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Course Objectives

Upon completion, participants will be able to:
• State the purpose of data cleaning and feature engineering
• Explain basic steps in these processes
• Use open-source tools to accomplish these processes
• Adapt data cleaning and feature engineering to suit analysis needs
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I’ve queried data – now what?

Analyze it!

Avoid
• Unwanted data included in query
• Distracting groups unrelated to goal
• Duplicate data that confuses volume measurements
• Corrupted or incomplete data

Ensure
• Data is regular
• Formatted, scoped, coded to make analysis easier
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Flow Records

This course uses network flow data for examples.

Network flow data is aggregated network packet headers (IP and transport-
layer protocols): source & destination addresses and ports, transport protocol, 
total bytes, packets, TCP flags, start time, duration.

Augmented with collection information: sensor ID, router information, direction 
of traffic, collection attributes, application code.

Collected via export from routers or from dedicated sensor software
Analyzed via a variety of tool suites, although this course uses SiLK.
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Data cleaning and Feature Engineering
“More data beats clever algorithms, but better data beats more data.”  - Peter 
Norvig (Google/Stanford)

More data is often easier – gather from more devices, longer timeframe

But analyzing data without cleaning and engineering may lead to misleading 
results.
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Goal

For a given flow, we want to:

• predict the application label, 

• based on its flow attributes (ports, addresses, bytes, durations, etc.).
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The ongoing example

Basic scenario: To establish a baseline for normal network behavior, an analyst 
needs to identify the application-level protocols used in network activity. YAF 
does application labeling, using a set of rules, but there are issues with just 
using its labels.

Analyst wants more reliable results – cleaning data and engineering features

YAF – Yet Another Flowmeter – a tool that processes packets into flows
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Initial data query
$ rwfilter --start=2015/06/14 --end=2015/06/18 \
--type=in,out,inweb,outweb,int2int --proto=0- --pass=stdout \
| rwstats --fields=application --values=bytes,flows --count=50
INPUT: 38227994 Records for 12 Bins and 66016107477 Total Bytes
OUTPUT: Top 50 Bins by Bytes
appli|               Bytes|   Records|    %Bytes|   cumul_%|

0|         60325769483|  36590255| 91.380379| 91.380379|
80|          4827534293|    152080|  7.312661| 98.693041|

443|           345711966|    121072|  0.523678| 99.216719|
53|           193345037|   1263273|  0.292876| 99.509594|

139|           155090685|      9434|  0.234929| 99.744523|
137|            61377837|     71560|  0.092974| 99.837497|
5004|            50989842|         8|  0.077238| 99.914735|
389|            38211066|     15525|  0.057881| 99.972617|
22|            16859154|       474|  0.025538| 99.998155|

138|             1186822|      4111|  0.001798| 99.999953|
5060|               21492|         6|  0.000033| 99.999985|

69|                9800|       196|  0.000015|100.000000|
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App Labels in the Training Data
App Label Description

0 ‘unrecognized’

22 SSH

53 DNS

80 HTTP

137 MS NETBIOS

138 MS NETBIOS datagram service

139 MS SMB

389 Active directory

443 HTTPS

5004 RTP

5060 SIP
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App Label & Destination Port

application “correlated” to aPort?
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Correlations
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Data Cleaning and Feature Engineering

Data Cleaning
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Purpose and process of data cleaning

Data cleaning is the process of identifying 
and correcting or removing errors, 
inconsistencies, and inaccuracies in the 
data to improve its quality and usability1

Cleaning steps may not all be needed and 
may be done in various orders – and 
cycle.

Remove unwanted observations

Fix errors

Manage outliers

Handle missing data

1 https://www.geeksforgeeks.org/data-cleansing-introduction/
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Removing unwanted observations

Unwanted – unrelated or distracting from data under observation
• Irrelevant protocol
• Useless source or destination
• Bytes, packets, durations too large or too small for activity of interest
Query – filter model
rwfilter --start=2015/06/17 --type=in --protocol=6,17 \

--pass=data.rw

rwfilter data.rw --proto=6 --bytes-per=60- --pass=data60.rw

rwfilter data.rw --proto=17 --bytes-per=40- --pass=data40.rw

rwcat data60.rw data40.rw \

| rwfilter stdin --not-anyset=ignore.set --pass=datasd.rw
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Fix errors

Errors – structural or value artifacts deriving from the data collection process 
rather than from the phenomena being analyzed
• Out-of-order observations – rwsort
• Duplicate observations – rwdedup
• Split observations – rwcombine
• Unconnected observation – rwgroup & rwmatch
• Value errors – rwcut & rwtuc
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rwsort

Merge and sort flow record files based on specified series of fields.

Places records in known order, rather than order from rwfilter

Enables or makes efficient further analyses
rwsort --fields=start,1-5 datasd.rw --out=datasd-sort.rw
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rwdedupe

Omits duplicate records, based on parameters

Deals with same flow being detected by multiple sensors

Deals with overlapping collections of records

rwdedupe --ignore-fields=sensor --bytes-delta=50 \

--stime-delta=100 --duration-delta=50 \

< datasd-sort.rw > datasrt-ded.rw
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rwcombine

Unifies records split by active timeout (flow attributes of T and C)
- preserves semantics of split flows

Leaves other records unchanged

Only works for flows aggregated by sensor (not exported from router)

rwcombine datasrt-ded.rw --output=datasrt-com.rw



Data Cleaning and Feature Engineering
© 2023 Carnegie Mellon University 21[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

rwgroup and rwmatch

rwgroup – link, label (optionally summarize) groups of flow records
Group is defined by field values, requires sorting 
rwsort datasrt-ded.rw --fields=1-5,sensor \
| rwgroup --id-fields=1-5,sensor --summarize >datagrp.rw

rwmatch – label collections of flows that relate to each other (suppress others)
Relating is defined by pairs of field values
rwfilter data.rw --type=out,outweb --pass=stdout \
| rwsort --fields=1-5,stime >data-qry.rw

rwfilter data.rw --type=in,inweb --pass=stdout \
| rwsort --fields=2,1,4,3,5,stime > data-rsp.rw

rwmatch --relate=1,2 --relate=2,1 --relate=3,4 --relate=4,3 \
--relate=5,5 data-qry.rw data-rsp.rw data-mat.rw
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Rwcut and rwtuc

rwcut – eliminate uninteresting features, format data
rwcut --fields=1-5,packets,stime data-mat.rw \

--delim=, > data-mat.csv

rwtuc -- convert formatted data into binary data
• Useful if other tools have further cleaned the data (trim off milliseconds)
sed –E ‘s/T([^.]*)[^,]*/T\1/’ <data-mat.csv \

>data-matsec.csv

rwtuc --column-sep=, data.matsec.csv \
--output-path=data-matsec.rw
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Manage outliers

Outliers – values requiring special handling in analysis

rwuniq – generate contingency tables
rwuniq data-matsec.rw --values=packets,bytes \

--fields=sport,dport \

--threshold=packets=10 --output=data-trim.txt --sort

Exclude cases where aggregate packets are too small (noise)
Can also threshold on bytes, flows, sip-distinct, dip-distinct, distinct:field
Can also threshold with min-max range 
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Handle missing data

Missing data –
• Inconsistent observations (collection not complete)
• Missing observations (gap in collection or lacking sensor)

rwfilter data-matsec.rw --proto=6 --flags=/SARFPU \
--fail=data-clean.rw
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Data Cleaning in Example

Not all of these cleaning steps are needed

Over cleaning also causes issues (Ozone hole example) 
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Data Cleaning and Feature Engineering

Feature Engineering
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Process of Feature Engineering

Data Cleaning Transformation Feature 
Selection

• Missing values
• Outliers

• Log transform
• Normalizing
• Encoding

• Select minimal 
feature set 
required to 
achieve goal
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Data Types

Categorical 

Numeric 
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Numerical vs. Categorical

Underlying 
function

Underlying function?
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Other Challenging Features

• 20 features (columns): 20-dimensional space

• Some features have many levels (e.g., IPs)
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Feature Engineering Steps
• Queried from SiLK:

- sIP, dIP, sPort, dPort, protocol, packets, bytes, flags, sTime, duration, eTime sensor, in, out, nhIP, 
initialFlags, sessionFlags, attributes, application, class, type, sTime+msec, eTime+msec, dur+msec, iType, 
iCode

• Dropped:
- in, out, nhIP, initialFlags, class, iType, iCode (no variation)
- attributes (in training data but not test data)
- dur+msec (redundant to ‘duration’)
- sTime, eTime, sTime+msec, eTime+msec (not relevant)

• Added:
- aPort

• Transformed:
- sPort, dPort (grouped ephemeral ports together)
- sIP, dIP (mapped to “internal” and “external)
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Feature Engineering Steps

• Final set of features:
- type, sIP, dIP, sPort, dPort, aPort, protocol, packets, bytes, duration, sessionFlags
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Data Cleaning and Feature Engineering

Machine Learning
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How can we predict App Label?

Let’s try:

• Unsupervised clustering

• Supervised classification
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Do logs clusters by app label?

App 
53

App 80

App 443
App 22
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k-Modes Clustering

• “Similarity” between two logs: number of equivalently valued fields

• Minimize total dissimilarity between all logs and their assigned clusters

• NP-hard
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Interpreting the clustered logs

Single Packet, Short Duration, External-to-External DNS
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Clustering Accuracy as an App Label Predictor
App Label Description Accuracy

53 DNS 98%

0 ‘unrecognized’ 89%

80 HTTP 57%

22 SSH 0%

137 MS NETBIOS 0%
138 MS NETBIOS datagram service 0%
139 MS SMB 0%
389 Active directory 0%
443 HTTPS 0%

5004 RTP 0%
5060 SIP 0%
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Decision Tree

Decision Trees 
Partition the Data
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Human-Readable Rules
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Trained Model Accuracy
Features Accuracy

aPort 85%

aPort, duration 95%

aPort, duration, bytes 97%

aPort, protocol, duration, bytes 99.7%

type, sIP, dIP, sPort, dPort, aPort, protocol, packets, bytes, duration, sessionFlags 99.8%
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Trained Model Logic (DNS)

Resulting rules can be implemented into 
cybersecurity systems without having to use 
machine learning.
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Data Cleaning and Feature Engineering

Practicum
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How would you proceed?

1. Certain web sites are larger consumers of bandwidth than others. What 
features can we use to predict the total bytes consumed by traffic involving 
a given web server IP Address? Why would this distinction be of 
importance?

2. What features can we use to predict the regularity with which certain DNS 
resolvers are consulted in this traffic? Is the traffic most of interest likely to 
be with periodic resolvers or aperiodic ones?



Data Cleaning and Feature Engineering
© 2023 Carnegie Mellon University 45[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Summary

 State the purpose of data cleaning and feature engineering
 Explain basic steps in these processes
 Suggest open-source tools to accomplish these processes
 Adapt data cleaning and feature engineering to suit analysis needs
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Contact Info

Clarence Worrell
Senior Data Scientist

Tim Shimeall 
Principal Engineer

SEI Contact Info
Netsa-help@cert.org

+1 412-268-5800
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