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Lack of AI Robustness is a DoD Problem

The Department of Defense (DoD) 
increasingly uses artificial intelligence (AI) 
and machine learning (ML) classifiers and 
predictors, but these are subject to a lack 
of robustness, which leads to a lack of 
trust.

Testing and evaluation methods 
are inadequate because 
they are undermined by
• Data and concept drift
• Evolving edge cases
• Emerging phenomena

This file is licensed under the Creative Commons Attribution-Share Alike 4.0 
International license.

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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What’s Wrong with a Little Correlation?

AI and ML tools work by learning associations, 
but they don’t account for causation, which 
means we can’t identify where and when ML 
predications can’t be trusted.
Traditional ML evaluation methods fail to 
account for underlying causal structures and 
therefore
• Don’t explore alternative explanations for 

impacts in a scenario
• Fail to account for key drivers
• Attribute causes to the wrong factors
• Don’t properly cross-validate their evaluation 

results
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AI and ML tools work by learning associations, 
but they don’t account for causation, which 
means we can’t identify where and when ML 
predications can’t be trusted.
Traditional ML evaluation methods fail to 
account for underlying causal structures and 
therefore
• Don’t explore alternative explanations for 

impacts in a scenario
• Fail to account for key drivers
• Attribute causes to the wrong factors
• Don’t properly cross-validate their evaluation 

results
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Calling in AIR Support!

• The Department of Defense (DoD) 
sends an autonomous vehicle 
(AV) to acquire images.

• There are two bases, “Home” and 
“Auxiliary.”

• The DoD wants to predict 
likelihood of mission success 
given environmental conditions 
and choice of base for UAV 
takeoff.
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What Is Causal Learning and How Does It Help?
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What is Causal Learning and How Does It Help?
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What is Causal Learning and How Does It Help?
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What is Causal Learning and How Does It Help?

• Causal Discovery: identify cause-effect 
relationships from data

• Causal Inference: estimate the effects of 
an intervention

- Causal Identification: identify potential 
sources of bias

- Causal Estimation: quantify the impact 
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Step 1: Causal Discovery
Discovering the Key Players
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Step 1: Causal Discovery
Discovering the Key Players
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Step 2: Causal Identification
Identifying Potential Sources of Bias
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Impact of main base choice

M
is

si
on

 S
uc

ce
ss

(R
is

k 
D

iff
er

en
ce

)

Failure

Success

0

Step 3: Causal Estimation
Estimating the Impact of Your Decision
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Applying Results of AIR

Impact of leaving main base
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Interpreting Results of AIR

Risk Difference: This chart represents the difference in outcomes resulting 
from a change in your experimental variable, scenario_main_base. The x-axis 
ranges from negative to positive effect, where the experimental variable 
either decreases the likelihood of the outcome, images_acquired, or 
decreases it, respectively. The midpoint corresponds to ‘no significant effect.’

Interpreting your results:
Your classifier is underestimating the effect that 
scenario_main_base is having on images_acquired by 33-
51%. AIR predicts that scenario_main_base should be 
having a negative effect on images_acquired. As 
scenario_main_base changes, the outcome of 
images_acquired is between 53-71% less likely to occur. 
Unfortunately, your classifier is producing biased results 
that suggest images_acquired is more likely than it should 
be. Bias is likely being introduced into the training process 
at variable(s): region_sensitivity and/or missiong_urgency
(see graph).
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Should You Be Using AIR?

AIR can help you
• across a broad range of 

contexts.
• across many decision types.
• on multiple scenario and 

treatment pairs.
• gain insight into classifier. 

performance, which is needed 
to improve classifier accuracy.

• Do you have questions 
about whether your 
classifier is performing 
properly?

• Are you using your 
classifier’s results to 
make important 
decisions?
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Try AIR for Free!

Use the AIR tool and give us 
feedback so we can keep 
improving it. Your feedback 
influences our research.

AIR is
• free to download and use.
• fully automated.
• containerized and ready for 

distribution.

AIR requires a dataset that 
meets current data and tool 
requirements

What’s in it for you?
With AIR, you will
• learn how well your classifiers 

are performing.
• uncover problems with your 

classifiers.
• gain confidence in your 

classifiers.
• build your in-house knowledge 

of these innovative techniques.
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Learn More About AIR

info@sei.cmu.edu

mailto:jcohen@sei.cmu.edu
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The Team

Mike Konrad

Key researcher on the core 
technology (DLAR, 
MDLAR, AIR)

Nick Testa

Key researcher for 
MDLAR/AIR estimation 
and automation

Suz Miller

Key researcher for 
the transition of AIR

Linda Parker Gates

Principal Investigator; 
technology transition 
planning and execution

Julie Cohen

Contributor for AIR 
transition activities

Melissa Ludwick

Project manager 
and coordinator

David Shepard

Contributor on core 
technology and 
transition (MDLAR, AIR)

Andrew Mellinger

ML engineer; 
Contributor on core 
technology and 
transition (MDLAR, AIR

Crisanne Nolan

Key contributor for the 
transition aspects of AIR

Joe Ramsey, CMU

Expert on the Tetrad Tool 
for causal discovery 
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