

Managing Al risks: Challenges & Solutions (DASF)

Omar Khawaja

September 2024 ©2024 Databricks Inc. – All rights reserved

Traditional Programs vs. ML models

Traditional Programs

AI ≠ traditional computer applications

A PARTICIPATION NAMES OF A PARTY OF A PARTY

Don't overestimate Al

"The illiterate of the twenty-first century will not be those who cannot read and write, but those who cannot learn, unlearn, and relearn."

-Alvin Toffler

Fully autonomous vehicles could reduce traffic fatalities by up to 94%..

[US Dept of Transportation]

Al doesn't stop learning!

Generative AI is taking the world by storm

91%

of organizations are experimenting with or investing in GenAl¹

_ _ _ _ _

75%

of CEOs say companies with advanced GenAl will have a competitive advantage²

_ _ _ _

40%

increase in performance of employees who used GenAl³

1. Laying the foundation for data and AI-led growth, <u>MIT Technology Review</u>

2. CEO decision-making in the age of AI, <u>IBM Institute for Business Value</u>

3. How generative AI can boost highly skilled workers' productivity, <u>MIT Management Sloan School</u>

82 ways organizations across 7 industries are using Data+Al

databricks.com/solutions/accelerators

Q

🖸 🖞 🛧 🖪 🔅 🛊 🖬 🖪 🕅 (Fini

Browse Accelerators

Challenge: Building and deploying production-quality Gen Al solutions

of enterprises *not* confident going to production

Security is the top concern for Al adoption

Security	21%		46%				
Cost	19%		43%				
Reliability	11%		41%				
Sustainability	5%	31%					
Time to value	7%	29%					
Manageability/ease of use	8%	29%					
Storage resources	6%	26%					
Data sovereignty	5%	23%					
Memory resources	3%	23%					
Governance	4%	22%					
Compute resources	6%	22%					
Resource scheduling	3%	19%					
In-place upgradeability	3%	8%					

Q. What are your organization's main concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Please select all that apply; Base: All respondents (n=712).

Q. And which is your organization's top concern about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Organization has concerns about the infrastructure that [hosts/will host] its Al/ML workloads? Base: Orga

9

Today, GenAl in production is difficult and expensive

How do we manage risks w/ traditional tech?

As risk leaders, we have honed various risk management skills over decades

1.Tech: mental model of components and data flows

2. People & Process: defined roles and operating model

3. Risks (all): knowledge of harms that can be caused

4. **Architecture**: proficiency in various deployment models and their risk implications

5. Threats: known classes of threats to be considered

6. **Risks (contextual)**: for specific use case, conduct risk analysis to identify specific risks worth mitigating

7. **Controls**: well known set of controls, where to implement them and their efficacy in mitigating risks

©2024 Databricks Inc. – All rights reserved

A: Leverage *risk instincts* to identify appropriate controls

Why is it *hard* to manage Al risks?

As risk leaders, we have not yet built confidence in our ability to manage Al risks

1.**Tech**: missing mental model of complete AI components

2. **People & Process**: unsure of roles and operating model

3. Al Risks (all): missing comprehensive Al risks catalog

4. **Architecture**: unaware of security implications of various AI deployment models

5. Threats: unclear which AI threats to be concerned with

6. **AI Risks (contextual)**: unsure which particular risks to focus on mitigating

7. **Controls**: unsure which controls to apply and where to apply them

A: Because Al still feels novel and our typical risk instincts haven't been activated yet

How do we make it *easy* to manage Al risks?

As risk leaders, we have not yet built confidence in our ability to manage Al risks

1. Tech: define mental model of AI components

2. People & Process: define roles and operating model

3. Al Risks (all): enumerate comprehensive Al risks

4. Architecture: define AI deployment models

5. Threats: map AI risks to AI threats

6. **Al Risks (contextual)**: filter Al risks based on use case and threat model

7. **Controls**: map each AI risk to mitigating controls and AI component

A: Activate *instincts* to manage Al risks!

13

How do we make it *easy* to manage AI risks?

As risk leaders, we have not yet built confidence in our abilities manage Al risks

1.**Tech**: define mental model of AI components

2. People & Process: define roles and operating model

3. Al Risks (all): enumerate comprehensive Al risks

4. Architecture: define AI deployment models

5. Threats: map AI risks to AI threats

6. **Al Risks (contextual)**: filter Al risks based on use case and threat model

7. **Controls**: map each AI risk to mitigating controls and AI component

12x components of endend Al system

©2024 Databricks Inc. – All rights reserved

What subsystems make up an AI system?

How do we make it *easy* to manage AI risks?

As risk leaders, we have not yet built confidence in our abilities manage Al risks

1.**Tech**: define mental model of AI components

2. People & Process: define roles and operating model

3. Al Risks (all): enumerate comprehensive Al risks

4. Architecture: define AI deployment models

5. Threats: map AI risks to AI threats

6. **Al Risks (contextual)**: filter Al risks based on use case and threat model

7. **Controls**: map each AI risk to mitigating controls and AI component

Define roles across 3 subsystems of Al

People and process

©2024 Databricks Inc. – All rights reserved

How do we make it *easy* to manage Al risks?

As risk leaders, we have not yet built confidence in our abilities manage Al risks

1.Tech: define mental model of AI components

2. **People & Process**: define roles and operating model

3. Al Risks (all): enumerate comprehensive Al risks

4. Architecture: define AI deployment models

5. Threats: map AI risks to AI threats

6. **Al Risks (contextual)**: filter Al risks based on use case and threat model

7. **Controls**: map each AI risk to mitigating controls and AI component

Catalog of 55x Al System risks across 12x components

Raw data • 11: Insufficient access controls 1.2: Missing data classification • 1.3: Poor data quality • 1.4: In effective storage and	Data Prep 21: Preprocessing Integrity 22: Feature manipulation 23: Raw data criteria 2.4: Adversarial partitions	Governance 4.1: Lack of traceability and transparency of model assets 4.2: Lack of end-to-end ML lifecycle	Model Serving - Inf requests 9.1: Prompt inject 9.2: Model inversion 9.3: Model breakout 9.4: Looped input 9.5: Infer training data		
encryption 1.5: Lack of data versioning 1.6: Insufficient data lineage 1.7: Lack of data trustworthiness 1.8: Data legal 1.9: Stale data	Datasets 3.1: Data poisoning 3.2: In effective storage and encryption 3.3: Label Flipping 	Model Management • 8.1: Model attribution • 8.2: Model theft • 8.3: Model lifecycle without HITL • 8.4: Model inversion	 96: Discover ML Model Ontology 97: Denial of Service 98: LLM hallucinations 99: hput Resource Control 		
Algorithms S2: Model drift S2: Hoperparameters stellare	Evaluation 6.1: Evaluation data poisoning 6.2: Insufficient evaluation	Model Serving - Inf response • 10.1: Lack of audit and monitoring inference quality	Platform • 12.1: Lack of vulnerability management • 12.2: Lack of penetration testing and bug bounty • 12.3: Lack of Incident		
	data	 10.2: Output manipulation 10.3: Discover ML Model 			
	Model This Backdoor Machine Learning / Trojaned model This Backdoor Machine	Ontology • 10.4: Discover ML Model Family • 10.5: Black box attacks	 12.4: Unauthorized privileged access 12.5: Poor SDLC 12.6: Lack of compliance 		
 5.4: Malicious Libraries 	 7.3: ML Supply chain unlograbilities 	Operations • III: Lack of MI Ops -	Dieles is and indicate sound side for M		
02024 Databricks Inc. — All rights res	7.4: Source code control attack	repeatable enforced standards			

©2024 Databricks Inc. – All rights reserved

55 risks across 12 components of AI (20 traditional, 35 novel) **databricks**

3

6

Raw data

- 1.1: Insufficient access controls
- 1.2: Missing data classification
- 1.3: Poor data quality
- 1.4: In effective storage and encryption
- 1.5: Lack of data versioning
- 1.6: Insufficient data lineage
- 1.7: Lack of data trustworthiness
- 1.8: Data legal ۰
- 1.9: Stale data
- 1.10: Lack of data access

Algorithms

- 5.1: Lack of tracking and reproducibility of experiments
- 5.2: Model drift
- 5.3: Hyperparameters stealing

Red = 5.4: Malicious Libraries

©2024 Databricks Inc. - All rights reser

Data Prep

- 2.1: Preprocessing Integrity
- 2.2: Feature manipulation
- 2.3: Raw data criteria
- 2.4: Adversarial partitions

Datasets

- 3.1: Data poisoning
- 3.2: Ineffective storage and encryption
- 3.3: Label Flipping

Evaluation

- 6.1: Evaluation data poisoning
- 6.2: Insufficient evaluation data

Model

5

- 7.1: Backdoor Machine Learning / Trojaned model
- 7.2: Model assets leak
- 7.3: ML Supply chain vulnerabilities
- 7.4: Source code control atta ali

Governance

- 4.1: Lack of traceability and transparency of model assets
- 4.2: Lack of end-to-end **ML** lifecvcle

Model Management

- 8.1: Model attribution
- 8.2: Model theft •
- 8.3: Model lifecycle . without HITL
- 8.4: Model inversion ٠

Model Serving - Inf respons

- 10.1: Lack of audit and monitoring inference quality
- 10.2: Output manipulation •
- 10.3: Discover ML Model Ontology
- 10.4: Discover ML Model Family

Operations

11.1: Lack of MLOps repeatable enforced standards

Model Serving – Inf requests

- 9.1: Prompt inject
- 9.2: Model inversion
- 9.3: Model breakout
- 9.4: Looped input
- 9.5: Infer training data membership
- 9.6: Discover ML Model Ontology
- 9.7: Denial of Service
- 9.8: LLM hallucinations
- 9.9: Input Resource Control
- 9.10: Accidental exposure of unauthorized data to models

Platform

8

11

- 12.1: Lack of vulnerability management
- 12.2: Lack of penetration testing and bug bounty
- 12.3: Lack of Incident • response
- 12.4: Unauthorized • privileged access
- 12.5: Poor SDLC 20
- 12.6: Lack of compliance

- 12

How do we make it *easy* to manage AI risks?

As risk leaders, we have not yet built confidence in our ability to manage Al risks

1.**Tech**: define mental model of AI components

2. People & Process: define roles and operating model

3. Al Risks (all): enumerate comprehensive Al risks

4. Architecture: define AI deployment models

5. Threats: map AI risks to AI threats

6. **Al Risks (contextual)**: filter Al risks based on use case and threat model

7. **Controls**: map each AI risk to mitigating controls and AI component

Implications of shared responsibility across 6 AI deployment models

©2024 Databricks Inc. – All rights reserved

Customization of AI with your data

The more you customize models with your data, the more accurate and more security you need

How do we make it *easy* to manage Al risks?

As risk leaders, we have not yet built confidence in our ability to manage Al risks

1.**Tech**: define mental model of AI components

2. People & Process: define roles and operating model

3. Al Risks (all): enumerate comprehensive Al risks

4. Architecture: define AI deployment models

5. Threats: map AI risks to AI threats

6. **Al Risks (contextual)**: filter Al risks based on use case and threat model

7. **Controls**: map each AI risk to mitigating controls and AI component

Map 55 Al risks to Mitre ATLAS attack techniques

Reconnaissance &	Resource Development & 7 techniques	Initial Access & 4 techniques	ML Model Access 4 techniques	Execution ^{&} 2 techniques	Persistence &	Defense Evasion ⁸ 1 technique	Discovery ⁸ 3 techniques	Collection & 3 techniques	ML Attack Staging 4 techniques	Exfiltration &	Impact ^{&} 7 techniques
Search for Victim's Publicly Available Research	Acquire Public ML Artifacts	ML Supply Chain II	ML Model Inference API Access	User Execution ^{&}	Poison Training Data	Evade ML Model	Discover ML Model Ontology	ML Artifact Collection	Create Proxy ML Model	Exfiltration via ML Inference	Evade ML Model
Materials Search for Publicly Available Adversarial Vulnerability Analysis Search Victim- Owned Websites	Obtain Capabilities &	Valid Accounts	ML-Enabled Product or	Command and Scripting	nand cripting Model II II		Discover ML Model	Data from Information Repositories & Data from Local System &	Backdoor ML Model " Verify Attack Craft Adversarial 10 Data	API Exfiltration via Cyber Means	Denial of ML Service
	Develop Adversarial ML Attack	Evade ML Model	IL Physical Environment				Eamily Discover ML Artifacts				Spamming ML System with Chaff
	Capabilities Acquire Infrastructure	Exploit Public-Facing Application ^{&}	Full ML Model	Autoss Autoss Autoss Model							Erode ML Model
Search Application Repositories	Publish Poisoned		ALLESS								Cost
Active Scanning ^{&}	Datasets Poison Training Data										ML Intellectual Property
	Establish Accounts ^{&}										Theft System Misuse for

©2024 Databricks Inc. – All rights reserved

Ex.: Training Data Poisoning: threats

How do we make it *easy* to manage Al risks?

As risk leaders, we have not yet built confidence in our ability to manage Al risks

1.**Tech**: define mental model of AI components

2. People & Process: define roles and operating model

3. Al Risks (all): enumerate comprehensive Al risks

4. Architecture: define AI deployment models

5. Threats: map AI risks to AI threats

6. **Al Risks (contextual)**: filter Al risks based on use case and threat model

7. **Controls**: map each AI risk to mitigating controls and AI component

Select subset of 55 Al risks that are most pertinent

Pav data Izi Insufficient access controls Izi Insufficient access later of the second Izi Izi Institution access encryption encryption encryption encryption encryption Izi Izi Institution encryption Izi Izi Institution Izi Izi Institution Izi Izi Institution Izi Izi Izi Institution Izi	Data Prep 21: Preprocessing Integrity 22: Feature manipulation 23: Raw data criteria 24: Adversarial partitions	Governance 4.1: Lack of traceability and transparency of model assets 4.2: Lack of end-to-end ML lifecycle	Model Serving - Int requests 1 Promps triple 9 Model Internation 9 Model Internation 9 At Looped Input 9 At Looped Input			
	Datasets	Model Management 8.1: Model attribution 8.2: Model theft 8.3: Model lifecycle without HITL 8.4: Model inversion 				
	 Evaluation 6.1: Evaluation data poisoning 6.2: Insufficient evaluation data 	Model Serving - Inf response 10.1: Lack of audit and monitoring inference quality 10.2: Output manipulation 10.3: Discover ML Model	 Platform 12.1: Lack of vulnerability management 12.2: Lack of penetration testing and bug bounty 12.3: Lack of Incident 			
	Model 7.1: Backdoor Machine Learning / Trojaned model 7.2: Model assets leak	Ontology • 10.4: Discover ML Model Family • 10.5: Black box attacks	 12.4: Unauthorized privileged access 12.5: Poor SDLC 12.6: Lack of compliance 			
 5.4: Malicious Libraries 02024 Databricks Inc. – All rights re 	7.3: ML Supply chain vulnerabilities 7.4: Source code control attack		Risks is red indicate novel risks for AI			

©2024 Databricks Inc. – All rights reserved

How do we make it *easy* to manage Al risks?

As risk leaders, we have not yet built confidence in our ability to manage Al risks

1.Tech: define mental model of AI components

2. People & Process: define roles and operating model

3. Al Risks (all): enumerate comprehensive Al risks

4. Architecture: define AI deployment models

5. Threats: map AI risks to AI threats

6. **Al Risks (contextual)**: filter Al risks based on use case and threat model

7. **Controls**: map each AI risk to mitigating controls and AI component

©2024 Databricks Inc. – All rights reserved

59 controls mapped to Al risks

Top 12 controls for mitigating Al risks

Controls	Data poisoning	Prompt injection	Model theft	Reproducibility	Trustworthines:
Audit & monitor	•	•	•	•	
Authentication and authorization	•	Ó	Ó	•	•
Data quality checks	•	0	0	•	•
Data governance	•	0	0		
Data encryption	•	0	0		
Secure MLOps	•	0	0		
Track model artifacts	0				
Testing and detect loss after (re)training		0	e		
Encrypt models and auth endpoints	0			0	
Zero trust/ML segregation	•				
MLOps with HITL					
Secure with Model Gateway	0				

Ex.: Training data poisoning: *mitigating controls*

Ex.: Training data poisoning: *Databricks controls*

Top 10 controls for mitigating AI risks

	Controls	Data poisoning	Prompt injection	Model theft	Trojaned model	Trustworthiness
	Authentication and authorization					
	Data and model encryption		\bigcirc		\bigcirc	
	Data governance		\bigcirc	\bigcirc	\bigcirc	
Ę	Model governance	\bigcirc			G	
vel	Secure MLOps				G	
N N	Testing and detect loss after (re)training		\bigcirc			
<	Securely serve models	\bigcirc			\bigcirc	
	Zero Trust/Model Segregation	\bigcirc	\bigcirc			
	Secure with Model Gateway	\bigcirc				
	Audit & monitor				\bullet	

Databricks AI Security Framework (DASF)

Introducing the Databricks AI Security Framework!

- Securing AI will become easier as we better understand AI
- Each Al use case may have a distinct risk profile
- Be prepared to be wrong... adapt your process
- Adopt an open framework to hasten Al security, e.g.: DASF

Strengthening AI security with industry luminaries, partners, and customers: Analyzed 12 authoritative papers, 16 contributors, and executed 15 external peer reviews!

Additional Slides

Top Al risk areas

ORGANIZATIONAL

Talent

> Operating model

Change management

Decision support

- Did these risk areas exist pre-Al?
- Is there a risk bigger than the business not realizing outcomes from Data+Al?

Are you afraid of snakes?

We are wired to fear the unfamiliar

