constituent parts (components) of solutions
to problems. Advocates of software reuse equate components to anything that can be reused;
practitioners using COTS software equate components to COTS products; software method-
ologists equate components with units of project and configuration management; and soft-
ware architects equate components with design abstractions. There are other analogous equa-
tions throughout the literature.

Even within the self-described component-based software engineering community there is
considerable variation in definitions of component, although these variations are usually quite
subtle. The SEI definition is consistent with the overall thrust of these definitions, notably
Szyperski's [Szyperski 98]. But the SEI approach to components strongly reflects an argu-
ment made by Wang that software components merge two distinct perspectives: component
as implementation and component as architectural abstraction [Wang 99]. We will temporar-
ily denote this union as an architectural component; we will later dispense with the adjective
architectural as being implied by the definition.

The concept of component as implementation is a familiar one found in the marketplace, and
as mentioned above is most often used to refer to COTS products. But COTS products may
implement functionality (what a component does) and coordination (how a component inter-
acts with the external world) in a way that is unique to the product. In contrast, architectural
components are required to implement one or more interfaces that prescribe how components
may interact or other architectural constraints. In Section 2 we stated that these interfaces are
constituent parts of a component model. It is compliance with a component model that
makes a component architectural. This leads to the following definition of software compo-
nent.

There are tw
First, we en

CMU/SEI-20
A Component is:
• an opaque implementation of functionality

• subject to third-party composition

• conformant with a component model
o motivations for the criterion that a component is an opaque implementation.
vision a commercial market in software components. Notwithstanding the suc-

00-TR-008 9

cess of Linux and “open source” software, the predominant and most successful business
model for software components has been based upon software as intellectual capital that must
be protected from disclosure. This is likely to remain true for the foreseeable future, and a
technical agenda for CBSE must assume therefore that components will remain “black
boxes” to consumers. Second, as is already a well-established precept in computer science,
clients of software components should not come to rely upon implementation details that are
likely to change. In computer science this has led to programming support for abstraction
and information hiding; opaqueness serves the same purpose for components.

The motivation for third-party composition is straightforward: the use of components should
not depend upon tools or knowledge of the component that is in the possession of only the
component provider. This criterion implies that a component-based system can comprise
components from multiple, independent sources, and that a system can be assembled by a
third party system integrator who is not also a component supplier. This criterion should hold
true even if none of the components used in a system come from external suppliers.

The last criterion, that a component is conformant with a component model, is what differen-
tiates components from conventional COTS software products. Component models prescribe
how components interact with each other, and therefore express global, or architectural de-
sign constraints. Conformance to component models transforms software implementations
into architectural implementations. In contrast to COTS-based systems, which result in a
hodge-podge integration of product-specific interaction schemes, component-based systems
are based in uniform, standard coordination schemes.

As with the CBSE Vision, all three criteria reflect the background forces of a commercial
market in software component technology.

Summary of Key Points
A software component merges two distinct perspectives: component as an implementation
and component as an architectural abstraction; components are therefore architectural imple-
mentations. Viewed as implementations, components can be deployed, and assembled into
larger (sub)systems. Viewed as architectural abstractions, components express design rules
that impose a standard coordination model on all components. These design rules take the
form of a component model, or a set of standards and conventions to which components must
conform.

10 CMU/SEI-2000-TR-008

5 Interfaces

Our ability to integrate components into assemblies, to reason about these assemblies, and to
develop a market of components depends fundamentally on the notion of component inter-
face. The concept of interface is basic and familiar. But familiarity sometimes breeds con-
tempt, and the concept of interface is more complex than is often appreciated. Moreover, the
criticality of interfaces to CBSE exposes limitations in conventional approaches to interface
specification.

5.1 Interface Abstraction and Application
Programming Interfaces

Interface abstraction provides a mechanism to control the dependencies that arise between
modules4 in a program or system. An application programming interface (API) is a specifica-
tion, in a programming language, of those properties of a module that clients of that module
can depend upon. Conversely, clients should not depend upon properties that are not speci-
fied by the API. All modern programming languages support some form of interface abstrac-
tion, e.g., Smalltalk-80, C++, Modula-3, Ada-98, Java and ML. Some language-neutral inter-
face specification languages have been developed such as the Object Management Group's
(OMG) Interface Definition Language (IDL).

Design and implementation decisions that are unlikely to change are specified in the API,
while decisions that are likely to change are “hidden” from clients. The theory is that infor-
mation hiding makes modules substitutable (for example, with new versions of a component),
and hence makes systems easier to change, at least insofar as module substitution is con-
cerned. This turns out to be a weak theory, however, as it depends upon API's being silent
about properties that clients should not depend upon. But the API can only be silent about
properties about which it can speak, and programming languages are only equipped to speak
about a narrow range of properties. All other properties can “leak” through the interface ab-
straction.

Conventional APIs—that is, interface specifications written in programming languages such
as those cited above—can conveniently express what we will refer to as functional properties.
Functional properties include the services a module provides and the signature of these ser-
vices—the types and order of arguments to the service and the manner in which results are
returned from the service. Conventional APIs are not so well equipped to express what we

4 We will use the term module to refer to software implementations that have interfaces; we reserve the

use of the term component to things that satisfy the SEI definition of that term.

CMU/SEI-2000-TR-008 11

refer to as extra-functional properties. These properties include things like performance, ac-
curacy, availability, latency, security, and so forth. These are often referred to as quality at-
tributes, or, when associated with a particular service, quality of service. Because APIs can
not describe these properties, they can not hide them. Indeed, modules may come to depend
upon any of these properties, thus reducing the probability that one module can be substituted
for another.

Note that just because an extra-functional property is not expressed in an API does not a pri-
ori mean that this property will be the source of a dependency—it will only become a de-
pendency if a client relies upon this property. This is cold comfort, however, since many
more such dependencies arise than is usually recognized by programmers and designers.

5.2 Extending APIs to Extra-Functional Properties
Attempts have been made to extend APIs to make them more expressive of extra-functional
properties. These extensions are motivated more by the desire to ensure that interface speci-
fications are sufficiently complete to ensure correct integration than by the desire to extend
the scope of information hiding to additional properties. Both ends are served by these ex-
tensions, however.

For the following discussion it will be useful to differentiate the various kinds of extra-
functional properties that have been the subject of attempts to extend APIs. Beugnard et. al.
define four kinds of property: syntactic, behavioral, synchronization, and quality of service
[Beugnard 99]. Although no classification scheme is perfect, this one will do for our pur-
poses. Syntactic properties correspond to functional properties as we have just described
them. The other properties are extra-functional, and the means of expressing these are now
discussed. Many of the topics discussed below were explored in depth at a workshop on the
Foundations of Component-Based Systems held in Zurich, Switzerland in September 1997
[Leavens 97].

5.2.1 Specifying Behavior
Beugnard et al. suggest that behavioral specifications define the outcome of operations
[Beugnard 99]. Programming languages such as Eiffel [Meyer 92b] and SPARK [Barnes 97]
allow for behavioral specifications to be written into the program code using pre- and post-
conditions and other forms of assertions. However, this technique is not available in the
more commonly used languages. There have been at least five recent attempts to extend the
Java programming language in this way: iContract [Kramer 98], JML (Java Modeling Lan-
guage) [Leavens 99], Jass (Java with assertions) [Fischer 99], Biscotti [Della 99], and
JINSLA (Java INterface Specification LAnguage) [Mikhajlova 99]. This diversity illustrates
the fact that such approaches are still not mainstream and that the industry has not yet picked
a single winner in this area.

12 CMU/SEI-2000-TR-008

Formal methods such as VDM, Z or Larch may also be used to specify the behavior of soft-
ware components [Goldsack 97, Johnson 97, Ciancarani 97]. These methods are becoming
more widely used but they are still not regarded as mainstream. These well-established for-
mal methods were introduced before the advent of object-oriented programming. However,
they can still be used in the specification of object-oriented systems, even though they, them-
selves, do not directly support object orientation. More recently, object-oriented extensions
of these traditional methods have been developed; e.g., OOZE [Alencar 92], VDM++ [Dürr
94], and Object-Z [Duke 95]. Thus, there are signs that these “formal” methods are begin-
ning to be applied to the specification of software components.

5.2.2 Specifying Synchronization
Although the above techniques allow for the behavioral specification of components, they
deal only with sequential aspects. This will prove insufficient, as systems are increasingly
distributed and concurrent.

Specifying synchronization of components is more of a challenge and is even less well un-
derstood than the methods mentioned above. The Object Calculus [Lano 97] has been pro-
posed to meet this need. Other approaches to solving this problem involve the use of Hoare’s
Communicating Sequential Processes (CSP) [Allen 97] or Milner’s pi-calculus [Canal 97,
Henderson 97, Lumpe 97]. This latter approach has led to the development of a composition
language called Piccola [Acher 99] that does seem to be particularly relevant to the problem
of component composition. Along similar lines, an architectural style description language
(ASDL) for giving syntactic and semantic information about the components of a software
system, and the relationships between those components, using a combination of Z and CSP,
has been proposed by Rice and Seidman [Rice 99].

5.2.3 Specifying Quality of Service
According to Beugnard et. al., quality of service includes attributes such as maximum re-
sponse delay, average response, and precision. We might generalize this a bit to include qual-
ity attributes. Quality attributes include quality of service as well as global attributes of a
component such as its portability, adaptability and so forth.

The specification of quality attributes is, perhaps, even more of a research issue and less
widely undertaken than the specification of the behavior or synchronization. One notation
that can be applied to this problem is called NoFun [Franch 98]. This notation allows the
definition of non-functional attributes of software. Among the most widely accepted such
attributes are: time and space efficiency, reusability, maintainability, reliability, and usability.
Having defined these attributes for a piece of software, NoFun then allows the non-functional
behavior of a component to be defined with respect to the attributes.

Although a formal notation for quality attributes is still a matter of speculation, Szyperski
cites the example of Swiss banks specifying the required service level of a component sub-

CMU/SEI-2000-TR-008 13

contracted out to a third party [Szyperski 98b]. This covers guarantees of availability, mean
time between failures, mean time to repair, throughput, capacity, latency, data safety for per-
sistent state, etc. Finally, in the field of performance specification, it may be possible to spec-
ify the complexity of a component. The Apple/SANE™ libraries specified the computational
complexity of various library functions.

5.3 Credentials
The bewildering variety of attempts to increase the accuracy and/or scope of interface speci-
fications suggests that no consensus has yet emerged on how to describe the properties of
modules (or components). With increased scope and accuracy comes (it seems) increased
formality, which in turn leads to greater complexity and the need for still more specialized
skills. A very different position was taken by Mary Shaw, who argued for credentials as a
form of interface specification [Shaw 96]. Informally, a credential is a <name, value, confi-
dence> triple, where name refers to the name of the property, value refers to the way this
property is manifested by a particular component, and confidence refers to different degrees
of certainty attached to the name/value pair. Shaw's argument was that interface specifica-
tions for “architectural components” (sic) (by which she means “large”) are inherently in-
complete, given the limitations of current specification formalisms, the complexity architec-
tural components, and the variety of different ways that a component will be used.

Shaw envisions a kind of lingua franca of credentials, with standard properties and well-
defined measurement scales for these properties. Take the illustration below. A simple func-
tional property of a module might be that it
provides a particular service. This becomes a
fact that might be known with great accuracy,
for example <service, sort, demonstrated>
states that the module has a service called
“sort” and that this service has been demon-
strated in a sample program. However, describ-
ing properties can become a complicated mat-
ter. In particular, properties are not necessarily
atomic but are sometimes aggregate. For ex-
ample, a property of the service might be its performance under a particular security level, or
its accuracy under a particular performance level. For N extra-functional properties of a ser-
vice there are as many as 2N aggregations of these properties. Even though only a small sub-
set of these may have independent meaning, it will be difficult to itemize these aggregations
to say nothing of naming them. Note, however, that Shaw argued that such completeness was
impractical if not impossible.

accuracysecurity

performance robustness

service

Thus, although credentials cannot be a complete answer, the idea is useful for at least two
reasons. First, the distinction between truth and knowledge may be crucial in component-
based systems. The distinction is certainly important to the issue of component certification
since there will likely be a cost versus confidence tradeoff made in certifying properties that,

14 CMU/SEI-2000-TR-008

for the present at least, resist formal specification or verification techniques. Second, the
open-ended nature of credentials nicely mirrors a much earlier argument made by Parnas that
a module's interface is, essentially, the set of assumptions that can be made about that module
[Parnas 71]. The views of Shaw and Parnas take us away from the narrow perspective of in-
terface as formal specification, and suggest the need for a more flexible way of describing
component interfaces.

5.4 Components and Multiple Interfaces
Interestingly, Shaw's credentials blur the distinction between a module's implementation and
its interface. This blurring runs counter to developments in software component technology
where there is a clear distinction between (and separation of) interface and implementation.
The separation we refer to is much stronger than that suggested by languages that support
separate compilation of interfaces and implementations, for example, C++ header files or Ada
package specifications. In languages and systems that support software components an inter-
face may be implemented by many distinct components and a component many implement
many distinct interfaces.

One concrete realization of this idea is found in Microsoft's Component Object Model
(COM). In COM, interface specifications are assigned a globally unique identifier (GUID) at
the time they are created; each revision of that interface is assigned a new GUID. Compo-
nents are binary implementations (COM is a binary standard) that are bound to the interfaces
they implement via these interface GUIDs. Similarly, clients are linked to components via
interface GUIDs. Thus there is a clean separation of interface and component, with clients
and component alike bound directly to interfaces and only indirectly to each other. The Java
programming language also distinguishes interface specification from class specification by
introducing an interface type. In both COM and Java the idea is that clients depend upon in-
terfaces and never upon implementations, and that components can implement any arbitrary
number of interfaces.

But as we have seen from the discussion above, a complete separation is difficult or impossi-
ble to achieve in practice: a module implementation will have properties in addition to those
specified on an abstract interface. Invariably, component implementations introduce new
properties that might “bleed through” the inter-
face. For example, assuming that an interface
specification language could express perform-
ance properties (neither Java nor Microsoft
IDL, the language used to describe COM inter-
faces, can do so), an interface may stipulate that
a particular sorting operation must exhibit com-
plexity no worse than M•log(N). Even if a
component were compliant with this property

Interface Y

Interface X

implements...
property bleed...

Component
C

CMU/SEI-2000-TR-008 15

(and we would need to be precise about what this means), it would nonetheless bind a par-
ticular value to M. This binding would, in effect, change the performance property of the
interface, since the client could conceivably come to depend upon this particular binding.

There are more formal ways of expressing interface bleed, but the point is that it is crucial to
distinguish between abstract interfaces (those that are described independent of any imple-
mentation) and bound interfaces (those that are associated with an implementation). This dis-
tinction is an essential one for certification, composition and system analysis.

Summary of Key Points
Interfaces describe those properties of a component that might lead to inter-component de-
pendencies. However, the state of the art of interface specification is still quite limited in its
ability to describe the properties of components; hence unexpected dependencies may arise
(“property bleed”). This is especially true where quality of service properties are concerned.
It is therefore important to distinguish abstract interface, which are independent of an imple-
mentation, and bound interfaces, which are associated with an implementation and therefore
may exhibit properties not found in the abstract interface.

16 CMU/SEI-2000-TR-008

6 Contracts

Interfaces were described earlier as specifying a one-way flow of dependencies from modules
that implement services to the clients that use these services. That is, the client has some as-
sumptions about the service and hence comes to depend upon these assumptions, while the
module interface specifies those assumptions that are, in some way, sanctioned by the de-
signer of the module. However, it is more accurate to say that a client and module are co-
dependent. That is, a client depends upon a module to provide a service in a certain way, and
the module depends upon the client to access and use these services in a certain way.

While co-dependence is a factor in even simple client/module interactions, its implication to
component-based software is magnified because of the premium placed on component substi-
tutability, and because the component interactions that define the context in which substitu-
tion occurs can be significantly more complex than in traditional systems. It is partly in rec-
ognition of this that the idea of interface contract has become prominent in component-based
research literature.

The use of contract as a metaphor for specifying software predates software component tech-
nology (for example, see “ISTAR and the Contractual Approach” [Dowson 87]). However,
the idea of interface contract is most closely linked to the work of Bertrand Meyer and the
developments inspired by that work [Meyer 92a, Meyer 97].

Interface contract is a metaphor with connotations that are useful to CBSE. For example

• Contracts are between two or more parties.

• Parties often negotiate the details of a contract before becoming signatories.

• Contracts prescribe normative and measurable behaviors on all signatories.

• Contracts can not be changed unless the changes are agreed to by all signatories.

The first bullet highlights the issue of co-dependence, and generalizes this to the more gen-
eral case that arises in component-based systems where multiple components coordinate to
implement a single, logical interaction. The second bullet can be useful in understanding
component composition, as all parties must agree to any “bleed through” properties intro-
duced by a component that implements an otherwise abstract interface. The third bullet has
implications for component certification, and the last bullet on stable standards for building
markets for components.

CMU/SEI-2000-TR-008 17

There are no doubt other connotations as well, but these serve to motivate what contracts are
about. The following discussion focuses on the first bullet, and in particular on the idea of
specifying reciprocal obligations among the parties of an interaction.

6.1 Contracts and Reciprocal Obligations
Component interaction involves a number of (usually) tacit agreements between a client and a
component. For example, a client depends upon the component to provide a service, and per-
haps depends upon a number of extra-functional properties as well. In return, the component
may depend upon the client to provide data arguments within certain bounds or to have prop-
erly initialized the component service. To some extent these co-dependencies can be specified
in an API through the use of an assertion language, most commonly the use of pre- and post-
conditions. A contractually specified interface makes these co-dependencies explicit.

1 INTERFACE Directory; (* introduce a new interface type *)
2 IMPORT Files; (* import an existing interface type *)
3 TYPE Name=ARRAY OF CHAR;
4
5 PROCEDURE ThisFile(n:Name):Files.File;
6 (* PRE n/="")
7 (* POST result=File named n OR result=NIL AND no such file *)
8
9 PROCEDURE AddEntry(n:Name; f:Files.File);
10 (* PRE n/="" AND f=/NIL *)
11 (* POST ThisFile(n)=f *)
12
13…other details deleted
14 END Directory;

Figure 2: Contractually Specified Interface (Fragment)

Consider the example interface in Figure 2, adapted from Szyperski5 [Szyperski 98]. This
interface specification describes a number of functional properties of a component that pro-
vides a directory service—specifically, the names and signatures of two operations of the di-
rectory service (lines 5 and 9). Also specified are behavioral properties that are related to
these operations; these are specified in an assertion language of pre- and post-conditions that
are, in this illustration, embedded as comments in the language of the API specification. Note
that the specification of a contract does not depend upon the use of pre- and post-conditions.
Other techniques have been used; for example, a set of rules that map sequences of input
events to sequences of output events [Berry 98].

Returning to Figure 2, the post-condition for the AddEntry() operation (line 11) asserts
that after invoking this operation a file can be retrieved at some future time using the This-
File() operation (line 5). The post condition for the ThisFile() operation (line 7) as-

18 CMU/SEI-2000-TR-008

5 We have altered the illustration slightly for the purposes of this discussion.

serts that it returns a file of a given name or else it returns no file, in which case the operation
guarantees that no such file of that name exists within the directory. Thus, the post conditions
specify properties of the directory service that clients may depend upon. In contrast, pre-
conditions specify those properties that the directory service requires of the client. For exam-
ple, the precondition for AddEntry() operation (line 10) is that a client provide a valid file
name and file object. In a real sense, the directory service depends upon the client to satisfy
this precondition. Earlier it was demonstrated that dependencies arise from assumptions
about properties and that a specification of these properties is, by definition, an interface
specification. So, the preconditions in Figure 2 specify an interface (a specification of prop-
erties) that it requires clients of the directory service to possess.

Thus, it is useful to think of an interface specification as comprising a provides part and a
requires part. This is depicted graphically to the right for directory component D and a client
component C. In this illustration D warrants that it will implement the provides part (labeled
as PROD in the graphic), but to do so it
needs C to implement the requires part (la-
beled REQD). Likewise C has its own inter-
face comprised of provides and requires
parts, labeled PROC and REQC, respectively.
For D and C to interact C must provide what D requires, and D must provide what C requires.
The directory service provides an operation AddEntry() but it requires that client compo-
nents call this operation with file names that are non-empty strings; the client provides that it
will do so.

D
REQC

PROC

C
PROD

REQD

The contract specified in Figure 2 specifies reciprocal obligations between a directory service
and clients of that service. In doing so it also specifies a simple interaction model, and the
obligations that a directory and service must fulfill to participate in the interaction model. A
simple interaction is specified by the pre- and post conditions of the operation: if the client
provides a valid name, then the operation will return a file or NIL. Contracts may also specify
more complex patterns of interaction. By pattern of interaction we mean a sequence of inter-
actions among two or more components that obey some specified rules. The ThisFile()
interaction is a trivial pattern of interaction—it involves only two components, the directory
component and the client component, and applies only to a single invocation of This-
File().

CMU/SEI-2000-TR-008 19

1 DEFINITION Directory; (* introduce a new interface type *)
2 IMPORT Files; (* import an existing interface type *)
3 IMPORT Notifier; (* interface type for callbacks *)
4 TYPE Name=ARRAY OF
5
6
7 PROCEDURE Init();
8 (* PRE True *)
9 (* POST Init=True *)
10
11 PROCEDURE
12 (* PRE Init=True AND n/="")
13 (* POST result=File named n OR result=NIL AND no such file *)
14
15 PROCEDURE AddEntry(n:Name;

i i

16 (* PRE Init=True AND n/="" and f=/NIL *)
17 (* POST ThisFile(n)=f AND FORALL Notifiers CB:)*)
18
19 PROCEDURE
20 (* PRE CB/=NIL *)

… other details deleted
END Directory;

Figure 3: Extended Contract with More Explicit Patterns of Interaction

More complex patterns of interaction are illustrated (as highlighted text) in Figure 3, which
extends the contract shown in Figure 2. For example, the preconditions on ThisFile()
(line 12) ensures that that prior to calling init() no interactions involving ThisFile()
are allowed. Similarly, AddNotifier() and the interface type Notifier introduce a
pattern of interaction commonly referred to as a callback. This pattern of interaction involves
the Directory component and an unspecified number of components that implement the No-
tifier interface, each of which, after being registered with AddNotifier(), will be
called whenever the AddEntry() operation is invoked by any client (line 17). Thus a pat-
tern of interaction may span several components and several invocations. Arbitrarily complex
patterns of interaction may be specified in a component contract.

6.2 Two Senses of Contract
The contracts in Figures 2 and 3 may have specified a pattern of interaction, but the pattern is
rooted on the specified compo-
nent. This points to two dis-
tinct senses of contract, one
where the subject of the con-
tract is a component and the
other where the subject is the
interaction itself. For lack of
better terms we will denote the

A component contract specifies a pattern of
interaction rooted on that component. The
contract specifies the services provided by
a component and the obligations of clients
and the environment needed by a component
to provide these services.

20 CMU/SEI-2000-TR-008

former as a component contract and the latter as an interaction contract.

Component contracts are natural and necessary. A supplier of components needs to describe
the services offered by a component and its other properties. The contractual specification of
that component goes further and also describes the conditions that must hold for that compo-
nent to work properly. Component contracts are necessary, even though a component model
may impose some or all of the interfaces required of a component. For as we have already
noted, a component implementation will introduce other properties, including obligations on
other components, not specified by a component model.

Where component contracts describe components, which, as we know from an earlier defini-
tion, are implementations, interaction contracts specify the reciprocal obligations among in-
terface types that may be
implemented by arbitrary
components. Interaction
contracts play the role of
design specification that
will be “filled in” by com-
ponents. Since a component can implement multiple interface types, it can “fill” several such
roles. Thus, each interaction contract describes a pattern of interaction among different roles
in a system. Component models such as EJB™ define interaction models (and hence con-
tracts) between, for example, Containers and SessionBeans. It is interesting to note that the
term contract is most often used to describe component contract sense, but the original sense
of the term more closely follows the interaction contract sense [Holland 92]. Nonetheless,
D’Souza’s influential CBSE design methodology has a separate notation for interaction con-
tracts [D’Souza 99]. Berry and Kaplan’s Finesse language and environment provides a way
of specifying both senses and combining them [Berry 98].

An interaction contract specifies a pat-
tern of interaction among different
roles, and the reciprocal obligations of
components that fill these roles.

Summary of Key Points
Contracts shift the focus from specification of components to specification of patterns of in-
teractions, and the mutual obligations of participants in these interactions. There are two
senses of contract that are necessary to CBSE: component contacts and interaction contracts.
Component contracts describe patterns of interaction that are rooted on a component. Inter-
action contracts describe abstract patterns of interaction among roles that are filled by com-
ponents. Systems are assembled from components through a process of filling roles with
components.

CMU/SEI-2000-TR-008 21

22 CMU/SEI-2000-TR-008

7 Component Models and Frameworks

There is some terminological confusion in the literature concerning component models and
frameworks. As already noted, Weck disdains to distinguish these concepts, preferring to
define a component framework as standards and conventions that may or may not include
support services [Weck 96]. D'Souza and Wills use the term component kit in a similar vein
to Weck's framework, and use the term component model to refer to the interfaces, assump-
tions and so forth of individual components—that is, each component has its own component
model [D'Souza 99, Wills 99]. Nevertheless, these are differences in how categories are la-
beled rather than in the categories themselves. There is consensus that component-based sys-
tems rely upon well-defined standards and conventions (what we call a component model)
and a support infrastructure (what we call a component framework).

A component model specifies the standards and conventions imposed on developers of com-
ponents. Compliance with a component model is one of the properties that distinguish com-
ponents (as we use the term) from other forms of packaged software. A component frame-
work is an implementation of services that support or enforce a component model. Both are
examined more closely, below.

7.1 What are Component Models?
There is as yet no agreement on what should or must be included in a component model. We
can obtain some leverage on this question by being more explicit about the purpose of a
component model—what is it that we expect to achieve by imposing standards and conven-
tions on component developers?

Uniform composition. Two components can interact if and only if they share consistent as-
sumptions about what each provides and each requires of the other. Obviously some of these
assumptions will refer to some unique aspect of each component, usually the function com-
puted by a component. But there are other assumptions that might be standardized across all
components, thereby reducing chances for accidental mismatches that inhibit composition of
components. These standards might address how components are located, how control flow
is synchronized, which communication protocol is used, how data is encoded and so forth.

Appropriate quality attributes. It is a matter of general agreement that the quality attributes
of a system will depend upon its “software architecture.” Standardizing the types of compo-
nent used in a system and their patterns of interaction—what has been defined as architec-
tural style —is one way to ensure that a system composed from third-party components will
possess the desired quality attributes [Bass 98]. Closely related to quality attributes is quality

CMU/SEI-2000-TR-008 23

of service, which can also be obtained by specifying that patterns of interaction are transac-
tional, or encrypted, and so forth.

Deployment of components and applications. The success of CBSE depends on the emer-
gence of a robust market in third-party components. A precondition for component composi-
tion is that components can be deployed from the developer environment into the composi-
tion environment, and that applications that have been composed from components can be
deployed from the composition environment into the customer environment. This is part of
the motivation for component frameworks—they provide a standard compose-time and run-
time infrastructure that will clearly simplify the deployment of components and applications.

Given the above motivations, component models will impose standards and conventions of
the following kind:

• Component types. A component’s type may be defined in terms of the interfaces it imple-
ments. If a component implements three different interfaces X, Y and Z, then it is of type
X, Y and Z. Moreover, a component that implements X, Y and Z is polymorphic with re-
spect to these types—it can play the role of an X, Y, or Z at different times. This is an im-
portant aspect of components found in both Microsoft/COM and Sun/Java technologies. A
component model requires that components implement one or more interfaces, and in this
way a component model can be seen to define one or more component types. Different
component types can play different roles in systems, and participate in different types of in-
teraction schemes (see next item).

• Interaction schemes. Component models will specify how components are located, which
communication protocols are used, and how qualities of service such as security and
transactions are achieved. The component model may describe how components interact
with each other, or how they interact with the component framework. The former class of
interactions includes constraints on which component types can be clients of other types,
the number of simultaneous clients allowed, and so forth (topology constraints). The latter
class of interaction includes things relating to resource management such as component
lifecycle (activation, deactivation), thread management, persistence and so forth. Interac-
tion schemes may be common across all component types or unique to particular compo-
nent types.

• Resource binding. The process of composing components is a matter of binding a compo-
nents to one or more resources. A resource is either a service provided by a framework or
by some other component deployed in that framework. A component model describes
which resources are available to components, and how and when components bind to
these resources. Conversely, a framework sees components as resources that must be
managed. Thus, deployment is the process by which frameworks are bound to compo-
nents, and a component model will describe how components are deployed.

24 CMU/SEI-2000-TR-008

7.2 Component Framework
A good way to think of a component framework is as a mini-operating system. In this anal-
ogy, components are to frameworks what processes are to operating systems. The framework
manages resources shared by components, and provides the underlying mechanisms that en-
able communication (interaction) among components. Like operating systems, component
frameworks are active and act directly upon components in order to manage a component's
lifecycle or other resources, for example to start, suspend, resume, or terminate component
execution. However, unlike general-purpose operating systems such as Unix, which support
a rich array of interaction mechanisms6, component frameworks are specialized to support
only a limited range of component types and interactions among these types. In exchange for
a loss in flexibility there is improved prospects for component composition.

Although this is a good analogy, and holds up well when used to describe a variety of com-
ponent-based technologies, there are other possible realizations of component framework. It
is not necessary that the framework have a runtime existence independent of components.
For example, the framework implementation may be bundled with the component implemen-
tation. An example of this can be found in [Koutlis 98], where a component-based system
originally implemented in the OpenDoc framework was re-hosted to a Java implementation.
In the re-hosted version the component types and coordination schemes were implemented as
Java classes that were invoked by components. Nevertheless, the trend in component tech-
nologies seems to be towards framework as independent implementation, making the operat-
ing system analogy quite apt.

Many examples of component frameworks (of the “operating system” sort) can be seen in
practice. The Enterprise JavaBeans™ (EJB) specification defines a framework of servers
and containers to support the EJB component model, with servers responsible for providing
persistence, transaction and security services while containers are responsible for managing
component life cycle7. The WaterBeans component framework is specialized to component
interactions for real-time visualization of data streams, and visual composition of compo-
nents. The WaterBeans framework supports high-performance data streams and calculates
execution schedules; based on these schedules it invokes component operations to fill these
streams. And of course Microsoft's VisualBasic framework, which is specialized for visual
composition of components (called VBXs) rather than for any particular runtime quality at-
tribute, is perhaps the most successful commercial framework yet produced. In this case the
framework is the VisualBasic interpreter for scripting and composition coupled with the
COM deployment and communication services provided by the native operating system.

Note that the overtly component-based illustrations above have analogues in established
software engineering practice. For example, Simplex is a component framework but for the

6 These are often referred to as interprocess communication mechanisms, and in the case of Unix

includes signals, remote procedure calls, pipes, sockets, shared memory and the file system.
7 To date, commercial implementations of EJB bundle server and container into one “framework.”

CMU/SEI-2000-TR-008 25

fact that the replacement units it manages do not fully satisfy our above-stated definition of
component [Sha 95]. The Simplex “framework” supports online upgrade of components
while maintaining fault-tolerant, real-time behavior. Similarly, many cyclic executives and
other minimal operating systems that were developed for real-time systems are essentially
component frameworks. The motivation for developing all of these is the same: to ensure
control, and hence predictability, of one or more quality attributes (fault tolerance and real-
time performance in the case of Simplex, real-time performance in the case of cyclic execu-
tives). This is also the motivation for developing custom component frameworks.

7.3 Custom Frameworks and Programmable
Middleware

Tension exists between two tendencies in software component technology: standard versus
custom component models and frameworks.

On the one hand, we have argued that component models have a natural correlation with the
idea of architectural style. Just as different architectural styles or combinations of styles are
needed to achieve different mixes of quality attributes in systems, so too, it would seem, dif-
ferent component models and supporting frameworks are needed for the very same reason.
Minimally, this would argue for a catalogue of component models and off-the-shelf frame-
works. This argument is well supported in the literature [Baggiolini 97, Gannon 98, Garlan
98, Lycett 98, Olken 98, Szyperski 98a, Yucel 98, Fellner 99, Lauder 99, Plakosh 99]. In fact,
the tendency in these illustrations argues that no simple catalogue will suffice, but that in-
stead what is needed is a technique for constructing component models from a kit of model
fragments known to support particular quality attributes (see closely related ideas about at-
tribute-based architectural styles) [Klein 00].

On the other hand, this tendency toward differentiation of component models runs counter to
what is needed to establish a robust market in software components: standard component
models and frameworks. Besides being intuitively obvious, the need for viable component
standards is described in Szyperski and elsewhere [Szyperski 98b, Bellur 98]. Simply put,
component developers need a “sufficiently large” market for deploying their products. Al-
though what is “sufficiently large” may vary across business sectors and component types, a
market fragmented into a number of non-standard frameworks will certainly inhibit the
emergence of component markets. Norman makes the case that standard “non-substitutable”
infrastructures are needed (frameworks) to support markets in substitutable products (compo-
nents) and he backs up this argument with numerous illustrations from the time of Thomas
Edison to current computing technologies8 [Norman 98]. He also argues that competition in
non-substitutable infrastructures is “winner take all,” and that technologies will often fail
where no such winner emerges (again, he sites numerous examples).

8 Although Norman was arguing for information appliance technologies his arguments apply with

equal force to component technologies.

26 CMU/SEI-2000-TR-008

So how is this tension between variation in quality attribute requirements and the need for
standard component models and frameworks to be resolved? One way is to adopt a “wait and
see” attitude and hope that the market produces component standards in market sectors that
are sufficiently large and cohesive to benefit from such standards. This is a reasonable ap-
proach, given that the impetus for component technology is market pressure for reduced
time-to-market and system development costs, rather than the emergence of any particularly
innovative technology. Microsoft's COM+ and Sun's Enterprise JavaBeans have emerged to
address the needs of management information systems (i.e., distributed, secure, transactional
business logic), as has the less proprietary OMG component specification (as yet not imple-
mented in commercial products). Component technologies are also emerging in more nar-
rowly-scoped market sectors, for example geographic information systems.9

There are also technological approaches to resolving this tension. One approach is to treat
component frameworks as an assembly of components rather than as a monolithic infrastruc-
ture. Robben proposes a scheme based in meta-object protocols (MOP) for composing qual-
ity attributes from components that implement each such attribute [Robben 98]. Venkata-
subramanian also proposes MOP as a means of parameterizing frameworks to allow dynamic
modification of protocols to accommodate context-specific quality attribute requirements
[Venkatasubramanian 98]. Thompson et. al. describe an approach that dynamically
interposes plug-ins between web clients and servers to provide quality of service attributes,
yielding what they call an intermediary architectural approach to frameworks [Thompson
98]. These proposed techniques could be understood in the context of the “framework as
operating system” analogy: each attempts to extract what should be separately configurable
(parameterizable) components from the framework micro-kernel. Berry and Kaplan treat the
framework as a programmable abstraction rather than an assembly of components (i.e., “pro-
gramming the middleware”) [Berry 98]. This is also a plausible approach that has been seen
elsewhere. See Bergstra, for example [Bergstra 95].

Each of the above approaches focuses on making component frameworks more adaptable. If
successful, these techniques would result in fewer standard frameworks, each of which can be
adapted to a variety of quality attribute and quality of service requirements. Another ap-
proach is to make the components more flexible so that they may be more easily adapted to
different frameworks. Deline developed a method and proof of concept prototype for flexi-
ble packaging to separate the framework-specific aspects of a component (the “packaging”)
from the specific function implemented by the component (the “ware”) [Deline 99]. The
separation of packaging from ware is also reflected in the more general idea of aspect-
oriented programming (AOP), which allows separation of the core functionality of a module
from a specification of various non-functional aspects (concurrency, persistence, distribution
and so forth) [Kiczales 97b]. An aspect weaver, essentially an intra-component composition
mechanism, composes component implementations from the functional core and a set of as-
pects.10 Tarr et. al. describe an alternative approach to achieving separation of concerns

9 See for example, http://www.esri.com/news/arcnews/winter9899articles/02-arcinfov8.html.
10 See http://wwwtrese.cs.utwente.nl/aop-ecoop98/position.html to get a sense of the interest in AOP.

CMU/SEI-2000-TR-008 27

which they refer to as hyperslices and hypermodules [Tarr 99]. A hyperslice is an encapsula-
tion of some dimension of concern; hyperslices, with the aid of a composition rule, are com-
posed into hypermodules. Each of the above approaches is predicated on separating the func-
tional core of a component from other concerns that may be varied independent of
component functionality.

Summary of Key Points
Component models specify the design rules that must be obeyed by components. These de-
sign rules improve composability by removing a variety of sources of interface mismatch
(i.e., mismatched assumptions). The rules ensure that system-wide quality attributes are
achieved, and that components may be easily deployed into development and runtime envi-
ronments. Component frameworks provide the services to support and enforce a component
model.

A robust market in software components will require standard component models and
frameworks. However, experience has shown that different application domains have differ-
ent requirements for performance, security, availability and other quality attributes. This ar-
gues the need for more than one, and possibly many component models and frameworks.
Market forces are working to find application domains that are sufficiently large and coherent
to justify an industry-standard component model, but no clear winners have yet emerged.
Technologies to support adaptability of frameworks to different quality attribute requirements
may serve to reduce the need for competing frameworks. Similarly, technologies to support
adaptability of components to different frameworks may reduce the adverse consequences of
a fragmented framework market.

28 CMU/SEI-2000-TR-008

8 Composition

Composition, rather than integration, is the term used in component-based development to
refer to how systems are assembled. Other than being more evocative of a development pro-
cess based on software building blocks, there is no inherent difference between these terms.
Nevertheless, the term “composition” is preferred in this report because it is so widely used
in the software component technology literature.

Components are composed so that they may interact. As discussed earlier, the component
model specifies patterns’ types of components and their allowable patterns of interactions.
We first examine a classification of these patterns of interaction in order to clarify the
connection between component model and component composition. We then turn to a
discussion resource binding, the mechanism by which composition takes place, and in
particular we discuss the time of resource binding.

8.1 Compositional Forms
From the reference model depicted in Figure 1 we identify two kinds of entities that are com-
posed: components and frameworks. Given this, there are three major classes of interactions
that arise in component-based systems:

• Component–Component (C–C): composition that enables interaction among compo-
nents. These interactions deliver application functionality, and so the contracts that spec-
ify these interactions might be classified as application-level contracts.

• Framework–Component (F–C): composition that enables interactions between a com-
ponent framework and its components. These interactions enable frameworks to manage
component resources, and so the contracts that specify these interactions might be classi-
fied as system-level contracts.

• Framework–Framework (F–F): composition that enables interactions between frame-
works. These interactions enable composition of components that are deployed in het-
erogeneous frameworks, and so these contracts might be classified as interoperation con-
tracts.

There are additional special cases that arise if we allow higher-order components and frame-
works. Higher-order components would allow component aggregates (assemblies) to be
treated as “first-class” components (certified properties, contractual interface, independently
deployable, etc.). Higher-order frameworks correspond to Szyperski's idea of tiered frame-
work; this would become an essential concept should numerous application-specific compo-
nent models emerge [Szyperski 98b].

CMU/SEI-2000-TR-008 29

The following table itemizes and briefly discusses the major classes of contracts, in-
cluding the special cases. We refer to these as compositional forms

Table 1: Compositional Forms

C

F
1

Component Deployment

Components must be deployed into frameworks before they
can be composed or executed. The deployment contract(s)
(1) describes the interface that components must implement
so that the framework can manage their resources.

F2

F1
1

Framework Deployment

Frameworks may be deployed into other frameworks, cor-
responding to Szyperski's Tiered Frameworks. The EJB
specification partially realizes this idea with EJB containers
deployed into EJB servers. Contract (1) is analogous to the
component deployment contract.

C1

F
1

C2

Simple Composition

Components deployed in the same framework can be com-
posed. The composition contract (1) expresses component-
and application-specific functionality; the interaction
mechanisms to support this contract are provided by the
framework.

F1
1

C1 C2

F22

Heterogeneous Composition

Support for tiered frameworks implies composition of com-
ponents across frameworks, whether across hierarchical (as
illustrated) or peer frameworks. In either case bridging
contracts (1) are needed in addition to composition con-
tracts (2) in order for interactions to span generic compo-
nent models.

F1
1

CF2

Framework Extension (Plug-In)

Frameworks may be treated as components, and may be
composed with other components. This form of composi-
tion most commonly allows parameterization of framework
behavior via “plug-ins.” Standard plug-in contracts (1) for
service providers are increasingly common in commercial
framework.

F
1

C1
C2

C3

Component (Sub)Assembly

A component-based system is an assembly of components.
The ability to predict the properties of assemblies suggests
a similar ability for subassemblies. Contract (1) is used to
compose C1 and subassembly C3, which contains one or
more components. A question that arises is whether C2 is
visible outside of C3 and whether it is separately deployed.

30 CMU/SEI-2000-TR-008

The definitions in the above table beg the question, “Which of these forms of composition
(and therefore which class of contracts) are, or should be, part of a component model?” The
following comparison of component models is revealing. The comparison is not intended to
be complete or exhaustive, but rather to reveal different perspectives on what should and
should not be included in component models.

A indicates that the component technology includes this compositional form as part of the
component model.

Table 2: Compositional Forms in Illustrative Component Models

Form/
Technology

EJB COM+ Java
Beans

Water
Beans

OMG/
Orbos

Component

Deployment

Framework

Deployment

future
(container
contract)

(JVM
plug-in)

(portable
object

adapter)

Simple

Composition

Heterogeneous

Composition

(IIOP)

(IIOP)

Framework

Extension

 future
(policy
objects)

 Component

(Sub)Assembly

What can be deduced from this? First, each component technology defines deployment con-
tracts. This is not surprising, since a component technology is not of much use unless com-
ponents can be deployed into the build-time and run-time environments. Contracts for the
other compositional forms are not uniformly included in component technologies. Note that
none of the illustrated technologies addresses sub-assemblies in any way. Research papers

CMU/SEI-2000-TR-008 31

have been written on how to support assemblies of COM components, but these ideas have
not found their way into commercial products [Peltz 99].

More surprising (at least at first blush) is the relative lack of attention to contracts for simple
composition. Is it true that major technologies such as EJB and COM+ ignore application-
level contracts even though component technology means nothing if applications can not be
assembled from components? In truth, there is a gray area here. EJB and COM+ clearly say
something about application-level contracts; for example, how transactions are initiated and
propagated. But both EJB and COM+ are relatively silent about what the interfaces to com-
ponents look like. To understand this statement it is useful to compare EJB with JavaBeans
and WaterBeans, each of which requires component interfaces to conform to a particular syn-
tactic convention, input and output events in the case of JavaBeans, input and output pipes
for WaterBeans.

Because JavaBean and WaterBean components adhere to these conventions, components can
be written with a high degree of independence from each other, and the assembly of applica-
tions from components can be left to an assembly environment such as the JavaBeans
“BeanBox.” Lacking these conventions, however, EJB component developers must make
some assumptions about how other EJB components will present their services, and these
assumptions must be embedded in the implementation of EJB components. The same, of
course, is true of COM+. The result is a higher degree of coupling between components and
reduced prospects for a market in commodity components. Instead, EJB and COM+ will rely
upon companies such as the Theory Center to develop product lines of components, or, per-
haps, for industry groups to develop application-level contracts for particular market niches.

8.2 Binding Time of Composition
The above discussion touched on what is composed. A discussion of how composition occurs
involves the question of resource binding. Essentially, two components are composed when
the resources provided by one component become accessible to a client component, or are
bound to the client. Naming services are one mechanism for resource binding. However, to
be complete, even after a naming lookup, many other mechanisms are involved in binding the
client to the service provider (dynamic libraries, remote procedure calls, etc.).

Although the many mechanisms involved in resource binding can present a confusing picture
of the binding process, one useful way to simplify things is to consider the question of when
resource binding occurs. We can think of binding time as a timeline, with early binding at
one end and late binding at the other. Looking at the development process from the perspec-
tive of software components, early binding requires that the component developer make some
decisions which effectively bind some resource to the component, or, more to the point, con-
strain how this binding will occur later. Late binding means just the opposite: the component
developer will make no decisions that constrain future resource binding.

32 CMU/SEI-2000-TR-008

Early Late
Component
Development

System
Assembly

Application
Runtime

Two concrete examples will illustrate this distinction. In the case of EJB components, re-
source binding for application-level (i.e., simple-composition) assembly requires early bind-
ing because the component developer must make explicit reference to the interface of the
type of component that will be provide some service. Although the actual resource binding
may happen at runtime, perhaps as a result of a naming service lookup, this binding is con-
strained to only those components that implement a particular interface. Moreover, the EJB
component model does not specify this interface, so it is likely to be non-standard. In the
case of WaterBeans components, resource binding for application-level assembly requires no
early binding decisions on the part of component developers, since all components must write
obtain their input and deliver their output to typed pipes—this is required by the WaterBeans
component model.

However, the component model must be designed to encourage late binding. Component
technologies such as WaterBeans and JavaBeans support late binding by imposing additional
constraints on component developers on how components expose their services, and on how
components may interact once their services are bound to each other. Thus, the price for late
binding is additional complexity in the component model, and added constraints on the way
components are developed and on how they expose their services to potential clients. In ex-
change, component models that allow late binding offer greater flexibility for component
substitution, for third-party integration, and for component markets.

Interestingly, the design constraints needed to support late binding of component resources
represent a kind of early binding of design decisions, in particular those that deal with how
components coordinate their activities with each other. This early binding of design deci-
sions is consistent with the overall “architecture first” philosophy of CBSE, and leads to sys-
tems with properties that are more readily analyzed and predicted prior to system assembly.

Summary of Key Points
Composition enables interaction among the composed entities. In component-based systems
the primary entities of concern are components and frameworks. There are six significant
forms of interaction (and hence composition) between components and frameworks that arise
in component-based systems. A component model will define contracts that govern these six
forms of interaction. However, looking at representative software component technologies
makes clear that although all define deployment contracts, there is no consensus what other
kinds of composition should be supported, and none of the technologies examined dealt with
component subassemblies.

CMU/SEI-2000-TR-008 33

The different treatments of application-level contracts are likewise revealing. The major
commercial component technologies, EJB and COM+, deal with some aspects of application-
level composition, but leave most of these details to be decided by the component market.
This is an understandable position to take, given that each vendor wants to appeal to as broad
a market as possible. Component technologies such as JavaBeans and WaterBeans take a
different course, and constrain both the syntactic forms of a component’s application-level
interface and the coordination model underlying component-component interactions.

These different treatments of application-level interfaces are closely related to the question of
binding time of composition. The more constraining application-level contracts of Water-
Beans and JavaBeans allows late binding of components to each other, while the less con-
straining application-level contracts of EJB and COM+ require component developers to bind
their components to specific, possibly non-standard interfaces, at component development
time. In general, late binding for application-level composition is preferred to early binding,
because it better supports component substitution and the development of component mar-
kets. Late binding of application-level composition also leads to better prospects for predict-
ing overall system qualities prior to composition, precisely because late component binding
requires early binding of architectural decisions in a component model.

34 CMU/SEI-2000-TR-008

9 Certification

The opaqueness of implementation details means that system assemblers may find it difficult
to diagnose the causes of unexpected system behavior, and having diagnosed the cause affect
repairs. This is certainly true where conventional COTS products are used (see Plakosh and
Hissam for illustrations), and use of software component technology does not fundamentally
alter this situation [Plakosh 99b, Hissam 99]. Given the difficulty and expense of diagnosing
these kinds of failures, the long-term success of software component technology will hinge
upon the availability of high-quality software components, and trust on the part of consumers
that the components that they purchase are of high quality. This leads to the topic of certifica-
tion of components.

Software certification is not a new idea. In fact, certification has a long history in the soft-
ware industry. In the most frequently encountered use of certification, some authoritative
organization attests to the fact that some software system satisfies some criteria, or conforms
to some specification. For example, the National Security Agency (NSA) might certify that a
particular operating system complies with level B2 of the Trusted Computer Security Evalua-
tion Criteria (TCSEC) a.k.a., Orange Book Criteria.

This illustration reveals two separate and distinct facets of certification:

1) Technical claims are made about the subject of the certification.

2) An authority stands behind these claims to generate trust in these assertions.

These different facets are important insofar as they reveal the dual purpose of certification.
The first is to establish facts about the subject being certified, and the second is to establish
trust in the validity of these facts. While engineers may make use of established facts about a
system, trust has other purposes. While both of these facets apply equally to certification in
the context of component-based systems, the approaches that are needed to make assertions
and build trust may be different than is otherwise the case.

9.1 Certification in Component-Based Systems
The NSA example might be termed the traditional approach to certification. In the tradi-
tional approach, the subject of the certification is a system. An authority attests to the fact
(certifies) that the system satisfies some objective target criteria.

CMU/SEI-2000-TR-008 35

But matters are not so straightforward in a component-based approach. For one thing, the
subject of certification includes, in addition to the end system, the components and frame-
works that make up the end system.

frame
work

c2
c1 frame

work

c5
c4frame

work

(a) framework
 certification

(b) component
 certification

(c) system
 certification

Figure 4: Subjects for Certification in Component-Based Systems

This differentiation of certification subjects is already having in impact on industrial soft-
ware, in particular for certification of components (if we momentarily equate component with
commercial software product). For example, in response to the pressures of the COTS soft-
ware marketplace, NSA and the National Institute of Standards and Technology have joined
to create the National Information Assurance Partnership (NIAP) 11 to augment, if not wholly
replace, the traditional NSA security certification regime. One of the noteworthy approaches
of NIAP is the idea of a protection profile, which is essentially a slice through the TCSEC.12
One use of protection profiles is to describe certification criteria for particular classes of
COTS products. For example, NIAP has developed and approved a protection profile for
COTS firewalls. At least eleven vendors are using NIAP certification against these criteria
for competitive advantage.13

But while NIAP has begun to address the question of certifying the security properties of
COTS components, it is instructive to note the limitations of the NIAP approach:

• Protection profiles are produced as a response to the emergence of classes of commercial
products. Therefore, the scope of protection profiles will be only as stable as the prod-
ucts from which they emanate. Also, since product vendors will continue to introduce
non-standard and differentiating features, the profile is also bound to provide only partial
coverage of the security properties of products, and the mapping from product features to
profile criteria will often be highly subjective.

• NIAC has partitioned the TCSEC into product-specific profiles, but has not produced the
means of aggregating the different profiles exhibited by different products into a coherent
system-level model of security. How should products be combined that have overlapping

11 See http://niap.nist.gov/howabout.html for NIAP homepage.
12 Actually, it is a slice through NIAP common criteria, which are derived from but reformulate and

generalize the TCSEC.
13 See http://www.lucent.com/press/0199/990120.coa.html for a vendor press release, and

http://www.niap.nist.gov/cc-scheme/ValidatedProducts.html for a list of certified products.

36 CMU/SEI-2000-TR-008

profiles? Which criteria of one profile are dependent on criteria of other profiles? Most
importantly, how are system security properties predicated on the properties of the indi-
vidual components?

These failings of NIAP are not the result of naïveté on the part of NIAP, but rather stem from
the fact that NIAP is a reaction to, and is bound up with, the dynamics of the COTS software
marketplace. This marketplace differs from the software component marketplace in one im-
portant respect: the COTS marketplace is products first, architecture second; the component
marketplace it is application architecture first, components second. That is, unlike COTS
software, software components must comply with a component model that expresses numer-
ous architectural decisions. This difference provides a foundation upon which a component-
based certification regime can be established.

To understand this assertion it is useful to re-examine our motivation for certifying compo-
nents and frameworks. We then relate this motivation to software architecture and to the
benefits of the “architecture first” approach inherent in CBSE. Only then do we turn to a dis-
cussion of the technical issues involved in certification.

9.2 Certification, Prediction, and Compositional
Reasoning

The unspoken premise behind component14 certification is that there is a causal link between
those properties of a component that are certified and the properties of an end system that
uses that component. The more confidence we have in this link the more value will accrue
from component certification. At the extreme we may achieve 100% confidence (or trust) in
the causal link. At this extreme, once a property has been established for a component it is
unnecessary to certify that the end system has obtained this same property, since we know
this to be true by definition.

p1
p2

c1

p3

c2

S

p4

It is unlikely that 100% confidence will be achieved for all (if any) of the different kinds of
properties of interest. In the absence of 100% confidence we move from the realm of cer-
tainty to the realm of probability and prediction. In this realm the value
of component certification is proportional to the strength of
the predictions that can be made about end-system
properties. Consider the graphic at right. System S
comprises two components, C1 and C2. C1 possesses
property p1 and p2, while C2 has property p3. Our interest
is in ensuring that system S exhibits property p4. In the
illustration we assert that p1 and p3 are causally linked to p4.

For the above diagram, assume that property p4 is end-to-end latency. If property p1 and p3
refer to the quality of documentation of components C1 and C2, then the link between p1, p3

CMU/SEI-2000-TR-008 37

14 The following discussion applies equally to components and frameworks. We refer only to

components to avoid excessively awkward phraseology.

and p4 is non-existent and certification of documentation quality would be of no value. Al-
ternatively, if property p1 and p3 refer to some performance attributes of C1 and C2 that con-
tribute to end-to-end latency, then the value of certifying these performance properties in-
creases somewhat. How much this value increases depends upon the strength of the theory
we will use to predict p4 from the values of p1 and p3. If we have a theory that can predict
the latency p4 from latency p1 and p3 with only a small margin of error, then our knowledge
of p1 and p3 is useful. Conversely, if our theory is weak then our knowledge of p1 and p3 is
much less useful.

Such theories of prediction support what we refer to as compositional reasoning. The adjec-
tive compositional reflects the belief (as software architects have long asserted) that end-
system properties are most often attributable to a collection of interacting components rather
than to a single component. Thus, the properties of these several parts must be combined
(“composed”) to predict the properties of the whole. There are well-established prediction
theories, for example Rate Monotonic Analysis (RMA), that support compositional reasoning
about performance attributes of systems.

Note that the value of these theories goes beyond predicting system properties. Such theories
also tell us which properties can be predicted (p4), and, just as important, which component
properties we need to know about in order to make these predictions (p1 and p3). The value
of a certification regime for component-based systems is directly linked to the strength of our
compositional reasoning. Without compositional reasoning we can not know which proper-
ties of components and frameworks to certify. With weak compositional reasoning the value
of certification will be questionable and therefore the economic incentives for third-party
certification will never be sufficient to spur industry investment.

9.3 Compositional Reasoning and Software
Architecture

The connection between compositional reasoning and software architecture was just alluded
to—the motivation underlying the study of software architecture is prediction of system
properties from the types of components in a system and their patterns of interaction. One
promising research avenue, attribute-based architecture styles (ABAS), seeks to make com-
positional reasoning based on architectural decisions more formal, or at least more structured
[Klein 99]. In brief, using ABAS terminology, an ABAS is an architectural style and an asso-
ciated attribute-reasoning framework. An ABAS has four major parts:

• a description of the analysis problem solved by the ABAS

• a characterization of the stimuli to which the ABAS responds and the quality attribute
measures of the response

• a description of the architectural style in terms of its components, connectors, topologies,
and their properties. This will be used to structure the analysis.

38 CMU/SEI-2000-TR-008

• a reasoning framework that links stimuli and architectural properties to response. The
rigor of these frameworks range from heuristics to mathematical formulae.

The fourth bullet contains the theory and compositional reasoning that relates properties of
components and frameworks (the second and third bullets) to end-system properties (the re-
sponse in the second bullet).

There is a useful connection between ABAS and software component technology in that a
component model expresses architectural decisions that are imposed on component (and
framework) developers. If these component models are equipped with an ABAS-style rea-
soning framework, then two things become possible. First, application builders can use the
reasoning framework(s) bundled with the component model to predict end-system properties
(one facet of the SEI vision for CBSE). Second, the reasoning framework(s) identifies those
properties that must be known about components and frameworks, and hence certified.

More will be said about the connection of ABAS to a certification regime in Volume III of
this report.

9.4 Certifying Components and Component
Frameworks

Certification depends upon compositional reasoning. The theories underlying compositional
reasoning identify those properties of components and frameworks that are material for pre-
dicting some end-system properties (performance, safety, scalability, etc.). These properties
will be contractually specified in a component model. Thus, certification of components and
frameworks reduces to establishing that they conform to these contractual specifications.
Nonetheless, at least three significant technical challenges must be addressed before this “re-
duction” can become a routine practice.

First, contractual specifications must be expressive enough to capture all of the properties
imposed by frameworks that will lead to end system quality attributes, and measurement
techniques must be in place to determine, to a desired level of confidence, the degree to
which a component exhibits these properties. Interface specification techniques must be
adopted that strike a practical balance between formality and usability. More formal specifi-
cations are more expressive but introduce severe transition challenges. Measurement requires
that each property expressed in an interface be defined precisely according to some meas-
urement scale. In addition, sufficient laboratory testing techniques must be defined to pro-
duce accurate measurements on software components—ideally where these components re-
main “black boxes.”

Second, having specified and measured all of the relevant properties, it is still necessary to
define the conformance relation between a component and a contractual specification of a
role it must fill. Some aspects of conformance are straightforward: a component property
that over-satisfies a minimum threshold on a criterion should, we expect, be conformant. But

CMU/SEI-2000-TR-008 39

what if the desired property is associated with an interaction among three components, for
example, and the entire interaction must occur within 60ms for the property to be satisfied?
Is it proper to assume that each component must execute within 20ms, or might one execute
in 10ms while each of the others execute in 25ms? In this case it might be best to certify the
performance value of a component without imposing a minimum threshold. But without a
minimum threshold how can conformance be defined? This suggests that components and
frameworks have properties whose values are certified, but that the question of conformance
needs to be deferred until later in the development process, possibly as late as runtime.

Third, component models are not monolithic, and a component technology may specify some
aspects of a component model but leave other aspects to be specified by industry groups or
application developers. Thus, as we saw earlier, the EJB component model is nearly silent
about application-level contracts (simple composition in Table 1). WaterBeans is explicit
about application-level contracts, specifying the form that these interfaces take, how they can
be connected, and how control and data flow through these connections. By virtue of this
greater detail, certifying components for WaterBeans will be more effective for predicting
application-level properties than would be the case for EJB components. The point is that the
component certification regime will be only as effective as component models allow. More-
over, component models must be designed with component certification in mind.

9.5 Process Certification
The entire discussion so far has focused on the direct technique of certifying software prod-
ucts. An alternative (or at least complementary) and indirect approach is to certify the proc-
esses used to produce the artifacts. Whether certifying a process will yield the level of trust
that certifying a product will depends upon how strongly a causal link can be established be-
tween process quality and product quality. Should the link be strong, process certification
may prove to be an economical alternative to product certification.

Note that process certification is not entirely conjectural. Underwriters Laboratory has pub-
lished its standard for certifying software in programmable components15 [UL 98]. While
this standard addresses product certification in the traditional sense (inspections, testing,
etc.), it also includes certification of the development process. For example, the development
process is examined to determine that every process step has well-defined entry and exit cri-
teria. The tools used by the development environment are also “qualified,” meaning that they
must have a documented “bug” list among other things.

Consider hypothetical components or frameworks being certified as “100% Cleanroom De-
veloped.” If it is established in the public eye that cleanroom development consistently pro-

15 The term programmable component is defined by Underwriters Laboratory as “Any microelectronic

hardware that can be programmed in the design center, the factory, or in the field. Here the term
‘programmable’ is taken to be ‘any manner in which one can alter the software wherein the
behavior of the component can be altered.’ ”

40 CMU/SEI-2000-TR-008

duces “zero defect software,” then such a certification regime might be effective. Similarly,
although this is a bit of a stretch, the process of assembling applications from certified soft-
ware components might also be certified. This might be feasible should compositional rea-
soning about key properties (security, for example) be sufficiently trustworthy.

Summary of Key Points
Certification involves two separate actions: 1) establishing that a (software) subject possesses
particular properties, most often in conformance with some specification against which a
component or framework is certified; and 2) having a trusted agent or organization attest to
the truth of this conformance. The first of these actions has consequence on the engineering
discipline, in that application developers can work with “known quantities.” The second of
these actions has consequence on the development of consumer trust. Both are necessary.

The ultimate motivation for establishing that a component or framework possesses some
property is to use that knowledge to predict some property of the assembled application.
Theories and techniques that can link component and framework properties to application
properties are said to support compositional reasoning. Compositional reasoning identifies
which properties of components and frameworks are material to achieving some end-system
property, and how to predict the “values” of end-system properties from component and
framework properties. The effectiveness of a certification regime improves as our ability to
undertake compositional reasoning improves.

The NIAP approach to certifying the security properties of COTS software products is a re-
sponse to the industry trend towards the use of software components. But the COTS software
marketplace provides a “product first, architecture second” context for NIAP certification,
leading to an unstable understanding of what properties must be certified for particular
classes of products, and to weak compositional reasoning schemes. In contrast, software
component technology provides an “architecture first, component second” context for certifi-
cation. This shift in emphasis provides the means to overcome some of the deficiencies of
the NIAP approach.

One such promising means is attribute-based architectural styles (ABAS). An ABAS couples
attribute-specific compositional reasoning techniques with architectural styles. Since com-
ponent models are specifications of architectural decisions, one or more ABASs can be asso-
ciated with a particular component technology. This in turn would identify those properties
of the framework and of components that must be certified, and define how these certified
properties can be used to predict the properties of the assembled application.

Using ABASs as a foundation for a component-based certification regime requires three
technical issues be addressed. First, techniques for contractual specification must be ex-
tended to include any and all properties required by an ABAS, and measurement techniques
must be identified to establish whether components exhibit these properties. Second, con-
formance must be re-defined to allow assemblers to decide whether a component or frame-

CMU/SEI-2000-TR-008 41

work “passes muster.” In effect, we must certify the values of component or framework
properties without necessarily superimposing normative guidelines on what these values must
be. Third and last, component models (and hence component technologies) must be defined
a priori to support a certification regime. Failing this, components will not be easily certi-
fied, or the causal link between component property and system property will be weak.

42 CMU/SEI-2000-TR-008

10 Conclusions

Component-based systems are the result of structuring a system according to a particular de-
sign pattern. This design pattern relies upon a number of closely related technical concepts,
including: components, component frameworks, component models, component composition,
component interfaces, contracts, and certification.

There are several motivations for the component-based approach to software. Components
and industry standard component models provide a basis for commerce in reusable software,
something that is required if US industry is to meet current and projected demand for soft-
ware. Components are replacement units in systems, thus facilitating the development of
software systems that are more flexible and less likely to become prematurely obsolete.
Component models express numerous design decisions, and component frameworks provide
an integrated environment for component execution; together these serve to drastically reduce
the time it takes to design, implement and deploy systems.

Despite these potential benefits, one critical aspect of component-based software has yet to
be adequately addressed: the need for systems that will predictably exhibit the quality attrib-
utes required of them. Consumers of commercial component technologies must rely upon
off-the-shelf component models and frameworks to provide the foundation for achieving sys-
tem quality attributes. While component technology vendors make claims about how their
products yield these attributes, the technical basis for these claims is questionable. There is,
as yet, no established basis for assessing how well component models and frameworks con-
tribute to achieving desired quality attributes; nor is there any current basis for assessing the
quality of software components and how they contribute, or hinder, achieving these quality
attributes.

In light of this, the SEI has adopted a “vision statement” for component-based software engi-
neering that focuses on the question of predictable system assembly from certified compo-
nents and frameworks. This vision statement provided the filter through which a wide array
of technical concepts was examined. The technical concepts discussed in this report culmi-
nate in a discussion of component and framework certification, and how the “architecture
first” approach inherent in component-based systems provides a basis for certification and
predictable assembly. A detailed description of a technical agenda to build on this basis is the
topic of Volume III of this report.

CMU/SEI-2000-TR-008 43

44 CMU/SEI-2000-TR-008

 References

[Achermann 99] Achermann, F.; Lumpe, M.; Schneider, J.; & Nierstrasz, O. Pic-
cola — A Small Composition Language [online]. Available
WWW <URL: http://www.iam.unibe.ch/~scg/
Research/Piccola/pascl.pdf.> (1999).

[Alencar 92] Alencar, A. & Goguen, J. “OOZE,” Stepney, S.; Barden, R.; &
Cooper, D., ed. Object Orientation in Z, Workshops in Computing.
Los Angeles, Ca.: Springer-Verlag, 1992.

[Allen 97] Allen, R.; Douence, R.; & Garlan, D. “Specifying Dynamism in
Software Architectures,” Proceedings of the 1st Workshop on
Component-Based Systems. Zurich, Switzerland, 1997, in con-
junction with European Software Engineering Conference (ESEC)
and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), 1997 [online]. Available WWW <URL:
http://www.cs.iastate.edu/~leavens/FoCBS/FoCBS.html>

[Baggiolini 97] Baggiolini, V. & Harms, J. “Toward Automatic, Run-Time Fault
Management for Component-Based Applications,” Proceedings of
the 2nd International Workshop on Component-Oriented Pro-
gramming (WCOP97), in conjunction with the European Confer-
ence on Object-Oriented Programming (ECOOP98, Brussels,
Belgium, July 1998.

[Barnes 97] Barnes, J. High Integrity Ada: the SPARK Approach. Boston, Ma.:
Addison-Wesley, 1997

[Bass 98] Bass, L; Clements, P.; & Kazman R. Software Architecture in
Practice. Boston, Ma.: Addison Wesley, March 1998.

[Bellur 98] Bellur, U. “The Role of Components & Standards in Software
Reuse,” Proceedings of OMG-DARPA-MCC Workshop on Com-
positional Software Architecture. Monterey, Ca., Jan. 1998.

CMU/SEI-2000-TR-008 45

[Bergstra 95] Bergstra, J. & Klint, P. The Discrete Time Toolbus. (Report p9502)
Amsterdam, the Netherlands: Programming Research Group, De-
partment of Mathematics and Computer Science, University of
Amsterdam, 1995.

[Berry 98] Berry, S. “Programming the Middleware Machine with Finesse,”
Proceedings of OMG-DARPA-MCC Workshop on Compositional
Software Architecture. Monterey, Ca., January 1998.

[Beugnard 99] Beugnard, A.; Jezequel, J.-M.; Plouzeau, N.; & Watkins, D.
“Making Components Contract Aware.” Computer 32, 7 (July
1999): 38-45.

[Box 98] Box, D. Essential COM. Boston, Ma.: Addison-Wesley, 1998.

[Canal 97] Canal, C.; Pimentel, E.; & Troya, J. “On the Composition and
Extension of Software Components,” Proceedings of the 1st
Workshop on Component-Based Systems, Zurich, Switzerland,
1997, in conjunction with European Software Engineering Con-
ference (ESEC) and ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (FSE), 1997. Available WWW
<URL: http://www.cs.iastate.edu/~leavens/FoCBS/FoCBS.html>

[Ciancarani 97] Ciancarani, P. & Cimato, S. “Specifying Component-Based Soft-
ware Architectures,” 60–70. Proceedings of the ESEC/FSE-
Workshop on Foundations of Component-Based Systems
(FoCBS), Zürich, Sep. 1997.

[Deline 99] Deline, R. “Avoiding Packaging Mismatch with Flexible Packag-
ing,” Proceedings of the 21st International Conference on Soft-
ware Engineering. Los Angeles, Ca., May 1999.

[Della 99] Della, C.; Cicalese, T.; & Rotenstreich, S. “Behavioral Specifica-
tion of Distributed Software Component Interfaces.” IEEE Com-
puter (Jul. 1998): 46-53

[Dowson 87] Dowson, M. “ISTAR and the Contractual Approach,” 287-288.
Proceedings of the 9th International Conference on Software En-
gineering. Monterey, Ca, March 30-April 2, 1987. Washington
DC, Baltimore, Md.: IEEE Computer Society and the Association
for Computing Machinery, April 1987.

46 CMU/SEI-2000-TR-008

[D'Souza 99] D'Souza, D. & Wills, A.C. Objects, Components, and Frame-
works with UML: The Catalysis Approach. Boston, Ma.: Addi-
son-Wesley, 1999.

[Duke 95] Duke, R.; Rose, G.; & Smith, G. “Object-Z: A Specification Lan-
guage Advocated for the Description of Standards.” Computer
Standards and Interfaces 17 (1995): 511–533

[Dürr 94] Dürr, E. H. & Plat, N. (editors), VDM++ Language Reference
Manual. Utrecht, The Netherlands: Cap Volmac, Mar. 1994.

[Fellner 99] Fellner, K. & Turowki, K. “Component Framework Supporting
Inter-company Cooperation,” Proceedings of the Third Interna-
tional IEEE Conference on Enterprise Distributed Object Com-
puting. Mannheim, Germany, Sept 1996. New York: IEEE Com-
puter Society Press, 1999.

[Fischer 99] Fischer, C. “Software Development with Object-Z, CSP and Java:
A Pragmatic Link from Formal Specifications to Programs,” Pro-
ceedings of the 1st Workshop on Component-Based Systems. Zu-
rich, Switzerland, 1997, in conjunction with European Software
Engineering Conference (ESEC), ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE), 1997, Proceed-
ings of the 1st Workshop on Formal Techniques for Java Pro-
grams, in conjunction with the 13th European Conference on Ob-
ject-Oriented Programming, ECOOP ’99 [online]. Available
WWW <URL: http://semantik.informatik.uni-oldenburg.de/
persons/clemens.fischer/eindex.html>

[Franch 98] Franch, X. “Systematic Formulation of Non-Functional Charac-
teristics of Software,” Proceedings of the 3rd IEEE International
Conference on Requirements Engineering (ICRE). Colorado
Springs, Co., April 1998. New York: IEEE Computer Society
Press, 1998.

[Gannon 98] Gannon, D. “Component Architectures for High Performance,
Distributed Meta-Computing,” Proceedings of OMG-DARPA-
MCC Workshop on Compositional Software Architecture. Mon-
terey, Ca., Jan. 1998.

[Garlan 98] Garlan, D. “Higher-Order Connectors,” Proceedings of OMG-
DARPA-MCC Workshop on Compositional Software Architec-

CMU/SEI-2000-TR-008 47

ture. Monterey, Ca., Jan. 1998.

[Goldsack 97] Goldsack, S. J.; Lano, K.; & Dürr, E. “Invariants as Design Tem-
plates in Object-Based Systems,” Proceedings of the 1st Workshop
on Component-Based System. Zurich, Switzerland, September
1997, in conjunction with European Software Engineering Con-
ference (ESEC) and ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (FSE), 1997 [online]. Available
WWW <URL:
http://www.cs.iastate.edu/~leavens/FoCBS/FoCBS.html>(1997)

[Henderson 97] Henderson, P. “Formal Models of Process Components,” Pro-
ceedings of the 1st Workshop on Component-Based Systems, Zu-
rich, Switzerland, Sep. 1997, in conjunction with European Soft-
ware Engineering Conference (ESEC) and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE),
1997 [online]. Available WWW <URL:
http://www.cs.iastate.edu/~leavens/FoCBS/FoCBS.html> (1997).

[Hissam 99] Hissam, S & Carney, D. “Isolating Faults in Complex COTS-
based Systems.” Journal of Software Maintenance: Research and
Practice, No. 11 (1999): 183-1999

[Holland 92] Holland, I. “Reusable Components using Contracts,” Proceedings
of the European Conference on Object-Oriented Programming
(ECOOP). Lecture Notes in Computer Science LNCS 615. Los
Angeles, Ca.: Springer-Verlag, June/July 1992.

[Johnson 97] Johnson, D. & Kilov, H. “An Approach to an RM-ODP Toolkit in
Z,” Proceedings of the 1st Workshop on Component-Based Sys-
tems. Zurich, Switzerland, 1997, in conjunction with European
Software Engineering Conference (ESEC) and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE),
1997 [online]. Available WWW <URL:
http://www.cs.iastate.edu/~leavens/FoCBS/FoCBS.html> (1997).

[Kiczales 97] Kiczales, G. “Aspect-Oriented Programming,” Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP). Lecture Notes in Computer Science LNCS 1241. Los
Angeles, Ca.: Springer-Verlag, June 1997.

[Klein 00] Klein, M; Kazman, R.; & Nord, R. “A BASis (or ABASs) for
Reasoning about Software Architectures,” submitted to the 22nd

48 CMU/SEI-2000-TR-008

International Conference on Software Engineering (ICSE). Lim-
erick, Ireland, 2000.

[Klein 99] Klein, M. & Kazman, R. Attribute-Based Architectural Styles
(CMU/SEI-99-TR-022). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 1999. Available WWW
<URL: http://www.sei.cmu.edu/publications/documents/
99.reports/99tr022/99tr022title.html> (1999).

[Koutlis 98] Koutlis, M.; Kourouniotis, P.; Kyrimis, K.; & Renieri, N. “Inter-
Component Communication as a Vehicle Towards End-User
Modeling,” Proceedings of the 1st ICSE Workshop on Component-
Based Software Engineering. Kyoto, Japan, 1998 [online]. Avail-
able WWW <URL: http://www.sei.cmu.edu/cbs/icse98/papers/
p7.html> (1998).

[Kramer 98] Kramer, R. “iContract — The Java design by Contract Tool.”
TOOLS 26: Technology of Object-Oriented Languages and Sys-
tems, IEEE Computer Society Press, Los Alamitos, Ca. (1998):
295–307.

[Lano 97] Lano, K.; Bicarregui, J.; Maibaum, T.;& Fiadeiro, J. “Composi-
tion of Reactive System Components,” Proceedings of the 1st
Workshop on Component-Based Systems. Zurich, Switzerland,
1997, in conjunction with European Software Engineering Con-
ference (ESEC) and ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (FSE), 1997 [online]. Available
WWW <URL:
http://www.cs.iastate.edu/~leavens/FoCBS/FoCBS.html>

[Lauder 99] Lauder, A. & Kent, S. “EventPorts: Preventing Legacy Compo-
nentware,” Proceedings of the Third International IEEE Confer-
ence on Enterprise Distributed Object Computing. Mannheim,
Germany, Sep. 1996.

[Leavens 99] Leavens, G. T.; Baker, A. L.; & Ruby, C. Preliminary Design of
JML: A Behavioral Interface Specification Language for Java,
(Technical Report 98-06c) Ames, Ia.: Iowa State University, De-
partment of Computer Science, Jan. 1999 [online]. Available
WWW <URL: http://www.cs.iastate.edu/~leavens/JML/
prelimdesign/index.html>

CMU/SEI-2000-TR-008 49

[Leavens 97] Leavens, G. & Sitaraman, M. (eds.), Proceedings of the
ESEC/FSE-Workshop on Foundations of Component-Based Sys-
tems (FoCBS). Zürich, Switzerland, Sep. 1997. Available WWW
<URL: http://www.cs.iastate.edu/~leavens/FoCBS/FoCBS.html >

[Lumpe 97] Lumpe, M.; Schneider, J; Nierstrasz, O; & Achermann, F. “To-
wards a Formal Composition Language,” Proceedings on the 1st
Workshop on Component-Based Systems. Zürich, Switzerland,
Sep. 1997. Available WWW <URL:
http://www.cs.iastate.edu/~leavens/FoCBS/FoCBS.html >

[Lycett 98] Lycett, M., & Paul, R. J. “Component-Based Development: Deal-
ing with Operational Aspects of Architecture,” 83-92. Proceedings
of the 3rd International Workshop on Component-Oriented Pro-
gramming (WCOP '98). Brussels, Belgium, July 1998.

[Meyer 92a] Meyer, B. “Applying ‘Design by Contract.’” Computer 25, 10 (Oc-
tober 1992): 40-51.

[Meyer 92b] Meyer, B. Eiffel: The Language. New York, NY: Prentice Hall,
1992.

[Meyer 97] Meyer, B. Object-Oriented Software Construction, 2nd ed. Lon-
don, UK: Prentice-Hall International, 1997.

[Mikhajlova 99] Mikhajlova, A. “Specifying Java Frameworks Using Abstract
Programs.” TOOLS 30: Technology of Object-Oriented Lan-
guages and Systems IEEE Computer Society Press, Santa Barbara,
Ca. (Aug. 1999) 136–145.

[Norman 98] Norman, D. The Invisible Computer: Why Good Products Can
Fail, The Personal Computer is So Complex, and Information
Appliances are the Solution. Cambridge, Ma.: MIT Press, 1998.

[Olken 98] Olken, F.; Jacobsen, H.; & McParland, C. “Middleware Require-
ments for Remote Monitoring and Control,” Proceedings of
OMG-DARPA-MCC Workshop on Compositional Software Archi-
tecture. Monterey, Ca., Jan. 1998.

[Parnas 71] Parnas, D. “Information Distribution Aspects of Design Method-
ology.” Proceedings 1971 IFIP Congress, North Holland Publish-
ing Company.

50 CMU/SEI-2000-TR-008

[Peltz 99] Peltz, C. “A Hierarchical Technique for Composing COM based
Components,” Proceedings of the 2nd International Workshop on
Component-Based Software Engineering (CBSE), in conjunction
with the 21st International Conference on Software Engineering
(ICSE). Los Angeles, Ca., May 17-18, 1999.

[Plakosh 99a] Plakosh, D.; Smith, D.; & Wallnau, K. Water Beans Component
Builder's Guide (CMU/SEI-99-TR-024). Pittsburgh, Pa.: Soft-
ware Engineering Institute, Carnegie Mellon University, 1999.
Available WWW <URL: http://www.sei.cmu.edu/
publications/documents/ 99.reports/99tr024/99tr024abstract.html>

[Plakosh 99b] Plakosh, D.; Hissam, S.; & Wallnau, K. Into the Black Box: A
Case Study in Obtaining Visibility into Commercial Software
(CMU/SEI-99-TN-010). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 1999. Available WWW
<URL: http://www.sei.cmu.edu/publications/documents/
99.reports/99tn010/99tn010abstract.html >

[Rice 99] Rice, M. & Seidman, S. “Describing Software Architectures and
Architectural Styles,” First Working IFIP Conference on Software
Architecture (WICSA1) San Antonio, Texas, Feb. 1999.

[Robben 98] Robben, B.; Matthijs, F., Joosen,W.; Vanhaute, B.;& Verbaeten,
P. “Components for Non-Functional Requirements,” Proceedings
of the 3rd International Workshop on Component-Oriented Pro-
gramming (WCOP '98). Brussels, Belgium, July 1998.

[Sha 95] Sha, L.; Rajkumar, R.; & Gagliardi, M. A Software Architecture for
Dependable and Evolvable Industrial Computing Systems (SEI-TR-
95-005). Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, 1995. Available WWW <URL:
http://www.sei.cmu.edu/publications/documents/95.reports/
95.tr.005.html>

[Shaw 99] Shaw, M. “Truth vs. Knowledge: The Difference Between What a
Component Does and What We Know It Does,” Proceedings of the
8th International Workshop on Software Specification and Design.
Berlin, Germany, March 1996.

[Szyperski 98a] Szyperski, C. & Vernik, R. “Establishing System-Wide Properties of
Component-Based Systems,” Proceedings of OMG-DARPA-MCC
Workshop on Compositional Software Architecture. Monterey, Calif.,

CMU/SEI-2000-TR-008 51

Jan. 1998.

[Szyperski 98b] Szyperski, C. Component Software Beyond Object-Oriented Pro-
gramming. Boston, Ma.: Addison-Wesley and ACM Press, 1998.

[Tarr 99] Tarr, P.; Ossher, H.; Harrison, W.; & Sutton, S. “N Degrees of Sepa-
ration: Multi-Dimensional Separation of Concerns,” Proceedings of
the 21st International Conference on Software Engineering (ICSE99).
Los Angeles, Ca., 1999.

[Thompson 98] Thompson, C.; Pazandak, P.; Vasudevan, V.; Manola, F.; Palmer,
M.; Hanser, G.; & Ford, S. “Intermediary Architecture: Interposing
Middleware Services And Ilities Between Web Client And Server,”
Proceedings of OMG-DARPA-MCC Workshop on Compositional
Software Architecture. Monterey, Ca., Jan. 1998.

[UL 98] Underwriters Laboratories. UL Standard for Safety for Soft-
ware in Programmable Components. Northbrook, Il., 1998.

[Venkatasubramanian
98]

Venkatasubramanian, N. & Agha, G. “Composable QoS-Based Dis-
tributed Resource Management,” Proceedings of OMG-DARPA-
MCC Workshop on Compositional Software Architecture. Monterey,
Ca., Jan. 1998.

[Weck 96] Weck, W. “Independently Extensible Component Frameworks,”
Proceedings of the 1st International Workshop on Component-
Oriented Programming, in conjunction with the European Confer-
ence on Object-Oriented Programming (ECOOP97). Jyväskylä, Fin-
land, June 1997

[Wills 99] Wills, A. “Modeling for Component Based Systems with Catalysis.”
Tutorial notes, Enterprise Distributed Object Computing (EDOC).
Mannheim, Germany, 1999

[Yucel 98] Yucel, S.; Kusano, T.; & Saydam, S. “A Component Based Distrib-
uted Software Architecture for Multimedia Services,” Proceedings of
OMG-DARPA-MCC Workshop on Compositional Software Archi-
tecture. Monterey, Ca., Jan. 1998.

52 CMU/SEI-2000-TR-008

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(LEAVE BLANK)

2. REPORT DATE
May 2000

3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE
Volume II: Technical Concepts of Components-Based
Software Engineering, 2nd Edition

5. FUNDING NUMBERS
C — F19628-95-C-0003

6. AUTHOR(S)
Felix Bachmann, Len Bass, Charles Buhman, Santi-
ago Comella-Dorda, Fred Long, John Robert, Robert
Seacord, Kurt Wallnau

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI –2000-TR-008

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
ESC-TR-2000-007

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The Software Engineering Institute (SEI) is undertaking a feasibility study of “component-
based software engineering” (CBSE). The objective of this study is to determine whether
CBSE has the potential to advance the state of software engineering practice and, if so,
whether the SEI can contribute to this advancement. This report is the second part of a
three-part report on the study. Volume I contains a market assessment for CBSE. Vol-
ume III outlines a proposed course of action for the SEI. Volume II, this report, estab-
lishes the technical foundation for SEI work in CBSE. The paper asserts that the key
technical challenge facing CBSE is to ensure that the properties of a system of compo-
nents can be predicted from the properties of the components themselves. The key
technical concepts of CBSE that are needed to support this vision are described: compo-
nent, interface, contract, component model, component framework, composition, and cer-
tification.

14. SUBJECT TERMS
component-based, component model, component
framework, contract, composition, certification, CBSE

15. NUMBER OF PAGES

64

16. PRICE CODE

7. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY
CLASSIFICATION OF
THIS PAGE
UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Nothing New Under the Sun?
	Software Component Technology
	Summary of Key Points
	Vision Statement
	Summary of Key Points
	Components
	Summary of Key Points
	Interfaces
	Interface Abstraction and Application Programming Interfaces
	Extending APIs to Extra-Functional Properties
	Specifying Behavior
	Specifying Synchronization
	Specifying Quality of Service

	Credentials
	Components and Multiple Interfaces

	Summary of Key Points
	Contracts
	Contracts and Reciprocal Obligations
	Two Senses of Contract

	Summary of Key Points
	Component Models and Frameworks
	What are Component Models?
	Component Framework
	Custom Frameworks and Programmable Middleware

	Summary of Key Points
	Composition
	Compositional Forms
	Binding Time of Composition

	Summary of Key Points
	Certification
	Certification in Component-Based Systems
	Certification, Prediction, and Compositional Reasoning
	Compositional Reasoning and Software Architecture
	Certifying Components and Component Frameworks
	Process Certification

	Summary of Key Points
	Conclusions
	References

