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Problem

• Department of Defense (DoD) software supply chains

• Example incidents:
- xz backdoor incident of 2024
- SolarWinds incident of 2020: infected 18,000 organizations, 100 of which were then targeted

• Our tool detects two types of malicious code:
1. Exfiltration of sensitive information
2. Timebombs/logic bombs, remote-access Trojans (RATs), etc.

• We call our tool “DMC” (short for “Detection of Malicious Code”).
- https://github.com/cmu-sei/dmc

• Project status: Began October 2022, ending November 2024
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Our Approach (1)

• Our tool flags code as potentially malicious.

• It detects "business logic" vulnerabilities (such as Log4Shell in Log4j) too.

• Out of scope: Undefined behavior (e.g., buffer overflows)

• Goal for our tool: concise and precise output → quick and accurate human adjudication
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Our Approach (2)

• We are using only static analysis, not dynamic analysis.

• So far, we have focused on C/C++ codebases.

• Our tool works natively on LLVM intermediate representation (IR).
- LLVM is a compiler infrastructure project.
- The name “LLVM” originally stood for “Low Level Virtual Machine.”

• We have some support for binaries by lifting to LLVM IR.

• We can also fairly easily support other languages that compile to LLVM IR.
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PhASAR
• Initially, we built on PhASAR, which is a static-analysis framework based on LLVM.

• Unfortunately, PhASAR ended up having trouble as we scaled to real-world codebases:
- Took 15 minutes to analyze dos2unix (a very small program, approx. 4,000 lines of code)
- Ran out of memory (with 24 GB of RAM) on git
- Attempts to simplify the analysis (to speed it up and reduce memory usage) were unfruitful
- Global variables were always aliased with function parameters, producing many false positives

• Abandoned PhASAR, reimplemented taint analysis from scratch, building only on LLVM
- We improved scalability by avoiding construction of the supergraph used in PhASAR’s

Interprocedural Finite Distributive Subset (IFDS) analysis, at the cost of less context sensitivity.
- Much faster and less memory-intensive; can analyze git (approx. 275,000 lines of code) in just a 

few minutes with memory usage under 15% on a virtual machine (VM) with 8 GB of RAM
- Current limitations: Only handles C (with incomplete support for C++), limited alias analysis, limited 

analysis on function pointers, etc.
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Information Flow Analysis

• Static taint analysis to track flow of sensitive data
- Successful track record (e.g., finding malicious flows of 

information in Android apps)
- Sources are designated system application programming 

interface (API) calls that return potentially sensitive information.
- Sinks are designated system API calls that can be used to 

exfiltrate information to outside the program.

• Limitation: Conflates together all flow paths from a given source 
to a given sink. So, a malicious flow path can be "hidden" by a 
benign flow path.

• Our idea: Separate the flows by features relevant to detection of 
malicious code 

Source

Sink

Benign 
Flow 1

Benign 
Flow 2

Malicious 
Flow



Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 8[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Motivating Example E1 (Pseudocode)

1. function Flow_1() {
2. cmd = read_from_keyboard();
3. if (is_upload_cmd(cmd)) {
4. name = get_file_name(cmd);
5. x = read_from_file(name);
6. send_to_network(x);
7. }
8. }
9.
10. function Flow_2() {
11. data = read_from_network();
12. if (is_special_cmd(data)) {
13. x = read_from_file("secrets.txt");
14. send_to_network(x);
15. }
16. }

File System

Network

Flow 1 Flow 2
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Idea for Ideal Output
Example of Ideal Output

• Flow 1:
• Source: File system

- Filename is specified by user.
• Sink: Network

- IP: 127.0.0.1
- Port: 12345

• Flow 2:
• Source: File system

- Filename is hardcoded secrets.txt.
• Sink: Network

- IP: 127.0.0.1
- Port: 12345

Example E1:
1. function Flow_1() {
2. cmd = read_from_keyboard();
3. if (is_upload_cmd(cmd)) {
4. name = get_file_name(cmd);
5. x = read_from_file(name);
6. send_to_network(x);
7. }
8. }
9.
10. function Flow_2() {
11. data = read_from_network();
12. if (is_special_cmd(data)) {
13. x = read_from_file("secrets.txt");
14. send_to_network(x);
15. }
16. }
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Diagram of Our Tool with Its Input and Output

Source Code 
(C or C++) and build 
commands for Clang

Binary via 
GhiLift

OR

LLVM IR
“.ll” file

List of sensitive sources 
and sensitive sinks

DMC Tool
(“Detection of 

Malicious Code”)

Tool output: 
Sensitive source-to-sink 
flows, along with auxiliary 
dataflow analysis

Human 
adjudication

Codebase
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Creating the List of Sources and Sinks
• For well-known functions exported by the operating system and libraries, we used a 

large language model (LLM), specifically GPT-4, to identify:
- whether the return value is a source
- which parameters are sinks 
- which parameters are sources 

• A parameter is a source if it is a pointer to a buffer that the API call fills with potentially sensitive data.

• GPT-4 knows common Windows and Linux API functions. For lesser-known operating 
systems, the LLM may need a description of the function (e.g., the man page).

• Two methods of generating the list of sources and sinks:
1. Do up-front analysis of system API functions and/or
2. Run our tool on the program:

a. The tool’s output will indicate which external functions it doesn’t recognize.
b. Feed those function names to the LLM.
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Simple Example (mal-client-3.c)

write

socket

fread

fopen

getline

filename

FILE*
file descriptor

stdin

[
{"sink": {"func":"write", "callsite":["mal-client-3.c","main",152,21],

"aux file": [{"func":"socket", "callsite":["mal-client-3.c","main",65,18]}]},
"srcs": [{"func":"fread", "callsite":["mal-client-3.c","main",139,29],

"aux file": [{"func":"fopen", "callsite":["mal-client-3.c","main",132,26],
"aux file": [{"func":"getline", "callsite":["mal-client-3.c","main",106,26], "FILE*":"stdin"},

{"func":"getline", "callsite":["mal-client-3.c","main",117,30], "FILE*":"stdin"}]}]}]},
...
]
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Simple Example (mal-client-3.c)
[
{"sink": {"func":"write", "callsite":["mal-client-3.c","main",152,21],

"aux file": [{"func":"socket", "callsite":["mal-client-3.c","main",65,18]}]},
"srcs": [{"func":"fread", "callsite":["mal-client-3.c","main",139,29],

"aux file": [{"func":"fopen", "callsite":["mal-client-3.c","main",132,26],
"aux file": [{"func":"getline", "callsite":["mal-client-3.c","main",106,26], "FILE*":"stdin"},

{"func":"getline", "callsite":["mal-client-3.c","main",117,30], "FILE*":"stdin"}]}]}]},

{"sink": {"func":"write", "callsite":["mal-client-3.c","main",158,17],
"aux file": [{"func":"socket", "callsite":["mal-client-3.c","main",65,18]}]},

"srcs": [{"func":"getline", "callsite":["mal-client-3.c","main",106,26], "FILE*":"stdin"},
{"func":"getline", "callsite":["mal-client-3.c","main",117,30], "FILE*":"stdin"}]},

{"sink": {"func":"write", "callsite":["mal-client-3.c","main",194,29],
"aux file": [{"func":"socket", "callsite":["mal-client-3.c","main",65,18]}]},

"srcs": [{"func":"fread", "callsite":["mal-client-3.c","main",180,37],
"aux file": [{"func":"fopen", "callsite":["mal-client-3.c","main",173,34],
"aux file": [{"filename":"secrets.txt"} ]}]}]}

]
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Real-World Example: Athena Malware

• Available at: https://github.com/ytisf/theZoo
• One malicious action we can detect is finding and terminating other bots.
• Botkiller.cpp, function ScanDirectoryForBots
• Detected flow:

KillProcessByPidGetPidFromFilename

FindFirstFile

HANDLE

FindNextFile

HANDLE
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Flow Paths

• A flow path describes a flow of information in a 
single run of the program.

• The arrows in the diagram at the right illustrate a 
flow path from  read_source to  write_sink.
- For each arrow, there is a direct flow from the 

origin of the arrow to the target of the arrow.
- The arrows follow along a trace (i.e., the 

sequence of instructions executed in a run of 
the program).

C1.  void main() {

C2.  int x = read_source();

C3.  if (cond) {

C4.  y = x ;

C5.  } else {

C6.      y = 0;

C7.   }

C8.  write_sink ( y );

C9.  }
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Explicit Flow vs. Implicit Flow

An implicit flow doesn’t have a 
flow path from source to sink; 
rather, the source influences 
the sink indirectly via a branch 
condition.

We do not consider implicit 
flows in this project.
• Techniques for implicit flows 

generally introduce an 
excessive amount of false 
alarms.

• However, there are heuristics 
that can be used to try to 
identify laundering of data 
through an implicit flow.

C1.  void main() {

C2.  int x = read_source();

C3.  if (cond) {

C4.  y = x ;

C5.  } else {

C6.      y = 0;

C7.   }

C8.  write_sink ( y );

C9.  }

C1.  void main() {

C2.  int x = read_source();

C3.  if ( x > 0) {

C4.  y = 1 ;

C5.  } else {

C6.      y = 0 ;

C7.   }

C8.  write_sink ( y );

C9.  }
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Recap: Diagram of Our Tool with Its Input and Output

Source Code 
(C or C++) and build 
commands for Clang

Binary via 
GhiLift

OR

LLVM IR
“.ll” file

List of sensitive sources 
and sensitive sinks

DMC Tool
(“Detection of 

Malicious Code”)

Tool output: 
Sensitive source-to-sink 
flows, along with auxiliary 
dataflow analysis

Human 
adjudication

Codebase
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Conclusion and Team

Our tool detects potentially malicious code by 
tracing the flow of sensitive information and 
auxiliary information.

Contact: info@sei.cmu.edu

Will Klieber
Software Security 
Engineer

Lori Flynn
Senior Software
Security Researcher

David Svoboda
Senior Software Security 
Engineer

Ruben Martins
Assistant Research 
Professor, CMU - Computer 
Science Department

Matt Wildermuth
Assistant Security 
Researcher

Tool available at:
https://github.com/cmu-sei/dmc

This release includes the source code, a Docker file, 
tests, documentation, and a demo.

We’d appreciate any feedback if you try out the tool!
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