
Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 1[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

©2024 Carnegie Mellon University

RESEARCH REVIEW 2024

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Detection of Malicious Code
Using Information Flow Analysis

N O V E M B E R 1 3 , 2 0 2 4

Will Klieber
Software Security Researcher

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 2[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Copyright 2024 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision,
unless designated by other documentation.

References herein to any specific entity, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute nor of Carnegie Mellon University - Software Engineering
Institute by any such named or represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use
and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is
required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

CERT® and Carnegie Mellon® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM24-1172

Document Markings

mailto:permission@sei.cmu.edu

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 3[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Problem

• Department of Defense (DoD) software supply chains

• Example incidents:
- xz backdoor incident of 2024
- SolarWinds incident of 2020: infected 18,000 organizations, 100 of which were then targeted

• Our tool detects two types of malicious code:
1. Exfiltration of sensitive information
2. Timebombs/logic bombs, remote-access Trojans (RATs), etc.

• We call our tool “DMC” (short for “Detection of Malicious Code”).
- https://github.com/cmu-sei/dmc

• Project status: Began October 2022, ending November 2024

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 4[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Our Approach (1)

• Our tool flags code as potentially malicious.

• It detects "business logic" vulnerabilities (such as Log4Shell in Log4j) too.

• Out of scope: Undefined behavior (e.g., buffer overflows)

• Goal for our tool: concise and precise output → quick and accurate human adjudication

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 5[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Our Approach (2)

• We are using only static analysis, not dynamic analysis.

• So far, we have focused on C/C++ codebases.

• Our tool works natively on LLVM intermediate representation (IR).
- LLVM is a compiler infrastructure project.
- The name “LLVM” originally stood for “Low Level Virtual Machine.”

• We have some support for binaries by lifting to LLVM IR.

• We can also fairly easily support other languages that compile to LLVM IR.

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 6[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

PhASAR
• Initially, we built on PhASAR, which is a static-analysis framework based on LLVM.

• Unfortunately, PhASAR ended up having trouble as we scaled to real-world codebases:
- Took 15 minutes to analyze dos2unix (a very small program, approx. 4,000 lines of code)
- Ran out of memory (with 24 GB of RAM) on git
- Attempts to simplify the analysis (to speed it up and reduce memory usage) were unfruitful
- Global variables were always aliased with function parameters, producing many false positives

• Abandoned PhASAR, reimplemented taint analysis from scratch, building only on LLVM
- We improved scalability by avoiding construction of the supergraph used in PhASAR’s

Interprocedural Finite Distributive Subset (IFDS) analysis, at the cost of less context sensitivity.
- Much faster and less memory-intensive; can analyze git (approx. 275,000 lines of code) in just a

few minutes with memory usage under 15% on a virtual machine (VM) with 8 GB of RAM
- Current limitations: Only handles C (with incomplete support for C++), limited alias analysis, limited

analysis on function pointers, etc.

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 7[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Information Flow Analysis

• Static taint analysis to track flow of sensitive data
- Successful track record (e.g., finding malicious flows of

information in Android apps)
- Sources are designated system application programming

interface (API) calls that return potentially sensitive information.
- Sinks are designated system API calls that can be used to

exfiltrate information to outside the program.

• Limitation: Conflates together all flow paths from a given source
to a given sink. So, a malicious flow path can be "hidden" by a
benign flow path.

• Our idea: Separate the flows by features relevant to detection of
malicious code

Source

Sink

Benign
Flow 1

Benign
Flow 2

Malicious
Flow

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 8[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Motivating Example E1 (Pseudocode)

1. function Flow_1() {
2. cmd = read_from_keyboard();
3. if (is_upload_cmd(cmd)) {
4. name = get_file_name(cmd);
5. x = read_from_file(name);
6. send_to_network(x);
7. }
8. }
9.
10. function Flow_2() {
11. data = read_from_network();
12. if (is_special_cmd(data)) {
13. x = read_from_file("secrets.txt");
14. send_to_network(x);
15. }
16. }

File System

Network

Flow 1 Flow 2

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 9[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Idea for Ideal Output
Example of Ideal Output

• Flow 1:
• Source: File system

- Filename is specified by user.
• Sink: Network

- IP: 127.0.0.1
- Port: 12345

• Flow 2:
• Source: File system

- Filename is hardcoded secrets.txt.
• Sink: Network

- IP: 127.0.0.1
- Port: 12345

Example E1:
1. function Flow_1() {
2. cmd = read_from_keyboard();
3. if (is_upload_cmd(cmd)) {
4. name = get_file_name(cmd);
5. x = read_from_file(name);
6. send_to_network(x);
7. }
8. }
9.
10. function Flow_2() {
11. data = read_from_network();
12. if (is_special_cmd(data)) {
13. x = read_from_file("secrets.txt");
14. send_to_network(x);
15. }
16. }

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 10[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Diagram of Our Tool with Its Input and Output

Source Code
(C or C++) and build
commands for Clang

Binary via
GhiLift

OR

LLVM IR
“.ll” file

List of sensitive sources
and sensitive sinks

DMC Tool
(“Detection of

Malicious Code”)

Tool output:
Sensitive source-to-sink
flows, along with auxiliary
dataflow analysis

Human
adjudication

Codebase

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 11[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Creating the List of Sources and Sinks
• For well-known functions exported by the operating system and libraries, we used a

large language model (LLM), specifically GPT-4, to identify:
- whether the return value is a source
- which parameters are sinks
- which parameters are sources

• A parameter is a source if it is a pointer to a buffer that the API call fills with potentially sensitive data.

• GPT-4 knows common Windows and Linux API functions. For lesser-known operating
systems, the LLM may need a description of the function (e.g., the man page).

• Two methods of generating the list of sources and sinks:
1. Do up-front analysis of system API functions and/or
2. Run our tool on the program:

a. The tool’s output will indicate which external functions it doesn’t recognize.
b. Feed those function names to the LLM.

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 12[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Simple Example (mal-client-3.c)

write

socket

fread

fopen

getline

filename

FILE*
file descriptor

stdin

[
{"sink": {"func":"write", "callsite":["mal-client-3.c","main",152,21],

"aux file": [{"func":"socket", "callsite":["mal-client-3.c","main",65,18]}]},
"srcs": [{"func":"fread", "callsite":["mal-client-3.c","main",139,29],

"aux file": [{"func":"fopen", "callsite":["mal-client-3.c","main",132,26],
"aux file": [{"func":"getline", "callsite":["mal-client-3.c","main",106,26], "FILE*":"stdin"},

{"func":"getline", "callsite":["mal-client-3.c","main",117,30], "FILE*":"stdin"}]}]}]},
...
]

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 13[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Simple Example (mal-client-3.c)
[
{"sink": {"func":"write", "callsite":["mal-client-3.c","main",152,21],

"aux file": [{"func":"socket", "callsite":["mal-client-3.c","main",65,18]}]},
"srcs": [{"func":"fread", "callsite":["mal-client-3.c","main",139,29],

"aux file": [{"func":"fopen", "callsite":["mal-client-3.c","main",132,26],
"aux file": [{"func":"getline", "callsite":["mal-client-3.c","main",106,26], "FILE*":"stdin"},

{"func":"getline", "callsite":["mal-client-3.c","main",117,30], "FILE*":"stdin"}]}]}]},

{"sink": {"func":"write", "callsite":["mal-client-3.c","main",158,17],
"aux file": [{"func":"socket", "callsite":["mal-client-3.c","main",65,18]}]},

"srcs": [{"func":"getline", "callsite":["mal-client-3.c","main",106,26], "FILE*":"stdin"},
{"func":"getline", "callsite":["mal-client-3.c","main",117,30], "FILE*":"stdin"}]},

{"sink": {"func":"write", "callsite":["mal-client-3.c","main",194,29],
"aux file": [{"func":"socket", "callsite":["mal-client-3.c","main",65,18]}]},

"srcs": [{"func":"fread", "callsite":["mal-client-3.c","main",180,37],
"aux file": [{"func":"fopen", "callsite":["mal-client-3.c","main",173,34],
"aux file": [{"filename":"secrets.txt"}]}]}]}

]

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 14[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Real-World Example: Athena Malware

• Available at: https://github.com/ytisf/theZoo
• One malicious action we can detect is finding and terminating other bots.
• Botkiller.cpp, function ScanDirectoryForBots
• Detected flow:

KillProcessByPidGetPidFromFilename

FindFirstFile

HANDLE

FindNextFile

HANDLE

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 15[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Flow Paths

• A flow path describes a flow of information in a
single run of the program.

• The arrows in the diagram at the right illustrate a
flow path from read_source to write_sink.
- For each arrow, there is a direct flow from the

origin of the arrow to the target of the arrow.
- The arrows follow along a trace (i.e., the

sequence of instructions executed in a run of
the program).

C1. void main() {

C2. int x = read_source();

C3. if (cond) {

C4. y = x ;

C5. } else {

C6. y = 0;

C7. }

C8. write_sink (y);

C9. }

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 16[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Explicit Flow vs. Implicit Flow

An implicit flow doesn’t have a
flow path from source to sink;
rather, the source influences
the sink indirectly via a branch
condition.

We do not consider implicit
flows in this project.
• Techniques for implicit flows

generally introduce an
excessive amount of false
alarms.

• However, there are heuristics
that can be used to try to
identify laundering of data
through an implicit flow.

C1. void main() {

C2. int x = read_source();

C3. if (cond) {

C4. y = x ;

C5. } else {

C6. y = 0;

C7. }

C8. write_sink (y);

C9. }

C1. void main() {

C2. int x = read_source();

C3. if (x > 0) {

C4. y = 1 ;

C5. } else {

C6. y = 0 ;

C7. }

C8. write_sink (y);

C9. }

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 17[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Recap: Diagram of Our Tool with Its Input and Output

Source Code
(C or C++) and build
commands for Clang

Binary via
GhiLift

OR

LLVM IR
“.ll” file

List of sensitive sources
and sensitive sinks

DMC Tool
(“Detection of

Malicious Code”)

Tool output:
Sensitive source-to-sink
flows, along with auxiliary
dataflow analysis

Human
adjudication

Codebase

Detection of Malicious Code Using Information Flow Analysis
©2024 Carnegie Mellon University 18[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

RESEARCH REVIEW 2024

Conclusion and Team

Our tool detects potentially malicious code by
tracing the flow of sensitive information and
auxiliary information.

Contact: info@sei.cmu.edu

Will Klieber
Software Security
Engineer

Lori Flynn
Senior Software
Security Researcher

David Svoboda
Senior Software Security
Engineer

Ruben Martins
Assistant Research
Professor, CMU - Computer
Science Department

Matt Wildermuth
Assistant Security
Researcher

Tool available at:
https://github.com/cmu-sei/dmc

This release includes the source code, a Docker file,
tests, documentation, and a demo.

We’d appreciate any feedback if you try out the tool!

	Slide Number 1
	Slide Number 2
	Problem
	Our Approach (1)
	Our Approach (2)
	PhASAR
	Information Flow Analysis
	Motivating Example E1 (Pseudocode)
	Idea for Ideal Output
	Diagram of Our Tool with Its Input and Output
	Creating the List of Sources and Sinks
	Simple Example (mal-client-3.c)
	Simple Example (mal-client-3.c)
	Real-World Example: Athena Malware
	Flow Paths
		Explicit Flow 	vs. 	Implicit Flow
	Recap: Diagram of Our Tool with Its Input and Output
	Conclusion and Team

