
Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 1ved for public release and un limited distribution.© 2023 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Role of Automation in Reducing
Software Refactoring Costs

D E C E M B E R 1 8 - 2 0 , 2 0 2 3
Mario Benitez Preciado
James Ivers

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 2[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Document Markings
Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an o fficial Government position, policy, or decision,
unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use
and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is
required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM23-2183

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 3[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Software Is Never Done

Change is inevitable
• Requirements change
• Business priorities change
• Programming languages change
• Deployment environments change
• Technologies and platforms

change
• Interacting systems change
• ...

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 4[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Periodic Refactoring Is Key to Keeping Code Healthy

Software must be delivered on time and on
budget.

Messy software slows down development
teams' ability to deliver new features or
address existing issues.

Mission-critical software must evolve
over time in response to mission needs.

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 5[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Examples of Refactoring Goals that Enable Evolution

Microservice Architecture
Replicating software capabilities is a
popular technique to scale software (e.g.,
via a microservice architecture).

Abstraction Layer
Isolating capabilities so that they can
later be replaced with a better option.

Software Library
Reusing software to increase software
quality, reduce development times, and
save money (e.g., modular monolith).

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 6[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Refactoring Gets Harder at Scale

“Floss Refactoring”
• Changes made by a single developer
• Intermingled with feature development
• Measured in minutes to hours of time
• Local effects

Large-Scale Refactoring
• Changes require substantial effort

and coordination among multiple
teams of developers

• Measured in staff months to years
• Architecture changes and non-local

effects

Refactoring Sprints
• Changes made by a single team
• Often time-boxed (e.g., a two-week sprint)
• Effects limited to a single service
• E.g., 20% reserve to remove technical debt

As scale increases,

cost and schedule
impacts increase

cross-team coordination
increases

technical risk increases

likelihood of securing
funding decreases

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 7[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Large-Scale Refactoring (LSR) in Industry

•Most respondents had performed LSR multiple times
•Most systems on which they had performed LSR had
undergone LSR multiple times

•Mean of 1,500 staff days to perform LSR

We surveyed 107 industry
practitioners to understand
the state of the practice.

J. Ivers, R. Nord, I. Ozkaya, C. Seifried, C.
Timperley, M. Kessentini. Industry's Cry for Tools
That Support Large-Scale Refactoring. Intl.
Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). May 2022.

J. Ivers, R. Nord, I. Ozkaya, C. Seifried, C.
Timperley, M. Kessentini. Industry Experiences
with Large-Scale Refactoring. Foundations of
Software Engineering: Software Engineering in
Practice (ESEC/FSE). November 2022.

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 8[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Untangling the Knot

The SEI has developed an automated Refactoring Assistant for developers
reduce refactoring costs using a semi-automated approach.

Our Refactoring Assistant helps modularize specific capabilities, isolating their
implementations from surrounding code.

It works with C# and Java code bases today, with C/C++ support in the works.

J. Ivers, C. Seifried, I. Ozkaya. Untangling the Knot: Enabling Architecture Evolution with Search-
Based Refactoring. 19th IEEE International Conference on Software Architecture (ICSA 2023). 2023.

Project-Specific Goal

Source Code
Recommended

Refactorings
Refactoring
Assistant

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 9[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Software Modularization Is a Recurring Challenge

A “simple” view of
only 68K LOC.

There is structure in this data, but that structure
doesn't always let us do what we need to do.

In software isolation, we seek to improve its modularity, reduce
future development costs, and enable its use in new contexts.

Examples include
• strategic reuse
• rehosting on new platforms
• moving to the cloud

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 10[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Key Concept – Problematic Couplings

Only certain software dependencies interfere
with any particular goal.

For example, if we want to harvest a feature:
• The core problem is dependencies (red lines)

from software being harvested to software that is
being left behind.

• All other dependencies are irrelevant to the goal,
allowing us to focus our analysis and search for
solutions.

This insight enables us to apply search-
based software engineering techniques
and treat this as an optimization problem.

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 11[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

SEI’s Automated Refactoring Assistant

Search
Algorithm

Graph
Representation

Formalized
Refactorings

Fitness
Functions

static code analysis to
generate an intermediate
representation,

A multi-objective genetic
algorithm (based on
NSGA-II) that uses ... Fowler-style refactorings that

have been formalized in terms
of the graph, and

a collection of measures of the
"goodness" of solutions for
different objectives

... to solve more than 80%
of problematic couplings.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002.

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 12[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Multi-objective Optimization

When optimizing for multiple
objectives, there is no single
best answer; instead, we
generate options that represent
trade-offs among competing
objectives.

This allows developers to
choose the trade-offs that best
match their needs.

Solutions that solve most of
the problem at the cost of
adding a lot of code

Compromise solutions
(solving more than 3/4 of
the problem while less
than doubling code size) Solutions that add very

little code at the cost of
solving much less of the
problem

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 13[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Specific Refactoring Recommendations

Step by step instructions, many of which can be automated by modern IDEs.

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 14[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Current Capabilities

Programming languages supported
• Today: Java and C#
• In progress: C/C++

Our refactoring assistant
• scales to at least 2M SLOC
• generates recommendations that solve

the majority of each software isolation
problem

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 15proved for public release and un limited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Case Study

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 16[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Elasticsearch Case Study

• Utilize a real-world scenario as use case:
Elasticsearch

• Go end-to-end:
- apply the tool to the problem
- implement refactorings
- confirm success through test

https://github.com/elastic/elasticsearch/issues/65030

https://github.com/elastic/elasticsearch/issues/65030

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 17[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Elasticsearch Info

• Elasticsearch is a distributed, RESTful
search and analytics engine

• Over 2M lines of code
• Written in Java
• Over 13K tests available
• Build & test time ~ 2hr

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 18[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Anticipated Benefits

Modular code
• Allows for work to be performed more

independently
• Reduces build and test times
• Improves developer productivity (e.g.,

IDEs load and perform better with
smaller code bases)

• Enables agile development and future
improvements

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 19[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Plan of Attack

• Extract a subset of functionality into an
independent library (break the monolith!)

• Use the refactoring assistant to generate
recommendations
- Identify the target (scenario selection)
- Run the tool (took ~21 minutes to generate

solutions)
- Pick a solution (solution selection)

• Follow the refactoring recommendations
• Complete the refactoring (PCs not solved

by the tool)
• Run the tests and confirm that they pass

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 20[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Scenario Selection

• Scenario selection has a huge impact on
refactoring activities

• Start with lowest common denominator
• Selected StreamI/O and GeoUtils to be

harvested from Server

B C

F G

D

A

I

H

E

Org.elasticsearch.common.io.stream.StreamOutput

Org.elasticsearch.common.io.stream.StreamInput

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 21[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Solution Selection

• Used the refactoring assistant GUI to
inspect potential solutions
- Easy comparison of solutions (very useful!)

• Compared solutions at the edges of the
chart (PCs vs Work)

• Reviewed the types of recommended
steps (e.g., MoveClass vs
ExtractInterface)

• Selected a solution

Overall process took ~15 mins

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 22[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Following Refactoring Steps

Following solution steps generally fell into
one of three categories:

1. Followed refactoring guidance
2. Deviated from refactoring guidance
3. Unresolved Problematic Couplings

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 23[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Followed Refactoring Guidance

• Most solution steps fell in this category
(41/46 or 89%)

• Most of these steps could be
implemented automatically using the IDE

• Refactoring proceeded quickly (~4.5hrs)
even though we were new to the code

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 24[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Deviated from Refactoring Guidance

• Five steps (11%) were less than ideal or
suggested changes the developer did
not agree with

• The refactoring assistant allows us to
deviate as we see fit

• For example:
- Some dependencies can be easily broken

by calling system methods directly
- Step suggested creating an interface for

static methods; a class is a better option

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 25[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Unresolved Problematic Couplings (Finishing the Job)

• As mentioned before, not all problematic couplings are solved by the tool
• A very small percentage (2.8%) was left up to the developer to resolve
• AI augmented software engineering helps (a lot), but it won’t replace

developers
• Let’s see an example…

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 26[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Uncoupling Parent Class from Child Classes

• The parent class ElasticsearchException
depended on its children (>170 classes)

• This is less than ideal code (i.e., circular
dependencies are bad!)

ElasticsearchException

ActionTransportException BlobStoreException

Inheritance

Key: UML

Solution: decouple responsibilities by
removing index initialization maintained
for other purposes

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 27[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Put In Perspective

Followed refactoring guidance
• Moved 80 files, created 5 files
• Resolved 210 PCs
• In ~4.5hrs

Unresolved Problematic Couplings
• Moved 93 files, created 8 files
• Resolved 6 PCs
• In ~160hrs

Imagine if we did it all by hand?

(97%) (3%)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Solution Steps Unresolved Couplings

L
O

C

Operation

Insertions

Deletions

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 28proved for public release and un limited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Lessons Learned

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 29[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Your Refactoring Strategy Matters

• Create a strategy prior to refactoring to
make it easier to implement

• Start with lowest common denominator
- This example involved creating a library with

the harvested code
• Suggestions for implementation strategy

- Move code to a new package first. This
helps identify PCs that need to be broken

- Package as a new build unit last

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 30[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

IDEs Help

• Use IDEs to automatically implement
simple code changes (e.g., imports and
class references)

• Keep in mind that IDEs may make
mistakes (they are still good tools!)

• Compile and test often to catch any
errors introduced by the IDE.

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 31[Distribution Statement A] Approved for public release and unlimited distribution.

Work Incrementally

• Revision control is your friend
• Create a commit for every step in the

refactoring
• This allows for easy backtracking of

changes when needed

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 32proved for public release and un limited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Conclusions

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 33[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Conclusions

• Refactoring large code bases is
beneficial, but it takes time

• This is a first step (bug’s been opened
for 3 years!)

• Automation can speed up this process
greatly
- Refactoring assistant created a plan to

solve 97% of PCs in ~21 minutes
- IDEs automate much of the implementation

• Developers are still needed to review the
plan and complete the work

• Working with modular code is better
because...
- 14K lines of code vs ~1M
- 120 files vs ~6K
- Fast IDE operations vs hourglass

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 34[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Learn More

Learn more about the SEI’s work in
software isolation and large-scale
refactoring:

https://sei.cmu.edu/go/knot

Contact us at sei-knot@sei.cmu.edu
if you are interested in collaborating.

https://sei.cmu.edu/go/knot

Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 35[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

THANK YOU!

	Slide 1: Role of Automation in Reducing Software Refactoring Costs
	Slide 2: Document Markings
	Slide 3: Software Is Never Done
	Slide 4: Periodic Refactoring Is Key to Keeping Code Healthy
	Slide 5: Examples of Refactoring Goals that Enable Evolution
	Slide 6: Refactoring Gets Harder at Scale
	Slide 7: Large-Scale Refactoring (LSR) in Industry
	Slide 8: Untangling the Knot
	Slide 9: Software Modularization Is a Recurring Challenge
	Slide 10: Key Concept – Problematic Couplings
	Slide 11: SEI’s Automated Refactoring Assistant
	Slide 12: Multi-objective Optimization
	Slide 13: Specific Refactoring Recommendations
	Slide 14: Current Capabilities
	Slide 15: Case Study
	Slide 16: Elasticsearch Case Study
	Slide 17: Elasticsearch Info
	Slide 18: Anticipated Benefits
	Slide 19: Plan of Attack
	Slide 20: Scenario Selection
	Slide 21: Solution Selection
	Slide 22: Following Refactoring Steps
	Slide 23: Followed Refactoring Guidance
	Slide 24: Deviated from Refactoring Guidance
	Slide 25: Unresolved Problematic Couplings (Finishing the Job)
	Slide 26: Uncoupling Parent Class from Child Classes
	Slide 27: Put In Perspective
	Slide 28: Lessons Learned
	Slide 29: Your Refactoring Strategy Matters
	Slide 30: IDEs Help
	Slide 31: Work Incrementally
	Slide 32: Conclusions
	Slide 33: Conclusions
	Slide 34: Learn More
	Slide 35

