

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 06.10.2022

[Distribution Statement A] Approved for public release and unlimited distribution.

A BRIEF INTRODUCTION TO THE EVALUATION
OF LEARNED MODELS FOR AERIAL OBJECT
DETECTION
Eric Heim
May 2022
[Distribution Statement A] Approved for public release and unlimited distribution.

1 Introduction

Satellites equipped with imaging sensors represent key assets for intelligence, surveillance, and
reconnaissance (ISR) missions. However, the shear volume of data that can potentially be
gained from tasking these assets can quickly become too much for humans to manually con-
sider in its entirety. It is for this reason that automated systems for analyzing satellite im-
agery are vital to aid human analysts in the process of extracting actionable information from
satellite imagery.

One of the most promising tools for automation is machine learning (ML). ML has shown
great success in making accurate inferences from imagery in a number of collection contexts,
such as medical imaging [17], and vision for autonomous vehicles [21]. As such, it stands to
reason that machine learning models and methods that have been successful in other collec-
tion contexts can be used on images taken from above. Indeed, there have been a number of
public success stories of using machine learning to make accurate inferences on satellite im-
ages. Problem domains ranging from humanitarian and disaster relief [57] to agriculture plan-
ning [13] have benefited from ML-based computer vision systems.

The utility of using machine learning on satellite imagery motivates the development of sys-
tems that incorporate machine learned models as core components to analysts workflows. This
goal of this document is to provide a small part of the necessary practical guidance to develop
such models. To survey the current knowledge on this topic and distill it into practical guid-
ance is a daunting task. In order to provide a more focused guide, we scope this work in a
number of ways. We focus on object detection - the abstract task of locating the position of
objects within an image as well as what category of objects they belong to. We choose this
problem for a number of reasons. First, many ISR tasks can be posed as object detection
tasks. For example, detecting specific land vehicles, sea vessels, equipment, and people from
satellite imagery can all be posed as an object detection tasks. Even if the ISR mission de-
mands more sophisticated reasoning over objects, many of the principles of object detection
apply. Second, object detection is one of the more mature fields of modern machine learning
in the image domain. As a result, there is a considerable amount of prior work to draw from
in order to build accurate object detection models.

We also focus this work on the evaluation of object detection models (or object detectors).
Namely, we focus on 1) a sampling of characteristics of object detectors that are important to
evaluate, 2) a sampling of common metrics for the evaluation of object detectors, 3) how to
identify and define evaluation criteria for important use cases, and 4) how to map object de-
tector characteristics and use cases to metrics in order to evaluate object detectors in specific,
measurable ways. Because evaluation naturally occurs after data is collected and detectors
are learned, we must necessarily touch on details related to relevant to both of these topics as
well. Our goal is not to provide a comprehensive treatment of these topics. Rather, we aim to
provide basic information as a means to understand some of the unique considerations when
designing, learning, and evaluating object detectors, and supplement it with references to al-
low readers avenues to explore in greater depth.

The remainder of this guide proceeds as follows. In Chapter 2 we formally define the object
detection problem, discuss modern approaches for learning object detection models, and pro-
vide some practical insights on what the formalisms mean for satellite imagery. In Chapter 3,
we discuss practices for evaluation of object detectors, including methodology, metrics, and
how to map these to meaningful notions of detector performance. In Chapter 4, we showcase
some of these topics in practice by showing the results of an evaluation of object detection
models on aerial imagery. Finally, in Chapter 5 we conclude with a summary of practical in-
sights explored in the document, and provide a brief survey in open topics in object detection.

1
[Distribution Statement A] Approved for public release and unlimited distribution.

2 Object Detectors for Aerial Imagery

Object detection is a supervised learning problem, meaning, one in which a model learns to
accept an input and map it to a corresponding output. Formally, the goal of supervised learn-
ing is to find a model f : X 7→ Y, where X is a domain of inputs, and Y is a domain of
outputs. More specifically, it is assumed that there exists a distribution P over X and Y for
which pairs (x, y) can be drawn. An entirely successful model is able to take any input x ∈ X
and output the corresponding output y ∈ Y that is its pair as drawn from P . Commonly, x
is called an instance, y is called a label, and the process of applying f to an instance to get an
output (i.e. f(x)) is called inference. Supervised learning is used in cases where the direct re-
lationship between instances and labels is not known a prioi (equivalently, P is not known a
priori). Because the mapping between the two is not known, supervised models are built from
data, specifically examples of pairs (x, y) ∼ P . The process of building a model from data
is called training, and the data used in the process is called training data. Even though the
model is trained using a finite amount of data, the model is meant to generalize, meaning it is
able to infer the correct label when given any instance (i.e. ∀(x,y)P̃ f(x) 7→ y) even if (x, y) is
not in the training data. Supervised learning encapsulates a number of machine learning prob-
lems, and is given a deeper formal treatment in a number of introductory texts [3, 30, 24].
Object detection is a uniquely defined by its input and output domains. In object detection in-
puts are images and outputs are the location and class of objects within the image. In the fol-
lowing sections, we describe what this means more specifically. Along the way, we will discuss
the role of data in training and inference, details on the practice of training and performing
inference with an object detector, and relevant prior work.

2.1 Object Detection Preliminaries

While there are substantial differences between object detection methods, there are many
details that are common among almost all modern detectors. Broadly, there are three main
design decisions when building an object detector. First, the function f , typically called the
model or in this case the detector, is assumed to take some form with free parameters to be
set via the process of training. Choosing the basic form of the model is an important design
decision that influences how well a trained model will perform on a task. Second, training
must be guided by some quantifiable measure of success for the training task called an ob-
jective function. Informally, the objective function defines the criteria used by a training al-
gorithm to determine how to adjust a model’s parameters to result in the “best” model. Fi-
nally, a training algorithm takes a model form, an objective, and training data and outputs a
trained model. Grounded in these core concepts, the remainder of this section is dedicated to
providing details in the practice of training and using object detectors.

2.1.1 Data: Aerial Imagery and Object Labels

Because object detection is defined by the inputs and outputs of the problem, a good starting
place for discussion is with data. For object detection performed on aerial satellite imagery
we assume that the domain of instances are images, captured within certain spectral bands.
Common imaging bands include standard red, blue, and green bands for visual imagery, as
well as versions of infrared including near, mid, far, and thermal infrared [60]. In addition,
other bands, such as those from hyperspectral imaging sensors [10], can also be used. While
we forgo discussions of special considerations for sensing in different spectral bands (prepro-
cessing, transformation, noise correction, etc.), we make the assumption going forward that
images are represented by a grid of pixel measurements per band. As such, an instance is de-
fined as x = x ∈ X = Rn×m×d. Here, an instance x is a tensor of real numbers that represent

2
[Distribution Statement A] Approved for public release and unlimited distribution.

an image that is n pixels long, m pixels wide, and captured at d bands. For instance, if we
want to learn an object detector that is able to identify objects in 1080p visual imagery, we
can assume that a data instance comes in the form of a 1920×1080×3 tensor of floating point
numbers (see Fig 2.1).

Figure 2.1: Left: Standard visual image (Image Credit: RarePlanes Data Set [61]). Right:
Same image, but represented as a n×m× 3 tensor.

The labels in object detection problems come in the form of a number of bounding boxes that
describe the location of object in an image and class labels, which describe the category of
each object. Together, a bounding box and it’s class label make a labeled bounding box. For-
mally a single labeled bounding box is a pair defined as y ∈ Y = {B × C}. The bounding
box, b ∈ B, is defined by four coordinates b = (x1, y1, x2, y2), such that x1, x2 ∈ [0, n], and
y1, y2 ∈ [0,m]. These coordinate specify top-left and bottom-right pixels of the bounding
box. Intuitively, the object that the bounding box is annotating is meant to be fully contained
within the “box” designated by these coordinates. Other forms of bounding boxes also can be
used, such as those designating the center pixel of an object and the length and height of the
bounding box. Bounding boxes can even be oriented, as to incorporate rotation of objects rel-
ative to the axes of the image [69]. A class label is defined as c ∈ C, where C is a set of classes
in which the model is trying to categorize objects. For instance, if you wish to detect trucks,
boats, and people from aerial imagery, then C = {truck, boat, person}. Note that C, the set
of classes, defines what is meant to be detected as objects. Any class of objects not in C do
not have corresponding training data in order for the model to learn how to detect, and thus
will not be detected by the model. So, if C = {truck, boat, person}, the model will not be
trained to detect other objects in images such as airplanes or buildings, even if they appear
in images. This is known as the closed world assumption, and is common among supervised
learning problems.

Three final notes about data. First, labeled bounding boxes obtained for the purpose of train-
ing or evaluation are typically called ground truth, as they represent the “true” output in
which a detector is meant to mimic. By contrast, labeled bounding boxes obtained via infer-
ence from the model being trained or evaluated are often called predictions. This is an impor-
tant distinction as both training and evaluation is dependent on comparing ground truth to
predictions. Second, it is important to note that the one-to-many nature of of object detection
is somewhat unique among supervised learning problems. Namely, a single image can have
many labeled bounding boxes. It is more typical in supervised learning problems that each
instance has a fixed number of labels. This is one reason why object detection is a complex
problem. Third, there is a practical challenge with obtaining data to train and evaluate an ob-
ject detector. Sensors need to be tasked to obtain images. Images then often need to be trans-

3
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 2.2: An example of an image, annotated with labeled bounding boxes (Image Credit:
RarePlanes Data Set [61]). For example, the object in the upper right is labeled as being a
member of the “Military fighter/interceptor/attack” class. The location of the object is defined
by the upper-left, (x1, y1), and bottom-right, (x2, y2), coordinates of a bounding box.

mitted from the sensing platform to a specialized computing platform. In some settings this
is not a major roadblock. However, obtaining ground truth often is. The most popular way of
obtaining labels is to task human annotators to provide them. Considering most benchmark
data sets for object detection start at thousands of images, and potentially tens of labeled
bounding boxes per image, this can be costly in terms of time, money, and/or human capi-
tal, especially if labeling requires humans with specific domain expertise. As such, much of the
effort in building production-quality object detectors is in obtaining, curating, preproccessing,
and managing data.

2.1.2 Processing and Additional Object Detector Inputs

The quality of training data is perhaps the most influential factor in the success of training
a supervised model. However, for complex problems, such as aerial object detection, it is dif-
ficult to practically obtain training data that encapsulates all possible scenarios in which a
detector is meant to be used on. For this reason another important design decision is the
choice of data augmentation. Data augmentation refers to the process of transforming train-
ing data as a means to expand the variation of instances used during training. Common forms
of augmentation for images include randomly cropping, rotating, and/or flipping images be-
fore training. These kinds of manual augmentations can be understood as simulations of natu-
ral variations that can be present in the data. For example, it is possible that an image could
be taken while the satellite is in a different orientation relative to the Earth. Rotating an im-
age can effectively simulate this phenomenon. Another way of understanding augmentations
is that they aim to reduce the influence of certain image characteristics, such as rotation, on
a detector. Including images rotated randomly forces the detector to learn objects without
considering their orientation. Similarly, augmentations such as adjusting blur, discoloration,
and brightness simulate sensor noise. Even further, learned data augmentations [14, 76] can
be used to alleviate the burden of manually defining augmentations such as those listed above.
Finally, domain specific data augmentations exist. For instance, augmentations that remove
cloud cover [18] have been developed to denoise both data for training as well as data in-
stances before inference. Many of these techniques significantly improve object detector per-
formance, and should be considered when training a object detector.

To do proper localization, object detectors must predict not only the location of objects in the

4
[Distribution Statement A] Approved for public release and unlimited distribution.

image, but also their size and aspect ratios (width, and height). Without given prior knowl-
edge, the learned object detectors are forced to learn size and aspect ratio of objects from
data alone, which can often be a difficult task. Fortunately, in many tasks, the size and shape
of objects is relatively constrained. In aerial object detection, for example, it is rare that an
object would take up the majority of the entire image frame. Similarly, larger aircraft would
naturally require bigger bounding boxes than objects such as people. Given that such domain
specific knowledge is almost always known to some degree, it makes sense to provide it to the
detector. To accomplish this, object detector are often given anchor boxes as inputs. Anchor
boxes are predefined boxes of different sizes and aspect ratios that can reflect prior knowledge.
Anchor boxes can be class specific in cases where the size and aspect ratio can be constrained
differently for individual classes, and spatially influenced if it size and aspect ratio is depen-
dent on location within the image. Both object detectors we will discuss later, as well as many
other modern ones, utilize anchor boxes by predict bounding box coordinates relative to an-
chor box coordinates, instead of in terms of absolute coordinates in the image. This way, ob-
ject detectors have some guiding information as to how to localize objects.

2.1.3 Neural Network Details

Modern object detectors are neural network based. More specifically, most utilize models that
can be categorized as Convolutional Neural Networks (CNNs) 1. CNNs are a series shift-
invariant linear transformations, each followed by a nonlinear function, organized into lay-
ers that feed into each other to form a network. Intuitively, the outputs of each layer of the
CNN defines a feature representation of an input image. By training the parameters of a CNN
(the weights, and sometimes the biases, of the linear transformations) to optimize an objec-
tive function, one is effectively learning representations of the input that is most amenable to
a learning task. Individual CNNs are defined by their architecture, the structure that defines
how many transformations are to be performed and how they are organized to feed into one
another. Different object detection methods are characterized in part by how they use CNNs
within their model, and the architectures of those CNNs. These decisions influence both the
ability of the detector to provide accurate predictions, but also the run time of training and
inference procedures (e.g. more layers means more parameters, which often means a more ex-
pressive model, but also often means longer run time to train and perform inference).

The specific CNN architecture used by object detectors is somewhat independent from other
design decisions or even the detection task itself. As such, the network used to perform ini-
tial feature extraction in an object detector, called a backbone network, has received special
attention. Many older models can be improved by simply replacing the backbone network
with ones based on advances in neural network based representation learning. For instance,
the first object detectors used traditional CNN backbones such as AlexNet [37]. But, archi-
tectural advancements such as Residual Networks (ResNets) [31], Feature Pyramid Networks
(FPNs) [41], and Visual Transformers (ViTs) [40] have each seen wider usage as they have
been introduced. Indeed, many improvements in object detectors over the last decade can be
partially attributed to the act of taking older methods and updating their backbone networks.
Finally, on a practical note, it is common practice to pre-train a backbone network on a large
publicly-available data set such as ImageNet [15]. Pretraining is the process of training a neu-
ral network on an auxiliary data set and task before training it for a desired task. Intuitively,
this allows the backbone to be able to represent imagery at an abstract level, and thus provid-
ing a good starting point for more task specific training.

By far the most common training algorithms used to train neural network models are based in
gradient descent2. Gradient descent algorithms are those that take repeated steps in the oppo-
site direction of the gradient of the objective function with respect to the model’s free param-

1More information on CNNs can be found in Chapter 9 of [25]
2See 9.3 of [7] and Chapter 4 of [25] for a more rigorous treatment of gradient descent

5
[Distribution Statement A] Approved for public release and unlimited distribution.

eters, and use this information to update the the values of the model parameters. In practice,
gradients are computed using small subsets of the training data called mini-batches. In mini-
batch gradient descent subsets of training data are selected at random to take gradient steps,
until convergence, which corresponds to some notion of finality to the training procedure, such
as failure to improve the objective function value over a number of successive steps. Different
gradient descent algorithms are characterized how they use gradient information in iterative
steps, in addition to parameters unique to the training algorithm often called optimization
hyperparameters3. Because the complexity of neural network models, the exact relationships
between different gradient descent algorithms and common object detection models and objec-
tives is not well understood. As such, the type of gradient descent algorithm used, and it’s hy-
perparameters are often chosen by empirical success. A good starting point for understanding
what training algorithms to use to train an object detector is the original works that propose
them, as they will likely have achieved a level of empirical success training their model for a
detection task.

2.1.4 Interpreting and Post-processing Object Detector Outputs

Ultimately, the vast majority of neural network based object detectors will produce a num-
ber of outputs per image, each corresponding to a prediction of the location and class of an
object. A single prediction from a detector consists of two parts: A predicted bounding box b̂,
that is a 4 dimensional vector representing the location of the bounding box, and a class con-
fidence vector ĉ ∈ R|C|. The class confidence vector has an element corresponding to each of
the possible object classes. Higher values of elements corresponding to a class indicate that
the model is more “confident” that the bounding box contains an object of that class. In
practice, elements of the class confidence vectors are typically constrained be in in the range
[0,1]. They can further be constrained such that all elements sum to 1. With the additional
constraint the class confidence scores can be interpreted as a joint probability of class mem-
bership of the object contained in the corresponding bounding box. Without the additional
constraint the class confidence scores can be interpreted as independent probabilities of class
membership. Since objects are assumed to belong to a single class4, it is often useful to dis-
till class confidence vectors to a single predicted class for the predicted bounding box. Most
commonly, the class whose element in the confidence vector is the highest is assumed to be
the predicted class. In cases where all class confidences are low, a detector can reject its cor-
responding bounding box as background. In practice, this means defining a class confidence
threshold that is used during training and inference to determine what is not kept as a pre-
diction. The remaining predicted bounding boxes and a predicted classes represent definitive
statements from the detector to be interpreted as “The model predicts the presence objects
contained in these bounding boxes that are members of these classes”.

It is potentially beneficial to use confidence vector values less coarsely than as a means to re-
ject bounding boxes and determining single class predictions. If an object detector is intended
to be deployed in settings where it will inform human decision making, the confidence values
provide strictly more information than definitive statements about class membership. For in-
stance, if a detector outputs a single value that is much higher than the others, then a human
may be able to more confidently make decisions based on the model’s prediction of that class.
Conversely, if it outputs many elements with similar values without a single one being sub-
stantially higher than the rest, then a human may need to consider that the object could be-
long to one of numerous classes. It is practically important for the designer of the detector (or
the designer of the larger software system in which the detector resides) to understand how to

3See Chapter 8 of [25] for more information of variations of gradient descent and their parameterizations
4We consider the multi-classification setting in this work as it is by far the most common. If a single object can

belong to many object classes, this is known as multi-label classification, and has its own considerations and lines of
work [46, 56]. Most of the topics discussed throughout this document are still relevant to multi-label classification, but
with slight variation.

6
[Distribution Statement A] Approved for public release and unlimited distribution.

interpret the outputs of an object detector with respect to how it is going to be used. This in-
cludes whether the confidence values are going to be used simply as a means for determining
predictions, whether there is some post-processing that must be done to the detector outputs
in order to be used by other systems, and/or how to visualize the outputs of the detector in
order to satisfy an application need.

While the overwhelming majority of work in object detection assumes predicted bounding
boxes and classes to take the aforementioned form, there are variations of common object
detectors that are probabilistic in nature [19]. These approaches are characterized by their
models that produce probability distributions over class and bounding box outputs. These
techniques include Bayesian Neural Networks (BNNs) such as Monte Carlo Dropout [20]
and Weight Uncertainty Neural Networks [4], Deep Ensembles [39], and direct modeling ap-
proaches such as Loss Attenuation [35]. The first two learn detectors that themselves are dis-
tributions one can sample from. For instance, you can perform inference using a BNN to get a
sample class confidence vector and bounding box from the model. If many samples are taken,
then statistical measures can be computed such as means and covariances. Direct modeling
on the other hand, attempts to learn means and covariances directly. In this case, inference
in direct models will not output samples from a distribution but the means and covariances
over class confidence vectors and bounding boxes for a given image. In either case, the means
of these models can be interpreted in the same way as the outputs of a non-probabilistic ob-
ject detector. The practical benefit is in the additional covariance outputs. These covariances
can be used to describe uncertainty in predictions. For instance, if a coordinate in a predicted
bounding box has high variance, the model can be interpreted being uncertain in the position
of that coordinate. Similarly, if a class vector output has high variance, it can be interpreted
as the model being uncertain in it’s predicted probability of the object being that class. Like
with class confidence vectors, uncertainty produced in this way can be used to inform decision
making. Humans may be more hesitant to take action based on predictions with less certainty,
and may seek alternative methods to gain the information they need to make decisions. For-
tunately, almost all common object detectors can be made into probabilistic models, using the
techniques referenced above. Sometimes probabilistic variants of non-probabilistic models suf-
fer drawbacks such as increased training or inference time, and minor detection performance
degradation. In Chapter 4 we show an empirical evaluation of probabilistic and standard vari-
ants of a model for comparison.

Both the post-processing and the evaluation of object detectors require a way of determin-
ing how “similar” two bounding boxes are. A common metric for this is Intersection over
Union (IoU). Let A be the set of pixels contained in one bounding box, and B be the pixels
contained in a second bounding box. The intersection over union is defined as:

IoU (A,B) = |A ∩ B|
|A ∪ B|

(2.1)

Intuitively, the IoU counts the number of pixels in common between the two bounding boxes
and divides it by the total number of pixels between the two boxes (not double counting those
in common). IoU is 1 when the two bounding boxes are identical, and 0 when they contain
no overlap. Generalized IoU (GIoU) [55] has also been proposed as a means to additionally
measure how far apart bounding boxes are. For instance, if two bounding boxes have no over-
lap but are close together, they will have a higher GIoU than ones with no overlap and are far
apart.

Often object detectors predict individual bounding boxes without reference to other bounding
boxes it has predicted for the same image. For this reason object detectors can output many,
seemingly redundant bounding boxes that are all in the same spatial region. This issue is
most commonly handled by a post processing step called Non-Maximum Suppression (NMS).
Briefly, NMS is an algorithmic procedure that selects a subset of predicted bounding boxes
from a group, taking into account 1) The highest class confidence of each prediction and 2)

7
[Distribution Statement A] Approved for public release and unlimited distribution.

The IoU between a bounding box and others within a group. NMS will select only the most
confident predictions that are most dissimilar to others within the group. Determining thresh-
olds for how dissimilar bounding boxes have to be in order to be selected is a problem spe-
cific task. Problems where objects are more close together should have NMS thresholds such
that more predictions are selected. As an alternative to the hard thresholding of NMS, Soft-
NMS [6] has been proposed. Soft-NMS reduces the confidence of predicted labeled bounding
boxes proportional to the IoU it has with others. As a result, no predicted bounding boxes are
removed entirely, but their confidence in being any of the object classes can be reduced to the
point that the box can be safely considered to not contain an object.

2.2 Two Illustrative Approaches to Object Detection

To further ground the previously introduced concepts, we will briefly discuss two proposed
object detectors: Faster R-CNN [54] and RetinaNet [42]. These two methods represent an ex-
ample of each of the two most prevailing approaches to neural network based object detection.
Faster R-CNN is a two-stage detector, where a localization model is first used to down-select
a dense set of candidate bounding boxes, and then those candidate boxes are classified and
refined using a second model. Conversely, RetinaNet is a single stage detector, where there
is a single model that accepts the dense set of candidate boxes and performs both classifica-
tion and localization in tandem. Broadly, two-stage detectors achieve better empirical perfor-
mance in terms of detection accuracy, but single-stage detectors perform inference faster [34].
Much of the research on both single and two-stage detectors aim to close the gap between
the two. Also note that while most two-stage detectors are direct descendants of the original
two-stage detector, R-CNN, there have been a wide variety of single stage detectors, such as
YOLO [50, 51, 52, 5], SSD [45], and EfficientDet [62]. These other detectors were developed
by different research groups and have significant differences in methodology. We chose to focus
on Faster R-CNN and RetinaNet as illustrative examples that are still in widespread usage to-
day, but note that more recent detectors build off these by making use of advances in machine
learning research, such as new neural network architectures and objective functions.

2.2.1 Faster R-CNN

Faster R-CNN is the result of improvements on the Fast R-CNN [22], which in turn is a re-
sult of improvements on Regions with Convolutional Features (R-CNN) [23]. Briefly, Faster
R-CNN uses a Region Proposal Network (RPN) in the first phase of the model to produce
representations of regions that may contain objects from an image. These are passed to a clas-
sification network that classifies each proposed region as one of the predefined object classes.
See Figure 2.3 for a diagram of the neural network architecture used in Faster R-CNN.

The key improvement of Faster R-CNN over predecessors is the RPN. In previous iterations
of R-CNN, object proposals were found using an algorithm called selective search [64], which
was decoupled from the classification model entirely. The RPN (Figure 2.4) is a convolutional
neural network that shares parameters with the classification network, allowing both models
to be trained using the same training procedure. More specifically, an image is passed through
a small initial CNN. The initial CNN produces representations for overlapping regions of the
image called sliding windows. For each sliding window representation and each anchor box,
the RPN produces two outputs: 1) An objectness score pi ∈ [0, 1] predicting whether the
anchor box i centered in the window contains an object or not, and 2) bounding box offsets
ti predicting the upper-left and bottom-right coordinates of the bounding box, relative to
bounding box i. For training, Faster R-CNN uses an objective function of the following form:

L ({pi, } , {ti, }) =
1

Ncls

∑
i

Lcls (pi, p
∗
i) + λ

1

Ncls

∑
i

Lcls (ti, t
∗
i) (2.2)

8
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 2.3: Faster R-CNN network diagram
(Image Credit: Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal
Networks [54])

Figure 2.4: Closer look at the Region Proposal
Network (Image Credit: Faster R-CNN: To-
wards Real-Time Object Detection with Region
Proposal Networks [54])

Here, the first term measures loss between the predicted objectness score pi and ground truth
objectness label p∗i . The second term measures loss between the predicted bounding box off-
set ti and the ground truth bounding box t∗i

5. The fractional scaling factors in front of these
terms normalize losses with respect to how many ground truth labeled bounding boxes there
are. The λ term is a hyperparameter meant to weigh the importance between objectness and
localization in the RPN6. When trained using this objective, the RPN is meant to be able to
identify the anchor boxes within sliding windows that contain an object, and then refine the
anchor box to correctly localize the object. Bounding boxes, called region proposals, with high
enough objectness score are passed to the classification model.

The second stage of the model, the classification model, is simply the Fast RCNN classifica-
tion network. Fast RCNN takes proposed region bounding boxes from the RPN and predicts
class labels and coordinate offsets relative to the proposals. This network is trained with an
objective function similar to that which is used to train RPN. The main difference is that the
Fast RCNN objective contains a multi-classification loss that measures error with respect to
the object classes instead of binary objectness labels. Both networks are trained using a 4-
Step training algorithm where each network are first trained separately, then they are trained
jointly with the parameters common between the network fixed (i.e. they are set to values
from previous training steps, and not updated when trained jointly). For more details on the
network architectures, objective functions, 4-step training procedure, and other important im-
plementation details see [54, 22, 23].

2.2.2 RetinaNet

RetinaNet is a single stage object detector, its model accepts an image and anchor boxes, and
outputs predicted labeled bounding boxes without explicitly identifying candidate bounding
boxes before classifying them. The single model much more closely resembles common us-

5Note the change of notation from the data discussion in Section 2.1.1. Here t∗i is derived by matching an anchor
and a window to a ground truth bounding b. p∗i is 1 if the corresponding window and anchor is matched with a ground
truth bounding box and 0 otherwise.

6The authors of [54] suggest a value of 10 for λ

9
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 2.5: RetinaNet network diagram (Image Credit: Focal Loss for Dense Object Detec-
tion [42])

age of neural networks for visual tasks, and thus is rather straight forward. However, there
are two noteworthy characteristics of RetinaNet. First, they utilize a FPN in their backbone
network (See: Figure 2.5), and were one of the first models to do so. The benefit of an FPN
over a standard CNN is that is allows for feature extraction and detection at different scales,
meaning it more easily can detect objects with different sizes. Second, it uses Focal Loss (FL)
in their objective for classification, instead of the popular Cross Entropy (CE) loss. In short,
FL has been shown to better handle class imbalance, when there is considerably more train-
ing data for some classes than others. It can be shown that CE that makes training focus on
“easy” instances (i.e. ones that are most similar to the majority, such as those of the same
class). FL contains a focusing parameter that down-weighs the influence of instances already
classified correctly in the objective, and allows for gradients to be more influenced by exam-
ples not currently classified correctly. Equipped with these improvements, RetinaNet was one
of the first single stage detectors that could compete with two-stage detectors in terms of de-
tection performance.

2.3 Final Notes

To summarize, the process to train an object detector includes:

1. Collecting training data in the form of images (instances), and labeled bounding boxes
(labels).

2. Preprocessing the training data according to chosen data augmentation techniques.

3. Defining anchor boxes that represent common sizes and aspect ratios of objects for your
domain.

4. Choosing an object detection method including: the general approach (such as Faster
R-CNN or RetinaNet), the backbone architecture, and optionally details such as objec-
tive functions, training algorithms, and associated hyperparameters if not using those
suggested by the general approach.

5. Executing the training algorithm to produce a trained model.

The process to use an object detector to predict bounding boxes on an given image:

1. Preprocessing image (Note: This is likely different than the processing done to training
data).

2. Feeding the image to the trained object detector to get predicted labeled bounding
boxes.

3. Performing NMS (or Soft-NMS) to remove redundant predicted bounding boxes.

10
[Distribution Statement A] Approved for public release and unlimited distribution.

4. Interpreting, post-processing, and/or visualizing the predictions in a way that is tailored
to an application setting.

11
[Distribution Statement A] Approved for public release and unlimited distribution.

3 Evaluation of Object Detection Models

The obvious question after training a detector is: How good is it? While this seems like a sim-
ple question, it becomes complex when one considers the complexity of the object detection
task and the environment in which it is meant to be deployed. For this reason, it is important
to design evaluation procedures that provide test teams with quantifiable data reflecting spe-
cific performance characteristics. Equipped with the results of a well-rounded battery of tests,
stakeholders can have a clearer understanding of not just the quality of the detector at an ab-
stract level, but an understanding of when and in what ways it is succeeds and fails.

Our discussion of object detector evaluation focuses on two aspects. First, we highlight the
importance of targeted evaluation. When borrowing object detection techniques from estab-
lished literature on object detection, it is tempting to also adopt their evaluation procedures.
Most object detection works focus on general problems, not the specific settings in which ob-
ject detectors are practically used. As such, evaluation must focus on the requirements of the
detector, instead of broad notions of performance typically seen in ML literature. Targeted
evaluation is meant to evaluate detectors against requirements and use cases. Second, we fo-
cus on evaluation metrics, which are the computations used to measure quality of a detector
in a specific, quantifiable way. Each metric measures different characteristics, so it is impor-
tant to understand what specifically they are measuring and how that relates to important re-
quirements. For this report, we focus on performance characteristics associated with the qual-
ity of the predictions of detectors. While important, we do not consider performance charac-
teristics such as algorithmic complexity, training/inference run time, and storage requirements
of models/data.

3.1 Machine Learning Evaluation Basics

As stated in Chapter 2, the goal of any supervised learning model is to learn from a finite
train set, but generalize to the entire domains of instances and labels. To measure gener-
alization performance, one requires data not used during training for the specific purpose
for evaluating the ability for the model to generalize. Such data is called test data. For-
mally, training data is a set Dtrain = {(x, y)1, (x, y)2, ..., (x, y)ntrain}, and test data is a set
Dtest = {(x, y)1, (x, y)2, ..., (x, y)ntest

}, such that Dtrain ∧ Dtest = ∅. Generally, evaluation
is performed by training a model on a train set, and then evaluating it according to chosen
metrics on the test set. The full process of training and then testing a model is called an trial,
and is often repeated under different random assignments of train and test sets. The results of
trials are most commonly aggregated using statistical measurements such as sample mean and
variance. By performing multiple trials, instead of a single one, performance can be measured
without the influence of potential bias present by “unlucky” splits that do not accurately re-
flect the true distribution being evaluated for. A set of trials where everything except the ran-
dom selection of train and test set is often called an experiment1.

How one selects train and test data for a trial is an important decision. In the absence of
any information about the specific application of a detector, there are two main methods for
choosing a test set. In the holdout method, each collected data pair is randomly assigned to
the test or train set at a particular ratio 2. Assuming all pairs are unbiased draws from P ,
evaluating a model on the test set then shows how the model generalizes to samples not seen
during training that are still from the assumed distribution of instances and labels. Different

1This term is commonly used in the machine learning literature, but perhaps would be better called a test in evalu-
ation of models to be deployed in a real-world software system.

2popular choices include 70/30, 80/20, and 60/40 train/test splits, but is often dependent on the availability of data

12
[Distribution Statement A] Approved for public release and unlimited distribution.

trials are created by performing the evaluation under different random assignments of train
and test set at the predefined ratio.

A different approach is k-fold cross validation, in which the data is split in k sets of equal
size. Then, one set is held out as the test set while the rest are used as the train set. This is
repeated k times with a different set held out for test data each time. The result of each of
the k evaluations are then aggregated. The difference between the two approaches is that the
holdout method may result in a pair being in the test set of multiple trials. In k-fold cross
validation, a pair will only be in a test set once. For comparison of these and other validation
procedures, see [1].

3.2 Targeted Evaluation

Randomly splitting all collected data for evaluation into test and train sets is often a good
first step in understanding the performance of a detector. However, in many cases, knowledge
of the domain in which the detector is used motivates certain use cases that should receive
special attention in evaluation due to their unique impact on the application. Instances with
common characteristics of interest can be isolated in a test set to see how a model performs
in those special cases. For instance, a potential challenging use case for an aerial object detec-
tor is use in inclement weather. If a model is evaluated on test data randomly chosen from all
of P , which could be skewed towards mild weather conditions, the results could similarly be
skewed. An experiment where test data exclusively consists of instances of inclement weather
is useful to understand performance on that specific case. Such a specific experiment is an ex-
ample of targeted evaluation. Targeted evaluations are defined by their unique data splits as
well as their metrics. Data can be chosen based on the label (e.g only on class “car”), meta-
data over instances (e.g. the inclement weather example from before), human defined charac-
teristics (e.g. a set of instances the detector has done poorly on in the past), or other infor-
mation that allows you uniquely identify instances for collective evaluation. Similarly, because
different metrics measure different performance characteristics of a detector, each metric rep-
resents a different target. We will discuss this point more in Section 3.3.

Unfortunately, it is difficult in practice to define targeted experiments before ever fielding
a detector. The process of defining the needs or conditions in which a system is required to
meet is called requirements analysis, and is a developing field for machine learning [66, 49, 2].
Communication between stakeholders and domain experts is key to establish a first set of ex-
periments that covers known important cases. Even if a seemingly complete set of evaluation
experiments give confidence to development teams that a detector will perform well in the
cases they deem important, it is possible the model will perform poorly in unexpected cases.
For this reason, it is important to ensure that a detector is deployed in such a way that un-
expected failures can have minimal impact, and data can be collected not only to establish
new targeted experiments but also to retrain models to improve performance in failure cases.
Further, it is difficult to understand how to balance the results of different targeted evalua-
tions. Do I want a detector that can detect objects better in inclement weather or one that
can detect red cars better? One approach is to establish acceptance conditions for the results
of all but one experiment [47]. This way, targeted experiments can act as gates for acceptance
rather than targets for optimization (e.g. “Our model achieves a score greater than x on met-
ric y in inclement weather, which is greater than the acceptance threshold z.”). A single, gen-
eral experiment can be used to choose between different models that satisfy acceptance condi-
tions (e.g. “Between models that satisfy all acceptance criteria, choose the one that performs
the best in the most general sense.”).

13
[Distribution Statement A] Approved for public release and unlimited distribution.

3.3 Metrics

The choice of metric for an evaluation experiment is key to understand specific performance
characteristics of a detector. Because object detection is equal parts localization and classi-
fication, metrics for object detection are designed to measure performance and either task or
both. The complex relationship among the localization and classification tasks naturally re-
sults in complex metrics that require precise understanding in order to build experiments that
measure desired characteristics. In this work, we focus on two types on object detection met-
rics. First, we focus on detection metrics that measure some form of correctness of the model
in “predicting” a bounding box and class for an object. At their core, detection metrics as-
sume detector outputs are definitive predictions about where and what objects are in an im-
age, and they compare those predictions to ground truth. Alternatively, uncertainty metrics
interpret model outputs as probabilistic estimates of where and what objects are, and com-
pare those to the probabilistic interpretations of ground truth. Detection metrics are by far
more popular because they more directly measure detectors for their desired purpose of pre-
dicting the location and class of objects in an image. However, uncertainty metrics measure
how well models are able to quantify the uncertainty in those predictions, which enables the
use of predictive uncertainty in assessing how much to rely on model predictions. If uncer-
tainty is a consideration for the usage of a detector for a given application, then both kinds of
metrics are vital to understanding how well suited a detector is for a task.

3.3.1 Detection Metrics

Detection metrics assume that confidence vectors are used as a means to determine a single
predicted class for an object. Let ĉ be the class with the highest confidence in a class confi-
dence vector ĉ known as the predicted class. The most common detection metrics are build
on a common principle: A prediction is “correct” if it both successfully localizes and classi-
fies an object given by ground truth. More specifically, when comparing a predicted labeled
bounding box (b̂, ĉ) and a ground truth labeled bounding box (b, c), the prediction is consid-

ered “correct” if 1) IoU(b, b̂) > λIoU and 2) c = ĉ. If these conditions hold, it is called a true
positive (TP). Metrics for detections are based on counting the number of true positive and
comparing them to the number of “incorrect” predictions. For that, we require two notions of
incorrectness. A false positive (FP) is when a prediction does not satisfy both conditions for
any ground truth. All ground truth labeled bounding boxes left after removing all true and
false positives are called false negatives (FNs). A false positive represents a prediction that
does not detect any ground truth. A false negative represents a ground truth for which no
prediction detected. The procedure for counting these for an image is as follows:

1. Compute the IoU between all predictions and ground truth for an image.

2. For all pairs of predictions (b̂, ĉ) and ground truth (b, c) in descending order of their IoU

(a) If IoU(b, b̂) > λIoU and c = ĉ

i. Count it as a TP

ii. Remove (b̂, ĉ) and (b, c) from the list of predictions and ground truth.

3. Count all predictions (b̂, ĉ) not removed as a FP

4. Count all ground truth (b, c) not removed as a FN

Raw values of TPs, FPs, and FNs give a sense of the number of correct and incorrect predic-
tions, as well as how many objects were not detected, but aggregating these into single statis-
tical measures gives relative notions among them. For instance precision is defined as:

precision =
TP

TP + FP
(3.1)

14
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 3.1: Example precision-recall curve of a RetinaNet model trained and evaluated on the
RarePlanes data set (IoU threshold at 0.5).

Precision gives a proportion of how often predictions were correct. Recall is defined as:

recall =
TP

TP + FN
(3.2)

Recall gives a proportion of how many of the ground truth labeled bounding boxes were de-
tected.

Precision and recall, while both useful in determining the detection performance of a detector,
are often at odds. Consider a detector that errs on the side of caution when it makes predic-
tions. It only makes predictions when it is very confident that there is an object present and
it is certain of the class. Such a detector would likely have high precision (when it predicts,
it is most often correct), but low recall (by being cautious, it may miss many of the ground
truth labeled bounding boxes). Conversely, consider a detector that attempts to make as
many predictions as possible in order to ensure it detects every object. This detector would
likely have low precision (many of its predictions are incorrect), but high recall (it detects
many of the ground truth labeled bounding boxes simply through prediction volume). Fur-
ther, a single learned detector can have vastly different precision and recall depending on a
chosen class confidence threshold used to determine what predictions are rejected as back-
ground.

To understand the relationship precision, recall, and the choice of class confidence threshold
for a detector, a common visualization plot called a precision-recall curve (PR curve) is often
employed. A PR curve is created by sorting the class confidences for all detector outputs and
sweeping the confidence threshold from 1 to 0, incrementally increasing the number of predic-
tions made by the detector, and computing the precision and recall each time a new output is
included as a prediction. If the more confident predictions are more likely to be correct, the

15
[Distribution Statement A] Approved for public release and unlimited distribution.

the model should have high precision and low recall at first. As the threshold is lowered, re-
call should increase and precision should decrease. The result is a curve like the one shown
in Figure 3.1. PR curves are especially useful for three things. First, a PR curve shows how
sensitive a detector is to the setting of the class confidence threshold. If precision drops signif-
icantly at a point in the middle of the PR curve, then the detector will behave very differently
depending on the setting of the confidence threshold. Second, one can use PR curves to find
an acceptable tradeoff between precision and recall, commonly at what is known as the “knee”
of the curve where precision begins to drop off significantly. For instance, in Figure 3.1, the
model is able to achieve around 0.85 recall at around 0.9 precision. In order to achieve 0.95
recall, the model would drop to below 0.5 precision. Finally, requirements analysis can reveal
a required amount of precision or recall (e.g. “Our application needs a detector that will fail
to detect no more than 20% of objects (0.8 recall)”). A PR curve can reveal the point just at
the required precision or recall that maximizes the other. Looking at Figure 3.1, if there is a
requirement of 0.8 recall, then the threshold can be set right at the point where recall is 0.8
on the curve, achieving 0.9 precision.

PR curves are a means for vizualizating object detector performance, but are not singular nu-
meric values that can be used to compare detectors. If choosing between two detectors for an
application, it can be difficult to look at both of their PR curves and definitely say one is bet-
ter than the other. For this metrics such as average precision (AP), and average recall (AR)
are used. Average precision and recall are simply the average of the PR curve with respect to
each axis. Taking this thought further, one can aggregate multiple PR curves together to en-
capsulate other characteristics. For instance, PR curves assume an IoU threshold. In some
cases, requirements analysis may reveal an IoU threshold that is acceptable enough for an
application (i.e “Our localization needs to be at least this good for us to consider it a detec-
tion.”). In other cases, it may not be obvious. When an IoU threshold cannot be assumed,
then a number of PR curves can be drawn, each with a different IoU threshold. All of these
PR curves can have their AP or AR computed, and these desperate values can themselves be
averaged. Such metrics are known as mean average precision (mAP) and mean average recall
(mAR). While mAP is attractive as a metric as it encapsulates many different ways of evalu-
ating a detector and makes few assumptions regarding threshold 3, one should take caution in
using it as the sole metric for evaluation. By abstracting all notions of threshold of acceptance
for IoU, precision, and recall into a single number mAP can hide specific failure modes that
do not become apparent until deployment. For example, a detector may be able to achieve
higher mAP than another model by making twice the predictions. If such a detector was used
in a system where predictions would alert a human user, the user could be overwhelmed by
alerts and ignore the system, effectively making it worthless. In short, in the absence of any
requirements metrics that abstract assumptions are a good choice. However, once require-
ments are set, they should be used to determine how to evaluate a detector.

3.3.2 Uncertainty Metrics

Treating outputs of detectors as probability distributions not only allows for interpretations
of their outputs as uncertainty in predictions, but also results in a series of metrics meant to
measure how accurate predicted probabilities are. We limit our discussion to two kinds of un-
certainty metrics. First, calibration metrics measure whether probabilistic outputs faithfully
capture the relative frequency of events. In object detection, model calibration is measured for
the classification and localization parts of the model separately using different metrics. Cal-
ibration metrics for classification measure the quality of the probabilities in class confidence
vectors. This begs the question: What is the right way to understand these probabilities? To
first build intuition, consider the case when a detector outputs a prediction with probability
(confidence) 0.7. What is 0.7 supposed to mean, exactly? For a fully calibrated detector, this

3Indeed, mAP is one of the most prominent metrics used for object detection challenge problems such as Mi-
crosoft Common Objects in Context Challenge [43] (though they use others as well)

16
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 3.2: Example reliability diagram visualizing classifier calibration. (Image Credit: On
Calibration of Modern Neural Networks [27])

would mean that for all instances in which the detector outputs 0.7, the the predicted class
matched the ground truth class 70% of the time. Calibration metrics effectively measure the
difference between the probabilities output by a classifier and how often those probabilities
reflect the ground truth class labels. Note that this is somewhat of an oversimplification, and
to give calibration a full treatment would require a considerable amount of space that would
detract from the focus of this report. Instead, we will discuss the most basic and well used
calibration metric, Top-1 Expected Calibration Error (ECE), at an intuitive level, and leave
the following references for those interested in understanding the topic of calibration metrics
further [27, 65, 36].

Consider the visualizations in Figure 3.2, known as reliability diagrams. These are created
by first taking every instance in a test set and partitioning them into separate bins accord-
ing to the maximum probability (confidence) that is output by the classifier. Bins are defined
by separate intervals over [0,1] as depicted in the x axis. A bar’s height is the average of all
the probabilities within a bin that is aligned with its interval on the x axis (e.g. the blue bar
on the far left of each diagram is for the bin over [0,0.1]). In principle, a for a well-calibrated
classifier, a bin’s average probability will be close to the proportion of instances in that bin
in which the predicted class is the same as the ground truth class label. Borrowing from the
above example, a bin with average probability of 0.7 should contain instances in which 70%
are classified correctly. The average absolute difference between the average probabilities of
each bin and the proportion of correctly classified instances in each bin is the Top-1 ECE. Vi-
sually, this error is roughly captured in the reliability diagrams via the red highlighted areas.
The reliability diagram on the left represents a fairly well-calibrated classifier, as the bars are
close to to the line x = y, where the y axis is the proportion of correctly classifier instances
(accuracy). The diagram on the right represents a more miscalibrated classifier.

To measure calibration error for the localization component of a detector, localization is
treated as a regression problem. In short, predicted bounding box coordinates output by a
model are treated as individual real numbers to be compared to the real numbers specified by
the ground truth bounding box coordinates. Because standard object detectors do not output
distributions over bounding box coordinates, they have no obvious probabilistic interpretation
and thus cannot be measured for their calibration. Probabilistic object detectors as discussed
in Section 2.1.4 on the other hand output distributions over bounding box coordinates and

17
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 3.3: Example of a calibrated regressor. (Image Credit: Accurate Uncertainties for Deep
Learning Using Calibrated Regression [38])

can be measured for calibration. The only additional requirement for the detector is that its
output must have interpretations that produce means and confidence intervals for each co-
ordinate. Detectors that output means and covariance matrices, for instance, over bounding
boxes satisfy this requirement. You can interpret the confidence intervals of the detector in
a similar way as is done with classifier calibration: A calibrated detector would have 70% of
the bounding box coordinates within it’s 70% confidence interval. As an example, in Figure
3.3 four of the six test points are within the 60% confidence interval around the mean, and
all six are within the 100% interval. Thus, this regression model (regressor) is calibrated. Re-
gression ECE is computed similarly to classification ECE. Instead of bins, a number of confi-
dence intervals are defined, and the proportion of instances within the confidence intervals are
counted. The average of the squared differences between the intervals and the proportion of
instances in each interval is taken as the ECE. For more information on how specifically this
metric is computed, see [38].

Calibration metrics provide intuitive ways of understanding the predictive uncertainty of both
the localization and classification components of a detector. Analogous to mAP for detection
metrics, predictive uncertainty for both localization and classification can be quantified in a
single metric called Probabilistic Detection Quality (PDQ) [28]. PDQ is the geometric mean
of separate functions that each measure a different aspect of the uncertainty estimates for
classification and localization. The classification quality measure is simply the value of the el-
ement of the class confidence vector output by a detector that corresponds to the correct class
of an object. In this way, PDQ is higher if the detector puts more probability onto the correct
class. The localization measure itself is the sum of two components. Both components rely
on the fact that probabilistic object detectors output a probability associated with each pixel.
Pixels with high probability from a detector indicate more confidence that the pixel is within
the ground truth bounding box. The first component of the localization measure scores each
pixel in the ground truth bounding box proportionally to the probability assigned to the pixel
by the detector. The result is that detectors score higher if they assign higher probability to
pixels within the ground truth bounding box. The second component scores each pixel outside
of the bounding box inversely proportional to the probability assigned to them. In this way, a
detector will score higher if they assign low probability to pixels outside of the bounding box.
For a more rigorous treatment of PDQ, see [28].

18
[Distribution Statement A] Approved for public release and unlimited distribution.

4 A Case Study: Aerial Object Detection on the RarePlanes

To put a finer point on the topics introduced in the previous chapters, in this chapter we show
the results of an evaluation of a number of object detectors trained and evaluated on satellite
imagery. For this we use the RarePlanes [61] data set. RarePlanes consists of 253 images that
encapsulates 2,142 km2 spanning 22 countries and all four seasons. The images are tiled into
512x512 squares with 20% overlap to form the instances of the object detection problem. The
data set also includes 14,803 labeled bounding boxes on training instances and 3,590 for test-
ing. The seven object classes and the number of labeled bounding boxes per class are shown
in table 4.1.

Class Name Class ID Train Test
Small Civil Transport/Utility 0 8,357 1,971
Medium Civil Transport/Utility 1 4,894 1,229
Large Civil Transport/Utility 2 1,174 276
Military Transport/Utility/AWAC 3 205 79
Military Bomber 4 5 1
Military Fighter/Interceptor/Attack 5 153 32
Military Trainer 6 15 2

Table 4.1: Class label breakdown for test and train sets in the RarePlanes data set

A couple important practical notes about the RarePlanes data set. First, there is a heavy
class imbalance. There are thousands of examples of Small Civil Transport planes (class 0),
but only 6 examples of a Military Bomber (class 5). Traditionally, unless special care is taken,
machine learned models will be biased to the classes with more samples, often performing
poorly on undersampled classes. The focal loss employed by RetinaNet has been shown to
be well-suited for imbalanced classes in object detection, but note that there are a number
of other techniques to handle this problem [48]. Also, evaluating on classes 4 and 6 is difficult
due to the limited number of examples in the test set. Results reported on 1 or 2 held out ex-
amples should be taken with a grain of salt in terms of measuring the ability for a detector to
generalize.

We train two models on the RarePlanes train set: a RetinaNet and a Faster R-CNN model;
Both were implementations from Detectron2 [68]. For uncertainty evaluation we chose Loss
Attenuation [35] and BayesOD [29] as the methods of turning the standard RetinaNet into
probabilistic object detectors, and used a implementations from [19]. For real applications of
detectors, careful selection of hyperparameters is a key part of model development, and can
require a substantial amount of effort 1. Instead of focusing on selecting hyperparameters to
produce the best performing models, we instead aimed to train models that were sufficiently
performant to provide a case study in evaluating models. As such, the exact numbers from
each model are not meant to reflect the current absolute best performance from the state-of-
the-art. Rather, we use the models as a means to discuss their evaluation. Specifically, we aim
to provide some examples of how one can define experiments that lead to insightful evalua-
tions. Note though, that without a specific application context for these detectors, we cannot
tie experiments to requirements. Nevertheless, we aim to provide multiple different experi-
ments that show how test data and metrics can be chosen to show different performance char-
acteristics of the detectors.

1Common practices for finding hyperparameters for ML training procedures include random search, grid search,
and successive halving. More sophisticated hyperparameters selection techniques remains an active research
topic [71].

19
[Distribution Statement A] Approved for public release and unlimited distribution.

Metric RetinaNet Faster R-CNN
mAP 0.429 0.421
mAR 0.554 0.504

Table 4.2: Mean average precision/recall of RetinaNet and Faster R-CNN models on
RarePlanes test set

4.1 Evaluation of Detection Performance

Without any information about a desired application of this detector, the first step in evaluat-
ing our detectors is to treat all data equally, and to perform an evaluation on the most general
metrics. Table 4.2 shows the mean average precision and recalls for both detectors2. Here, we
see that RetinaNet outperforms Faster R-CNN in terms of both metrics, but by a larger mar-
gin in mAR. Specifically, this tells that over a wide range of IoU and class confidence thresh-
olds, RetinaNet achieves higher precision and recall. One could conclude that the RetinaNet
is simply a better detector, but more specific evaluation can highlight more fine-grained differ-
ences in performance.

Metric RetinaNet Faster R-CNN
AP@0.50 0.618 0.620
AP@0.75 0.500 0.480

Table 4.3: Average precision at IoU thresholds 0.5 and 0.75 of RetinaNet and Faster R-CNN
models on RarePlanes test set

Table 4.3 shows the average precision of the two detectors at IoU thresholds 0.50 and 0.75.
We see here that Faster R-CNN has a higher average precision at the lower threshold. If re-
quirements dictate that a 0.5 IoU threshold is sufficient, Faster R-CNN might be the better
model, even though it achieves lower mAP and mAR.

Metric GT BB Size RetinaNet Faster R-CNN
mAR small 0.0.414 0.0.328
mAR medium 0.557 0.508
mAR large 0.793 0.801

Table 4.4: Mean average recall of RetinaNet and Faster R-CNN models on RarePlanes test
set on ground truth bounding boxes of sizes small, medium, and large

Tables 4.4 and 4.5 show the mAR of the detectors on two different ways of splitting the test
set. Table 4.4 shows the performance when the ground truth bounding boxes are separated
by size3. As we see, both detectors’ performance decrease as the size of bounding boxes gets
smaller. This intuitively means that detectors are less accurate on smaller planes than bigger
ones. Table 4.5 shows the performance when test set instances are separated by the number
of objects predicted by the model. The trend here is that when the detectors predict fewer
bounding boxes, they achieve lower mAR. Again, this is intuitive as fewer predictions means
fewer opportunities to identify ground truth. The main takeaway from these two tables is that
by partitioning test sets into data that have common characteristics, experiments can focus on
how detectors perform in specific scenarios. These two experiments highlight how the detec-
tors perform with varying ground truth bounding box size, and sparsity in predictions, each of
which identifying when the detectors are more likely to succeed.

2The IoUs used for both metrics were from 0.5 to 0.95 at 0.5 increments.
3“small” bounding boxes are 32 square pixels or less, “medium” are between 32 and 96, and “large” are more than

96.

20
[Distribution Statement A] Approved for public release and unlimited distribution.

Metric Detection Threshold RetinaNet Faster R-CNN
mAR 1 0.264 0.254
mAR 10 0.536 0.489
mAR 100 0.554 0.504

Table 4.5: Mean average recall of RetinaNet and Faster R-CNN models on RarePlanes test
set on instances with no more than 1, 10, and 100 predicted bounding boxes

Class ID RetinaNet Faster R-CNN
0 0.628 0.622
1 0.698 0.691
2 0.678 0.678
3 0.539 0.496
4 0.018 0.090
5 0.322 0.273
6 0.123 0.098

Table 4.6: Average precision (IoU threshold = 0.75) of RetinaNet and Faster R-CNN models
on RarePlanes test set on ground truth objects separated by class label

Table 4.6 shows the AP@0.75 of the two detectors in instances separated by their class. First,
because classes 4 and 6 have one and two instances in the test set, respectively, these results
should be ignored as so few examples of these classes does not make for a good indicator of
generalization performance. For the classes with the most ground truth labels (0,1,2) the de-
tectors achieve comparable performance. RetinaNet distances itself from Faster R-CNN in ob-
jects of classes 3 and 5, which have much fewer examples than 0, 1, or 2. This shows the abil-
ity for RetinaNet to learn with imbalanced data better than Faster R-CNN, and thus achieves
better overall AP@0.75. Class-specific evaluations are important, as certain classes may have
particular significance for an application. For instance, requirements may dictate that mili-
tary planes are especially important. This evaluation shows that RetinaNet would be a better
choice in such a case.

Figure 4.1 shows PR curves for each detector at different IoU thresholds. Expectedly, as the
IoU threshold for detection increases, both models have a lower initial precision, and a lower
ending recall. Also note the more gradual decrease in precision indicating that high class con-
fidence becomes less of an indicator of a successful detector as IoU increases. This is because
a detector’s success becomes more influenced by it’s localization ability than it’s classifica-
tion ability the higher the IoU thresholds. These also help explain some of the AP numbers
in Table 4.3. At a IoU threshold of 0.5, the RetinaNet and Faster R-CNN curves appear very
similar with Faster R-CNN seemingly able to maintain higher precision towards the end of
the curve. At 0.75, Faster R-CNN’s curve has a slightly more drastic decrease towards the be-
ginning, which could explain why it has lower mAP at a IoU threshold of 0.75. Finally, both
models perform poorly at IoU threshold of 0.9. This indicates that if a very precise localiza-
tion is required, further model development work is required to learn a performant model.

Lastly, Figure 4.2 shows examples of an image from RarePlanes with ground truth, with pre-
dictions from RetinaNet, and with predictions from Faster R-CNN. The most obvious differ-
ence between the two detectors is that RetinaNet produces many more high confidence pre-
dictions. This could be due to RetinaNet’s use of focal loss which encourages training to fo-
cus on undersampled classes. The result is many more predictions of classes with few training
instances (classes 4 and 5 in this case). Note though that among the many predictions, al-
most all objects are correctly detected. This could explain the relatively close mAP between
the detectors, but much higher mAR for RetinaNet. If such a behavior is undesirable, a more

21
[Distribution Statement A] Approved for public release and unlimited distribution.

suitable confidence threshold can be found or hyperparameters for focal loss can be adjusted
before training. While it makes fewer predictions, Faster R-CNN makes potentially more im-
pactful errors. It identifies road markings as a small civilian transport plane. It misidentifies
the bomber as a fighter. The latter could be due to the relatively few bomber labels in the
training set.

Class ID Loss Attenuation BayesOD
0 0.0280 0.0278
1 0.0087 0.0088
2 0.0072 0.0072
3 0.0118 0.0119
4 0.0137 0.0137
5 0.0132 0.0132
6 0.0130 0.0130

Table 4.7: Top-1 expected calibration error for both Loss Attenuated and BayesOD RetinaNet
on test set separated by ground truth class.

4.2 Evaluation of Uncertainty Quantification Performance

In this section, we present an evaluation of a RetinaNet with Loss Attenuation (LA) and with
changes specified by BayesOD. Before focusing uncertainty quantification performance, we
note that we were able to train both detectors with comparable detection performance to the
standard RetinaNet from the previous section (0.465/0.467 mAP and 0.570/0.572 mAR for
LA/BayesOD). At least in this case, we are able to train a detectors that outputs distribu-
tions over it’s outputs without sacrificing detection quality. Table 4.7 shows the Top-1 ECEs
for both detectors on test data from each class. Both models are very well calibrated. All
classes (again, ignoring 4 and 6) have ECE below 0.03, meaning the mean confidence in each
bin is no more than 0.06 from the proportion of correct labels in the same bin4. Also of note
is that both techniques perform roughly the same, though both incurred significantly more
error in class 0, the class with most examples. Further investigation at the cause of this is re-
quired to fully understand it, but the detectors could be overconfident in predictions of class 0
because they have been trained on more examples of those than other classes. For localization
ECE both methods had similarly low values 0.0263/0.0053 (LA/BayesOD), but in this case
BayesOD performed significantly better. Finally, both models achieved similar PDQ scores
(0.209741/0.211392). In practice, this would be a first pass on investigating these models with
respect to their abilities to quantify uncertainty. Many unanswered questions remain. Why
are the models most miscalibrated on class 0? Are there other induced classification problems
for which classification ECE are of interest5? What is different about the probability distri-
butions of LA and BayesOD that results in such a significantly lower localization ECE for
BayesOD (more specifically, what is different about their covariances?)? If we look at the indi-
vidual terms in PDQ, are there bigger differences between the models with respect to different
kinds of uncertainty (classification versus localization foreground/background)?

Finally, Figure 4.3 shows another example from the RarePlanes, as well as the outputs from
the Loss Attenuated RetinaNet. In the middle figure, one of the predictions from the middle
of the image is highlighted. The heatmap is warmer (red) for pixels that the detector is more
confident are in the bounding box, and cooler for ones it has little or no confidence (blue).
On the right is a bar graph showing the confidence the detector has that the object is of each

4In this case, bin error is computed via total variation distance which is half the absolute difference between bin
means and proportions.

5Inducing classification problems for practical evaluation is discussed in [36]. One of particular interest here is
determining the miscalibration between military versus civilian planes.

22
[Distribution Statement A] Approved for public release and unlimited distribution.

class. We see that the detector is very confident that the pixels in the middle of the ground
truth bounding box are part of the plane, and very quickly become unconfident in the pixels
towards the edge. The bar graph shows that the model is also very confident that the object
is of class 0, which it is. The bottom figure highlights a plane that is on the edge of the frame
with most of the plane actually being out of frame. In this case the detector is less confident
overall about the pixels that make up the plane, even at the ground truth bounding boxes
center. Indeed, it is common for object detectors to struggle with objects out of frame as
the ground truth bounding box has to effectively cut the plane in half in order to stay within
bounds of the image. The class confidence, too, is lower for class 0 than in the middle exam-
ple. This shows an important effect of quantifying uncertainty in detectors: Confidence can be
used to better inform those consuming detector outputs. Here, someone can more confidently
act on the localization of the middle prediction than on the bottom one.

23
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 4.1: Precision-recall curves for RetinaNet and Faster R-CNN models on RarePlanes
test set for different IoU thresholds (left column = RetinaNet, right column = Faster R-CNN).

24
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 4.2: Examples from RarePlanes data set. Top image = ground truth labeled bounding
boxes. Middle image = outputs from RetinaNet. Bottom image = outputs from Faster R-CNN.

25
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 4.3: Examples from RarePlanes data set. Top image = ground truth labeled bound-
ing boxes. Middle image = uncertainty visualization of Loss Attenuated RetinaNet for middle
plane. Bottom image = uncertainty visualization of Loss Attenuated RetinaNet for top plane.

26
[Distribution Statement A] Approved for public release and unlimited distribution.

5 Final Words

This document outlined the basics of object detection from aerial imagery with a focus on
evaluation. It covers the numerous decisions that go into learning a detector including the role
of data, the choices involved in designing and training a detector, and the thresholds used to
post-process outputs. It also focuses on targeted evaluation, where experiments are designed
to measure the performance of detectors in specific ways in order to better inform stakehold-
ers of how detectors behave in different settings. In short, there are a few main takeaways:

1. Designing an object detector involves a number of decisions that all have significant in-
fluence on how a detector will perform. The effects of some of these decisions will not be
apparent unless the detector is evaluated in specific ways that highlight them.

2. It is important to understand the requirements of the detector with respect to the con-
text in which it will be deployed. What cases are important? What performance mea-
sures are important?

3. While having a singular experiment to optimize the detector on allows for direct com-
parisons between models, requirements should lead to quantitative thresholds of accep-
tance of other performance characteristics.

4. Targeted experiments should be a key part of evaluating a detector as means to validate
that acceptance thresholds are met.

Beyond these points, this document provides a number of references to understand many of
the discussed topics at a deeper technical level. Those looking to gain a working understand-
ing of training and evaluating object detectors should follow these references.

5.1 Open Topics in Object Detection

While object detection as a field is mature enough for practical usage in a number of settings,
there exists a number of open research topics that stem from shortcomings in the current
state-of-the-art. Most of these are not specific to object detection, but more broadly apply to
modern supervised learning approaches. Supervised learning by its very nature is heavily de-
pendent on the availability of high-quality, labeled data for training and evaluation. Without
it, models cannot accurately learn the relationships among instances and labels, and models
cannot be evaluated to determine their performance. As such, there is a number of lines of
work aimed at reducing the reliance on labeled training data. When domain-experts cannot
be relied on to provide quality labels, but there exist cheaper, less reliable sources, weakly-
supervised [12] approaches can be used. When there is an lack of labeled data, but a signifi-
cant amount of unlabeled data, both may be used in a semi-supervised [63] manner. Similarly,
unlabeled data by itself can be used in an unsupervised [70] manner to learn base models that
capture many salient visual features before even training a model on labeled data. In cases
where the developers of the model are also in control of the labeling process, and there is a
large number of unlabeled instances available, active learning [58] can be done. Active learn-
ing iteratively trains a model, then inspects the model with respect to the pool of unlabeled
instances. Each unlabeled instance is scored according to it’s “informativeness” to the model.
Instances that are determined to be more informative if they were to be labeled and trained
on are chosen and the process begins again. The intuition is that many instances simply do
not need to be labeled in order for a model to learned, and if only the informative ones are
labeled, many fewer labels are needed.

More broadly, there exists a subfield of machine learning dedicated to transferring knowledge

27
[Distribution Statement A] Approved for public release and unlimited distribution.

from a source task to a different target task called transfer learning. The pretrained backbone
networks typically used in modern object detection are an example of transfer learning, but
more direct methods exist [8]. Domain adaptation [33] is a subfield of transfer learning where
it is assumed that the learning problems are the same (e.g. both the source and target tasks
are object detection), but the domains1 are different. Another subfield of transfer learning is
meta-learning where the process of learning itself on source tasks is used to more efficiently
learn in target tasks [67]. Lastly, there is a growing interest in general visual models [16, 73],
that can be trained entirely in a task agnostic way but can provide low-dimensional represen-
tations of images that can be used for specific tasks without any explicit transfer.

Data-efficiency is a practical problem developers of ML models must overcome. However,
there are a number of problems readily apparent to a number of stakeholders besides those
building models. One of these is robustness, which describes the ability for a model to perform
as expected in a variety of deployment contexts. Different subfields of ML robustness research
can largely be categorized by their assumptions on P during train and deployment time. The
standard assumption is that the distribution in which instances and labels are generated, P , is
the same during train time, test time, and when the model is deployed in the real-world. Be-
cause P , as well as X and Y, can be very complex, understanding the robustness of a model
even in this simple case is difficult. This is largely the motivation for extensive evaluation, but
understanding what to evaluate for is a practical challenge. As such, there is considerable on-
going research in predicting failure modes in ML models [32, 72].

In many real-world applications of ML, the distribution P can shift during deployment. Ac-
tive research areas studying this problem are defined by how P shifts. If the distribution of
instances changes, such as through sensor noise or deploying the model in an environment dif-
ferent than training2, then it is known as covariate shift [59]. If the distribution over labels
changes3, then it is known as label shift [44]. Related to both of these is out-of-distribution
(OoD) detection [53] that aims simply to identify when instances come from a different dis-
tribution than the one that generated training data. Finally, adversarial learning [26] focuses
on the setting where P can be changed during deployment by an adversary for the purpose of
degrading model performance.

There are many obvious reasons why robustness is an important property for any ML model,
but one of them is trust. Being able to definitively say that a model will not fail in unex-
pected ways leads stakeholders to have more confidence that the model will act in a reliable
manner. However, because ML models and their evaluation is somewhat of a technically deep
task, it is not obvious how to convey information about the model that leads to trust for non-
technical or semi-technical stakeholders. For this, there has been a recent focus on ML model
interpretability [74]. Interpretability research focuses on developing techniques that highlight
key characteristics of models and the predictions in ways that humans are able to understand.
This brings up important questions such as: What form should information take so that hu-
mans can understand it? What information is relevant to humans to understand how a model
makes predictions? How do we ensure that information provided to humans is an accurate
reflection of how complex models make predictions? Most works focus on the two former ques-
tions, but there has been recent interest on the latter [75].

Lastly, many object detection pipelines require lots of heavily manual pre and post process-
ing. Both NMS and anchor boxes for instance require domain knowledge to tune properly.
Further, many advancements have been due to specialized architectures (such as the RPN of
Faster RCNN), or loss functions (such as Focal Loss in RetinaNet). To alleviate some of the

1Recall domains are defined by X and Y, but here it can also mean P can be different between source and target.
2Consider training an object detector on aerial images taken in a desert, but deploying it to detect objects in the

rain forest
3Consider the case that certain vehicles become more popular over time. An aerial object detector may have seen

very few of those types of vehicles during training, but will see many more during deployment.

28
[Distribution Statement A] Approved for public release and unlimited distribution.

burden on developers, there has been some recent advancements in more general object detec-
tion techniques [9, 11]. These techniques pose object detection as direct prediction problems
where region proposals are not needed, thus, no explicit prior knowledge is needed to train
them. They also tend not to produce many, redundant predictions and do not require NMS.
The results reported in both papers show that they can achieve prediction performance on par
with the state-of-the-art that requires both of these.

29
[Distribution Statement A] Approved for public release and unlimited distribution.

References/Bibliography

URLs are valid as of the publication date of this document.

[1] Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for model selec-
tion. Statistics surveys, 4:40–79, 2010.

[2] Alec Banks and Rob Ashmore. Requirements assurance in machine learning. In SafeAI
AAAI, 2019.

[3] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learn-
ing, volume 4. Springer, 2006.

[4] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural network. In International conference on machine learning, pages
1613–1622. PMLR, 2015.

[5] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal
speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[6] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. Soft-nms–
improving object detection with one line of code. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 5561–5569, 2017.

[7] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[8] Xingyuan Bu, Junran Peng, Junjie Yan, Tieniu Tan, and Zhaoxiang Zhang. Gaia: A
transfer learning system of object detection that fits your needs. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 274–283,
2021.

[9] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,
and Sergey Zagoruyko. End-to-end object detection with transformers. In European con-
ference on computer vision, pages 213–229. Springer, 2020.

[10] Chein-I Chang. Hyperspectral imaging: techniques for spectral detection and classification,
volume 1. Springer Science & Business Media, 2003.

[11] Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Geoffrey Hinton. Pix2seq: A
language modeling framework for object detection. arXiv preprint arXiv:2109.10852,
2021.

[12] Gong Cheng, Junyu Yang, Decheng Gao, Lei Guo, and Junwei Han. High-quality pro-
posals for weakly supervised object detection. IEEE Transactions on Image Processing,
29:5794–5804, 2020.

[13] Mang Tik Chiu, Xingqian Xu, Yunchao Wei, Zilong Huang, Alexander G Schwing,
Robert Brunner, Hrant Khachatrian, Hovnatan Karapetyan, Ivan Dozier, Greg Rose,
et al. Agriculture-vision: A large aerial image database for agricultural pattern analysis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 2828–2838, 2020.

[14] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.
Autoaugment: Learning augmentation strategies from data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 113–123,
2019.

30
[Distribution Statement A] Approved for public release and unlimited distribution.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2020.

[17] Keith J Dreyer and J Raymond Geis. When machines think: radiology’s next frontier.
Radiology, 285(3):713–718, 2017.

[18] Kenji Enomoto, Ken Sakurada, Weimin Wang, Hiroshi Fukui, Masashi Matsuoka,
Ryosuke Nakamura, and Nobuo Kawaguchi. Filmy cloud removal on satellite imagery
with multispectral conditional generative adversarial nets. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 48–56, 2017.

[19] Di Feng, Ali Harakeh, Steven L Waslander, and Klaus Dietmayer. A review and compar-
ative study on probabilistic object detection in autonomous driving. IEEE Transactions
on Intelligent Transportation Systems, 2021.

[20] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine learning,
pages 1050–1059. PMLR, 2016.

[21] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo
series in 2021. arXiv preprint arXiv:2107.08430, 2021.

[22] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on com-
puter vision, pages 1440–1448, 2015.

[23] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587, 2014.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[26] Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. Making machine learning ro-
bust against adversarial inputs. Communications of the ACM, 61(7):56–66, 2018.

[27] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern
neural networks. In International Conference on Machine Learning, pages 1321–1330.
PMLR, 2017.

[28] David Hall, Feras Dayoub, John Skinner, Haoyang Zhang, Dimity Miller, Peter Corke,
Gustavo Carneiro, Anelia Angelova, and Niko Sünderhauf. Probabilistic object detec-
tion: Definition and evaluation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 1031–1040, 2020.

[29] Ali Harakeh, Michael Smart, and Steven L Waslander. Bayesod: A bayesian approach for
uncertainty estimation in deep object detectors. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 87–93. IEEE, 2020.

[30] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The ele-
ments of statistical learning: data mining, inference, and prediction, volume 2. Springer,
2009.

31
[Distribution Statement A] Approved for public release and unlimited distribution.

http://www.deeplearningbook.org

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[32] Derek Hoiem, Yodsawalai Chodpathumwan, and Qieyun Dai. Diagnosing error in object
detectors. In European conference on computer vision, pages 340–353. Springer, 2012.

[33] Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih Hung, Hung-Yu Tseng, Ma-
neesh Singh, and Ming-Hsuan Yang. Progressive domain adaptation for object detection.
In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pages 749–757, 2020.

[34] Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhixi Feng, and Rong
Qu. A survey of deep learning-based object detection. IEEE access, 7:128837–128868,
2019.

[35] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? Advances in neural information processing systems, 30, 2017.

[36] John Kirchenbauer, Jacob R Oaks, and Eric Heim. What is your metric telling you? eval-
uating classifier calibration under context-specific definitions of reliability. In Interna-
tional Conference on Learning Representations Workshop on Machine Learning Evalua-
tion, 2022.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing systems,
25, 2012.

[38] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for
deep learning using calibrated regression. In International conference on machine learn-
ing, pages 2796–2804. PMLR, 2018.

[39] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. Advances in neural information
processing systems, 30, 2017.

[40] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision trans-
former backbones for object detection. arXiv preprint arXiv:2203.16527, 2022.

[41] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2117–2125, 2017.

[42] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for
dense object detection. In Proceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017.

[43] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in con-
text. In European conference on computer vision, pages 740–755. Springer, 2014.

[44] Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting for
label shift with black box predictors. In International conference on machine learning,
pages 3122–3130. PMLR, 2018.

[45] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European confer-
ence on computer vision, pages 21–37. Springer, 2016.

[46] Weiwei Liu, Haobo Wang, Xiaobo Shen, and Ivor Tsang. The emerging trends of multi-
label learning. IEEE transactions on pattern analysis and machine intelligence, 2021.

32
[Distribution Statement A] Approved for public release and unlimited distribution.

[47] Andrew Ng. Machine learning yearning: Technical strategy for ai engineers in the era of
deep learning draft version 0.5. Harvard Bus. Publishing, Boston, MA, USA, Tech. Rep,
2016.

[48] Kemal Oksuz, Baris Can Cam, Sinan Kalkan, and Emre Akbas. Imbalance problems in
object detection: A review. IEEE transactions on pattern analysis and machine intelli-
gence, 43(10):3388–3415, 2020.

[49] Mona Rahimi, Jin LC Guo, Sahar Kokaly, and Marsha Chechik. Toward requirements
specification for machine-learned components. In 2019 IEEE 27th International Require-
ments Engineering Conference Workshops (REW), pages 241–244. IEEE, 2019.

[50] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[51] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 7263–7271, 2017.

[52] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[53] Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua
Dillon, and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection.
Advances in Neural Information Processing Systems, 32, 2019.

[54] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural information
processing systems, 28, 2015.

[55] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Sil-
vio Savarese. Generalized intersection over union: A metric and a loss for bounding box
regression. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 658–666, 2019.

[56] Tal Ridnik, Emanuel Ben-Baruch, Nadav Zamir, Asaf Noy, Itamar Friedman, Matan
Protter, and Lihi Zelnik-Manor. Asymmetric loss for multi-label classification. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages 82–91,
2021.

[57] David Rolnick, Priya L Donti, Lynn H Kaack, Kelly Kochanski, Alexandre Lacoste,
Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna
Waldman-Brown, et al. Tackling climate change with machine learning. ACM Computing
Surveys (CSUR), 55(2):1–96, 2022.

[58] Soumya Roy, Asim Unmesh, and Vinay P Namboodiri. Deep active learning for object
detection. In BMVC, page 91, 2018.

[59] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and
Matthias Bethge. Improving robustness against common corruptions by covariate shift
adaptation. Advances in Neural Information Processing Systems, 33:11539–11551, 2020.

[60] Robert A Schowengerdt. Remote sensing: models and methods for image processing. Else-
vier, 2006.

[61] Jacob Shermeyer, Thomas Hossler, Adam Van Etten, Daniel Hogan, Ryan Lewis, and
Daeil Kim. Rareplanes dataset, June 2020.

[62] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object
detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10781–10790, 2020.

33
[Distribution Statement A] Approved for public release and unlimited distribution.

[63] Peng Tang, Chetan Ramaiah, Yan Wang, Ran Xu, and Caiming Xiong. Proposal learning
for semi-supervised object detection. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 2291–2301, 2021.

[64] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeul-
ders. Selective search for object recognition. International journal of computer vision,
104(2):154–171, 2013.

[65] Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll,
and Thomas Schön. Evaluating model calibration in classification. In The 22nd Interna-
tional Conference on Artificial Intelligence and Statistics, pages 3459–3467. PMLR, 2019.

[66] Andreas Vogelsang and Markus Borg. Requirements engineering for machine learning:
Perspectives from data scientists. In 2019 IEEE 27th International Requirements Engi-
neering Conference Workshops (REW), pages 245–251. IEEE, 2019.

[67] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Meta-learning to detect rare ob-
jects. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 9925–9934, 2019.

[68] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detec-
tron2. https://github.com/facebookresearch/detectron2, 2019.

[69] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo Luo, Mihai Datcu,
Marcello Pelillo, and Liangpei Zhang. Dota: A large-scale dataset for object detection
in aerial images. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[70] Enze Xie, Jian Ding, Wenhai Wang, Xiaohang Zhan, Hang Xu, Peize Sun, Zhenguo Li,
and Ping Luo. Detco: Unsupervised contrastive learning for object detection. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages 8392–8401,
2021.

[71] Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms and ap-
plications. arXiv preprint arXiv:2003.05689, 2020.

[72] Peng Zhang, Jiuling Wang, Ali Farhadi, Martial Hebert, and Devi Parikh. Predicting
failures of vision systems. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3566–3573, 2014.

[73] Qinglong Zhang and Yu-Bin Yang. Rest: An efficient transformer for visual recognition.
Advances in Neural Information Processing Systems, 34, 2021.

[74] Quan-shi Zhang and Song-Chun Zhu. Visual interpretability for deep learning: a survey.
Frontiers of Information Technology & Electronic Engineering, 19(1):27–39, 2018.

[75] Yilun Zhou, Marco Tulio Ribeiro, and Julie Shah. Exsum: From local explanations to
model understanding. arXiv preprint arXiv:2205.00130, 2022.

[76] Barret Zoph, Ekin D Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, and Quoc V
Le. Learning data augmentation strategies for object detection. In European conference
on computer vision, pages 566–583. Springer, 2020.

[Distribution Statement A] Approved for public release and unlimited distribution.

https://github.com/facebookresearch/detectron2

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not
be construed as an official Government position, policy, or decision, unless designated by other docu-
mentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTI-
TUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUD-
ING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EX-
CLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNI-
VERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed
in written or electronic form without requesting formal permission. Permission is required for any other
external and/or commercial use. Requests for permission should be directed to the Software Engineer-
ing Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM22-0474

[Distribution Statement A] Approved for public release and unlimited distribution.

	Aerial Object Detector Evaluation_white paper.pdf
	techreport_final2 (002).pdf

