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1 Introduction 

In this report, we characterize the primary methods for measuring the probability of insider attack by 
aggregating insider threat indicators. We focus specifically on the methods that were (1) widely re-
ported to be successfully used on the insider threat problem and (2) incorporated into prominent in-
sider threat behavioral analytics tools. In addition, we emphasize methods that are consistent with 
baseline tools and capabilities observed in mature insider threat programs. The SEI’s CERT Division 
is planning a subsequent report about more sophisticated behavioral analytic techniques that can play 
an important role in future insider threat mitigation. This future report will consider recent work by the 
SEI to characterize machine learning in network security1 and by Gartner to define AI for IT Opera-
tions (AIOps) [Rich 2019]. 

This report builds on a framework for understanding data model mapping transforms described in pre-
vious work. The framework maps data to observations to indicators to behavior; these concepts are 
succinctly characterized by the original authors of the paper Identifying At-Risk Employees: Modeling 
Psychosocial Precursors of Potential Insider Threats [Greitzer 2009]: 

Data – “Directly available information” 

Observation – “Inference from data that reflects a specific state”  

Indicator – “Action/event as evidence of precursor to inferred behavior” 

Behavior – “Sequence of actions associated with a purpose” 

____________
1 B. Cohen, J. Fallon, A. Horneman, “Machine Learning in Network Security,” Software Engineering Institute Special

Report CMU/SEI-2020-SR-0252, April 2020.
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CERT researchers describe specific transform functions between each successive concept as follows: 
“… they can be thought of as  

O = f(D) + ϵ  

I = f(O) + ϵ  

B = f(I) + ϵ 

where D is the data source(s), O is the observation(s) transformed from the data, I is the in-
dictor(s) transformed from observation(s), and B is the behavior(s) transformed from the indica-
tor(s). The epsilon (ϵ) associated with each transform represents the amount of uncertainty in the 
transforms. This uncertainty could represent the number of false positives or false negatives in-
troduced by the transform. Overall, it represents some amount of risk associated with the analyt-
ics used by the insider threat program associated with these data mapping transform func-
tions.”2 

While the previous CERT work focused on the transform from observation (O) to indicator (I) and the 
associated cost matrix for methods supporting that transformation, this report focuses on the transform 
from indicator (I) to behavior (B). We are interested in the behaviors that reflect an increased probabil-
ity of insider attack; so, measuring combinations of indicators involves quantifying the probability of 
attack associated with those combinations. Of course, the behavior dimension can be modeled explic-
itly as malicious behavior patterns that involve actions that inflict organizational harm (e.g., through 
threat scenarios or using behavioral modeling techniques). Such approaches are not central to current 
operational insider threat behavioral analytics, but their importance for this domain suggests that we 
consider them in our subsequent report. In this report, we restrict our attention to the mapping of indi-
cators directly to the probability of insider attack. 

Section 2 of this report describes the overall structure for classifying methods supporting the I to B 
transform and the associated cost matrix for that transform. Section 3 elaborates on that structure for 
more rigorous, quantitative methods, positioning representative methods and applications within that 
structure. In Section 4, we summarize the primary contributions of the report.  

____________ 

2  CERT National Insider Threat Center. Insider Threat Indicator Cost Matrix. November 2019. 
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2 Landscape of Aggregate Indicator Measurement 

Figure 1 shows the landscape of aggregate indicator measurement methods along two dimensions. The 
y axis encompasses the range from methods based on classical statistical inference to methods based 
on Bayesian inference. Classical methods interrelate variables (indicators) using classical statistical 
methods, such as statistical correlation, while Bayesian interrelationships are characterized through 
conditional probabilities. In Figure 1, we focus on rigorous, quantitative methods, which are usually 
based on ratio-scale measurement, rather than predominately qualitative methods, which are often 
based on an ordinal scale. 

The x axis encompasses the range from subjective, human-judgment-established methods to objective, 
empirical-data-established methods. Both classical and Bayesian approaches can also be characterized 
by whether they are developed based on human judgment, empirical data, or a combination of both. 
Once either the classical or Bayesian model is established, these models can be used to make decisions 
based on empirical data generated as organizational systems operate. As already mentioned, these 
methods are built on methods that support the data to observation, and the observation to indicator 
transforms. Other artificial intelligence (AI) and machine learning (ML) techniques, such as neural 
networks [Yuan 2018] or hidden Markov chains [Tabish 2016] (the subject of our future report), can 
be used in more sophisticated approaches and as input to empirical Bayesian or Regression ap-
proaches. 

 
Figure 1: Landscape of Aggregate Indicator Measurement Methods 
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2.1 A Note on Ordinal-Scale Methods 

Ordinal-scale methods have been historically popular to measure cybersecurity risk because of the 
complexity of that risk and the perception that many cybersecurity factors are impossible to measure 
more rigorously. These methods do not measure the factors in actual risk units. Rather, they measure 
factors on a multiple-point scale, such as a three-point scale (e.g., low/medium/high) or a five-point 
scale (e.g., low/low-medium/medium/medium-high/high). The important point is not how many points 
are on the scale, but rather that after being measured, the factors can only be ordered according to the 
group they are in, not ordered within the group they are in. In other words, we know that low factors 
are considered less than medium factors, and medium factors are less than high factors, but we can’t 
assume an order of two factors in the same group. 

Ordinal-scale methods are used extensively in cybersecurity risk management. Examples include the 
Guide for Conducting Risk Assessments [NIST 800-30 2012], the Risk Rating Methodology [OWASP 
2020], and the Common Vulnerability Scoring System [CVSS 2020]. While these methods may be use-
ful for ordering factors, they are not adequate for measuring the probability of attack, a component of 
risk associated with combining multiple indicators. The reason these methods aren’t adequate for 
measuring probability is that any combination of indicators requires performing arithmetic operations 
on the measures of those indicators. Ordinal scales do not ensure the same interval between successive 
points, which is required for addition and subtraction; these mathematical operations require an inter-
val scale measure. These methods also do not support multiplication or division since there is no no-
tion of absolute zero in the scale; these mathematical operations require a ratio-scale method. 

Researchers and practitioners reported these and other problems with using ordinal-scale measures for 
measuring cybersecurity risk [Hubbard 2014b, Cox 2008]. It is clear that ordinal- scale methods are 
inadequate as a basis for measuring the aggregation of indicators to estimate insider attack probability. 
Therefore, in the rest of this report, we focus on ratio-scale methods of measurement. 

2.2 Types of Rigorous, Quantitative Methods Considered 

In this section, we provide an overview of the four poles of the two-dimensional landscape shown in 
Figure 1. 

Classical Statistical Inference: For our purposes, classical statistical inference uses classical statisti-
cal methods to develop measures of indicators that can justifiably be combined into measures of attack 
probability. An example is converting estimates of indicators into numbers on a ratio scale, as normal-
ized z-scores do through normalization and centering estimates around a mean of zero [Dawes 1979]. 
More rigorous methods that involve statistical regression relate select values of x (in our case, an indi-
cator) and an observed value of y (probability of insider attack). This general process is called correla-
tion. 

In the domain of insider threat, simple regression relates a single indicator variable to attack probabil-
ity, while multiple regression relates a set of indicator values to attack probability. The result of multi-
ple linear regression is a best-fit line using the values of the indicator variables to “predict” the value 
of attack probability. This best-fit line is characterized using a set of weights (called coefficients) for 
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each of the indicator variables. More sophisticated nonlinear regression can find the curve that best fits 
the relationship of indicator values to insider attack probability. 

Bayesian Inference: Bayesian methods use conditional probabilities to relate indicator probabilities 
to attack probability, instead of using classical statistical techniques . The logic of Bayesian methods 
allows calculating the probability of an insider attack given a set of indicators in terms of (1) the prob-
ability of the indicators given an insider attack, (2) the probability of the indicators given no insider 
attack, and (3) the (prior) probability of an insider attack before the indicators were observed. The in-
dicators act as additional evidence that an insider attack will occur, which is used to update the (prior) 
probability of attack. These calculations (sometimes called Bayesian updating) are simplified some-
what if the indicator inputs are (or can reasonably be assumed to be) independent of each other. There-
fore, the complexity of Bayesian measurement methods varies depending on how independent the in-
puts are assumed to be. 

Human Judgment-Established Methods: People are often a good (and possibly the only) source of 
information for variable interrelationships. They have the ability to assess many complex and ambigu-
ous situations that are impossible for most mechanical measurement methods; however, people are 
subject to a great many biases and fallacies that limit the accuracy of their estimation [Hubbard 2016, 
ch. 12]. Being an expert in a field does not usually reduce these limitations; in some cases, being an 
expert in the field seems to decrease the accuracy of their estimations. 

Cybersecurity experts are no different; however, they still can provide valuable information about the 
relationship between indicators and attack probability as long as the source of the biases and fallacies 
can be addressed. Swets, Dawes, and Monahan developed techniques that yield the benefits of human 
judgment without being as hampered by its limitations [Swets 2000]. 

Empirical Data-Established Methods: Many analysis and measurement methods can accept empirical 
data as easily as it can accept expert judgment. By empirical data, we mean objective historical data 
that can help establish the relationship between indicators and attack probability. Such data is usually 
factual and is observed from actual system operations; thus, it is not subject to the biases and fallacies 
associated with subjective human estimates. 

Because of the complexity of the problem, usually there is a fair amount of “noise” in the relationship 
between indicators and attack probability (e.g., false positives and missing indicators) that makes the 
relationship not straightforward despite the objectivity of the data. Using regression and Bayesian 
methods is helpful in clarifying the relationship in the face of this complexity. 

2.3 Cost Matrix for Aggregate Indicator Measurement 

Figure 2 shows the cost matrix for aggregate indicator measurement methods along the two dimen-
sions discussed in the last section. Costs increase along the human judgment established dimension, 
the bottom row of the matrix, since more sophisticated analysis and estimation are required of the hu-
man expert. This analysis and estimation range from simple scoring of indicator relevance to estimat-
ing conditional probabilities of interdependencies. In addition, moving from simple linear to 
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correlation to Bayesian inference requires more samples across the range of interrelationships to en-
sure the sufficient accuracy of estimates. 

 

 Simple Linear Correlation Bayesian 

Empirical Data 
Established% 

Updates z-score distribu-
tions with baseline and 
incident data, including 
incident prevalence 

Uses baseline and incident 
data correlated with indicator 
prevalence to refine probabil-
ity of insider attack 

Uses Bayesian updating operat-
ing on the 
• network structure learned 

and refined through the anal-
ysis of baselines and inci-
dents 

• priors, which are updated 
over time using data 

Human Judgment 
Established 

Normalized z-scores 
• expert estimates 
• weighted and addi-

tive estimates 
• static weighting 

Correlation 
• best-fit line/curve that de-

termines attack probability 
• coefficients that establish 

weights 
• design that reduces hu-

man inconsistency 
• static weighting 

Bayesian Inference 
• expert estimates of baseline 

probabilities and conditional 
probabilities 

• certain interrelationships as-
sumed to be conditionally in-
dependent 

• dynamic weighting 

Figure 2: Indicator to Behavior Mapping Method Cost Matrix 

Costs increase moving from human judgment to empirical data since data sources need to be identified 
and instrumented to provide data into the analytic and maintained as systems are updated and threats 
change. Finally, costs increase across the empirical data-driven dimension (the top row) as the follow-
ing increases: 
• sophistication of the analysis performed 
• detail of the incident data needed regarding baseline and conditional probabilities 
• the expertise needed to provide needed data 
• the amount of support required for semi-automated analysis 
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3 Aggregate Indicator Measurement Methods 

Figure 3 lists quantitative methods that are more rigorous and well-founded than the ordinal-scale 
methods described in the previous section. The rest of this section describes various methods and 
tools, and their substantial applications to cybersecurity (in general) or insider threat (specifically). 

 General Methods Insider Threat Tools 

Classical Statistical 
Inference 

• Normalized Z-Scores [Dawes 1979] 
• Lens Model [Brunswik 1955] 
• Rasch Model [Rasch 1961] 
• Log Odds Ratio (Stats) [Jaccard 

2001] 

• Forcepoint Behavioral Analytics [Forcepoint 
2019] 

• Watchtower Behavioral Analytics [Arklay 
2020] 

Bayesian Inference • Bayesian Networks [Pearl 1985, 
Neapolitan 1990] 

• Log Odds Ratio (Bayes) [Hubbard 
2016, ch. 9] 

• Applications 
• PNNL PACMAN [Greitzer 2010] 
• ELICIT [Maloof 2007] 

• Haystax Security Analytics Platform [Haystax 
2020] 

• Arcsight Interset Behavioral Analytics 
[Microfocus 2020] 

Figure 3: Landscape of More Rigorous Quantitative Methods 

3.1 From Simple Linear Models to Methods Based on Statistical 
Regression 

The simplest human-judgment-driven methods are based on weighted scores of the major factors of 
importance in determining the variable of interest. In our case, it is the weighted score of indicators 
that measures insider attack probability. While the ordinal-scale measures described in the previous 
section are also weighted scores, at this more quantitative end of the domain, the methods do not use 
or reduce information to ordinal measures. That is, rather than relative and ambiguous measures, such 
as low-medium-high, these methods prefer whenever possible to use cardinal scales with concrete 
units, such as the frequency of downloads (in downloads per week) or the number of logins after nor-
mal working hours. 

One such simple linear model is based on normalized z-scores [Dawes 1979]. After getting the judg-
ment of the value of a particular factor by a group of human experts, a normalized distribution of the 
values is formed with an average of 0, and each value is translated into a number of standard devia-
tions above or below that average. The values converted to deviations around the mean are called z-
scores. The process of centering these scores around the mean of zero normalizes the factor value dis-
tribution so that it can be easily compared with other factors. This creates a ratio scale for the factors 
so that attack probability can be computed arithmetically. 

Dawes’ method performs better than the judgment of experts alone because the normalization of 
scores prevents one factor that has a wider range than another from taking on inordinate weight in the 
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calculation [Hubbard 2014a, ch. 12]. And in general, it has long been known that expert-based judg-
ment is almost never as good as simple statistical models [Meehl 1954, Grove 2006, Swets 2000]. But 
while Dawes’ method performs somewhat better than the unaided expert, it does not help with two 
broad classes of error in human judgment: random error and systematic error. For statistical models to 
perform significantly better than an unaided human, they must incorporate methods that reduce these 
error sources. 

Systematic human error is a predictable and reproducible source of error due to flaws in human esti-
mation capability, which manifests as regular deviation of the estimate from the true value. Research 
shows that people, including experts, are generally over confident in their estimation of their certainty 
about the probability of uncertain events. The more information they have, the more confident they 
become, even if the additional information bears no statistical relationship to what is being estimated. 
But Hubbard’s research shows that people can be calibrated, much like mechanical instruments, to 
provide more accurate estimates [Hubbard 2014a, ch. 5]. This calibration involves estimation training 
and practice. Hubbard finds that after 20 years of human calibration experience, about 85% of trainees 
can reach calibration within a half-day of training. 

Random human error, on the other hand, is an unpredictable and non-reproducible source of error in 
estimation because of uncertain changes in the environment. This type of error manifests as a random 
deviation of the estimate around the true value. The Lens model has been shown to remove human in-
consistency—another name for random human error. Such inconsistency can account for 10% to 20% 
of the error in most expert estimates [Hubbard 2014a, ch. 12]. 

The Lens model takes as input an expert’s judgments across a variety of situations including or not 
including various combinations of indicators. While expert judgment usually varies, even in identical 
situations, partly because of the biases and fallacies referenced earlier. The Lens model removes judg-
ment inconsistencies by conducting statistical regression on the inputs to derive a best-fit mathemati-
cal formula that calculates the probability of attack associated with a set of indicators. This regression 
identifies the weights (coefficients) associated with each indicator. 

Usually (linear) regression is used to identify a linear equation for the attack probability formula using 
the Lens method, but non-linear formulations may be advisable if a better fit is possible. Hubbard de-
scribes and exemplifies the use of conditional rules to perform piecewise linear regression [Hubbard 
2014a, Exhibit 12.4]. Of course, the analyst must be careful not to overfit the data. Testing the formu-
lation on a reserved portion of data is usually advisable. 

Lens models are particularly well suited for removing inconsistencies of a single judge or a group of 
similar judges. Under these conditions, the Lens model consistently shows improvements over un-
aided expert opinion or over normalized z-scores reported by Dawes. In the case where there is a big 
(or unknown) difference between individual judges (e.g., some being very lenient or liberal in their 
estimations and others being very strict or conservative) and not all judges can judge every instance, 
the Rasch model provides a good alternative [Rasch 1961]. 

The Rasch model uses the log odds ratio method [Jaccard 2001] to even out the estimations of multi-
ple judges so that the resulting estimations are as if one single consistent judge provided the 



SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9 
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

estimations. Using this model would provide a fair and even treatment of all insider threat indicators 
while considering their influence on attack probability. 

3.2 Bayesian Methods 

While methods based on statistical regression rely on correlation, which determines the weighting of 
the various indicators to calculate attack probability, Bayesian methods rely on conditional probabili-
ties and Bayes Theorem to calculate attack probability. In its simplest form, and interpreted for the in-
sider threat domain, Bayes Theorem can be expressed as the following: 

P(InsiderAttack | Indicators) = P(InsiderAttack) 
* P(Indicators | InsiderAttack) 
/ P(Indicators) 

Where 

P(Indicators) = P(InsiderAttack) * P(Indicators | InsiderAttack) 
+ P(not InsiderAttack) * P(Indicators | not InsiderAttack) 

The probability of an event (or outcome) x, which is expressed as P(x), can be thought of as a measure 
of the chance that x will occur, expressed as a percentage or a value between 0 and 1. The conditional 
probability is denoted P(x | y) and is expressed as “the probability of x given that y has occurred,” 
where x and y are events or outcomes. While Bayes Theorem is not particularly intuitive, it is mathe-
matically proven and very powerful. 

In the above expression of Bayes Theorem, the probability of InsiderAttack is analogous to the calcu-
lation performed using statistical regression discussed in the last section. The event InsiderAttack can 
be conceptualized as any individual type of malicious insider compromise of interest, such as insider 
theft of intellectual property, sabotage, or fraud. The event(s) Indicators can be an individual indicator 
or any combination of indicators that might help predict a future or ongoing insider compromise.3 

The (assumed) relationship between pairs of indicators helps the analyst understand the range of meth-
ods available for using conditional probabilities to calculate attack probability. The more individual 
indicators are assumed to be independent of one another (i.e., the value of one variable has no influ-
ence on the value of another), the simpler the computation of attack probability is. At one extreme, 
where variables are (assumed to be) completely independent of each other, the Log Odds Ratio 
method can be used to calculate insider attack probability based on the component conditional 

____________ 

3  The expression P(InsiderAttack) is called the prior probability in relation to the conditional probability P(InsiderAttack 
| Indicators). The rest of the expression, i.e., P(Indicators | InsiderAttack) / P(Indicators), can be thought of as the 
probability of Indicators showing up given the insider compromise, which can be thought of as an adjustment to the 
prior. This adjustment is sometimes called the posterior probability. 
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probabilities [Hubbard 2016, ch. 9]. At the other extreme, a Conditional Probability Table (CPT) rep-
resenting the relationship of every variable on every other variable can be determined. 

While CPTs are the most conservative method of calculating conditional probabilities, they can be pro-
hibitively expensive even for relatively simple problems, since the number of combinations explode 
with the number of variables represented. Since insider threat is a complex problem with no silver bul-
let indicators, many potential indicators are typically included in the detection mix. 

This complexity all but rules out considering all potential interactions in a full-coverage CPT. Assum-
ing away variable interactions, as in a naïve Bayes approach, is also not a good option since many in-
dicators will have complex interactions. A good middle ground is to represent known significant inter-
actions as conditional probabilities and assume independence in all other cases; Bayesian Belief 
Networks (BBNs) provide a rigorous, structured approach for achieving this middle ground. 

BBNs are probabilistic, directed acyclic graphs where the nodes represent random variables, and 
edges represent conditional dependencies among random variables.4 Conditional probabilities are 
what make BBNs Bayesian. Efficient algorithms exist to support the automatic application of Bayes 
Theorem through the network to the probability that a certain event will occur or a certain condition 
will exist. While the foundational work by Thomas Bayes was performed in the 1700s, it was not un-
til Judea Pearl and Richard Neapolitan’s writings in the 1980s that BBNs became a field of study 
[Pearl 1985, Pearl 1988, Neapolitan 1990]. BBNs have been applied to modeling knowledge in com-
putational biology, medicine, bio-monitoring, document classification, information retrieval, semantic 
searching, image processing, data fusion, decision support systems, engineering, gaming, law, and 
risk analysis. BBNs can be developed using subjective human judgment or historical data. While a full 
discussion of applying BBNs as a basis for insider threat detection is beyond the scope of this report, 
we provide two prominent examples below. 

3.2.1 Examples of BBNs 

An example of developing BBNs for predicting insider threat strictly using human judgment is found 
in the work of Greitzer and Frincke [Greitzer 2010]. They considered 12 classes of indicators: dis-
gruntlement, accepting criticism, anger management, disengagement, disregard for authority, perfor-
mance, stress, confrontational behavior, personal issues, self-centeredness, lack of dependability, and 
absenteeism. As they note, not one of these indicators is likely to be a good predictor by itself because 
of their attendant high false-positive rates. Combinations of these indicators, however, can lead to 
good predictions of insider threat as they found out when they developed a BBN based in these indica-
tors. The authors developed an initial BBN using two human resources experts to estimate indicator 
priors and conditional probabilities that establish the relationship among the indicators and insider at-
tack probability. This initial work achieved a high level of correspondence between the model and 

____________ 

4  BBNs can be very roughly thought of as a way of using a Lens model with conditional probabilities rather than correla-
tion. 
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expert opinion (R2=0.94), partly because the same experts used to develop the model were also used to 
test the model. 

In follow-on work, Greitzer and Frincke more rigorously verified the model by conducting cross vali-
dation with 10 subject matter experts who rated the probability of insider compromise associated with 
each of 24 insider threat scenarios that represented various combinations of indicators [Greitzer 2012]. 
Using a round-robin approach, they used 9 of the experts’ ratings to determine the conditional proba-
bilities for the model and tested the instantiated model using the remaining expert’s rating. The perfor-
mance of the approach was very good (R2=0.598), which was commensurate with a parallel effort us-
ing linear regression. 

Another example is the BBN approach developed by Maloof and Stevens. Their approach used both 
subjective human judgment and objective network data to determine priors and conditional probabili-
ties [Maloof 2007]. They developed a system called ELICIT to detect need-to-know violations by ma-
licious insiders. The indicators are described in a hierarchy [Caputo 2009, Figure 2] with activity type 
(e.g., searching) at the first level, warning sign (e.g., evasiveness, suspiciousness, and volumetric 
anomalies) at the second level, and detector types (such as the ones listed below) at the third level: 
• Suspicious query timing is an example of evasive searching. 
• Prohibited query item is an example of suspicious searching. 
• High-query document retrieval is an example of a searching volumetric anomaly. 

ELICIT uses 76 detectors that signal alerts for potential violations of an employee’s need-to- know. 
Each detector is associated with a property that it is responsible for detecting. The ELICIT BBN as-
signs a threat score to users on the network based on the alerts that their activity generates. This BBN 
also has a three-level hierarchy: 
1. The first level, the root node, is the Malicious Insider outcome. It specifies the prior probability 

that an insider is malicious: P(user is malicious). 

2. The second level involves 76 nodes, one for each detector; it specifies the connection between 
user maliciousness and alerting via two probabilities: 
− P(user is malicious | user generated an alert for property p by the detector) 
− P(user is malicious | user did not generate an alert for property p by the detector) 

3. The third level also involves 76 nodes; it specifies the connection between detector alerting and 
the property being alerted on via two probabilities: 
− P(detector will generate an alert for property p | p occurs) 
− P(detector will generate an alert for property p | p did not occur) 

The probabilities at the first two levels were elicited from subject matter experts, while the probabili-
ties at the third level were discovered from empirical data. This three-level tree- structured BBN spec-
ifies the potential complexity of handling all the combinations of the 76 detectors—and the 276 possi-
ble combinations of alerts—while performing with good results. The authors tested the BBN using one 
month’s worth of network traffic data with eight “red team” generated evaluation tests that 
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corresponded to real-world insider scenarios of the insider theft of information. Test results include a 
low false positive rate of 1.5% and an area under a receiver operating characteristic (ROC) curve of 
0.92. 

3.3 Discussion 

There are tradeoffs associated with using classical statistical methods versus Bayesian methods with 
regards to aggregate indicator measurement of attack probability. Classical methods may be easier to 
apply, more intuitive in their application, and require less time and experience for human judges to 
supply necessary estimates. Establishing estimates for conditional probabilities and priors can be ex-
tremely challenging and important for the accuracy of aggregate measures [Green 2017]. Whether an 
organization uses human judges or empirical data largely depends on the existence of adequate histori-
cal data and the ability to mine that data along the required dimensions. For most organizations, a 
combination of human judgment and empirical data may be the best method that can be hoped for in 
the near term. 

When human judgment is required, inconsistency of judgment (random error) can be eliminated using 
statistical regression as in the Lens method [Brunswik 1955]. Systematic error, for example due to 
overconfidence of the judge, can be reduced using calibration of the experts prior to estimation [Hub-
bard 2014a]. For human judgment analyzed using classical methods, Hubbard observes that the choice 
of analytic technique depends on the analysts’ capability and resources: 

It turns out that you can use weighted decision models at many different levels of complexity. If 
you feel confident in experimenting with non-linear methods, that’s your best shot. If you can’t 
do that but can handle linear regression, do that. If you don’t feel comfortable using regression 
at all, stick with Dawes’s equally weighted z-scores. Each method is an improvement on the sim-
pler method, and all improve on unaided experts. [Hubbard 2014a, chapter 12] 

While Bayesian inference increases the complexity of the estimation task as well as the time and capa-
bility required of human judges, it does have some unique advantages over classical methods [Stuhl 
2017a, Stuhl 2017b]. BBNs deal much better with missing values or extraneous variables than classi-
cal methods. BBNs use the whole distribution of variables’ values rather than just individual correla-
tions (e.g., one number summaries of how well variables align in a straight line), as in statistical re-
gression. BBNs exploit all of the information available to derive aggregate measures. Extraneous 
variables in classical methods tend to excessively dampen the analyzed effect of the primary influenc-
ers. For classical methods to function well, approximate values must substitute for missing values. 

In the insider threat domain, these are important considerations since it is far from clear exactly what 
variables should be included in the analysis. BBNs help conduct experiments in meaningful ways with 
a broad range of such variables, even if some turn out not to be that important in measuring insider at-
tack probability. Finally, Hubbard reports significant improvement by moving from human judgment 
to empirical data when establishing a BBN, where that is possible and affordable [Hubbard 2014a, Ex-
hibit 12.5]. 
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4 Conclusion 

In this paper, we characterized the primary methods used for measuring the probability of an insider 
attack by aggregating insider threat indicators, specifically focusing on those methods with the follow-
ing characteristics: 
• widely reported to be successfully used on the insider threat problem 
• incorporated into prominent insider threat behavioral analytics tools 
• consistent with the tools and capabilities observed at mature insider threat programs in govern-

ment and industry 

Previous CERT research focuses on the transform from observation (O) to indicator (I) and the associ-
ated cost matrix for methods supporting that transform. This report focuses on the transform from indi-
cator (I) to behavior (B). Therefore, we focus on mapping indicators directly to the probability of in-
sider attack. 

The methods we describe range in sophistication from simple linear approaches to approaches using 
Bayesian inference to measure the aggregation of indicators. We discussed the tradeoffs and relative 
costs associated with these methods, providing a basis for organizations to decide how best to incorpo-
rate these methods into their insider threat behavioral analytics. We also identified several tools and 
applications that use these methods to further support organizations that want to improve their re-
sources and capabilities. CERT researchers plan to release a subsequent report describing more so-
phisticated behavioral analytic techniques that can help organizations further build their foundational 
capability to more accurately identify and mitigate current and emerging insider threats. 
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