
RESEARCH REVIEW 2024

Untangling the Knot
Refactoring for Software Isolation

Automated refactoring can
improve the modularity
of software at low cost.

Summary
Refactoring software to improve
its modularity enables

• capability reuse
• migration to cloud or microservices
• containerizing software
• development efficiency

Manual refactoring at scale can require
months to years of development effort.1

Solution
We created a refactoring assistant that
analyzes existing code and generates
recommendations for refactoring to
improve modularity.2 The assistant

• solves application-specific problems
• identifies common code used by

multiple features or services
• provides teams with options
• works with Java, C#, and C/C++

Looking Ahead
Visit sei.cmu.edu/go/knot for updates
and contact us to discuss how the
refactoring assistant could help improve
the modularity of your systems.

Problematic couplings
A measure of dependencies that
inhibit specific modularity goals
(e.g., the red lines above).

Results
Our refactoring assistant provides
recommendations that reduce
problematic couplings by >90% on
average, significantly reducing the
effort required to refactor code.

1 J. Ivers, R. Nord, I. Ozkaya, C. Seifried, C. Timperley, M. Kessentini. Industry Experiences with Large-Scale Refactoring.

Foundations of Software Engineering: Software Engineering in Practice (ESEC/FSE). November 2022.

2 J. Ivers, C. Seifried, I. Ozkaya. Untangling the Knot: Enabling Architecture Evolution with Search-Based Refactoring. 19th IEEE International

Conference on Software Architecture (ICSA 2022). March 2022. Mean overall reduction = 95.2%

James Ivers | jivers@sei.cmu.edu
Chris Seifried, Jonathan Loungani, Mario Benitez, Ipek Ozkaya, Tapajit Dey, Greg Such

[DISTRIBUTION STATEMENT A]
Approved for public release and unlimited distribution.

DM24-1446

Select refactoring
recommendations that
reflect different trade-offs
for comparison.

Refine refactoring
recommendations to match
your team’s insights and context.

Each refactoring step is
specific, and many can be
implemented quickly using
common IDE features.

The tool helps teams quickly
discover which refactorings are
most important to their goals.

Software structure becomes
entangled over time, eroding
traits like modularity.

1

0.8

0.6

0.4

0.2

0

PC
 R

ed
uc

ti
on

C# C++ Java

Copyright 2024 Carnegie Mellon University.

This material is based upon work funded and supported by the Department
of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally
funded research and development center.

The view, opinions, and/or findings contained in this material are those of the
author(s) and should not be construed as an official Government position, policy,
or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY,
OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution. Please see Copyright notice for non-US
Government use and distribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License. Requests for permission for non-licensed uses should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM24-1446

