
Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 1[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.© 2024 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

O C T O B E R 2 0 2 4

Lori Flynn, PhD
David Svoboda (PI)

Static Analysis-Targeted Automated
Repair to Secure Code and Reduce
Effort
for NDIA’s 27th Systems & Mission Engineering Conference

via or

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 2[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Carnegie Mellon University 2024

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

References herein to any specific entity, product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering
Institute nor of Carnegie Mellon University - Software Engineering Institute by any such named or represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

CERT® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM24-1310

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 3[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

• Problem: static analysis (SA) alert deluge

• Our tool repairs source code associated with alerts

• Design choices

• Tool use during development, test, and evaluation

• Development methods

• Test results

• Demo

• How can this work be extended to help you?

Agenda

Project page https://www.sei.cmu.edu/our-
work/projects/display.cfm?customel_datapageid_4050=497941

https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=497941
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=497941

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 4[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Problem: static analysis (SA) alert deluge

Case study of 5 C/C++ audited codebases
• 239 kSLoC
• 364.5 alerts/kSLoC
• 85,268 SA alerts
• Repairs for 8 CERT rules would resolve 57,922 alerts (68%)

Average CERT-audited C/C++ program is 2 MSLoC
• 117 seconds to audit one alert*
• 15.5 person-years to audit all alerts
• If 32% of alerts are true and 117 seconds per repair → 5 person-

years to fix all true alerts

* Ayewah, Nathaniel. & Pugh, William. The Google FindBugs fixit. Pages 241-252. In Proceedings of the
19th International Symposium on Software Testing and Analysis. July 2010.
https://doi.org/10.1145/1831708.1831738

https://doi.org/10.1145/1831708.1831738

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 5[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Does the DoD Require Use of Static-Analysis Tools?

• From the Application Security & Development (ASD) Security Technical
Implementation Guide (STIG):
- According to V-222624, The ISSO must ensure active vulnerability testing is performed,

Use of automated scanning tools accompanied with manual testing/validation which
confirms or expands on the automated test results is an accepted best practice when
performing application security testing.

• The NIST Computer Security Resource Center (CSRC) documents
recommendations for
- RA-5: Vulnerability Monitoring and Scanning
- SA-11: Developer Testing and Evaluation

Parasoft, Coverity, and Perforce all suggest that their SA tools help you achieve
compliance with the Defense Information Systems Agency’s (DISA’s) ASD STIG.

Problem: static analysis (SA) alert deluge

https://www.stigviewer.com/stig/application_security_and_development/
https://www.stigviewer.com/stig/application_security_and_development/
https://www.stigviewer.com/stig/application_security_and_development/2022-09-21/finding/V-222624
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
https://csf.tools/reference/nist-sp-800-53/r5/ra/ra-5/
https://csf.tools/reference/nist-sp-800-53/r4/sa/sa-11/
https://www.parasoft.com/solutions/compliance/disa-stig
https://www.synopsys.com/content/dam/synopsys/sig-assets/datasheets/ds-coverity-disa-stig.pdf
https://www.perforce.com/blog/kw/what-is-DISA-STIG

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 6[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Collaborator Experience

Of the languages that our collaborator uses, they told us that C code
tends to exhibit the most vulnerabilities.

One collaborator’s process is
• Filter alerts based on a preset list of CWEs and (if time permits) analyze

the most critical remaining alerts.
- About 20% of (unfiltered) alerts are deemed to be true positives.

• Fix ~90% of the true positives.

Problem: static analysis (SA) alert deluge

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 7[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C/C++ Automated Program Repair (APR) Tools
Template-based APR tools have a pre-set method to repair a defect
• Visual Studio Code has some APR for C/C++
• Eclipse IntRepair open-source APR tool for integer overflows, buffer overflows, and more (per research papers) is an

extension to the C/C++ Development Tools (CDT) plugin
• Automated Code Repair (SEI’s Dr. Will Klieber) APR for buffer overflows in C. It converts pointers to fat pointers,

potential for changes throughout the codebase
• clang-tidy has recent APR fixes for many C/C++ checkers
• Clang’s new JSON API outputs the AST in an easy-to-parse JSON file, useful for developing APRs

Learning-based APR tools use AI/ML/LLMs, past bugfixes, & more to make new patches
• Contact Lori lflynn@sei.cmu.edu about collaboration on APR research involving learning-based methods

Rationale for project: 1. Significant DoD use of C code, 2. clang’s new JSON API, and 3. we did not find
any OSS APR tool documentation that explicitly states a fix for “CERT C secure coding rule violations”

Our tool repairs source code associated with alerts

https://github.com/TeamVault/IntRepair
https://www.sec.in.tum.de/i20/publications/automated-generation-of-buffer-overflows-quick-fixes-using-symbolic-execution-and-smt
https://clang.llvm.org/extra/clang-tidy/checks/list.html
mailto:lflynn@sei.cmu.edu

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 8[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Our tool repairs source code associated with alerts

Category CERT Rule ID CWE ID Repair
Null Pointer Dereference EXP34-C CWE-476 Insert null check

Uninitialized Value Read EXP33-C CWE-908 Initialize variable at declaration

Ineffective Code MSC12-C CWE-561 Delete ineffective code

https://wiki.sei.cmu.edu/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointers
https://cwe.mitre.org/data/definitions/476.html
https://wiki.sei.cmu.edu/confluence/display/c/EXP33-C.+Do+not+read+uninitialized+memory
https://cwe.mitre.org/data/definitions/908.html
https://wiki.sei.cmu.edu/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed2-C:
https://cwe.mitre.org/data/definitions/561.html

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 9[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Design choices
Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 10[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Design choices

1. Make cheap, local fixes.
2. Only fix code associated with an SA alert.
3. Goal: Fixes are sound and do not change the behavior of good code.

• A repair should not break the code, even if the alert was a false positive.
4. The tool should be idempotent (i.e., the tool will not modify code it already repaired).

char *f(int a, int b) {
int x;
int sum = a + b;
/* ... */

char *f(int a, int b) {
int x;
int sum;
if (((b > 0) && (a > (INT_MAX - b)))

||
((b < 0) && (a < (INT_MIN - b))))

{
/* Handle error */

}
sum = a + b;
/* ... */

If the mathematical value of
a+b cannot be stored in an

int, the behavior is undefined.

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 11[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Design choices

1. Make cheap, local fixes.
2. Only fix code associated with an SA alert.
3. Goal: Fixes are sound and do not change the behavior of good code.

• A repair should not break the code, even if the alert was a false positive.
4. The tool should be idempotent (i.e., the tool will not modify code it already repaired).

char *f(int a, int b) {
int x;
int sum = a + b;
/* ... */

char *f(int a, int b) {
int x;
int sum = SAFE_ADD(a, b,

/* Handle error */
);

/* ... */

Possible integer overflow?

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 12[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort

Tool use during development, test, and
evaluation

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 13[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Where to use Redemption in DevSecOps

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 14[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Where to use Redemption in DevSecOps

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 15[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Usage Dataflow Scenario (Without CI)

/Analyst

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 16[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Usage Dataflow
Scenario (with CI)

/Analyst

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 17[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Development methods
Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 18[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Existing Redemption capabilities that help extending it

• Docker
containerized

• Tests (unit,
integration,
performance, etc.)

• Modular code
• Documentation
• Demos
• Test code + static

analysis alerts

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 19[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Existing Redemption capabilities that help extending it

• Docker
containerized

• Tests (unit,
integration,
performance, etc.)

• Modular code
• Documentation
• Demos
• Test code + static

analysis alerts

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 20[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

How to Develop New Repairs

1. Choose code flaw to repair
2. Find or create test cases that need repair
3. Develop repair:

a. Determine repair site of flawed code using AST (.json) and
LLVM IR (.ll) code

b. Implement “template” repair algorithm to repair the code
4. Run tests (unit, integration, performance etc.)
5. Iteratively address any bugs
6. Document repair method in README.md

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 21[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Testing & test results
Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 22[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Verification Theory: Undefined Behavior

Typically, code that violates a CERT rule causes undefined
behavior (UB).
• EXP33-C: Reading an uninitialized variable Read garbage value
• EXP34-C: Dereferencing a null pointer Crash
Platforms may define platform-specific behaviors.

ISO C only constrains programs without UB.
• UB means the platform may do anything.

Compilers may assume UB cannot happen.
• This makes subsequent behavior unpredictable.

International
Organization for
Standardization,
Public domain, via
Wikimedia
Commons

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 23[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Verification

Our repair algorithms do the following:

• Replace code with UB with error-handling code (e.g.,
termination).

• Possibly run additional operations or checks on code
with no UB.

- These operations or checks must NOT change the behavior.

Limitation: Cannot reliably repair code that depends on
• Undefined behavior (UB)
• Performance or timing issues

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 24[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Components for Testing

SA alerts were produced by
running SA tools over the
following OSS codebases:
• git (v2.39.0, C)

Has internal test systems
with good test coverage.

− All tests pass.

• zeek (v5.1.1, C++)
Has internal test systems
with good test coverage.

− Many tests currently fail
(without repair).

We address these CERT
guidelines:
• EXP34-C Dereferencing a

null pointer
• EXP33-C Reading an

uninitialized variable
• MSC12-C Code that is

never executed

To test the repair tool, we
produced >15,000 SA alerts
using the following SA tools:
• cppcheck (v2.9)
• clang-tidy (v15.0.7)
• CERT Rosecheckers

We use an internal CI system to catch regressions.

https://github.com/git/git.git
https://github.com/zeek/zeek.git
https://wiki.sei.cmu.edu/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointers
https://wiki.sei.cmu.edu/confluence/display/c/EXP33-C.+Do+not+read+uninitialized+memory
https://wiki.sei.cmu.edu/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed2-C:
https://github.com/danmar/cppcheck
https://clang.llvm.org/extra/clang-tidy/
https://github.com/cmu-sei/cert-rosecheckers

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 25[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Regression Testing
Verifies that each improvement to the tool does not
cause bugs or failures to previously-working code.

“Stumble-Through” Tests
Verifies that the repair tool does not crash or hang
• Test the repair tool on all alerts in all codebases.
• The test fails if the tool crashes, hangs, or throws exceptions.

For this test, it does not matter whether the tool correctly
repairs any alerts.

Sample Alert Experiments
Ensures repairs are correct
BUT with >15,000 alerts to repair, we cannot test all of
them!
For each tool/guideline/codebase,

• Pick N random alerts; N=5 for now. For each alert,
- Manually check if APR did the right thing:

• Repaired correctly or correctly refused to repair.
- Until APR does the Right Thing on >=80% of alerts, Fix APR

bugs and re-run experiment.

All these tests currently pass

Tests & Experiments Integration Experiments
Verifies that repairs did not change the behavior of code
• Run the repair tool on all codebases.
• Compile the codebases, run their internal testing mechanisms.

The experiment is successful if all codebase-specific internal tests pass.

Performance Experiments
Confirms that repairs do not significantly impede performance
• Compile original codebases; run their internal testing mechanism.

- Measure the time and memory usage of the testing mechanisms.
• Run the repair tool on all codebases.
• Compile the codebases; run their internal testing mechanisms.

- Measure the time and usage of the testing mechanisms.

Time should be <5% slower. Memory usage should be equivalent.

Recurrence Experiments
Verifies that repaired alerts are not reported or re-repaired
• Run the repair tool on all codebases.
• Re-run SA tools on all codebases, and compare alerts generated with original alerts.
• The experiment is successful if repaired alerts are no longer reported by an SA tool.
• Re-run the APR tool on the repaired codebase’s new alerts.
• Ideally, the APR tool should do nothing since what remains are only the alerts it

could not repair.
• If a repaired alert recurs, the APR tool should report it as a false positive.

All these tests currently pass

All these tests currently pass

Next slide

All timing tests pass for git and zeek*.

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 26[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Test Results for Sample Alert Experiments

git git git zeek zeek zeek
clang-tidy cppcheck rosecheckers clang-tidy cppcheck rosecheckers

EXP33-C 100.0% (5/5)
[0,0,5,0,0,0,0]

100.0% (1/1)
[0,0,1,0,0,0,0]

100.0% (5/5)
[1,0,4,0,0,0,0]

100.0% (5/5)
[2,0,3,0,0,0,0]

EXP34-C 100.0% (5/5)
[4,0,1,0,0,0,0]

100.0% (5/5)
[1,2,2,0,0,0,0]

100.0% (5/5)
[4,2,0,0,0,0,0]

100.0% (5/5)
[2,2,1,0,0,0,0]

100.0% (5/5)
[5,0,0,0,0,0,0]

MSC12-C 20.0% (1/5)
[1,0,0,4,0,0,0]

40.0% (2/5)
[2,0,0,2,1,0,0]

git git git zeek zeek zeek

clang-tidy cppcheck rosecheckers clang-tidy cppcheck rosecheckers

EXP33-C 9157 1 5225 29

EXP34-C 77 20 44 53 14

MSC12-C 25 721 131 480

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 27[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Is_satisfactory Is_repaired Adjudication Label

Satisfactory Repaired True/suspicious A

Satisfactory Repaired False positive C

Satisfactory Not repaired True/suspicious None

Satisfactory Not repaired False positive B

Unsatisfactory Repaired True/suspicious F

Unsatisfactory Repaired False positive G

Unsatisfactory Not repaired True/suspicious D

Unsatisfactory Not repaired False positive E

Testing Result States for Sample Alert Experiments

G = 0%
Don’t break code!

A+B+C = 100%
of all alerts, for 2 rules

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 28[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Some repairs require human supervision (accept/reject)

Some repair types are expected correct; others require human supervision

Not always a good idea to make the MSC12-C changes.
• MSC12-C (“Ineffective Code”) is a recommendation, not a rule in the CERT coding standard
• Repairs would not necessarily improve the code.

MSC12-C alerts are flagged for many reasons. For example:
• A label is never accessed via goto. Often generated by tools like yacc(1).
o Removing the label may not change code behavior.
o The label makes the code simpler. It might represent a node in a state diagram or DFA.

MSC12-C repairs are disabled by default (enabled via environment variable)

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 29[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort

Demo

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 30[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Demo
Video

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 31[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Merging repaired code with original code (1/3)

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 32[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Merging repaired code with original code (2/3)

If you dislike a repair,
you can click on a line of

code…

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 33[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Merging repaired code with original code (3/3)

…and revert it!

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 34[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort

How can this work be extended to help
you?

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 35[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The Automated Repair Team

Lori Flynn
Senior Software
Security Researcher

Will Klieber
Software Security
Engineer

Email: info@sei.cmu.edu

Joseph Sible
Associate Software
Engineer

Nicholas H. Reimer
Engineer

Robert Schiela
CSF Deputy Director

Michael Duggan
Reverse Engineer

Timothy Chick
Technical Manager

Ebonie McNeil
Technical Engagement
Lead

David Svoboda
Senior Software
Security Engineer
Principal Investigator

mailto:info@sei.cmu.edu

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 36[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

How can this work be extended to help you?

Achievements highlights
- Developed APR tool that repairs 3 CERT

coding rules and 3 mapped CWEs
- Tested tool on OSS codebases and

collaborator code, with successful repairs
- Published code, OSS test results, use

documentation, demo videos, presentations
- Published dataset for APR research & testing
- Research paper (pending acceptance)
- Redemption project page (links to tool,

dataset, presentations, videos, paper, etc.)
- Redemption tool on GitHub

Potential extensions
1. Add support for more static analysis tools
2. Repairs for more categories of SA alerts
3. Enhance Redemption’s capability to work on

MS Windows programs
4. Integrate more workforce tools, including

IDEs and CI pipelines
Related APR proposal

1. Lori is looking for DoD/govt. collaborators
on her research project proposal involving
learning-based APR (proposal due 11/11)

2. What APR feature(s) would make your
organization likely to use it?

3. What are barriers to APR use at your org?

Contact
David Svoboda svoboda@sei.cmu.edu
Lori Flynn lflynn@sei.cmu.edu

https://doi.org/10.5281/zenodo.7958182
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=497941
https://insights.sei.cmu.edu/library/redemption/
https://github.com/cmu-sei/redemption

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 37[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort

BACKUP SLIDES

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 38[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Command Line Tool – Source Codebase

Inputs
C/C++ source file(s) in codebase

Repaired
Source
Code

Ear Brain Glove
Enhanced

AST
Alerts +
Patches

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 39[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Command Line Tool – Build Commands

Build Commands
Each command includes -D/-U macro
definitions and other switches to let Clang
parse each source code file.

Repaired
Source
Code

Ear Brain Glove
Enhanced

AST
Alerts +
Patches

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 40[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Command Line Tool – Static Analysis Alerts

Next input: distinct SA Tool Alerts
Each alert contains the following:
• CERT rule
• Location where rule is being

violated (e.g., source code path,
line number, column number,
end-line number, end
column number)

• Message

Repaired
Source
Code

Ear Brain Glove
Enhanced

AST
Alerts +
Patches

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 41[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Command Line Tool – Repaired Source Code

Outputs
For each SA alert from input

• Patch to repair the alert.
OR

• Explain in a text message why it cannot be repaired.

All patches should be independent (i.e., they repair distinct regions of
code)

Repaired
Source
Code

Ear Brain Glove
Enhanced

AST
Alerts +
Patches

Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort
© 2024 Carnegie Mellon University 42[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Handling Errors

What should our tool instruct the program to do when it discovers an error (e.g.,
integer overflow) and /* Handle error */ is not sufficient?

Some choices include
• return;
• return NULL; /* or EOF */
• abort();
• signal(SIGINT, handler);

The right choice depends on the code. How does the function currently handle other
errors?

	Static Analysis-Targeted Automated Repair to Secure Code and Reduce Effort�for NDIA’s 27th Systems & Mission Engineering Conference
	Slide Number 2
	Agenda
	Problem: static analysis (SA) alert deluge
	Does the DoD Require Use of Static-Analysis Tools?
	Collaborator Experience
	C/C++ Automated Program Repair (APR) Tools
	Our tool repairs source code associated with alerts
	Slide Number 9
	Design choices
	Design choices
	Tool use during development, test, and evaluation
	Where to use Redemption in DevSecOps
	Where to use Redemption in DevSecOps
	Usage Dataflow Scenario (Without CI)
	Usage Dataflow�Scenario (with CI)
	Slide Number 17
	Existing Redemption capabilities that help extending it
	Existing Redemption capabilities that help extending it
	How to Develop New Repairs
	Slide Number 21
	Verification Theory: Undefined Behavior
	Verification
	Components for Testing
	Tests & Experiments
	Test Results for Sample Alert Experiments
	Testing Result States for Sample Alert Experiments
	Some repairs require human supervision (accept/reject)
	Demo
	Demo Video
	Merging repaired code with original code (1/3)
	Merging repaired code with original code (2/3)
	Merging repaired code with original code (3/3)
	How can this work be extended to help you?
	The Automated Repair Team
	How can this work be extended to help you?
	BACKUP SLIDES
	Command Line Tool – Source Codebase
	Command Line Tool – Build Commands
	Command Line Tool – Static Analysis Alerts
	Command Line Tool – Repaired Source Code
	Handling Errors

