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Untangling the Knot
Refactoring for Software Isolation

Automated refactoring can 
improve the modularity  
of software at low cost.

Summary
Refactoring software to improve  
its modularity enables

• capability reuse
• migration to cloud or microservices
• containerizing software
• development efficiency

Manual refactoring at scale can require 
months to years of development effort.1

Solution
We created a refactoring assistant that 
analyzes existing code and generates 
recommendations for refactoring to 
improve modularity.2 The assistant

• solves application-specific problems
• identifies common code used by 

multiple features or services
• provides teams with options
• works with Java, C#, and C/C++

Looking Ahead
Visit sei.cmu.edu/go/knot for updates 
and contact us to discuss how the 
refactoring assistant could help improve 
the modularity of your systems.

Problematic couplings
A measure of dependencies that 
inhibit specific modularity goals  
(e.g., the red lines above).

Results
Our refactoring assistant provides 
recommendations that reduce 
problematic couplings by >90% on 
average, significantly reducing the 
effort required to refactor code.
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Select refactoring 
recommendations that  
reflect different trade-offs  
for comparison.

Refine refactoring 
recommendations to match 
your team’s insights and context.

Each refactoring step is 
specific, and many can be 
implemented quickly using 
common IDE features.

The tool helps teams quickly 
discover which refactorings are 
most important to their goals.

Software structure becomes 
entangled over time, eroding 
traits like modularity.
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