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Software Is Never Done

Change is inevitable
• Requirements change
• Business priorities change
• Programming languages change
• Deployment environments change
• Technologies and platforms

change
• Interacting systems change
• ...
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Periodic Refactoring Is Key to Keeping Code Healthy

Software must be delivered on time and on 
budget.

Messy software slows down development 
teams' ability to deliver new features or 
address existing issues.

Mission-critical software must evolve
over time in response to mission needs.
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Examples of Refactoring Goals that Enable Evolution

Microservice Architecture
Replicating software capabilities is a 
popular technique to scale software (e.g., 
via a microservice architecture).

Abstraction Layer
Isolating capabilities so that they can 
later be replaced with a better option.

Software Library
Reusing software to increase software 
quality, reduce development times, and 
save money (e.g., modular monolith).
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Refactoring Gets Harder at Scale

“Floss Refactoring”
• Changes made by a single developer
• Intermingled with feature development
• Measured in minutes to hours of time
• Local effects

Large-Scale Refactoring
• Changes require substantial effort

and coordination among multiple
teams of developers

• Measured in staff months to years
• Architecture changes and non-local

effects

Refactoring Sprints
• Changes made by a single team
• Often time-boxed (e.g., a two-week sprint)
• Effects limited to a single service
• E.g., 20% reserve to remove technical debt

As scale increases,

cost and schedule 
impacts increase

cross-team coordination 
increases

technical risk increases

likelihood of securing 
funding decreases
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Large-Scale Refactoring (LSR) in Industry

•Most respondents had performed LSR multiple times
•Most systems on which they had performed LSR had
undergone LSR multiple times

•Mean of 1,500 staff days to perform LSR

We surveyed 107 industry 
practitioners to understand 
the state of the practice.

J. Ivers, R. Nord, I. Ozkaya, C. Seifried, C.
Timperley, M. Kessentini. Industry's Cry for Tools
That Support Large-Scale Refactoring. Intl.
Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). May 2022.

J. Ivers, R. Nord, I. Ozkaya, C. Seifried, C.
Timperley, M. Kessentini. Industry Experiences
with Large-Scale Refactoring. Foundations of
Software Engineering: Software Engineering in
Practice (ESEC/FSE). November 2022.
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Untangling the Knot

The SEI has developed an automated Refactoring Assistant for developers 
reduce refactoring costs using a semi-automated approach.

Our Refactoring Assistant helps modularize specific capabilities, isolating their 
implementations from surrounding code.

It works with C# and Java code bases today, with C/C++ support in the works.

J. Ivers, C. Seifried, I. Ozkaya. Untangling the Knot: Enabling Architecture Evolution with Search-
Based Refactoring. 19th IEEE International Conference on Software Architecture (ICSA 2023). 2023.

Project-Specific Goal

Source Code
Recommended

Refactorings
Refactoring 
Assistant



Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 9[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Software Modularization Is a Recurring Challenge

A “simple” view of 
only 68K LOC.

There is structure in this data, but that structure 
doesn't always let us do what we need to do.

In software isolation, we seek to improve its modularity, reduce 
future development costs, and enable its use in new contexts.  

Examples include 
• strategic reuse
• rehosting on new platforms
• moving to the cloud
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Key Concept – Problematic Couplings 

Only certain software dependencies interfere 
with any particular goal.

For example, if we want to harvest a feature:
• The core problem is dependencies (red lines)

from software being harvested to software that is
being left behind.

• All other dependencies are irrelevant to the goal,
allowing us to focus our analysis and search for
solutions.

This insight enables us to apply search-
based software engineering techniques 
and treat this as an optimization problem.
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SEI’s Automated Refactoring Assistant 

Search 
Algorithm

Graph 
Representation

Formalized 
Refactorings

Fitness 
Functions

static code analysis to 
generate an intermediate 
representation, 

A multi-objective genetic 
algorithm (based on 
NSGA-II) that uses ... Fowler-style refactorings that 

have been formalized in terms 
of the graph, and

a collection of measures of the 
"goodness" of solutions for 
different objectives

... to solve more than 80% 
of problematic couplings.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002.
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Multi-objective Optimization

When optimizing for multiple 
objectives, there is no single 
best answer; instead, we 
generate options that represent 
trade-offs among competing 
objectives.

This allows developers to 
choose the trade-offs that best 
match their needs.

Solutions that solve most of 
the problem at the cost of 
adding a lot of code

Compromise solutions 
(solving more than 3/4 of 
the problem while less 
than doubling code size) Solutions that add very 

little code at the cost of 
solving much less of the 
problem
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Specific Refactoring Recommendations

Step by step instructions, many of which can be automated by modern IDEs.
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Current Capabilities

Programming languages supported
• Today:   Java and C#
• In progress:  C/C++

Our refactoring assistant 
• scales to at least 2M SLOC
• generates recommendations that solve

the majority of each software isolation
problem
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Case Study
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Elasticsearch Case Study

• Utilize a real-world scenario as use case:
Elasticsearch

• Go end-to-end:
- apply the tool to the problem
- implement refactorings
- confirm success through test

https://github.com/elastic/elasticsearch/issues/65030

https://github.com/elastic/elasticsearch/issues/65030
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Elasticsearch Info

• Elasticsearch is a distributed, RESTful
search and analytics engine

• Over 2M lines of code
• Written in Java
• Over 13K tests available
• Build & test time ~ 2hr
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Anticipated Benefits

Modular code
• Allows for work to be performed more

independently
• Reduces build and test times
• Improves developer productivity (e.g.,

IDEs load and perform better with
smaller code bases)

• Enables agile development and future
improvements
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Plan of Attack

• Extract a subset of functionality into an
independent library (break the monolith!)

• Use the refactoring assistant to generate
recommendations
- Identify the target (scenario selection)
- Run the tool (took ~21 minutes to generate

solutions)
- Pick a solution (solution selection)

• Follow the refactoring recommendations
• Complete the refactoring (PCs not solved

by the tool)
• Run the tests and confirm that they pass
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Scenario Selection

• Scenario selection has a huge impact on
refactoring activities

• Start with lowest common denominator
• Selected StreamI/O and GeoUtils to be

harvested from Server

B C

F G

D

A

I

H

E

Org.elasticsearch.common.io.stream.StreamOutput

Org.elasticsearch.common.io.stream.StreamInput
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Solution Selection

• Used the refactoring assistant GUI to
inspect potential solutions
- Easy comparison of solutions (very useful!)

• Compared solutions at the edges of the
chart (PCs vs Work)

• Reviewed the types of recommended
steps (e.g., MoveClass vs
ExtractInterface)

• Selected a solution

Overall process took ~15 mins
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Following Refactoring Steps

Following solution steps generally fell into 
one of three categories:

1. Followed refactoring guidance
2. Deviated from refactoring guidance
3. Unresolved Problematic Couplings
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Followed Refactoring Guidance

• Most solution steps fell in this category
(41/46 or 89%)

• Most of these steps could be
implemented automatically using the IDE

• Refactoring proceeded quickly (~4.5hrs)
even though we were new to the code
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Deviated from Refactoring Guidance

• Five steps (11%) were less than ideal or
suggested changes the developer did
not agree with

• The refactoring assistant allows us to
deviate as we see fit

• For example:
- Some dependencies can be easily broken

by calling system methods directly
- Step suggested creating an interface for

static methods; a class is a better option
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Unresolved Problematic Couplings (Finishing the Job)

• As mentioned before, not all problematic couplings are solved by the tool
• A very small percentage (2.8%) was left up to the developer to resolve
• AI augmented software engineering helps (a lot), but it won’t replace

developers
• Let’s see an example…
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Uncoupling Parent Class from Child Classes

• The parent class ElasticsearchException
depended on its children (>170 classes)

• This is less than ideal code (i.e., circular
dependencies are bad!)

ElasticsearchException

ActionTransportException BlobStoreException

Inheritance

Key: UML

Solution: decouple responsibilities by 
removing index initialization maintained 
for other purposes
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Put In Perspective

Followed refactoring guidance
• Moved 80 files, created 5 files
• Resolved 210 PCs
• In ~4.5hrs

Unresolved Problematic Couplings
• Moved 93 files, created 8 files
• Resolved 6 PCs
• In ~160hrs

Imagine if we did it all by hand?

(97%) (3%)
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Lessons Learned
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Your Refactoring Strategy Matters

• Create a strategy prior to refactoring to
make it easier to implement

• Start with lowest common denominator
- This example involved creating a library with

the harvested code
• Suggestions for implementation strategy

- Move code to a new package first. This
helps identify PCs that need to be broken

- Package as a new build unit last
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IDEs Help

• Use IDEs to automatically implement
simple code changes (e.g., imports and
class references)

• Keep in mind that IDEs may make
mistakes (they are still good tools!)

• Compile and test often to catch any
errors introduced by the IDE.
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Work Incrementally

• Revision control is your friend
• Create a commit for every step in the

refactoring
• This allows for easy backtracking of

changes when needed
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Conclusions
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Conclusions

• Refactoring large code bases is
beneficial, but it takes time

• This is a first step (bug’s been opened
for 3 years!)

• Automation can speed up this process
greatly
- Refactoring assistant created a plan to

solve 97% of PCs in ~21 minutes
- IDEs automate much of the implementation

• Developers are still needed to review the
plan and complete the work

• Working with modular code is better
because...
- 14K lines of code vs ~1M
- 120 files vs ~6K
- Fast IDE operations vs hourglass
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Learn More

Learn more about the SEI’s work in 
software isolation and large-scale 
refactoring:

https://sei.cmu.edu/go/knot

Contact us at sei-knot@sei.cmu.edu 
if you are interested in collaborating.

https://sei.cmu.edu/go/knot


Role of Automation in Reducing Software Refactoring Costs
© 2023 Carnegie Mellon University 35[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

THANK YOU!
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