
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Augur: A Step Towards Realistic Drift Detection in Production ML
Systems

Grace A. Lewis, Sebastián Echeverría, Lena Pons, Jeffrey Chrabaszcz
{glewis,secheverria,lepons,jschrabaszcz}@sei.cmu.edu

Carnegie Mellon Software Engineering Institute
Pittsburgh, PA, USA

ABSTRACT
The inference quality of deployed machine learning (ML) models
degrades over time due to differences between training and produc-
tion data, typically referred to as drift. While large organizations
rely on periodic training to evade drift, the reality is that not all
organizations have the data and the resources required to do so. We
propose a process for drift behavior analysis at model development
time that determines the set of metrics and thresholds to monitor for
runtime drift detection. Better understanding of how models will
react to drift before they are deployed, combined with a mechanism
for how to detect this drift in production, is an important aspect of
Responsible AI. The toolset and experiments reported in this paper
provide an initial demonstration of (1) drift behavior analysis as a
part of the model development process, (2) metrics and thresholds
that need to be monitored for drift detection in production, and
(3) libraries for drift detection that can be embedded in production
monitoring infrastructures.

CCS CONCEPTS
• Software and its engineering→ Software design engineer-
ing; • Computing methodologies→Machine learning.

KEYWORDS
software engineering, machine learning, drift detection, model mon-
itoring, responsible AI
ACM Reference Format:
Grace A. Lewis, Sebastián Echeverría, Lena Pons, Jeffrey Chrabaszcz. 2022.
Augur: A Step Towards Realistic Drift Detection in Production ML Systems.
InWorkshop on Software Engineering for Responsible AI (SE4RAI’22 ), May
19, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3526073.3527590

1 INTRODUCTION
After machine learning (ML) systems are deployed, their models
need to be retrained to account for differences between training and
production data, known as drift. These differences over time lead
to inference degradation — negative changes in the quality of ML
inferences — which eventually reduce the trustworthiness of sys-
tems. Ideally, inference degradation would be quickly and reliably

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SE4RAI’22 , May 19, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9319-5/22/05.
https://doi.org/10.1145/3526073.3527590

identified in production ML systems, allowing appropriate action
to be taken (e.g., retraining, cautioning users, taking the capability
offline). The state of the practice in industry is to do periodic retrain-
ing and model redeployment to evade inference degradation instead
of monitoring for inference degradation. Without an analytic ba-
sis for defining the appropriate retraining interval, this frequent
retraining strategy risks correcting for inference degradation too
slowly (i.e., bad inferences may be the basis for critical decisions)
or redeploying models too frequently (i.e., retraining when it was
not necessary, unnecessarily consuming resources, and increasing
the risk of system downtime due to redeployment errors).

Current research provides several means of monitoring for drift,
includingmeasuring changes in prior or posterior probability, anom-
aly detection, and novel class emergence [24][26]. Existing work
also defines a large set of metrics for drift detection (see Sections 2.3
and 7). However, there are gaps in this research that limit its use in
production ML systems. First, metrics focus on detecting when drift
has occurred and not why it is occurring to determine if retraining
is required. Second, validation of these metrics is typically done
using synthetic datasets or benchmarks that are not representative
of production data (see Section 7). Finally, limitations such as (1)
context dependency, (2) inability to detect different forms of drift
(e.g., continuous, abrupt, reoccurring), and (3) requirement of hu-
man validation to detect, make it difficult to use these metrics in
production systems for reliable and timely inference degradation.

The main goal of our work is to provide a mechanism for drift be-
havior analysis and informedmonitoring of productionML systems,
an important aspect of Responsible AI. Our main contributions are
(1) a method for introducing realistic drift into datasets, (2) a sample
set of empirically-validated metrics that are predictors of when a
model’s inference quality will degrade due to different types of
data drift, and (3) an extensible toolset developed for conducting
experiments that forms the basis for supporting contextual drift
behavior analysis as part of model development; determining met-
rics and thresholds that need to be monitored in production that
would indicate drift; and providing reusable modules/libraries that
can be embedded into model monitoring infrastructures to support
realistic drift detection in production ML systems.

This paper is structured as follows. Section 2 presents the exper-
iment setup. Section 3 explains how drift was introduced into the
dataset used in the experiments. Section 4 describes the toolset cre-
ated to run the experiments, which is one of the main outcomes of
this work. Experiment results are presented in Section 5. Limitations
are discussed in Section 6, and related work in Section 7. Finally,
Section 8 concludes the paper and presents next steps to advance
this work. All datasets and experiment results are available in the
replication package at https://github.com/cmu-sei/augur-results.

1

https://doi.org/10.1145/3526073.3527590
https://doi.org/10.1145/3526073.3527590
https://doi.org/10.1145/3526073.3527590
https://github.com/cmu-sei/augur-results


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SE4RAI’22 , May 19, 2022, Pittsburgh, PA, USA Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Open source toolset code is available at https://github.com/cmu-
sei/augur-code.

2 EXPERIMENT SETUP
To show the value of drift behavior analysis we needed to demon-
strate that the process could produce a set of drift detection metrics
and thresholds to detect different types of drift that the model under
analysis could experience in production. Therefore, we first had to
determine what metrics were better at detecting what types of drift,
which in turn required defining: (1) a production-relevant dataset,
(2) a trained model that performs some inference on the dataset, (3)
a series of known distortions to the dataset (drift induction), and
(4) a set of metrics to estimate drift (drift detection).

2.1 Dataset and Model Selection
The goal was to select a dataset that would be closer to data found in
production settings, than what we had observed in the existing lit-
erature (Section 7). We selected an open source dataset of synthetic
aperture radar (SAR) images containing icebergs that were part of
a Kaggle competition.1 This dataset was selected because image
classification is a very common computer vision task in production
ML systems. Because the dataset had been published as part of a
Kaggle competition, we were able to select a highly-performing
model from the submitted solutions, instead of developing our own.
We were also able to produce a full set of ground truth labels for all
of the observations in that dataset. Because the model performed
so well on the original data, we used inferences from the model to
generate labels for the published test data as well, allowing us to
treat both the published training and test data as a single corpus.

2.2 Drift Induction
The next step was to identify how we were going to introduce
drift in the SAR dataset. Drift needed to be of sufficient magnitude
to be detected, but also realistic. At a high-level, drift is caused
by changes in the feature space (i.e., real drift) or changes in data
distribution over time (i.e., virtual drift) [15]. An option for inducing
real drift into image data is to change the pixel space of the input
images via changing contrast, blurring, color, etc. An option for
inducing virtual drift for data in general is to change the distribution
of observations in the input data. Even though both types of drift
are relevant to the SAR dataset, we selected to induce virtual drift
because (1) it was better aligned to the drift scenarios that we
wanted to evaluate for iceberg data (e.g., seasonality, temperature
changes), and (2) the drift functions would generalize more readily
to other time series data. The drift induction process induces virtual
drift by changing the prevalence of iceberg detections in the drifted
dataset, as described in Section 3.

Because we induced virtual drift, we expect no effect of our
drift induction on the classification model discussed in Section 2.1.
Therefore we needed to organize the SAR dataset into a time series
and create a model of the expected rate of iceberg detections over
time. We created a time series of the SAR dataset by summing the
detections in every contiguous set of 50 images, which we refer to
as a time interval. To be able to predict the distribution of expected
icebergs per time interval, we fit a statistical model to the base
1https://www.kaggle.com/c/statoil-iceberg-classifier-challenge/

dataset, using an ARIMA (3,1,3) model [7]. Drift detection therefore
becomes an estimate of the difference between the time series model
and a time series aggregation of the drifted dataset.

2.3 Candidate Drift Detection Metrics
A review of the literature on drift detection identified approximately
40 unique drift detection approaches, grouped into five classes:
distance-based metrics, error-based metrics, compound approaches,
adaptive methods, and active learning based methods.

Distance-based metrics measure the distance between probabil-
ity distributions of two segments of data (e.g., Hellinger Distance
and Energy Distance) [12]. Error-based metrics are statistical tests
that entail constructing an explicit null hypothesis that new data
will not deviate from training data outside of some range, dependent
on the allowed ratio of false alarm (e.g., z statistic and Kolmogorov-
Smirnov (KS) statistic) [16]. Compound approaches expand on dis-
tance or error metrics by first transforming the parameter space,
which improves robustness in some cases (e.g., Hellinger distance
on a Principal Component Analysis of both training and production
data [13]). The last two classes of approaches — adaptive approaches
and active learning — were considered out of scope for this work
because they are not focused on detecting drift but rather on apply-
ing dynamic changes to the production model to account for data
drift (e.g., Hoeffding trees [9] or core-set selection [22]). Based on a
detailed analysis of each of these types of metrics, we selected six
metrics for evaluation: Energy Distance, Hellinger Distance, Total
Variation Distance, Kullback-Leibler (KL) Divergence, z statistic,
and Kolmogorov-Smirnov (KS) statistic.

All sixmetrics have been used in previouswork on drift detection,
but differ in their sensitivity to differences in the compared samples.
Energy, Hellinger, and Total Variation distance are proper distance
metrics. KL Divergence, while not a true distance, is ubiquitous
because of its relation to information theory. The final two metrics
are statistical tests that are sensitive to differences in either themean
or the mean and standard deviation, respectively. We believe that
this set ofmetrics covers different assumptions about the underlying
data and is also sensitive to different deviations between the trained
and observed data, e.g., a z statistic will be sensitive to the difference
between the means of two samples, while the KS statistic takes into
account both the mean and dispersion.

3 MODELING DRIFT
With respect to change rate, there are several taxonomies of types
of data drift (e.g., [25]) that roughly classify drift based on duration
(sudden vs. extended), transition (gradual vs. incremental), and
reoccurrence (reoccurring vs. non-reoccurring). Based on the nature
of possible drift in the SAR iceberg dataset we defined eight drift
scenarios — descriptions of a drift condition expressed in terms of
the problem domain — for different grades of sudden, gradual, and
reoccurring drift, as shown in Table 1. The process to implement
each drift scenario is as follows.

Step 1 - Define bins: Create a bin for each classification result. As
an example, for the SAR dataset and model there are only two bins:
iceberg detected and iceberg not detected.

Step 2 - Sort samples into bins: Place samples into each bin based
on their classification.

2

https://github.com/cmu-sei/augur-code
https://github.com/cmu-sei/augur-code
https://www.kaggle.com/c/statoil-iceberg-classifier-challenge/


233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Augur: A Step Towards Realistic Drift Detection in Production ML Systems SE4RAI’22 , May 19, 2022, Pittsburgh, PA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Step 3 - Define sample groups and sizes: For each sample group that
represents a unit of analysis, configure the percentage of samples
to extract from each bin (i.e., prevalences). The idea is that different
prevalences represent different types of drift. As an example, sudden
drift can be represented by 65% of icebergs detected in Sample
Group 1 followed by 40% of icebergs detected in Sample Group 2.

Step 4 - Sort samples into groups: Randomly obtain samples from
the bins, and place them into each group based on defined preva-
lences.

Step 5 - Generate timestamps: For each sample in the new drifted
dataset, generate a sequential timestamp.

The parameters for each of the drift scenarios are also shown
in Table 1. Total Samples is the resulting size of the drifted dataset.
Number of Sample Groups defines the numbers of groups in which to
divide the samples, with the resulting group size shown in Sample
Group Size. Prevalences defines the percentage of samples of Iceberg
Detected to place in each group. Finally, Repeat Prevalence Range
applies only to the Reoccurring Sudden scenarios in which preva-
lences are generated randomly after the initial three, following the
indicated randomization parameters.

4 EXTENSIBLE DRIFT BEHAVIOR ANALYSIS
TOOLSET

We developed a toolset with extensibility as the driving quality
attribute to enable researchers and model developers to extend the
capabilities of the toolset beyond the scope of this project, such as
(1) adding new datasets and models; (2) adding new drift types and
drift induction functions; (3) adding new drift detectionmetrics; and
(4) configuring new experiments. The toolset is targeted at model
developers interested in analyzing model behavior in response to
drift. In addition, once analysis is complete, the tool components
that implement the drift detection metrics that end up being the
best predictors of inference degradation, can be included in the
monitoring infrastructure for drift detection in production (via
a library of drift detection metrics). The toolset has three main
components: Trainer, Drifter and Predictor. All components are
command line tools with very detailed configuration files that can
be used to customize each component as needed.

4.1 Trainer
The Trainer shown in Figure 1 trains the model under analysis. For
our experiments, it trains the neural-network model for iceberg
detection described in Section 2.1, as well as the supplementary
time-series model described in Section 2.2 that aggregates the data
over time. Using the Trainer to train the neural-network model
is optional, because it could be trained separately using any ML
framework (e.g., TensorFlow, PyTorch, scikit-learn). However, the
advantage of using the Trainer is that the model is exported in the
TensorFlow format that is used by the Drifter and the Predictor.
The Trainer is needed to train the supplementary time-series model
based on the aggregated data from the neural-network model, as it
will be used by the Predictor tool. Small Python modules need to
be created to describe the dataset and the neural-network model,
simply extending existing base classes and modules. The Trainer
uses a configuration file to indicate the modules and parameters
used for training. Adding new models and datasets for analysis

simply requires their implementation in new Python modules and
including links to them to the configuration file.

Figure 1: Dynamic View of the Trainer Component

4.2 Drifter
The Drifter shown in Figure 2 generates a drifted dataset by apply-
ing a drift induction function to a base dataset. The Drifter currently
implements the prevalence drift function defined in Section 3, but
additional functions can be added by creating simple Python mod-
ules that implement a defined interface for drift induction functions.

For the prevalence drift induction function, the output of the
Drifter is a drifted dataset that contains samples from the base
dataset, but in a different order to match the drift scenario, plus
timestamps that extend the original data. A configuration file is used
to adjust the parameters of the drift induction functions to create
different types of simulated drift, as shown in the example in Figure
3. This file shows the configuration for the Sudden scenario from
Table 1. Two bins are defined in Lines 5-9: 0 for no iceberg detected
and 1 for iceberg detected. The timestamps to add to each sample
in the drifted dataset are defined in Lines 11-14 (start on 2022-05-21
with increments of one hour). The drift scenario definition starts on
Line 15: It implements the Sudden drift scenario (Line 17), using the
drift induction function defined in the module prevalence_drift.
The parameters for this module (following Table 1) are Total Samples
in Line 21, Sample Group Size in Line 22, and Prevalences in Lines 23-
32. This last parameter states that the Prevalences of iceberg detected
(Bin 1) in each sample group, should be 65%, 40%, and 60%, with no
repeat prevalence. Adding a new drift induction function simply
requires its implementation in a new Python module (Line 18) and
its parameters defined under the params tag (Line 19).

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SE4RAI’22 , May 19, 2022, Pittsburgh, PA, USA Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: Drift Scenarios and Parameters

Drift Type Drift Condition Total
Samples

Number of
Sample Groups

Sample
Group Size

Prevalences
(of Iceberg Detected)

Repeat Prevalence
Range

Gradual Decrease in number of icebergs with seasons 10026 6 1671 65, 63, 60, 55, 45, 40 N/A
Reoccurring Gradual Reoccurring decrease in icebergs over multi-

ple seasons
12000 12 1000 65, 55, 45, 30, 40, 50, 60,

50, 40, 30, 45, 55
N/A

Sudden Sharp decrease in icebergs 9999 3 3333 65, 40, 60 N/A
Reoccurring Sudden Multiple randomized sudden changes in the

number of icebergs
12000 12 1000 65, 40, 60, . . . random [-5, +5]

Aggressive Gradual More aggressive decrease in number of ice-
bergs with seasons

10026 6 1671 65, 53, 40, 75, 35, 20 N/A

Aggressive Reoccurring
Gradual

More aggressive reoccurring decrease in ice-
bergs over multiple seasons

12000 12 1000 65, 45, 35, 20, 30, 60, 70,
60, 30, 20, 35, 45

N/A

Aggressive Sudden More aggressive sharp decrease in icebergs 9999 3 3333 65, 10, 70 N/A
Aggressive Reoccurring
Sudden

More aggressivemultiple randomized sudden
changes in the number of icebergs

12000 12 1000 65, 10, 70, . . . random [-10, +10]

Figure 2: Dynamic View of the Drifter Component

4.3 Predictor
The Predictor shown in Figure 4 runs the trained model with the
drifted dataset generated by the Drifter and calculates the imple-
mented drift detection metrics. The metrics defined in Section 2.3
are currently implemented in the tool, but others can be easily
added by creating small Python modules that implement a defined
interface for drift detection metrics. The Predictor also has a config-
uration file to configure different experiments that combine drifted
datasets and metrics. Prediction results and metrics are generated
as JSON files to be analyzed by model developers.

Figure 5 shows a snippet of a configuration file for the Predic-
tor. Lines 17 to 21 configure the time interval for the time-series
predictions, indicating where to start and what interval to use. The
section starting on Line 22 defines the metrics that the Predictor
will calculate on the data. Each item in the metrics array indicates
one metric to be calculated by the Predictor. The first metric shown
in Lines 24-34 is a distance metric, KL Divergence, and its parame-
ters include the module that calculates it, and specific parameters

Figure 3: Example Configuration File for the Drifter

to calculate density functions. The next two metrics (in lines 37 and
42) are error metrics, that simply define the name, type, and module
used to calculate them. As noted earlier, adding new metrics simply
requires creating a Python module that implements each metric.

5 EXPERIMENT RESULTS
The results of the experiments exist primarily in the Prediction
Metrics file referenced in Figure 4, which is used for identifying the
amount of inference degradation with respect to the induced drift
at each time interval. The prediction metrics quantify the difference
between the predicted number of icebergs (generated by the time-
series model produced by the Trainer (Section 4.1)) and the number
of observed icebergs in the drifted dataset in each post-training
time interval. This output is summarized in Figure 6, which plots
metric value (y-axis) by time period (x-axis) for each drift type

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Augur: A Step Towards Realistic Drift Detection in Production ML Systems SE4RAI’22 , May 19, 2022, Pittsburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 4: Dynamic View of the Predictor Component

Table 2: Metric Performance

Metric Detection
Threshold

Expected Time to Detection
(Post-training Intervals)

Energy Distance 0.0001 1.3
Hellinger Distance 0.364 1.3
Kolmogorov-Smirnov Statistic 0.665 11
Kullback-Leibler Divergence 0.786 1.1
Total Variation Distance 0.0004 1.2
Z Test -1.60 60

(line color) and metric type (facet). The plots were generated using
ggplot2 (ggplot2.tidyverse.org) and CRAN R (R-project.org).

Table 2 shows the optimal threshold for drift detection in this
dataset and the average time to detection for each metric, averaged
across drift types. Between Table 2 and Figure 6 we can see that:

• Energy Distance detects drift quickly and is unique in that
it increases monotonically as post-training time interval
increases. All other tested metrics eventually drop below
the detection threshold.

• Hellinger Distance generally detects drift in the first post-
training time interval, but decreases over time as the pre-
diction uncertainty grows.

• Kolmogorov-Smirnov Statistic is highly variable, taking an
average of 11 time intervals to detect drift. This is likely

Figure 5: Example Configuration File for the Predictor

because it is a one-sample test statistic calculated on a sin-
gle observation. Like Energy Distance, though, this metric
continues to probabilistically detect drift over the range of
tested post-training intervals.

• KL Divergence shows immediate deflection that gradually
returns to zero, but is the first metric to detect drift for
all drift types in this dataset. This is a consequence of the
prediction uncertainty on time-series models, whichwidens
over time since the last training sample. One concern with
using these metrics is that the system could look like it
experienced temporary inference degradation and is slowly
improving.

• Total Variation Distance shows a similar pattern to
Hellinger Distance for all but the Aggressive Gradual drift,
though the pattern is hidden by the large metric values
associated with this drift type. Like Hellinger Distance, it is
only slightly slower than KL Divergence at detecting drift.

• z Statistic suffers from the same instability as the
Kolmogorov-Smirnov Statistic. Because of this, it is the
last metric to detect any drift type in this dataset.

Based on these results and observations, we can make specific
monitoring recommendations for the iceberg detection model. All
drift types for this system can be adequately captured by KL Di-
vergence and Energy Distance using the thresholds in Table 2. KL

5

ggplot2.tidyverse.org
R-project.org


581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SE4RAI’22 , May 19, 2022, Pittsburgh, PA, USA Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Total Variation Distance z Statistic

KS Statistic Kullback−Leibler Divergence

Energy Distance Hellinger Distance

0 100 200 300 400 500 0 100 200 300 400 500

0.2

0.3

0.4

0.5

0.6

0

1

2

3

−3

−2

−1

0

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.5

0.6

0.7

0.8

0.9

1.0

0.000

0.002

0.004

0.006

Post−training Time Interval

M
et

ric
 V

al
ue

Drift
Aggressive Gradual

Aggressive Reoccuring Gradual

Aggressive Reoccurring Sudden

Aggressive Sudden

Gradual

No Drift

Reoccurring Gradual

Reoccurring Sudden

Sudden

Figure 6: Metrics Values by Number of Time Intervals Post-Training, Colored by Drift Type and Faceted by Metric

Divergence shows a large value in the first post-training time in-
terval for all drift types, but approaches zero as time since training
elapses. Energy Distance also shows a small, immediate sensitivity
to all drift types, but unlike KL Divergence, increases over time.
Assuming these drifts are of the type and magnitude likely to be ob-
served in production, KL Divergence gives an immediate signal that
drift has occurred while Energy Distance provides accumulating
evidence over time that the model’s inferences have degraded.

These results demonstrate that we were able to detect different
types of drift using a limited set of metrics. This supports the hy-
pothesis that for production systems, an ensemble of drift detection
metrics provides a monitoring capability that can simultaneously
cover more types of drift. These results also suggest that, with suf-
ficient planning prior to deployment, different patterns in metric
change can suggest the nature of observed drift. This can be helpful
to individuals responsible for maintaining models in production.

6 LIMITATIONS
While promising and encouraging, the results reported in this paper
are limited in terms of drift scenarios analyzed, drift induction
method implemented, and selected metrics, which are all specific
to the SAR dataset and model that we used. However, as shown in
Section 4, the toolset is easily extensible to to other drift inductions
methods and metrics.

The toolset currently has limited analysis support; the reports
generated by the Predictor require manual analysis, which would
not have been possible without a data scientist on the team. How-
ever, the decision to export results in JSON was so they could be
imported by tools used by data scientists for statistical analysis.
This is one of several areas of future work (Section 8).

Finally, analysis was done with respect to only accuracy and de-
tection delay (i.e., time between drift appearance and its detection).
Lack of consideration of system metrics (e.g., performance, through-
put, resource consumption) during model development is cited by

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Augur: A Step Towards Realistic Drift Detection in Production ML Systems SE4RAI’22 , May 19, 2022, Pittsburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

many practitioners as a cause for problems once models are put
into production [17][21]. Providing additional metrics for analysis
that include system metrics is an area of future work (Section 8).

7 RELATEDWORK
The replication package contains an annotated bibliography that
supports the statements and observations made in this section.

7.1 Drift Definitions and Types
There is a considerable amount of work in defining and charac-
terizing drift associated to ML models, even if there is a lack of
agreement on the terminology used (e.g., drift vs. shift). Drift in gen-
eral is defined as a change in model performance between training
and production. In general, drift definitions fall into three categories
[1][12][18][23][25]:

(1) Covariate drift: Differences in distribution between training
data and production data caused by, for example, adversarial in-
puts, training data that is not representative of the operational
domain, changes in data acquisition modules, or non-stationary
environments (also referred to as virtual drift).

(2) Probability shift: Differences in the distribution of the target
variable caused by, for example, changes in a policy or business
rule that result in re-categorization of members of a class.

(3) Concept drift: Changes in context (e.g., user behaviors) that
lead to changes in the target variable (also referred to as real drift).

Our experiments were specifically targeted at introducing and
detecting virtual drift (i.e., covariate drift) which mapped to realistic
drift conditions for the selected SAR iceberg dataset (Section 2).

7.2 Methods for Introducing Drift
Most related work leverages existing drifted datasets and bench-
marks, as opposed to generating drifted datasets. Similar to our
work, these drifted datasets are used for evaluation of drift detection
methods. The most commonly used datasets are Massive Online
Analysis (MOA) and MOA Extensions, available at https://moa.cms.
waikato.ac.nz/ and https://sites.google.com/site/moaextensions, re-
spectively. While extremely useful for developers of drift detection
methods to use as a benchmark, these are not fully representative
of production data streams. There are existing drift generator algo-
rithms that we analyzed for suitability, such as the ones developed
by Webb et al. [25]. In this work, we specifically focused on intro-
duction of virtual drift as defined in Section 2.2, and in particular
in the context of realistic drift conditions.

7.3 Methods for Addressing Drift in ML Systems
These methods fall into three main categories:

(1) Ensembles: Ensemble methods use the weighted outputs of a
set of models, rather than a single model, and adjust the weights so
that a higher weight is given to models that are producing outputs
that are closer to the decision boundary. In this way, the ensemble
adjusts to the effect of drift rather than having to fully retrain a
model due to drift (active approach) [16].

(2) Drift Detection Methods (DDMs): These methods flag when
drift occurs and trigger some action to be taken (passive approach).

(3) DDM Ensembles: These are sets of DDMs that run in parallel
with the goal of detecting different types of drift (active or passive
approach based on implementation) [14][20].

Our work leverages existing DDMs to evaluate their effectiveness
in detecting different types of drift. A large amount of DDMs have
been proposed in the literature in the past 15 or so years. Many are
based on metrics and tests such as ADWIN [6], CUSUM [2], DDM
[4], KL Divergence [26], KS statistic [8], Hellinger Distance [1], and
PCA [13], to cite some examples. These are also commonly used by
most surveys that comparemethods (e.g., [3][5][11][12][14][16][19]
[24]). The results reported by these surveys were leveraged in the
identification of drift detection metrics in this study (Section 2.3).

The end goal of the Augur toolset is to determine the DDM
Ensemble that contains the metrics and thresholds that are the best
predictors of the different types of drift that are likely to occur in
production. This goal is similar to that of the work proposed by
Babüroğlu et al. [3] in which they mapped DDMs to classifiers with
the goal of determining the best DDMs for each classifier.

Finally, a large gap in related work, that is addressed by our work,
is the lack of focus on production systems and production-readiness
of ML models. In particular, much work focuses on identifying de-
tection methods independent of the problem context and provides
limited guidance on how to tailor these monitoring capabilities to
specific systems. Other than Zhou et al. [26], there is very limited
guidance or examples of how DDMs work in the context of pro-
duction ML systems. As ML capabilities are integrated into more
systems and are used to address more problem areas, our toolset
can help model developers and engineers deploy systems with more
confidence that they can capture model degradation over time.

8 CONCLUSIONS AND NEXT STEPS
We presented a process and toolset for realistic drift detection in
production ML systems that makes the following contributions
to the development of production-ready ML models: (1) a method
to introduce context-specific drift into training datasets, (2) sup-
port for analysis of model behavior in the face of drift, and (3)
reusable modules that can be integrated into model monitoring
infrastructures for runtime drift detection. Our vision is to support
the workflows shown in Figure 7. During model development, de-
velopers can use the Augur toolset to analyze model behavior and
determine the best set of metrics and thresholds for drift detection
over time. As shown in the diagram, models are retrained and new
drifted datasets are created until developers are satisfied with the
results. The resulting trained model, drift metrics and thresholds
are used during model integration, development and operations for
runtime drift detection. Once drift is detected, the resulting action
could be simply an alert, manual or automated model retraining,
model replacement, or additional monitoring and log data analysis.

However, additional work to supportmodel production-readiness
is required, which is the focus of our current and future work and
includes: (1) Research and development of additional drift induction
functions and drift detection metrics to be included in the toolset for
developers to select during model development and evaluation, (2)
Additional analysis metrics such as false positive rate, false negative
rate, memory consumption, and processing time, (3) Evaluation of
whether generating both a warning and a drift threshold leads to

7

https://moa.cms.waikato.ac.nz/
https://moa.cms.waikato.ac.nz/
https://sites.google.com/site/moaextensions


813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

SE4RAI’22 , May 19, 2022, Pittsburgh, PA, USA Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 7: Workflows Supported by the Augur Toolset

the reduction of false positives [10], (4) Development and integra-
tion of a Drift Analysis component into the toolset that codifies the
manual analysis that was done in the execution of this study, and
(5) Generation of a code library for drift detection as an additional
output of the model development workflow shown in Figure 7.

ACKNOWLEDGMENTS
This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software En-
gineering Institute, a federally funded research and development
center (DM22-0229).

REFERENCES
[1] Hala Abdelkader. 2020. Towards Robust Production Machine Learning Systems:

Managing Dataset Shift. In 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 1164–1166.

[2] Cesare Alippi, Giacomo Boracchi, and Manuel Roveri. 2016. Hierarchical Change-
Detection Tests. IEEE Transactions on Neural Networks and Learning Systems 28,
2 (2016), 246–258.

[3] Elif Selen Babüroğlu, Alptekin Durmuşoğlu, and Türkay Dereli. 2021. Novel
Hybrid Pair Recommendations based on a Large-Scale Comparative Study of
Concept Drift Detection. Expert Systems with Applications 163 (2021), 113786.

[4] Roberto SM Barros, Danilo RL Cabral, Paulo M Gonçalves Jr, and Silas GTC
Santos. 2017. RDDM: Reactive Drift Detection Method. Expert Systems with
Applications 90 (2017), 344–355.

[5] Roberto Souto Maior Barros and Silas Garrido T Carvalho Santos. 2018. A Large-
Scale Comparison of Concept Drift Detectors. Information Sciences 451 (2018),
348–370.

[6] Albert Bifet and Ricard Gavalda. 2007. Learning from Time-Changing Data with
Adaptive Windowing. In Proceedings of the 2007 SIAM International Conference
on Data Mining. SIAM, 443–448.

[7] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015.
Time series analysis: forecasting and control. John Wiley & Sons.

[8] David A Cieslak and Nitesh V Chawla. 2009. A Framework for Monitoring Classi-
fiers’ Performance: When and Why Failure Occurs? Knowledge and Information
Systems 18, 1 (2009), 83–108.

[9] Pedro Domingos and Geoff Hulten. 2000. Mining High-Speed Data Streams. In
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 71–80.

[10] Isvani Frias-Blanco, José del Campo-Ávila, Gonzalo Ramos-Jimenez, Rafael
Morales-Bueno, Agustin Ortiz-Diaz, and Yaile Caballero-Mota. 2014. Online
and Non-Parametric Drift Detection Methods Based on Hoeffding’s Bounds.
IEEE Transactions on Knowledge and Data Engineering 27, 3 (2014), 810–823.

[11] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A Survey on Concept Drift Adaptation. ACM computing
surveys (CSUR) 46, 4 (2014), 1–37.

[12] Igor Goldenberg and Geoffrey I Webb. 2019. Survey of Distance Measures for
Quantifying Concept Drift and Shift in Numeric Data. Knowledge and Information
Systems 60, 2 (2019), 591–615.

[13] Igor Goldenberg and Geoffrey I Webb. 2020. PCA-Based Drift and Shift Quan-
tification Framework for Multidimensional Data. Knowledge and Information
Systems 62, 7 (2020), 2835–2854.

[14] Paulo M Gonçalves Jr, Silas GT de Carvalho Santos, Roberto SM Barros, and
Davi CL Vieira. 2014. A Comparative Study on Concept Drift Detectors. Expert
Systems with Applications 41, 18 (2014), 8144–8156.

[15] Syed Muslim Jameel, Manzoor Ahmed Hashmani, Hitham Alhussain, Mobashar
Rehman, and Arif Budiman. 2020. A critical review on adverse effects of con-
cept drift over machine learning classification models. International Journal of
Advanced Computer Science and Applications (IJACSA) 11, 1 (2020), 2020.

[16] Bartosz Krawczyk, Leandro L Minku, Joao Gama, Jerzy Stefanowski, and Michał
Woźniak. 2017. Ensemble Learning for Data Stream Analysis: A Survey. Infor-
mation Fusion 37 (2017), 132–156.

[17] Grace A. Lewis, Stephany Bellomo, and Ipek Ozkaya. 2021. Characterizing and
Detecting Mismatch in ML-Enabled Systems. In 1st International Workshop on
Software Engineering - AI Engineering (WAIN). IEEE.

[18] Jose G Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V Chawla,
and Francisco Herrera. 2012. A Unifying View on Dataset Shift in Classification.
Pattern Recognition 45, 1 (2012), 521–530.

[19] Stephan Rabanser, Stephan Günnemann, and Zachary C Lipton. 2019. Failing
Loudly: An Empirical Study of Methods for Detecting Dataset Shift. In Advances
in Neural Information Processing Systems (NIPS). 1396–1408.

[20] Jesse Read. 2018. Concept-Drifting Data Streams are Time Series; the Case for
Continuous Adaptation. arXiv preprint arXiv:1810.02266 (2018).

[21] Md Saidur Rahman, Emilio Rivera, Foutse Khomh, Yann-Gaël Guéhéneuc, and
Bernd Lehnert. 2019. Machine Learning Software Engineering in Practice: An
Industrial Case Study. arXiv e-prints (2019), arXiv–1906.

[22] Ozan Sener and Silvio Savarese. 2017. Active Learning for Convolutional Neural
Networks: A Core-Set Approach. arXiv preprint arXiv:1708.00489 (2017).

[23] Amos Storkey. 2009. When Training and Test Sets are Different: Characterizing
Learning Transfer. Dataset Shift in Machine Learning 30 (2009), 3–28.

[24] Shuo Wang, Leandro L Minku, and Xin Yao. 2018. A Systematic Study of Online
Class Imbalance Learning with Concept Drift. IEEE Transactions on Neural
Networks and Learning Systems 29, 10 (2018), 4802–4821.

[25] Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean.
2016. Characterizing Concept Drift. Data Mining and Knowledge Discovery 30, 4
(2016), 964–994.

[26] Xianzhe Zhou, Wally Lo Faro, Xiaoying Zhang, and Ravi Santosh Arvapally.
2019. A Framework to Monitor Machine Learning Systems Using Concept Drift
Detection. In Intl. Conf. on Business Information Systems. Springer, 218–231.

8


	Abstract
	1 Introduction
	2 Experiment Setup
	2.1 Dataset and Model Selection
	2.2 Drift Induction
	2.3 Candidate Drift Detection Metrics

	3 Modeling Drift
	4 Extensible Drift Behavior Analysis Toolset
	4.1 Trainer
	4.2 Drifter
	4.3 Predictor

	5 Experiment Results
	6 Limitations
	7 Related Work
	7.1 Drift Definitions and Types
	7.2 Methods for Introducing Drift
	7.3 Methods for Addressing Drift in ML Systems

	8 Conclusions and Next Steps
	References

