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AS THE STRATEGIC IMPORTANCE OF AI INCREASES, 
SO TOO DOES THE IMPORTANCE OF DEFENDING 
THOSE AI SYSTEMS [NSCAI 2021]. To understand 
AI defense, it is necessary to understand AI offense— 
that is, counter AI. 

This paper describes counter AI. First, we describe the 
technologies that compose AI systems (the AI Stack) 
and how those systems are built in a machine learning 
operations (MLOps) lifecycle. Second, we describe three 
kinds of counter-AI attacks across the AI Stack and five 
threat models detailing when those attacks occur within 
the MLOps lifecycle. 

Finally, based on Carnegie Mellon University (CMU) Software 
Engineering Institute (SEI) research and practice in counter AI, 
we give two recommendations: 

• In the long-term, the field should invest in AI engineering 
research that fosters processes, procedures, and mechanisms 
that prevent vulnerabilities being introduced into AI systems. 

• In the near-term, the field should develop the processes 
necessary to efficiently respond to and mitigate counter-AI 
attacks, such as building an AI Security Incident Response Team 
(AISIRT) and extending existing cybersecurity processes like 
the Computer Security Incident Response Team (CSIRT) Services 
Framework [FIRST 2019]. 

 
The AI Stack and MLOps: AI Technologies and AI Processes 
The AI Stack is a pictorial representation of the various technologies 
and areas of research that are necessary to build out a breadth of 
Al capabilities [Moore 2018]. It is useful for understanding what AI 
systems are, but it does not depict how AI systems are built. 

In this section, we summarize the AI Stack and develop a 
companion MLOps lifecycle to describe the process by which AI 
systems are built. 

The left side of Figure 1 shows the Al Stack [Moore 2018]. The 
gray vertical bar, Ethics, spans the horizontal layers of the stack 
to emphasize the importance of building and using Al systems 
that align with the core democratic values of the United States. 
Ethics encompasses efforts known as Al assurance or responsible 
AI and includes the tools and techniques necessary to build an 
Al system that is aligned with user needs and ethical principles, 
meets technical specifications throughout the various stages of 
the development and acquisition processes, and is continuously 
monitored during operational or mission use. 

The bottom two horizontal layers, Computing and Devices, form 
the basis of the hardware, software, and perception systems 
on which Al systems run. Computing in this formulation is 
broad, encompassing all the systems, networks, programming 
languages, operating systems, and hardware that enable 
computation. The Device layer is similarly broad, referencing the 
sensors and components needed for machines to perceive the 
world around them, including everything from cameras to light 
detection and ranging (LIDAR), and from synthetic aperture radar 
(SAR) to cyber sensors, such as net flow monitors. 

The Massive Data Management (red) and Machine Learning 
(green) layers form the core of the AI system. The Massive Data 
Management layer includes the selection and analysis of data, 
preparation of data, and overall data management. Data are 
ingested and then used to identify statistical patterns in the 
Machine Learning layer. The Machine Learning layer represents 
the whole academic field of statistical machine learning, including 
supervised, unsupervised, and reinforcement learning approaches. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: The Al Stack and a Companion MLOps Lifecycle 
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The top set of layers in the AI Stack represent the broad 
capabilities that are often ascribed to Al systems. 

• The Modeling layer encompasses structuring of knowledge 
about the world to synthesize data into higher order concepts. 

• The Decision Support layer encompasses the various ways 
that models synthesized from data can be used to help either 
humans or algorithms make decisions. 

• The Planning and Acting layer represents Al systems that team 
with humans to make and carry out plans. 

• The Autonomy and Human Al Interaction layer represents the 
spectrum of engagement and actions delegated by a human to 
an Al system. 

In some cases, the AI system displays information in an interface 
for a human to then act; in others, the AI system may be designed 
for human-machine teaming scenarios; or the AI system may be 
designed to act without further guidance, in full autonomy. 

The right side of Figure 1 is a companion MLOps lifecycle adapted 
from an earlier MLOps lifecycle [ML4Devs 2022]. The MLOps 
lifecycle is centered on the five DoD ethical principles for AI 
[DoD 2020]. The lifecycle is composed of five connected loops: 
Ethics, Data, ML (machine learning), Dev (development), and 
Ops (operations). Ethics (grey) takes a prominent place here (as 
it did in the Al Stack) because, again, considerations of ethics 
should permeate the whole process. The MLOps lifecycle starts 
from Ethics, at Plan (grey arrow), where the CONOPS (concept of 
operations, including end user needs and context) and measures 
of performance are defined by the team and stakeholders for the 
eventual system. 

The next loop is Data (red), which is entered when the system is 
first developed and when new training data are required. Its five 
components are (1) Explore what data already exist, (2) Collect 
any new data required, (3) Curate and, if necessary, label the data 
for a given use case, (4) Transform the data for use in machine 
learning, and (5) Validate that the data meet the requirements 
of the system and its users. The next loop is ML (green), which 
is entered when a new ML model is required, or the model is 
changed. Its four components are (1) Experiment with various 
approaches, (2) Train the necessary models, (3) Evaluate the 
quality attributes of the models, and (4) Package the selected 
models for use within an Al system or submission to a model zoo, 
that is, a curated collection of models. 

When new features are required, the system moves into Dev 
for development (blue). Its five components are (1) Design the 
features, (2) Code the features, (3) Build the new system, (4) Test 
the system for functionality, and (5) Release a new version of the 
system. The final loop is Ops, for Operations (yellow), with four 
components (1) Configure the system, (2) Deploy the system, 
(3) Operate the system, and (4) Monitor the system. The last three 
components run continuously while the system is in use. Note 
that Monitor feeds directly into Plan, implying that as information 
about the system is collected through monitoring, new Data, ML, 
and Dev loops can be integrated, as needed, to build an improved 

version of the system. Further note that the Ops loop explicitly 
includes an Operational Data input because the machine learning 
component of an Al system requires data. 

 
Counter Al: Three Attacks and Five Threat Models 
In this section, we introduce three kinds of counter-AI attacks 
across the AI Stack and five threat models describing when those 
attacks occur within the MLOps lifecycle. Briefly, AI systems are 
fundamentally insecure because there exist vulnerabilities in each 
layer of the AI Stack and plausible exploits at each step of the 
MLOps lifecycle. 

Across the AI Stack, there are three kinds of counter-AI attacks: 
cybersecurity attacks, adversarial machine learning attacks, and 
adversarial AI attacks. Cybersecurity attacks use either physical or 
cyber methods to target the Computing and Device layers of the 
Al Stack. Physical cybersecurity attacks can include deny, degrade, 
and destroy strategies, such as jamming or destroying sensors in 
autonomous systems in operations. Cyber-based attacks similarly 
provide a means to deny, degrade, and, in some cases, destroy 
the software that operates the Al capability. 

Adversarial machine learning (AML) attacks use machine learning 
methods to target the Massive Data Management and Machine 
Learning layers of the AI Stack. This class of attacks is uniquely 
effective because Machine Learning is a key component low in the 
stack that is both exposed during the Ops portion of the MLOps 
lifecycle and fundamentally vulnerable. In general, an attacker 
can counter ML by making it learn the wrong thing, do the wrong 
thing, or reveal the wrong thing about either the MLOps process 
that created it or the properties of its training data [Beieler 2019]. 

Generally, countering Al with AML follows a common three- 
step pattern: 

1. Model the target Al system. To attack an Al system, the attacker 
must either have access to the target Al system within its 
operational context or be able to gather sufficient information 
about the target to build a proxy (an approximation of the 
target that is likely to share the same vulnerabilities as the 
target during its operations). 

2. Train the counter on the model. In typical ML, the data are 
held constant as the model learns. In AML this is reversed: 
the attacker “trains the data” as the model is held constant. 
Controlling the input in this way allows the attacker to identify 
how best to poison a model trained on a given set of data 
(learn attack), drive the target system to a desired state (do 
attack), or reveal information about the training data or model 
(reveal attack). 

3. Test the counter. In typical ML, a trained model is evaluated 
against several hold-out data sets in several contexts to provide 
evidence that the model is generalizable. Similarly in AML, a 
trained counter is evaluated against several hold-out models in 
several contexts to determine its efficacy as a learn, do, or reveal 
attack within the operational context of the target Al system. 
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1. ML Only 
2. Compromised Operational Environment 
3. Acquired System 
4. Data Poisoning 
5. Future Capability 

Adversarial AI attacks use AI to target the Massive Data Management 
and Machine Learning layers of the AI stack; that is, an Adversarial AI 
is an AI system that attacks one or more layers in another AI system. 
For example, if a large language model (LLM) agent were trained 
to modify malware to appear as benign software, then the LLM 
agent would be an Adversarial AI that targets the Machine Learning 
layer of an antivirus. This is distinct from an Adversarial Machine 
Learning attack, as the Adversarial AI attack is autonomous or 
semi-autonomous once deployed by the attacker. 

Five threat models describing when these three kinds of 
counter-AI attacks occur within the MLOps lifecycle are shown 
in Figure 2. The first threat model, ML Only, models when the 
attacker only has knowledge of the ML loop (green) and is 
common in early proof-of-concept attack development because 
it allows a researcher to focus on vulnerability research in a 
controlled environment. The academic literature primarily 
uses this threat model to develop learn, do, and reveal attacks. 
However, the ML Only threat model does not yield exploits, that 
is, attacks that are likely to work in operations [Appruzzese 2023]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Threat Models Throughout the MLOps Lifecycle 

The second threat model in Figure 2 is encountered primarily 
during Ops (yellow) but also affects Dev (blue). The Compromised 
Operational Environment is a realistic threat model for do and 
reveal attacks. Since do and reveal attacks are possible when 
the attacker can effectively replicate the target system and test 
various scenarios leading to a comprehensive understanding of 
vulnerabilities of the system that can be exploited. In this model, 
the attacker has access to the complete operational environment 
of the Al system, from the specific software and hardware of the 
Al system (Release), to the configuration of the sensors that feed 
in production data (Configure, Deploy, and Operate), to direct 
in-memory access to the ML model as it makes its predictions 
(Operate). This scenario is analogous to a traditional cyber- 

physical vulnerability: the attacker has a copy of the software, can 
configure it similarly to the target system, and can run it in the 
same operating system and hardware as the target system. The 
Compromised Operational Environment threat model is feasible 
if the attacker has successfully inserted a cyber implant into any 
machine running a given version of the ML system or if any of the 
edge devices, such as smart cameras mounted on drones, are 
captured and reverse engineered to gather not just the model but 
also the configurations and the prediction pipeline. 

The third threat model in Figure 2 is Released System, and it 
considers the attacker has knowledge of only the Dev loop (blue). 
In Released System, a copy of the released system (Release) is 
available, such as when the kind of system the target uses can 
be purchased from a vendor. In the Released System threat 
model, it is necessary to build proxies of the target operational 
environment to develop do attacks that would succeed against 
other similar versions of the ML model in operational use, that 
is, to find the various ways that the purchased system could be 
reasonably configured, deployed, and operated. Once this is 
accomplished, the attacker can “train the data on the model.” 

The fourth threat model in Figure 2 is Data Poisoning, contained 
in the Data loop (red). The attacker has influence over what 
training data is collected (Collect) but may not be able to control 
how the data are labeled, have access to the trained model, or 
have access to the Al system. This scenario is plausible when the 
Al system collects training data over time and offers predictions 
as a service to users. The Data Poisoning threat model requires 
building proxy models, proxy systems, and proxy operational 
environments. Once this is accomplished, the attacker can train 
the data on the model. 

The fifth threat model in Figure 2 is Future Capability, and it is 
the most difficult threat model for counter Al with AML. In this 
threat model, the attacker has no access at all to the target 
system—only information about the CONOPS of the Al system 
(Plan). It is surprising that this level of threat model is sufficient 
to develop a counter, but examples are widely studied in the 
academic literature, which refer to them as black-box transfer 
attacks. With sufficient effort, therefore, an attacker could, 
in principle, walk a black-box transfer attack through proxies 
across every loop: Data, ML, Dev, and Ops. As the attacker 
finds counters that fool increasing numbers of proxy models in 
varying contexts, the likelihood increases that the counter will be 
successful against the unseen target system. 

 
What to Do About Counter AI: AI Security Incident Response 
The existence of a Future Capability threat model underscores 
the fundamental insecurity of AI systems at our current level of 
AI maturity. We make two recommendations: In the long term, 
the field should invest in AI engineering research to enable more 
capable, accurate, secure, and trustworthy AI systems. In the 
near term, the field should develop the processes necessary to 
respond to counter-AI attacks quickly and efficiently. Then, take 
what we learn from the AI incident response to inform the field of 
study, identify vulnerabilities, and establish best practices. 
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• Information Security Incident Report Acceptance 
• Information Security Incident Analysis 
• Artifact and Forensic Evidence Analysis 
• Mitigation and Recovery 
• Information Security Incident Coordination 
• Crisis Management Support 
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Figure 3: CSIRT Services Framework Service Areas and Services [Source: Computer Security Incident Response Team (CSIRT) 
Services Framework, 2019. Copyright ©2023 Forum of Incident Response and Security Teams, Inc. All Rights Reserved.] 

 

Note that this is very similar to traditional cybersecurity: all 
computer systems have vulnerabilities. In the long term, the field 
attempts to make systems more secure. In the near team, the 
field has learned how to manage vulnerabilities and respond to 
information security (lnfoSec) incidents. 

For example, the Computer Security Incident Response Team 
(CSIRT) Services Framework [FIRST 2019] lays out five service 
areas to support a robust cybersecurity defense infrastructure. 
Figure 3 displays the service areas of the CSIRT Services 
Framework. Note that no single CSIRT will perform all these 
functions for a given constituency, but this services list provides 
the breadth of what is required to manage lnfoSec incidents. 

Briefly, starting from the top of Figure 3, the lnfoSec Incident 
Management service is the core of a CSIRT, where a given 
lnfoSec incident report is received, contained, and mitigated, 
and operations are restored to a pre-incident state. To the right, 
the Vulnerability Management service performs vulnerability 
discovery research in addition to the analysis and handling of 
new or reported vulnerabilities, including developing vulnerability 
remediation and coordinating the patching of vulnerabilities. 
The Situational Awareness service gathers data, understands the 
context of the threat landscape, models and hunts threats, and 
communicates both current and projected risks. The Knowledge 
Transfer service builds awareness of lnfoSec incidents and 
threats, trains and educates, conducts training exercises, and 
offers technical and policy advice. Finally, the lnfoSec Event 
Management service identifies lnfoSec incidents from a wide 
variety of event logs and contextual data sources. 

Broadly, applying the CSIRT Services Framework to Al is 
straightforward: counter-Al attacks are exploits to vulnerabilities 
in Al systems. The operators of Al systems should monitor their 
systems to detect attacks and respond to incidents where attacks 
have occurred. As counter-Al incidents occur, the community 
should share knowledge to mitigate future attacks and conduct 
the necessary research to both discover new vulnerabilities and 
understand how the threat landscape evolves. 

There are, however, important differences between the FIRST 
CSIRT Services Framework and the development of its AI-enabled 
extension. For example, within the Incident Response service 
area, the Mitigation and Recovery service is more complex for 

AI systems as the as the vulnerability may not live in code but 
in the model or the data [Spring 2020]. Mitigation may require 
significant resources, especially for systems that are not designed 
to be quickly modified. Similarly, within the Vulnerability 
Management service area, the Vulnerability Analysis service may 
require significant resources, as it often unclear what the root 
cause of an AI vulnerability is or how best to mitigate it. 

We recommend, therefore, that in the near term, the field should 
invest in developing this AI-enabled extension of the CSIRT 
Services Framework. There are salient differences between 
traditional cybersecurity and AI, and we must work through them 
in order to respond to AI security incidents quickly and efficiently. 

To conclude, as the strategic importance of AI increases, so 
too does the importance of defending those AI systems [NSCAI 
2021]. In the long term, the field should directly address the 
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An attacker can make you: 
Learn the wrong thing Do the wrong thing Reveal the wrong thing 

fundamental vulnerabilities in AI systems by investing in AI 
engineering research. In the near term, the field should develop 
the processes necessary to efficiently respond to and mitigate 
counter-AI attacks, which means building an AI Security Incident 
Response Team and extending existing cybersecurity processes, 
such as the Computer Security Incident Response Team (CSIRT) 
Services Framework [FIRST 2019]. 

 
AISIRT: Ensuring the Safety of AI Systems 
To provide the U.S. with a capability for addressing the risks 
introduced by the rapid growth and widespread use of AI, 
in 2021 the Carnegie Mellon University (CMU) Software 
Engineering Institute (SEI) formed a first-of-its-kind AI Security 
Incident Response Team (AISIRT). The SEI created the AISIRT 
to lead the way in formulating tools, practices, and guidelines 
for AI security incident response. The AISIRT works with 
government, industry, and academia to identify, analyze, and 
respond to threats to AI systems. 

The SEI leveraged its expertise in cybersecurity and AI, as well 
as its strong track record in the development of cyber response 
capabilities and team development across the globe over the last 
35 years to establish the AISIRT. The goal of the AISIRT is to lead a 
community-focused research and development effort to ensure 
the safe and effective development and use of AI technologies as 
they continue to evolve and grow. 

 
 
 

Counter AI Overview 

Some of the challenges for maintaining effective monitoring of 
AI systems include identifying when AI systems are operating 
out of tolerance; whether they have been subjected to external 
tampering or attack; where defects occur that need to be 
corrected; and how to diagnose and respond to suspected or 
known problems. In addition, response capabilities require 
successful community and team building with both national and 
international organizations. 

The AISIRT has reported the following items as some emerging 
lessons learned from managing early AI vulnerabilities. 

• AI vulnerabilities are cyber vulnerabilities 

• The AI ecosystem is complex encompassing many 
disparate entities 

• AI vulnerabilities occur throughout the entire AI ecosystem 

• Tools to identify vulnerabilities are lacking 

• There is a need for secure development training tailored for 
AI developers [McIlvenny 2024] 

Built from this foundation at the SEI, the AISIRT fills an immediate 
need to ensure that AI is safe, contributes to the growth of our 
nation, and continues to evolve in an ethical, equitable, inclusive, 
and responsible way. The challenges and lessons the AISIRT 
has identified highlight the strategic importance of defending 
AI systems. The SEI is committed to continuing the necessary 
research and building the tools and communities needed to 
better secure AI systems. 
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