

TECHNICAL REPORT
CMU/SEI-2000-TR-006

ESC-TR-2000-006

 Simplex
Architecture
Performance
and Cost

Mike Gagliardi
Theodore Marz
Neal Altman
John Walker

September 2000

Pittsburgh, PA 15213-3890

Simplex
Architecture
Performance
and Cost

CMU/SEI-2000-TR-006
ESC-TR-2000-006

Mike Gagliardi
Theodore Marz
Neal Altman
John Walker

September 2000

Dependable Systems Upgrade Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col., USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2000 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2000-TR-006 i

Table of Contents

Abstract vii

1 Introduction 1
1.1 Test Software 1
1.2 Test Environment: Hardware and System

Software 1

2 Data Collection and Analysis Strategy 3

3 Test Software Summary 5
3.1 Monolithic Test Program 5
3.2 Shared-Memory Test Program 6
3.3 POSIX Message Queues Test Program 6
3.4 Data Tagged IPC (Dtag) Test Program 7
3.5 Simplex Test Program 8

4 Summary of Results 9

5 Detailed Results 11
5.1 Monolithic Test Program 13
5.2 Shared-Memory Test Program 14
5.3 POSIX Message Queues Test Program 15
5.4 Data Tagged I/O Test Program 16
5.5 Simplex Test Program 17

6 Testing and Data Analysis Methodology 21
6.1 Computation Time 22
6.2 Timing Overhead 24
6.3 Timely Completion 28
6.4 Creation Effort 29

7 Discussion and Conclusion 31

ii CMU/SEI-2000-TR-006

CMU/SEI-2000-TR-006 iii

List of Figures

Figure 1: Test Apparatus 2

Figure 2: Schematic Diagram of the Monolithic
Test Program 5

Figure 3: Schematic Diagram of the Shared-
Memory Test Program 6

Figure 4: Schematic Diagram of the POSIX
Message Queues Test Program 7

Figure 5: Schematic Diagram of the Data Tagged
I/O (Dtag) Test Program 8

Figure 6: Schematic Diagram of the Simplex Test
Program 8

Figure 7: Time Versus Communications
Complexity 11

 Figure 8: Combined Timing Data, with Five Test
Programs per Graph 12

Figure 10: Data Distribution Graphs for the
Monolithic Test Program 13

Figure 11: Data Distribution Graphs for the
Shared-Memory Test Program 14

Figure 12: Data Distribution Graphs for the POSIX
Message Queues Test Program 15

Figure 13: Data Distribution Graphs for the Dtag
Test Program 16

Figure 14: Data Distribution Graphs for the Simplex
Test Program: One Controller
Included 17

iv CMU/SEI-2000-TR-006

Figure 15: Data Distribution Graphs for the Simplex
Test Program: Two Controllers
Included 18

Figure 16: Data Distribution Graphs for the Simplex
Test Program: Three Controllers
Included 19

Figure 17: Timing Points for a Typical Cycle of the
Monolithic Test Program 22

Figure 18: Timing Points for a Typical Cycle of the
Shared Memory, POSIX Message
Queues and Dtag Test Programs 22

Figure 19: Timing Points for a Typical Cycle of the
Simplex Test Program 23

Figure 20: Timing Overhead Data 25

Figure 21: Timing Overhead as a Proportion of the
Observed Data for the First Run of
Each Test Program 27

Figure 22: Time Versus Communications
Complexity Adjusted for Timing
Overhead 28

CMU/SEI-2000-TR-006 v

List of Tables

Table 1: Features Comparison 9

Table 2: Performance Comparison 9

Table 3: Monolithic Test Program: Artifact
Summary 13

Table 4: Monolithic Test Program: Time Data
Summary 13

Table 5: Shared-Memory Test Program: Artifact
Summary 14

Table 6: Shared-Memory Test Program: Time
Data Summary 14

Table 7: POSIX MsgQ Test Program: Artifact
Summary 15

Table 8: POSIX MsgQ Test Program: Time Data
Summary 15

Table 9: Dtag Test Program: Artifact Summary 16

Table 10: Dtag Test Program: Time Data
Summary 16

Table 11: Simplex Test Program: Artifact
Summary 17

Table 12: Simplex Test Program: Time Data
Summary, One Controller Included 17

Table 13: Simplex Test Program: Time Data
Summary, Two Controllers Included 18

Table 14: Simplex Test Program: Time Data
Summary, Three Controllers Included 19

Table 15: Timing Overhead as a Percentage of
Total Time 26

vi CMU/SEI-2000-TR-006

CMU/SEI-2000-TR-006 vii

Abstract

The Simplex Architecture facilitates the building of dependable and upgradable real-time

systems. Before using the technology, potential users want to know more about the costs of
adopting the Simplex paradigm compared to the benefits of using it. This paper examines
Simplex performance and the costs associated with its use.

 Simplex is a trademark of Carnegie Mellon University.

viii CMU/SEI-2000-TR-006

CMU/SEI-2000-TR-006 1

1 Introduction

This paper focuses on the costs and performance issues of the Simplex Architecture.
For a general introduction to the Simplex architecture, visit http://www.sei.cmu.edu/simplex.

This report addresses the following cost-related concerns:

• How fast is a system based on the Simplex Architecture?
• What resources will a Simplex system use?

• How much will a Simplex system cost to build?

This paper provides information from tests using an existing Simplex prototype. The Simplex
Architecture is applicable to a wide range of problems, which the prototype only samples.

This report provides performance data from a system based on Simplex Architecture. To help
make this data meaningful, we compare the Simplex systems to comparable systems built
using other architectural paradigms that accomplish the same task.

It is important to realize that “comparable” does not mean “functionally identical.” The com-
parisons are always drawn between systems that can reach the minimum specification for the
test, but the systems vary in their reliability, efficiency, and adaptability. Features and capa-
bilities are noted for each of the software artifacts tested.

1.1 Test Software
Numerical data for this report were generated by instrumented test programs. An individual
test program is the executable object that results from processing a set of source code with a
specified set of tools. Once prepared, the program is not altered during a test series.

While we define a test program as a set of source code plus transformation steps, we actually
measure an executing program in a larger system that includes the supporting system soft-
ware: the operating system, firmware, and dynamically bound support libraries. For this re-
port, we chose not to explore how performance changes when the system software changes.
Therefore, we held the operating system and hardware constant during the testing period.

1.2 Test Environment: Hardware and System Software
Each test program was exercised on a single system, whose hardware and software was held
constant during testing.

 Simplex is a registered trademark of Carnegie Mellon University.

2 CMU/SEI-2000-TR-006

The test programs were run using a uniprocessor PC-driven real-time control system (see
Figure 1). The computer holds an unstable inverted pendulum upright by a feedback control
loop.

Figure 1: Test Apparatus

The inverted pendulum is on the right, the pendulum power sup-
ply is above (behind the pendulum) and the controlling computer
on the left.

The test programs were developed under the LynxOS version 2.4 operating system. The
LynxOS operating system is a POSIX-compliant, real-time operating system (RTOS).

The PC utilizes an Intel 133mHz Pentium processor operating on a 66Mhz bus. The system
contains 32 MB of RAM and 256KB of pipeline cache memory. A Data Translation,
DT2811PGH data acquisition card is employed for control of the Inverted Pendulum appara-
tus. The DT2811PGH provides 16 single-ended, Analog-to-Digital (A-D) inputs at 12 bits of
resolution. The card also provides two Digital-to-Analog (D-A) outputs also at a resolution of
12 bits. The Inverted Pendulum requires the use of two A-D inputs (one measuring rod angle,
one measuring track position), and one D-A output (supplying a DC voltage to the motor). An
Alpha Logic Stat! Timer card was selected to provide an accurate time base. The Stat! Timer
card is capable of supplying a 32-bit sample timer running at a resolution of 250 nanosec-
onds.

The pendulum consists of a metal rod, which is attached by a freely swinging hinge to a small
cart. The cart is powered and can move horizontally on a track under computer control. The
Inverted Pendulum apparatus is a commercially available device consisting of the rod and
cart assembly, a 36-inch (91.44 cm) track, and a power supply housing a power op-amp that
amplifies the control voltage sent from the PC. Low-pass filters were added to the two A-D
input lines to help decrease the amount of signal noise injected into the system by the angle
and track potentiometers.

 LynxOS is a registered trademark of LynuxWorks.

CMU/SEI-2000-TR-006 3

2 Data Collection and Analysis Strategy

Data for this report were collected by analysis of the program code and by running instru-
mented test programs to observe the system during normal (steady-state) system operation.

Two kinds of data were acquired:

1. feature related

2. resource consumption

Feature-related data describe the architectural layout and capabilities of the software under
test:

• efficiency

• software engineering features

• dynamic and static upgrade provisions

Resource-consumption data focus on high- level constructs: modules, complete systems, and
total resource consumption. The following classes of measurement were taken:

• lines of source code

• time consumed

4 CMU/SEI-2000-TR-006

CMU/SEI-2000-TR-006 5

3 Test Software Summary

For this report, test programs were constructed to examine the overhead associated with in-
terprocess communication. Interprocess communication is a key element of the Simplex Ar-
chitecture, providing fault isolation and dynamic upgrade capabilities. In a Simplex system,
replacement units are added and removed during execution without interrupting safe system
operation; replacement units are bound dynamically to communications streams and their
output sent to other modules. Since the tested programs are real-time applications, the com-
munications used must allow real-time operations. Communication also affects how well a
system can be distributed and modified. The test series incrementally adds communications
capabilities while holding the other software components as constant as possible.

3.1 Monolithic Test Program
The uniprocessor monolithic test program places all functionality in a single module. Once
acquired, data are stored locally and accessed as needed. The monolithic test program pro-
vides the minimal functionality necessary to keep the inverted pendulum upright, using a de-
sign that should place a light load on the computing hardware. It is intended to establish the
performance floor for the test series.

Characteristics of the monolithic test program include

• local memory that provides low latency communication

• fast execution

The uniprocessor monolithic artifact was developed by fusing a Simplex baseline controller
with the input/output module portions of the Simplex demonstration software.

- Pendulum Controller
- Direct I/O

Data & Control

Figure 2: Schematic Diagram of the Monolithic Test Program

6 CMU/SEI-2000-TR-006

3.2 Shared-Memory Test Program
The uniprocessor shared-memory test program introduces modularity and multiple threads of
control into the control software. Data input/output and control software were placed in sepa-
rately executing modules that exchange data through shared memory. This design allows
modularization of the software, decreasing the complexity of the individual modules, and
permits the modules to execute in separate threads of control. Modularity and separate execu-
tion are key enabling technologies for the Simplex Architecture. Shared memory is a straight-
forward mechanism for interprocess communication with low latency. The shared-memory
test program establishes the costs of adding a high-speed but inflexible communications
mechanism and modularity.

Characteristics of the shared-memory test program include the following

• Separate threads of execution are possible.

• Data integrity and access control are maintained (when the application program is written
correctly).

The shared-memory test program used the baseline controller and input/output module from
the Simplex demonstration software. Shared memory replaced the existing communications
software.

Shared Memory

Data & Control

Direct I/O

Pendulum Controller

Figure 3: Schematic Diagram of the Shared-Memory Test Program

3.3 POSIX Message Queues Test Program
The uniprocessor POSIX message queues test program alters the interprocess communica-
tions to use a queued message system. In the tested implementation, POSIX message queues
were used. This artifact examines the costs of using a more flexible communications mecha-
nism as a substitute for shared memory. The Simplex Architecture does not require the use of
message-queued communications, but many of the existing Simplex artifacts use this para-
digm to implement the system.

CMU/SEI-2000-TR-006 7

Characteristics of the POSIX message queues test program include

• Data synchronization and integrity are provided by communications services.

The POSIX message queues test program reuses the uniprocessor shared-memory artifact’s
software, but replaces the shared-memory communications with a queued-message commu-
nications.

Data & Control

Direct I/O

Pendulum Controller

Posix Message
Queues

Figure 4: Schematic Diagram of the POSIX Message Queues Test Program

3.4 Data Tagged IPC (Dtag) Test Program
The uniprocessor data tagged IPC1 test program (Dtag) implements a publish-subscribe
communications paradigm. With publish-subscribe techniques, information producers and
consumers can communicate without requiring detailed connection information about each
other. This facilitates the use of dynamically replaceable components.

Characteristics of the Dtag test program include

• Multicast communications; the sender does not need to know the number of receivers.

The uniprocessor data tagged artifact recasts the uniprocessor message-queued artifact’s
software to use data-queued message communications.

1 Interprocess communications.

8 CMU/SEI-2000-TR-006

Figure 5: Schematic Diagram of the Data Tagged I/O (Dtag) Test Program

3.5 Simplex Test Program
The uniprocessor analytically redundant artifact contains all the features of a single-CPU sys-
tem based on the Simplex Architecture. It includes a safety and decision module to automati-
cally detect and clear faults as well as support for replacement controllers.

Characteristics of the Simplex test program include

• functional redundancy

• safety checking and error recovery

• dynamic upgrade capability

• fine grained control over publish/subscribe communications

The uniprocessor Simplex test program is an instrumented test version of the Simplex Single-
ton demonstration software, with data capture during normal operations. (Dynamic process
creation/deletion is not initiated during the observation period.)

Figure 6: Schematic Diagram of the Simplex Test Program

Data & Control

Direct I/O

Decision Module

Data
Tagged IPC

Safety ControllerPendulum Controller

Pendulum Controller

Data & Control

Direct I/O

Pendulum Controller

Data
Tagged IPC

Connection Broker
(subscribe /
unsuscribe)

C
M

U
/S

E
I-

20
00

-T
R

-0
06

9

4
S

u
m

m
ar

y
o

f
R

es
u

lts

Ta
bl

e
1:

F

ea
tu

re
s

C
om

pa
ris

on

F
ea

tu
re

:

P
ro

gr
am

:
M

on
ol

ith
ic

Sh

ar
ed

M

em
or

y
P

O
SI

X

M
sg

Q

D
ta

g
Si

m
pl

ex

(1

C
on

tr
ol

le
r)

Si
m

pl
ex

(2

C

on
tr

ol
le

rs
)

Si
m

pl
ex

(3

C

on
tr

ol
le

rs
)

A
pp

lic
at

io
n

D
is

tr
ib

ut
ab

le

L

oc
al

 O
nl

y
Y

es

Y
es

Y

es

Y
es

Y

es

Sy
st

em
 D

at
a

In
te

gr
ity

 S
er

vi
ce

s

Y

es

Y
es

Y

es

Y
es

Y

es

B
ro

ad
ca

st
 C

om
m

un
ic

at
io

n

Y
es

Y

es

Y
es

Y

es

Sa
fe

ty
 C

he
ck

in
g

an
d

E
rr

or
 R

ec
ov

er
y

-
Y

es

Y
es

D

yn
am

ic
 U

pg
ra

de
 C

ap
ab

il
ity

Y

es

Y
es

Y

es

Ta
bl

e
2:

P

er
fo

rm
an

ce
 C

om
pa

ris
on

O

bs
er

va
tio

n:

P
ro

gr
am

:
M

on
ol

ith
ic

Sh

ar
ed

M

em
or

y
P

O
SI

X

M
sg

Q

D
ta

g
Si

m
pl

ex

(1

C
on

tr
ol

le
r)

Si
m

pl
ex

(2

C

on
tr

ol
le

rs
)

Si
m

pl
ex

(3

C

on
tr

ol
le

rs
)

T
ot

al
 L

in
es

 o
f

So
ur

ce
 C

od
e2

45
4

83
9

90
6

88
5

25
49

29

80

34
13

M

in
/M

ea
n/

M
ax

 C
yc

le
 T

im
e

(µ
se

c)

17
8.

0
18

1.
6

24
0.

0

45
1.

0
46

3.
7

67
6.

0

52
3.

0
53

7.
5

76
4.

0

68
1.

0
70

8.
9

96
2.

0

17
00

.0

19
39

.0

23
25

.0

20
92

.0

27
09

.0

32
03

.0

29
74

.0

33
37

.0

38
35

.0

C
yc

le
 T

im
e

St
d.

 D
ev

ia
tio

n
2.

57
1

7.
92

2
9.

29
3

15
.5

9
14

5.
6

26
7.

1
18

9.
9

D

ea
dl

in
es

 M
is

se
d

0
0

0
0

0
0

0

2

Si
m

pl
e

li
ne

 c
ou

nt
, d

oe
s

no
t i

nc
lu

de
 li

br
ar

y
fi

le
s.

10 CMU/SEI-2000-TR-006

CMU/SEI-2000-TR-006 11

5 Detailed Results

The test programs vary in two important ways: communications complexity and degree of
redundancy (i.e., fault tolerance). While the test programs add communications complexity
incrementally, only the Simplex test program has any built-in fault tolerance. Consequently,
the Simplex results are shown separately for non-redundant, two level redundant and three
level redundant operation.

The test programs can be ordered by the complexity of the communications showing the
overhead cost of communications, leading to the communications support needed to imple-
ment Simplex. Figure 7 summarizes the range of execution times for the test programs.
Communications complexity increases from left to right in the graph while the remaining
elements of the system are held constant. As might be expected, execution time increased as
the communications became more sophisticated, about threefold on the tested system. Al-
though communications imposed an overhead cost, the worst-case execution times (top line)
did not exceed 150% of the mean value (largest is shared memory, maximum is 145.8% of
the mean value).

Figure 7: Time Versus Communications Complexity

Communications complexity increases from left to right while the ver-
tical axis shows execution time (in seconds) for a single cycle through
the program. The lines show, from bottom to top: minimum, mean, ad-
justed maximum, and maximum value for all data values for each test
series. Data include the timing overhead.

Monolithic Shared Memory Msg. Queues Dtag Simplex 1 Cont.
0

0.5

1

1.5

2

2.5
x 10

−3 Time Range (T
min

/T
mean

/T
adj

max

/T
max

)

Maximum

Adjusted Maximum

Minimum

Mean

T
im

e
(in

 s
ec

on
ds

)

Monolithic Shared Memory Msg. Queues Dtag Simplex 1 Cont.
0

0.5

1

1.5

2

2.5
x 10

−3 Time Range (T
min

/T
mean

/T
adj

max

/T
max

)

Maximum

Adjusted Maximum

Minimum

Mean

T
im

e
(in

 s
ec

on
ds

)

12 CMU/SEI-2000-TR-006

The test runs were started and stopped manually. In many test artifacts, the final observation,
taken as the artifact halts, was also the maximum value (see Figure 7 or sections on individ-
ual test programs). With this final value removed, worst-case execution times were reduced to
a maximum of 135% of the mean value (dotted line, Figure 7).

In Figure 8, data from individual test runs are aggregated into the graphs shown below.

 Figure 8: Combined Timing Data, with Five Test Programs per Graph

The horizontal axis shows individual observations, from first to last;
the vertical axis is time in seconds. For each graph, from bottom to
top, the horizontal lines show monolithic data, shared-memory data,
POSIX message queues data, Dtag data, and Simplex data (including
one controller).

0 1000 2000 3000 4000
0

1

2

3
x 10

−3 combined_a

0 1000 2000 3000 4000
0

1

2

3
x 10

−3 combined_b

0 1000 2000 3000 4000
0

1

2

3
x 10

−3 combined_c

0 1000 2000 3000 4000
0

1

2

3
x 10

−3 combined_d

0 1000 2000 3000 4000
0

1

2

3
x 10

−3 combined_e

T
im

e
(in

 s
ec

on
ds

)

Run 1 Combined Data Run 2 Combined Data

Run 3 Combined Data Run 4 Combined Data

Run 5 Combined Data

Simplex, 1 Controller

Dtag
POSIX Message Queues
Shared Memory
Monolithic

0 1000 2000 3000 4000
0

1

2

3
x 10

−3 combined_a

0 1000 2000 3000 4000
0

1

2

3
x 10

−3 combined_b

0 1000 2000 3000 4000
0

1

2

3
x 10

−3 combined_c

0 1000 2000 3000 4000
0

1

2

3
x 10

−3 combined_d

0 1000 2000 3000 4000
0

1

2

3
x 10

−3 combined_e

T
im

e
(in

 s
ec

on
ds

)

Run 1 Combined Data Run 2 Combined Data

Run 3 Combined Data Run 4 Combined Data

Run 5 Combined Data

Simplex, 1 Controller

Dtag
POSIX Message Queues
Shared Memory
Monolithic

CMU/SEI-2000-TR-006 13

5.1 Monolithic Test Program

Table 3: Monolithic Test Program: Artifact Summary

Lines of Code 454

Cycle Time 0.02 seconds (50 Hertz)

Table 4: Monolithic Test Program: Time Data Summary
Observation Run #: 1 2 3 4 5 Comb.
Number of Observations 3411 3093 3102 3006 3005 15617
Minimum Cycle Time (µsec) 0.178 0.181 0.178 0.179 0.178 0.178

Mean Cycle Time 0.181 0.183 0.181 0.182 0.180 0.182

Maximum Cycle Time 0.213 0.217 0.215 0.217 0.240 0.240
Cycle Time Std. Dev. 2.35x10-6 2.58x10-6 2.61x10-6 2.37x10-6 1.86x10-6 2.57x10-6

Adjusted Max 0.213 0.217 0.215 0.217 0.240 –

Deadlines Missed 0 0 0 0 0 0

Figure 9: Data Distribution Graphs for the Monolithic Test Program

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−4 mon_98_07_08_data.m

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−4 mon_98_07_08b_data.m

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−4 mon_98_07_08c_data.m

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−4 mon_98_07_08d_data.m

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−4 mon_98_07_08e_data.m

T
im

e
(in

 s
ec

on
ds

)

Run 1 Run 2

Run 3 Run 4

Run 5

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−4 mon_98_07_08_data.m

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−4 mon_98_07_08b_data.m

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−4 mon_98_07_08c_data.m

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−4 mon_98_07_08d_data.m

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−4 mon_98_07_08e_data.m

T
im

e
(in

 s
ec

on
ds

)

Run 1 Run 2

Run 3 Run 4

Run 5

14 CMU/SEI-2000-TR-006

5.2 Shared-Memory Test Program

Table 5: Shared-Memory Test Program: Artifact Summary

Lines of code 839

Cycle Time 0.02 seconds (50 Hertz)

Table 6: Shared-Memory Test Program: Time Data Summary

Observation Run #: 1 2 3 4 5 Comb.
Number of Observations 3088 3147 3066 3071 3037 15409

Minimum Cycle Time
(µsec)

0.458 0.457 0.451 0.467 0.457 0.451

Mean Cycle Time 0.465 0.462 0.456 0.473 0.463 0.464

Maximum Cycle Time 0.676 0.655 0.651 0.652 0.656 0.676

Cycle Time Std. Dev. 6.36x10-6 4.71x10-6 5.23x10-6 6.09x10-6 6.17x10-6 7.92x10-6

Adjusted Max 0.546 0.542 0.505 0.564 0.514 –

Deadlines Missed 0 0 0 0 0 0

Figure 10: Data Distribution Graphs for the Shared-Memory Test Program

T
im

e
(in

 s
ec

on
ds

)

0 1000 2000 3000 4000
4

6

8
x 10

−4 sm_98_07_08_data.m

0 1000 2000 3000 4000
4

6

8
x 10

−4 sm_98_07_08b_data.m

0 1000 2000 3000 4000
4

6

8
x 10

−4 sm_98_07_08c_data.m

0 1000 2000 3000 4000
4

6

8
x 10

−4 sm_98_07_08d_data.m

0 1000 2000 3000 4000
4

6

8
x 10

−4 sm_98_07_08e_data.m

Run 1 Run 2

Run 3 Run 4

Run 5

T
im

e
(in

 s
ec

on
ds

)

0 1000 2000 3000 4000
4

6

8
x 10

−4 sm_98_07_08_data.m

0 1000 2000 3000 4000
4

6

8
x 10

−4 sm_98_07_08b_data.m

0 1000 2000 3000 4000
4

6

8
x 10

−4 sm_98_07_08c_data.m

0 1000 2000 3000 4000
4

6

8
x 10

−4 sm_98_07_08d_data.m

0 1000 2000 3000 4000
4

6

8
x 10

−4 sm_98_07_08e_data.m

Run 1 Run 2

Run 3 Run 4

Run 5

CMU/SEI-2000-TR-006 15

5.3 POSIX Message Queues Test Program

Table 7: POSIX MsgQ Test Program: Artifact Summary

Lines of Code 906

Cycle Time 0.02 seconds (50 Hertz)

Table 8: POSIX MsgQ Test Program: Time Data Summary

Observation Run #: 1 2 3 4 5 Comb.
Number of Observations 3148 3062 3051 3046 3215 15522

Minimum Cycle Time
(µsec)

0.540 0.527 0.527 0.523 0.538 0.523

Mean Cycle Time 0.546 0.533 0.533 0.531 0.544 0.538

Maximum Cycle Time 0.742 0.751 0.735 0.750 0.764 0.764

Cycle Time Std. Dev. 6.54x10-6 7.24x10-6 6.47x10-6 6.96x10-6 6.45x10-6 9.29x10-6

Adjusted Max 0.626 0.592 0.600 0.607 0.606 –

Deadlines Missed 0 0 0 0 0 0

Figure 11: Data Distribution Graphs for the POSIX Message Queues
Test Program

T
im

e
(in

 s
ec

on
ds

)

0 1000 2000 3000 4000
5

6

7

8

9
x 10

−4 posmq_98_07_08_data.m

0 1000 2000 3000 4000
5

6

7

8

9
x 10

−4 posmq_98_07_08b_data.m

0 1000 2000 3000 4000
5

6

7

8

9
x 10

−4 posmq_98_07_08c_data.m

0 1000 2000 3000 4000
5

6

7

8

9
x 10

−4 posmq_98_07_08d_data.m

0 1000 2000 3000 4000
5

6

7

8

9
x 10

−4 posmq_98_07_08e_data.m

Run 1 Run 2

Run 3 Run 4

Run 5

T
im

e
(in

 s
ec

on
ds

)

0 1000 2000 3000 4000
5

6

7

8

9
x 10

−4 posmq_98_07_08_data.m

0 1000 2000 3000 4000
5

6

7

8

9
x 10

−4 posmq_98_07_08b_data.m

0 1000 2000 3000 4000
5

6

7

8

9
x 10

−4 posmq_98_07_08c_data.m

0 1000 2000 3000 4000
5

6

7

8

9
x 10

−4 posmq_98_07_08d_data.m

0 1000 2000 3000 4000
5

6

7

8

9
x 10

−4 posmq_98_07_08e_data.m

Run 1 Run 2

Run 3 Run 4

Run 5

16 CMU/SEI-2000-TR-006

5.4 Data Tagged I/O Test Program

Table 9: Dtag Test Program: Artifact Summary

Lines of Code 885

Cycle Time 0.02 seconds (50 Hertz)

Table 10: Dtag Test Program: Time Data Summary
Observation Run #: 1 2 3 4 5 Comb.
Number of Observations 3122 3148 3113 3267 3888 16538

Minimum Cycle Time
(µsec)

0.681 0.699 0.704 0.696 0.716 0.681

Mean Cycle Time 0.687 0.708 0.713 0.707 0.726 0.709

Maximum Cycle Time 0.918 0.933 0.925 0.962 0.955 0.962

Cycle Time Std. Dev. 8.15x10-6 9.38x10-6 8.36x10-6 10.12x10-6 7.93x10-6 15.59x10-6

Adjusted Max 0.843 0.791 0.838 0.826 0.808 –

Deadlines Missed 0 0 0 0 0 0

Figure 12: Data Distribution Graphs for the Dtag Test Program

T
im

e
(in

 s
ec

on
ds

)

0 1000 2000 3000 4000
6

7

8

9

10
x 10

−4 dtag_98_07_08_data.m

0 1000 2000 3000 4000
6

7

8

9

10
x 10

−4 dtag_98_07_08b_data.m

0 1000 2000 3000 4000
6

7

8

9

10
x 10

−4 dtag_98_07_08c_data.m

0 1000 2000 3000 4000
6

7

8

9

10
x 10

−4 dtag_98_07_08d_data.m

0 1000 2000 3000 4000
6

7

8

9

10
x 10

−4 dtag_98_07_08e_data.m

Run 1 Run 2

Run 3 Run 4

Run 5

T
im

e
(in

 s
ec

on
ds

)

0 1000 2000 3000 4000
6

7

8

9

10
x 10

−4 dtag_98_07_08_data.m

0 1000 2000 3000 4000
6

7

8

9

10
x 10

−4 dtag_98_07_08b_data.m

0 1000 2000 3000 4000
6

7

8

9

10
x 10

−4 dtag_98_07_08c_data.m

0 1000 2000 3000 4000
6

7

8

9

10
x 10

−4 dtag_98_07_08d_data.m

0 1000 2000 3000 4000
6

7

8

9

10
x 10

−4 dtag_98_07_08e_data.m

Run 1 Run 2

Run 3 Run 4

Run 5

CMU/SEI-2000-TR-006 17

5.5 Simplex Test Program
Table 11: Simplex Test Program: Artifact Summary

Lines of Code 3413 (3 controllers)

Cycle Time 0.02 seconds (50 Hertz)

Table 12: Simplex Test Program: Time Data Summary, One Controller Included

Observation Run #: 1 2 3 4 5 Comb.
Number of Observations 3914 3934 3760 3732 3836 19176

Minimum Cycle Time
(µsec)

1.700 1.722 1.778 1.712 1.702 1.700

Mean Cycle Time 1.974 2.003 1.921 1.895 1.8945 1.939

Maximum Cycle Time 2.270 2.325 2.279 2.228 2.272 2.325

Cycle Time Std. Dev. 1.50x10-4 1.46x10-4 1.35x10-4 1.29x10-4 1.31x10-4 1.46x10-4

Adjusted Max 2.270 2.272 2.279 2.228 2.272 –

Deadlines Missed 0 0 0 0 0 0

Figure 13: Data Distribution Graphs for the Simplex Test Program: One
Controller Included

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−3 Simplex_99_11_17_data.m

(1 controller)

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−3 Simplex_99_11_17b_data.m

(1 controller)

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−3 Simplex_99_11_17c_data.m

(1 controller)

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−3 Simplex_99_11_17d_data.m

(1 controller)

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−3 Simplex_99_11_17e_data.m

(1 controller)

T
im

e
(in

 s
ec

on
ds

)

Run 1 Run 2

Run 3 Run 4

Run 5

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−3 Simplex_99_11_17_data.m

(1 controller)

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−3 Simplex_99_11_17b_data.m

(1 controller)

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−3 Simplex_99_11_17c_data.m

(1 controller)

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−3 Simplex_99_11_17d_data.m

(1 controller)

0 1000 2000 3000 4000
1.5

2

2.5
x 10

−3 Simplex_99_11_17e_data.m

(1 controller)

T
im

e
(in

 s
ec

on
ds

)

Run 1 Run 2

Run 3 Run 4

Run 5

18 CMU/SEI-2000-TR-006

Table 13: Simplex Test Program: Time Data Summary, Two Controllers Included

Observation Run #: 1 2 3 4 5 Comb.
Number of Observations 3914 3934 3760 3732 3836 19176

Minimum Cycle Time
(µsec)

2.092 2.172 2.174 2.160 2.174 2.092

Mean Cycle Time 2.728 2.812 2.705 2.577 2.717 2.709

Maximum Cycle Time 3.125 3.203 3.113 3.128 3.153 3.203

Cycle Time Std. Dev. 3.05x10-4 2.27x10-4 2.25x10-4 3.12x10-4 1.89x10-4 2.67x10-4

Adjusted Max 3.125 3.203 3.113 3.128 3.153 –

Deadlines Missed 0 0 0 0 0 0

Figure 14: Data Distribution Graphs for the Simplex Test Program:
Two Controllers Included

0 1000 2000 3000 4000
2

2.5

3

3.5
x 10

−3 Simplex_99_11_17_data.m

(2 controllers)

0 1000 2000 3000 4000
2

2.5

3

3.5
x 10

−3 Simplex_99_11_17b_data.m

(2 controllers)

0 1000 2000 3000 4000
2

2.5

3

3.5
x 10

−3 Simplex_99_11_17c_data.m

(2 controllers)

0 1000 2000 3000 4000
2

2.5

3

3.5
x 10

−3 Simplex_99_11_17d_data.m

(2 controllers)

0 1000 2000 3000 4000
2

2.5

3

3.5
x 10

−3 Simplex_99_11_17e_data.m

(2 controllers)

T
im

e
(in

 s
ec

on
ds

)

Run 1 Run 2

Run 3 Run 4

Run 5

0 1000 2000 3000 4000
2

2.5

3

3.5
x 10

−3 Simplex_99_11_17_data.m

(2 controllers)

0 1000 2000 3000 4000
2

2.5

3

3.5
x 10

−3 Simplex_99_11_17b_data.m

(2 controllers)

0 1000 2000 3000 4000
2

2.5

3

3.5
x 10

−3 Simplex_99_11_17c_data.m

(2 controllers)

0 1000 2000 3000 4000
2

2.5

3

3.5
x 10

−3 Simplex_99_11_17d_data.m

(2 controllers)

0 1000 2000 3000 4000
2

2.5

3

3.5
x 10

−3 Simplex_99_11_17e_data.m

(2 controllers)

T
im

e
(in

 s
ec

on
ds

)

Run 1 Run 2

Run 3 Run 4

Run 5

CMU/SEI-2000-TR-006 19

Table 14: Simplex Test Program: Time Data Summary, Three Controllers Included

Observation Run #: 1 2 3 4 5 Comb.
Number of Observations 3914 3934 3760 3732 3836 19176

Minimum Cycle Time
(µsec)

2.974 3.028 3.083 3.003 3.019 2.974

Mean Cycle Time 3.378 3.411 3.292 3.300 3.298 3.337

Maximum Cycle Time 3.720 3.835 3.729 3.745 3.743 3.835

Cycle Time Std. Dev. 1.96x10-6 1.88x10-6 1.81x10-6 1.75x10-6 1.75x10-6 1.90x10-6

Adjusted Max 3.720 3.835 3.729 3.745 3.743 –

Deadlines Missed 0 0 0 0 0 0

Figure 15: Data Distribution Graphs for the Simplex Test Program:
Three Controllers Included

0 1000 2000 3000 4000
3

3.5

4
x 10

−3 Simplex_99_11_17_data.m

(3 controllers)

0 1000 2000 3000 4000
3

3.5

4
x 10

−3 Simplex_99_11_17b_data.m

(3 controllers)

0 1000 2000 3000 4000
3

3.5

4
x 10

−3 Simplex_99_11_17c_data.m

(3 controllers)

0 1000 2000 3000 4000
3

3.5

4
x 10

−3 Simplex_99_11_17d_data.m

(3 controllers)

0 1000 2000 3000 4000
3

3.5

4
x 10

−3 Simplex_99_11_17e_data.m

(3 controllers)

T
im

e
(in

 s
ec

on
ds

)

Run 1 Run 2

Run 3 Run 4

Run 5

0 1000 2000 3000 4000
3

3.5

4
x 10

−3 Simplex_99_11_17_data.m

(3 controllers)

0 1000 2000 3000 4000
3

3.5

4
x 10

−3 Simplex_99_11_17b_data.m

(3 controllers)

0 1000 2000 3000 4000
3

3.5

4
x 10

−3 Simplex_99_11_17c_data.m

(3 controllers)

0 1000 2000 3000 4000
3

3.5

4
x 10

−3 Simplex_99_11_17d_data.m

(3 controllers)

0 1000 2000 3000 4000
3

3.5

4
x 10

−3 Simplex_99_11_17e_data.m

(3 controllers)

T
im

e
(in

 s
ec

on
ds

)

Run 1 Run 2

Run 3 Run 4

Run 5

20 CMU/SEI-2000-TR-006

CMU/SEI-2000-TR-006 21

6 Testing and Data Analysis Methodology

The systems tested for this report run in an open-ended fashion, performing an open-loop
control task repetitively until execution is terminated. For such systems, the total time of exe-
cution is of little interest or merit in describing the system, since the program runs for an arbi-
trary length of time.

The execution of the open-loop control systems tested can be characterized as a series of rela-
tively discrete and repetitive cycles. In the course of a single cycle, the system reads sensor
data from the controlled hardware, then performs calculations using the collected data, yield-
ing control values that are output to the hardware. The test programs execute a series of pro-
gram threads as a single cycle, whose specific constituents vary according to the scenario.
Resource consumption can be characterized by observing each cycle repetitively.

Using the cycle as the primary unit observation, the following dynamic measures are of inter-
est:

• computation time used in the cycle

• timeliness of cycle completion

In addition, a static measure is significant:

• creation effort

Benchmarks often aggregate observations at data collection times automatically by timing
multiple executions of a module in a test loop. This approach avoids the need for specialized
testing equipment by increasing the observation duration. The loop testing approach is insuf-
ficient for deadline-critical, real-time software since extreme values, particularly the worst-
case execution times, are of considerable interest.

Software tested for this report is structured in modules, which execute within independent
threads of control. The execution order of the threads is made predictable by the priorities
assigned to the individual threads. Measurements were collected for individual iterations at
selected points in the cycle. The measurement points are selected to allow the computation of
the cycle execution time as a whole and for the separate constituent threads. The observations
represent single cycles (or portions of individual cycles). The observations were logged and
aggregated after the test run. Then a statistical program (Matlab) was used to generate stan-
dard descriptive measures to characterize average, range, and extreme values.

22 CMU/SEI-2000-TR-006

6.1 Computation Time
Time values were recorded using a high-resolution timer. The timer was used as a stopwatch
to time individual passes through code segments. Timing stamps were read and logged, typi-
cally at the beginning and end of individual code modules.

The timing logic for the monolithic test program is extremely straightforward, with time-
stamps taken at the actuation and completion of each cycle. Duration of execution is com-
puted by a simple subtraction.

C
yc

le
 S

ta
rt

C
yc

le
 E

nd

����

�����	

������

���

�����	

������

Time measurementpoint

Slack Time

(write)(read)
Baseline Controller

Figure 16: Timing Points for a Typical Cycle of the Monolithic Test Program
A timer reading is logged at each of the vertical arrows.

The shared-memory, POSIX message queues, and Dtag test programs split the functional
code into two processes that interchange data. Timing is taken at the actuation and comple-
tion of each thread. For analysis purposes, the end-to-end cycle time (last time minus first
time) is used, as the communications overhead is of interest. Excluded from time calculations
are the slack times, when no task is active.

Phys I/O

Baseline
Controller

C
yc

le
 S

ta
rt

C
yc

le
 E

nd

����

�����	

������

���

�����	

������

Time measurementpoint

Slack Time

(read)(write)

Figure 17: Timing Points for a Typical Cycle of the Shared Memory,
POSIX Message Queues and Dtag Test Programs
A timer reading is logged at each of the vertical arrows. Note that the
Phys I/O process first outputs the control value previously computed.

CMU/SEI-2000-TR-006 23

Then fresh data is read from the pendulum. This differs from the
Monolith and Simplex test programs, where timing begins with the
reading of data from the pendulum.

Figure 18 shows time measurement points for a representative cycle in the Simplex test pro-
gram. Note that there are five major processes active during the test period. The two threads
with the highest priorities temporarily suspend themselves on a hardware timer temporarily to
allow the lower priority threads a chance to execute. If they awake before the lower priority
threads complete, the lower priority threads are marked as failing to meet their deadlines.
Note also that the safety controller is embedded in the decision module rather than being
placed in a separate thread.

System overhead, including the context switch between processes, is included in module exe-
cution time. Excluded in time calculations are the slack times, when no thread is active. Not
shown are several auxiliary threads that manage the communications links during dynamic
replacement of processes. (They are inactive during normal operation.)

Phys I/O
(read)

Complex
Controller

Baseline
Controller

Decision
Logic

C
yc

le
 S

ta
rt

C
yc

le
 E

nd

����

�����	

������

���

�����	

������

Time measurementpoint

Phys I/O
(write)

Safety Controller
Decision
Logic

Slack Time Slack Time

Figure 18: Timing Points for a Typical Cycle of the Simplex Test Program

A timer reading is logged at each of the vertical arrows. Task priority
is used to regulate the order of execution of the individual tasks that
make up the Simplex Test Program. The operating system will not in-
terrupt a high-priority task for a low-priority task, but-high-priority tasks
can suspend themselves for a period of time, allowing lower priority
tasks to run. When suspension period is complete, the operating sys-
tem will interrupt lower priority tasks, providing a simple mechanism to
terminate a runaway task.

Since the time values for all tests are collected from a separate hardware timer, they do not
depend on the operating system maintaining the system clock accurately.

24 CMU/SEI-2000-TR-006

6.2 Timing Overhead
Time observations require reading the real-time clock and storing the time value in memory.
An event logging facility, previously written for debugging Simplex applications, was em-
ployed for this purpose.3 As a check on the overhead imposed by this process, each test in-
cluded a simple timing calibration test. A pair of timing statements was inserted back-to-
back, without any intervening statements. The difference between the observed times gives a
rough idea of timing overhead. However, the overhead values are not constant, as can be seen
from Figure 19. Instead, the values varied from observation to observation and from run to
run.

3 Timing values are read from memory and formatted for disk storage after the observation period.

This post-processing does not contribute to the estimated timing overhead.

CMU/SEI-2000-TR-006 25

 Figure 19: Timing Overhead Data

At the top, timing overhead for each data set from the five test pro-
grams is overlaid, showing the variability among test programs. Be-
low, the data for all five runs of each test program are overlaid to
show variability among individual test runs.

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 combined_overhead_a

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 combined_overhead_b

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 combined_overhead_c

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 combined_overhead_d

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 combined_overhead_eCombined Overheads Run 5

Combined Overheads Run 4Combined Overheads Run 3

Combined Overheads Run 2Combined Overheads Run 1

T
im

e
(in

 s
ec

on
ds

)

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 combined_overhead_a

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 combined_overhead_b

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 combined_overhead_c

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 combined_overhead_d

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 combined_overhead_eCombined Overheads Run 5

Combined Overheads Run 4Combined Overheads Run 3

Combined Overheads Run 2Combined Overheads Run 1

T
im

e
(in

 s
ec

on
ds

)
0 1000 2000 3000 4000

0.5

1

1.5

2
x 10

−4 mon_overhead

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 sm_overhead

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 posmq_overhead

0 1000 2000 3000 4000
0.8

1

1.2

1.4
x 10

−4 dtag_overhead

0 1000 2000 3000 4000
0.8

1

1.2

1.4

1.6
x 10

−4 Simplex_overheadSimplex Overhead Runs 1-5

Dtag Overhead Runs 1-5POSIX Msg. Queues Overhead Runs 1-5

Shared Memory Overhead Runs 1-5Monolithic Overhead Runs 1-5

T
im

e
(in

 s
ec

on
ds

)
0 1000 2000 3000 4000

0.5

1

1.5

2
x 10

−4 mon_overhead

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 sm_overhead

0 1000 2000 3000 4000
0.5

1

1.5

2
x 10

−4 posmq_overhead

0 1000 2000 3000 4000
0.8

1

1.2

1.4
x 10

−4 dtag_overhead

0 1000 2000 3000 4000
0.8

1

1.2

1.4

1.6
x 10

−4 Simplex_overheadSimplex Overhead Runs 1-5

Dtag Overhead Runs 1-5POSIX Msg. Queues Overhead Runs 1-5

Shared Memory Overhead Runs 1-5Monolithic Overhead Runs 1-5

T
im

e
(in

 s
ec

on
ds

)

26 CMU/SEI-2000-TR-006

As shown in Table 15, timing overhead is a substantial proportion of the total observed time
for most test series. Since most of the test series contained extra timing statements to capture
process times, the base timing figure is multiplied by the number of timing observations
made.4

Table 15: Timing Overhead as a Percentage of Total Time

Observation Run Monolithic
Shared

Memory
Msg.

Queues Dtag
Simplex
(1 Cont.)

Mean Value (µsec) 181.6 463.7 537.6 708.9 1939.0

Overhead Mean Value 90.77 94.64 97.99 99.85 85.19

Overhead % 49.99 20.41 18.23 14.08 4.39

Overhead % x 3 61.23 54.69 42.26 13.18

Timing Overhead % 49.99 61.23 54.69 42.26 13.18

Figure 20 shows the relationship between timing overhead and the total observed times for
the first data set for each of the test runs. When more than a single pair of timing statements
was included in a test run, a third line shows the adjusted values (three times the observed
value).

4 Timing statements either form bookends at the ends of the observed period (if they are used to

compute the elapsed time) or are embedded inside the code. Embedded timing statements are
considered to consume the average time for a timing observation while bookend statements are
considered to consume one half the average time (since part of the timing statement execution
falls outside the observed period). Timing statements outside the observed period are ignored.

CMU/SEI-2000-TR-006 27

0 1000 2000 3000 4000
0

0.5

1

1.5

2

x 10
−4 mon_98_07_08_data.m

0 1000 2000 3000 4000
0

2

4

6

8
x 10

−4 sm_98_07_08_data.m

0 1000 2000 3000 4000
0

2

4

6

8

x 10
−4 posmq_98_07_08_data.m

0 1000 2000 3000 4000
0

0.5

1
x 10

−3 dtag_98_07_08_data.m

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5
x 10

−3 Simplex_99_11_17_data.m

(1 controller)

Figure 20: Timing Overhead as a Proportion of the Observed Data for the First
Run of Each Test Program
The observed time from back-to-back timing statements is graphed
with the corresponding raw data. The lower line is the timing overhead
while the top line is the (unadjusted) raw time. The middle line, where
present, is three times the timing overhead value and represents the
number of timing values in the test run. Note that for the Simplex data,
the timing overhead is computed using the end time from the prior cy-
cle, so the overhead cannot be computed for the first cycle.

28 CMU/SEI-2000-TR-006

If the average timing overhead is subtracted from the data, Figure 7 can be redrawn with the
revised data as Figure 21:

Figure 21: Time Versus Communications Complexity Adjusted for Timing
Overhead
Communications complexity increases from left to right while the ver-
tical axis shows time. The lines show, from bottom to top: minimum,
mean, adjusted maximum, and maximum value for all data values for
each test series.

Since the estimated timing overhead is a relatively smaller proportion of the Simplex test se-
ries, the adjusted graph shown in Figure 21 shows that Simplex has a somewhat higher over-
head when the cost of observing the program is factored from the data. However there is no
way to prove that the overhead computed from the back-to-back timing observations accu-
rately reflects the timing overhead incurred during the operational portion of the program.
Instead, experience suggests that these two values may be significantly different. For in-
stance, in other benchmarking tests (run on different hardware) the overhead value obtained
by benchmarks using back-to-back timing observations depended critically on the location of
code in memory.5

6.3 Timely Completion
Real-time software must meet specific timing goals; an overrun deadline represents a serious
error. The tested software checks for failure to meet deadlines and logs any deadline over-
runs. No deadline overruns were observed.

5 Altman, Neal & Weiderman, Nelson. “Timing Variation in Dual Loop Benchmarks.” Ada Letters

VIII, 3, (May/June 1988): 98-106.

Monolithic Shared Memory Msg. Queues Dtag Simplex 1 Cont.
0

0.5

1

1.5

2

2.5
x 10

−3 Time Range Less Avg. Timing Overhead (T
min

/T
mean

/T
adj

max

/T
max

)

Maximum

Adjusted Maximum

Minimum

Mean

T
im

e
(in

 s
ec

on
ds

)

Monolithic Shared Memory Msg. Queues Dtag Simplex 1 Cont.
0

0.5

1

1.5

2

2.5
x 10

−3 Time Range Less Avg. Timing Overhead (T
min

/T
mean

/T
adj

max

/T
max

)

Maximum

Adjusted Maximum

Minimum

Mean

T
im

e
(in

 s
ec

on
ds

)

CMU/SEI-2000-TR-006 29

6.4 Creation Effort
There are many ways to measure software development effort. The test software used exist-
ing source code where development effort was not specifically recorded. Since the Simplex
source was developed originally to test Simplex concepts and methods, time spent in devel-
opment would not accurately reflect a normal engineering effort. Instead, the code artifact
itself was used to measure creation effort.

Line-of-code measures were taken on the tested code. Code for this study was written in C
and C++; only code written specifically to implement the Simplex and Comparison systems
were included in the counts. Library and support code was included in the count when written
specifically for the Simplex software. Standard and purchased library code was not included.
The count differentiates between white space (blank lines), comments, and executable code.
Executable code includes declarations and statements, and the code was counted by line and
by terminator (semicolon).

For purposes of summary reporting, we used a measure defined as the total count of code
lines and comments, excluding blank lines. Comments were included in the code count using
the logic that their generation is an important part of properly structured programs and that
the original creators did not receive any incentive to increase code size through large num-
bers of comments.

30 CMU/SEI-2000-TR-006

CMU/SEI-2000-TR-006 31

7 Discussion and Conclusion

In this paper, an evolutionary sequence of programs was tested to benchmark the overhead
required to support the application of the Simplex paradigm to an open-loop control problem.
In a sense, the test series was constructed by devolution, since a working Simplex artifact
was simplified by the reduction of communications capabilities to provide the less complex
programs. Since the programs were dependent on system software services as well as the un-
derlying hardware for many features, the specific time values observed apply only to the
tested systems. What is more interesting is that the flexibility that Simplex provides can be
implemented at a cost (in the test series) of an order of magnitude. Comparing the simplest
monolithic test program, Simplex consumes 10.7 times more time to perform the control task.
This appears to be high, but bear in mind that the control task undertaken in the test was a
simple one. For more complex applications, where the program performs significant process-
ing, the Simplex overhead will be a much smaller proportion of the total processing time.

32 CMU/SEI-2000-TR-006

CMU/SEI-2000-TR-006 33

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Ser-
vices, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Man-
agement and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

September 2000
3. REPORT TYPE AND DATES

COVERED

Final
4. TITLE AND SUBTITLE

Simplex Architecture Performance and Cost

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Mike Gagliardi, Theodore Marz, Neal Altman, John Walker

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2000-TR-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2000-006

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The Simplex Architecture facilitates the building of dependable and upgradable real-
time systems. Before using the technology, potential users want to know more about the
costs of adopting the Simplex paradigm compared to the benefits gained by using it.
This paper examines Simplex performance and the costs associated with its use.

15. NUMBER OF PAGES

43

14. SUBJECT TERMS

benchmark, performance, real-time control,
Simplex Architecture
 16. PRICE CODE

17. SECURITY

CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY
CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

	Simplex Architecture Performance and Cost
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Data Collection and Analysis Strategy
	3 Test Software Summary
	4 Summary of Results
	6 Testing and Data Analysis Methodology
	5 Detailed Results
	7 Discussion and Conclusion

