Data Cleaning and Feature Engineering

JANUARY 2024

Tim Shimeall Clarence Worrell CERT Program

© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Document Markings

Carnegie Mellon University 2023

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

CERT® and FloCon® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM23-2389

Data Cleaning and Feature Engineering © 2023 Carnegie Mellon University

Agenda

- Introduction
- Data Cleaning
- Feature Engineering
- Machine Learning
- Practicum
- Conclusion

Course Objectives

Carnegie Mellon University Software Engineering Institute

Upon completion, participants will be able to:

- State the purpose of data cleaning and feature engineering
- Explain basic steps in these processes
- Use open-source tools to accomplish these processes
- Adapt data cleaning and feature engineering to suit analysis needs

Carnegie Mellon University Software Engineering Institute

I've queried data – now what?

Analyze it!

Avoid

- Unwanted data included in query
- Distracting groups unrelated to goal
- Duplicate data that confuses volume measurements
- Corrupted or incomplete data

Ensure

- Data is regular
- Formatted, scoped, coded to make analysis easier

Flow Records

Carnegie Mellon University Software Engineering Institute

This course uses network flow data for examples.

Network flow data is aggregated network packet headers (IP and transportlayer protocols): source & destination addresses and ports, transport protocol, total bytes, packets, TCP flags, start time, duration.

Augmented with collection information: sensor ID, router information, direction of traffic, collection attributes, application code.

Collected via export from routers or from dedicated sensor software Analyzed via a variety of tool suites, although this course uses SiLK.

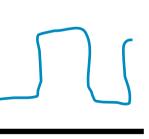
Data cleaning and Feature Engineering

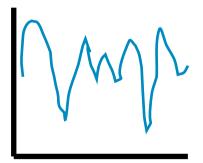
"More data beats clever algorithms, but better data beats more data." - Peter Norvig (Google/Stanford)

More data is often easier – gather from more devices, longer timeframe

But analyzing data without cleaning and engineering may lead to misleading results.







Carnegie Mellon University

Goal

For a given flow, we want to:

- predict the application label,
- based on its flow attributes (ports, addresses, bytes, durations, etc.).

The ongoing example

Carnegie Mellon University Software Engineering Institute

Basic scenario: To establish a baseline for normal network behavior, an analyst needs to identify the application-level protocols used in network activity. YAF does application labeling, using a set of rules, but there are issues with just using its labels.

Analyst wants more reliable results – cleaning data and engineering features

YAF – Yet Another Flowmeter – a tool that processes packets into flows

Initial data query

\$ rwfilter --start=2015/06/14 --end=2015/06/18 \

--type=in,out,inweb,outweb,int2int --proto=0- --pass=stdout \ | rwstats --fields=application --values=bytes,flows --count=50 INPUT: 38227994 Records for 12 Bins and 66016107477 Total Bytes OUTPUT: Top 50 Bins by Bytes

appli	Bytes	Records	%Bytes	cumul_%
0	60325769483	36590255	91.380379	91.380379
80	4827534293	152080	7.312661	98.693041
443	345711966	121072	0.523678	99.216719
53	193345037	1263273	0.292876	99.509594
139	155090685	9434	0.234929	99.744523
137	61377837	71560	0.092974	99.837497
5004	50989842	8	0.077238	99.914735
389	38211066	15525	0.057881	99.972617
22	16859154	474	0.025538	99.998155
138	1186822	4111	0.001798	99.999953
5060	21492	6	0.000033	99.999985
69	9800	196	0.000015 1	L00.000000

App Labels in the Training Data

	5060 -						
	5004 -						
	443 -						
le	389 -						
Application Label	139 -						
ation	138 -						
plica	137 -						
Ap	80 -						
	53 -						
	22 -						
	0 -	-					
		L					
		10 ¹	10 ²	10 ³	104	10 ⁵	10 ⁶
				Count (lo	g scale)		

Description	App Label
'unrecognized'	0
SSH	22
DNS	53
HTTP	80
MS NETBIOS	137
MS NETBIOS datagram service	138
MS SMB	139
Active directory	389
HTTPS	443
RTP	5004
SIP	5060

Mellon

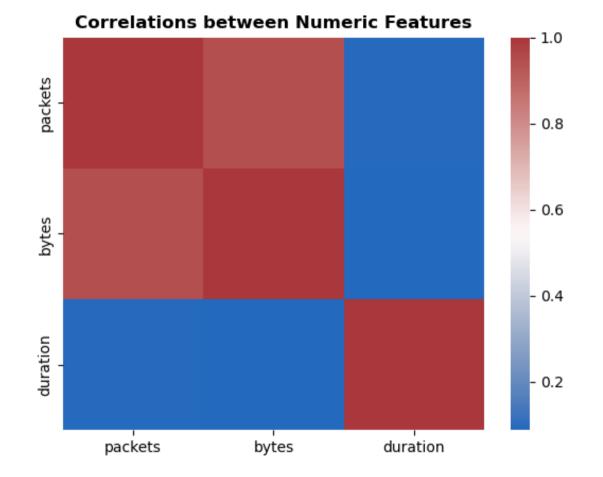
App Label & Destination Port

aPort application 2223 5004 5050 3306 22 5222 20000 138 21 138 137 -22 123 139 591 139 389 137 445 443 · 135 88 80 389 80 0 443 99999 53 · 53 10² 10³ 100 10¹ 104 105 100 10¹ 10² 10³ 104 105 Count Count

application "correlated" to aPort?

Data Cleaning and Feature Engineering © 2023 Carnegie Mellon University

Correlations



Data Cleaning and Feature Engineering

Data Cleaning

Carnegie Mellon University Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Purpose and process of data cleaning

Carnegie Mellon University Software Engineering Institute

Handle missing data

Manage outliers

Fix errors

Remove unwanted observations

Data cleaning is the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in the data to improve its quality and usability¹

Cleaning steps may not all be needed and may be done in various orders – and cycle.

¹ https://www.geeksforgeeks.org/data-cleansing-introduction/

Data Cleaning and Feature Engineering © 2023 Carnegie Mellon University

Removing unwanted observations

Unwanted – unrelated or distracting from data under observation

- Irrelevant protocol
- Useless source or destination
- Bytes, packets, durations too large or too small for activity of interest Query filter model

```
rwfilter --start=2015/06/17 --type=in --protocol=6,17 \
    --pass=data.rw
```

```
rwfilter data.rw --proto=6 --bytes-per=60- --pass=data60.rw
rwfilter data.rw --proto=17 --bytes-per=40- --pass=data40.rw
rwcat data60.rw data40.rw \
```

```
rwfilter stdin --not-anyset=ignore.set --pass=datasd.rw
```

Carnegie Mellon University

Fix errors

Carnegie Mellon University Software Engineering Institute

Errors – structural or value artifacts deriving from the data collection process rather than from the phenomena being analyzed

- Out-of-order observations rwsort
- Duplicate observations rwdedup
- Split observations rwcombine
- Unconnected observation rwgroup & rwmatch
- Value errors rwcut & rwtuc

Merge and sort flow record files based on specified series of fields.

Places records in known order, rather than order from rwfilter

Enables or makes efficient further analyses
rwsort --fields=start,1-5 datasd.rw --out=datasd-sort.rw

Carnegie Mellon University Software Engineering Institute

rwdedupe

Omits duplicate records, based on parameters

Deals with same flow being detected by multiple sensors

Deals with overlapping collections of records

rwdedupe --ignore-fields=sensor --bytes-delta=50 \

- --stime-delta=100 --duration-delta=50 \
- < datasd-sort.rw > datasrt-ded.rw

rwcombine

Unifies records split by active timeout (flow attributes of T and C) - preserves semantics of split flows

Leaves other records unchanged

Only works for flows aggregated by sensor (not exported from router)

rwcombine datasrt-ded.rw --output=datasrt-com.rw

rwgroup and rwmatch

Carnegie Mellon University Software Engineering Institute

rwgroup – link, label (optionally summarize) groups of flow records Group is defined by field values, requires sorting

```
rwsort datasrt-ded.rw --fields=1-5,sensor \
| rwgroup --id-fields=1-5,sensor --summarize >datagrp.rw
```

rwmatch – label collections of flows that relate to each other (suppress others) Relating is defined by pairs of field values

```
rwfilter data.rw --type=out,outweb --pass=stdout \
| rwsort --fields=1-5,stime >data-qry.rw
rwfilter data.rw --type=in,inweb --pass=stdout \
| rwsort --fields=2,1,4,3,5,stime > data-rsp.rw
rwmatch --relate=1,2 --relate=2,1 --relate=3,4 --relate=4,3 \
--relate=5,5 data-qry.rw data-rsp.rw data-mat.rw
```

Rwcut and rwtuc

```
rwcut - eliminate uninteresting features, format data
rwcut --fields=1-5, packets, stime data-mat.rw \
    --delim=, > data-mat.csv
```

rwtuc -- convert formatted data into binary data

• Useful if other tools have further cleaned the data (trim off milliseconds)

```
sed -E 's/T([^.]*)[^,]*/T1/' <data-mat.csv
```

```
>data-matsec.csv
```

```
rwtuc --column-sep=, data.matsec.csv \
```

```
--output-path=data-matsec.rw
```

Manage outliers

Carnegie Mellon University Software Engineering Institute

Outliers – values requiring special handling in analysis

rwuniq – generate contingency tables

rwuniq data-matsec.rw --values=packets,bytes \
fields=spent_dpent_\

--fields=sport,dport \

--threshold=packets=10 --output=data-trim.txt --sort

Exclude cases where aggregate packets are too small (noise) Can also threshold on bytes, flows, sip-distinct, dip-distinct, distinct:field Can also threshold with min-max range

Handle missing data

Missing data -

- Inconsistent observations (collection not complete)
- Missing observations (gap in collection or lacking sensor)

rwfilter data-matsec.rw --proto=6 --flags=/SARFPU \
 --fail=data-clean.rw

Data Cleaning in Example

Not all of these cleaning steps are needed

Over cleaning also causes issues (Ozone hole example)

Carnegie Mellon University Data Cleaning and Feature Engineering

Feature Engineering

Data Cleaning and Feature Engineering © 2023 Carnegie Mellon University

Process of Feature Engineering

Missing values

Data Cleaning

Outliers

Log transform

Transformation

- Normalizing
- Encoding

 Select minimal feature set required to achieve goal

Feature

Selection

Data Types

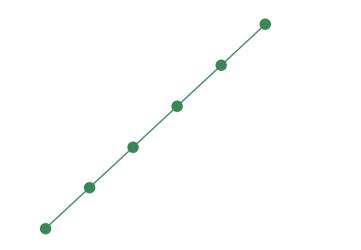
packets	int64
bytes	int64
duration	float64
type	object
sIP	object
dIP	object
sPort	object
dPort	object
protocol	object
flags	object
application	object

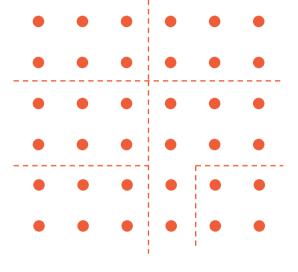
Numeric 🙂

- Categorical 😕

Numerical vs. Categorical

Carnegie Mellon University Software Engineering Institute





Underlying function?

Underlying function

Other Challenging Features

• 20 features (columns): 20-dimensional space

• Some features have many levels (e.g., IPs)

Feature Engineering Steps

• Queried from SiLK:

- sIP, dIP, sPort, dPort, protocol, packets, bytes, flags, sTime, duration, eTime sensor, in, out, nhIP, initialFlags, sessionFlags, attributes, application, class, type, sTime+msec, eTime+msec, dur+msec, iType, iCode

• Dropped:

- in, out, nhIP, initialFlags, class, iType, iCode
- attributes
- dur+msec
- sTime, eTime, sTime+msec, eTime+msec

• Added:

- aPort

Transformed:

- sPort, dPort
- sIP, dIP

(no variation) (in training data but not test data) (redundant to 'duration') (not relevant)

(grouped ephemeral ports together) (mapped to "internal" and "external)

Feature Engineering Steps

• Final set of features:

- type, sIP, dIP, sPort, dPort, aPort, protocol, packets, bytes, duration, sessionFlags

Data Cleaning and Feature Engineering

Machine Learning

Carnegie Mellon University Software Engineering Institute

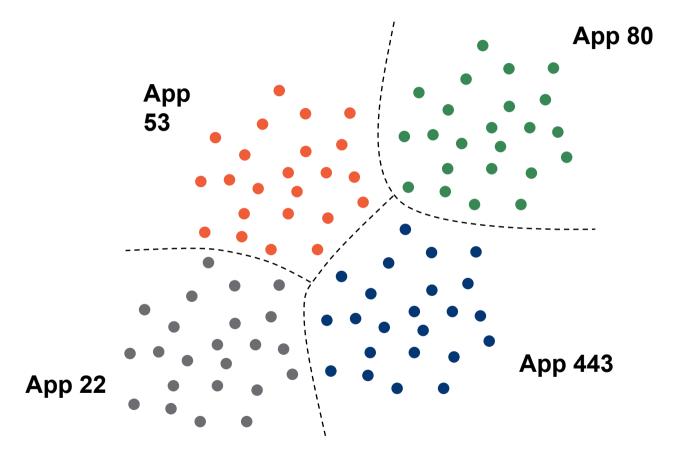
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

How can we predict App Label?

Let's try:

- Unsupervised clustering
- Supervised classification

Do logs clusters by app label?



k-Modes Clustering

• "Similarity" between two logs: number of equivalently valued fields

sIP	dIP	sPort	dPort	protocol	packets	bytes	flags	duration	application	type
192.168.111.94	192.168.40.20	51125	53	17	2	148		7.639	53	out
192.168.122.141	192.168.40.20	58081	53	17	5	370		19.417	53	out

• Minimize total dissimilarity between all logs and their assigned clusters

$$\min L_0 = \sum_{i=1}^n \sum_{j=1}^m |x_{ij} - \sum_{l=1}^k w_{il} z_{lj}|^0$$

• NP-hard

Interpreting the clustered logs

Cluster 4 sIP: external_IP dIP: external_IP dPort: 53 protocol: 17 application: 53 type: out packets: sPort: 99999 flags: nan bytes: 74 duratio

Single Packet, Short Duration, External-to-External DNS

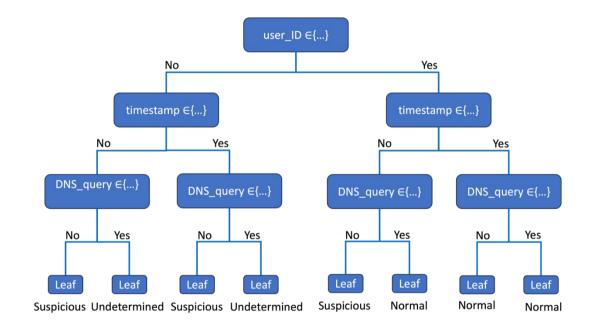
Data Cleaning and Feature Engineering © 2023 Carnegie Mellon University

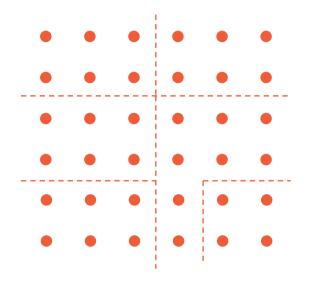
Clustering Accuracy as an App Label Predictor

App Label	Description	Accuracy
53	DNS	98%
0	'unrecognized'	89%
80	HTTP	57%
22	SSH	0%
137	MS NETBIOS	0%
138	MS NETBIOS datagram service	0%
139	MS SMB	0%
389	Active directory	0%
443	HTTPS	0%
5004	RTP	0%
5060	SIP	0%

Decision Tree

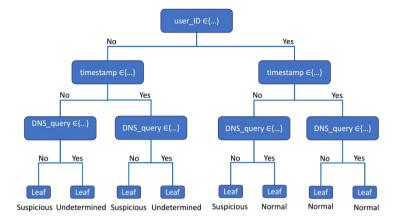
Carnegie Mellon University Software Engineering Institute





Decision Trees Partition the Data

Human-Readable Rules



Carnegie Mellon University Software Engineering Institute

if user ID is within {employee 1, employee 2,...}, and if timestamp is between 8:00 AM and 5:00 PM, and if DNS query is within {amazonaws.com, cisa.gov,...}, then suspicious = FALSE.

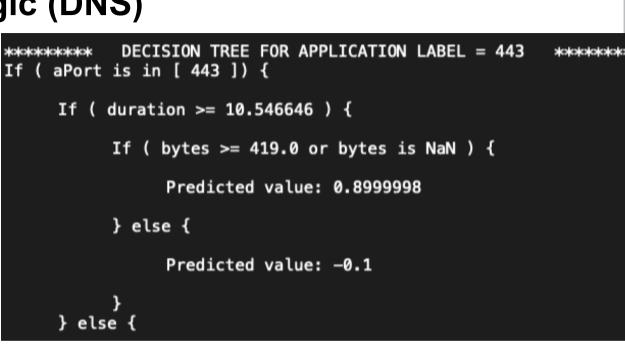
Carnegie Mellon University Software Engineering Institute

Trained Model Accuracy

Features	Accuracy
aPort	85%
aPort, duration	95%
aPort, duration, bytes	97%
aPort, protocol, duration, bytes	99.7%
type, sIP, dIP, sPort, dPort, aPort, protocol, packets, bytes, duration, sessionFlags	99.8%

Trained Model Logic (DNS)

AFANNE DECISION TREE FOR APPLICATION LABEL = 443 ******** If (duration >= 10.546646) { Predicted value: 0.8999998) else (Predicted value: -0.1) else (Tf (bytes >= 671.5) { If (bytes >= 6995.5) { Predicted value: 0.8599998 Predicted unline: & 64000086 If (duration >= 0.174525 or duration is NaN) { Predicted value: 0.8999998 Predicted value: 0.89452834 If (bytes >= 622.5) { Predicted value: a appropp Predicted value: -0.1 If (aPort is in [99999 1] { If (duration >= 7.031098) { If (duration >= 21.038363) (If (duration >= 104,42536) (Predicted value: -0.09386583 Predicted value: -0.059016395 If (duration >= 9.375859) { Predicted value: 0.37902093 Predicted value: -0.04029851 > else (If (duration >= 4.998671) { If (duration >= 5.300795) (Predicted value: 0.39999995 Predicted value: 0.8642855 If (duration >= 2.7727003) { Predicted value: -0.07058824 Predicted value: -0.09991479 } else if (aPort is in [21 22 53 80 88 123 135 137 138 139 389 445 591 2223 3306 5050 20000]



Resulting rules can be implemented into cybersecurity systems without having to use machine learning.

Carnegie Mellon Data Cleaning and Feature Engineering

Practicum

How would you proceed?

- Carnegie Mellon University Software Engineering Institute
- 1. Certain web sites are larger consumers of bandwidth than others. What features can we use to predict the total bytes consumed by traffic involving a given web server IP Address? Why would this distinction be of importance?
- 2. What features can we use to predict the regularity with which certain DNS resolvers are consulted in this traffic? Is the traffic most of interest likely to be with periodic resolvers or aperiodic ones?

Summary

- ✓ State the purpose of data cleaning and feature engineering
- ✓ Explain basic steps in these processes
- \checkmark Suggest open-source tools to accomplish these processes
- ✓ Adapt data cleaning and feature engineering to suit analysis needs

Contact Info

Carnegie Mellon University Software Engineering Institute

Tim Shimeall Principal Engineer Clarence Worrell Senior Data Scientist

SEI Contact Info Netsa-help@cert.org +1 412-268-5800