
1Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.
[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] Approved
for public release and unlimited distribution.

Semantic Fidelity of Decompilers

Will Klieber
David Svoboda

2Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported
by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally
funded research and development center.

The view, opinions, and/or findings contained in this
material are those of the author(s) and should not be
construed as an official Government position, policy, or
decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON
UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS"
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use
and distribution.

This material may be reproduced in its entirety, without
modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is
required for any other use. Requests for permission
should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

DM22-0583

3Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Overview
• Goal: Determine which functions in a binary are decompiled faithfully w.r.t. semantics.

• We work with an existing open-source decompiler (Ghidra):
- Existing decompilers were developed for aiding manual reverse engineering.
- They were not designed to produce recompilable code.
- Gap: Decompiled code often has semantic inaccuracies and syntactic errors.

• Measurement of semantic fidelity: Percentage of decompiled functions that are
semantically equivalent to the corresponding original functions.

• By “semantically equivalent”, we mean that, on all possible executions, if the two
functions (original and decompiled) are given the same input, they produce the same
output and side effects.
- Randomized testing
- Formal verification with SeaHorn

4Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Incorrect types don’t always prevent semantic equivalence
Original Code

void insertion_sort(unsigned int* A, size_t len)
{
 for (size_t j = 1; j < len; ++j) {
 unsigned int key = A[j];
 /* insert A[j] into the sorted sequence
 A[0..j-1] */
 size_t i = j - 1;
 while (i >= 0 && A[i] > key) {
 A[i + 1] = A[i];
 --i;
 }
 A[i + 1] = key;
 }
}

Decompiled Code
void insertion_sort(long param_1, ulong param_2) {
 uint uVar1; ulong uVar2;
 ulong local_18; ulong local_10;
 local_18 = 1;
 while (local_18 < param_2) {
 uVar1 = *(uint *)(param_1 + local_18 * 4);
 uVar2 = local_18;
 while (local_10 = uVar2 - 1,
 uVar1 < *(uint *)(param_1 + local_10 * 4))
 {
 *(undefined4 *)(param_1 + uVar2 * 4) =
 *(undefined4 *)(param_1 + local_10 * 4);
 uVar2 = local_10;
 }
 *(uint *)(uVar2 * 4 + param_1) = uVar1;
 local_18 = local_18 + 1;
 }
}

5Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Previous state of the art
• Zhibo Liu and Shuai Wang. “How far we have come: testing decompilation correctness of C

decompilers.” ACM Int’l Symposium on Software Testing & Analysis (ISSTA), July 2020.

- Tested synthetic test cases without input or nondeterminism, averaging 243 LoC each.

- Only unoptimized code. No structs, unions, arrays, or pointers.

- Out of 2504 test cases, 93% were correctly decompiled by Ghidra.

6Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Semantic equivalence pipeline

Clang
Original
source

Semantic equivalence checker

Clang Decompiler
Binary Decompiled

Source

Clang
LLVM IR

LLVM IR

7Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Problem: semantic equivalence with unavailable callees

void vithist_frame_windup (vithist_t *vh, int32 frm, ...) {
 ...
 vh->frame_start[vh->n_frm] = vh->n_entry;
 ...

vithist_lmstate_reset(vh);
 ...
}

• In the decompiled code, there might be a function call where:
- the callee is unavailable, and
- the callee might write to memory

• This complicates our attempts to establish an equivalence between the memories.

Example:

8Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Solution: stricter notion of equivalence
• Look for a structural equivalence:

- Check that the sequence of operations with side effects is the same.
• Memory reads, memory writes, function calls

- Some semantically equivalent pairs are flagged.
- But every semantically non-equivalent pair is flagged.

• Replace memory reads, memory writes, and function calls with logging.
- Reads and function calls return a nondeterministic value.

(Same order of nondeterministic values for original and decompiled)

- Also log the return value of the original and decompiled functions.

• Execute original and decompiled functions and compare their logs for equivalence.

9Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Transformation to test for structural equivalence

1. ulong lmclass_get_nclass(long *param_1) {

2. long lVar1;

3. ulong uVar2;

4.

5. lVar1 = *param_1;

6. uVar2 = 0;

7. while (lVar1 != 0) {

8. uVar2 = (ulong)((int)uVar2 + 1);

9. lVar1 = *(long *)(lVar1 + 0x10);

10. }

11. return uVar2;

12. }

1. ulong lmclass_get_nclass(long *param_1) {

2. long lVar1;

3. ulong uVar2;

4.

5. lVar1 = read_mem_long(param_1);

6. uVar2 = 0;

7. while (lVar1 != 0) {

8. uVar2 = (ulong)((int)uVar2 + 1);

9. lVar1 = read_mem_long((long *)(lVar1 + 0x10));

10. }

11. return retval_ul(uVar2);

12. }

10Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Example of log

ORIGINAL | DECOMPILED

READ ADDR 0000270f | READ ADDR 0000270f

WRITE ADDR 0000270f | WRITE ADDR 0000270f

WRITE VALUE 0000008d | WRITE VALUE 0000008d

PASS

Original
static void setExit (Int32 v)
{
 if (v > exitValue) exitValue = v;
}

Decompiled
void setExit(int param_1)
{
 if (exitValue < param_1) {
 exitValue = param_1;
 }
 return;
}

11Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Bounded semantic equivalence checking with logging

• Comparing the logs is impractical for existing verification tools in the unbounded case.
- (at least for the straightforward approach of non-interleaved execution)

• Bound the number of execution steps:
- Unroll loops for a fixed number of iterations.

- Problem: Loops can potentially be structured differently in decompiled vs the original
==> can give false counterexamples to equivalence.

12Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Formal verification and randomized testing

• We are planning to use SeaHorn to formal verification of equivalence,
but we don’t have it fully working yet.

• So, we are doing randomized testing instead.
- We initialize an array of random values (biased toward small values) and run both the

original function and the decompiled function with this array.
- Arguments to functions are also chosen randomly.

13Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Details of semantic equivalence checker

Whole program
LLVM Original

Whole program
LLVM Decomp

Perform
abstraction
and pair up

matched
functions

LLVM orig fnN

LLVM dcmp fnN

LLVM orig fn1

LLVM dcmp fn1

Make
combined
program

Random
testing or

formal
verif.

resultN

Make
combined
program

Random
testing or

formal
verif.

result1

..

.
..
.

..

.

14Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Results of semantic equivalence testing

• Tested 2650 functions from SPEC2006 that decompiled to syntactically valid code.
- This excludes functions that were non-testable:

• Multiple functions with the same name.
• Issue with functions that return a large struct, compiled with “-g”.

• Ran 1000 trials of each function.
• Over 1500 “autohelper” functions from gobmk -- all behaved non-equivalently.
• Of the remaining 1067 functions:

- 29% of functions behaved equivalently on all runs.
- 49% of functions behaved non-equivalently on all runs.
- 18% of functions had some runs that behaved equivalently and some that didn’t.
- On 5% functions, our tool crashed.

• Bug in loop bounding
• Bug in handling calls to functions such as abort that don’t return

15Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Results by benchmark suite
All equiv All differ Mixed Crashes

sphinx3 39% 30% 26% 6%

sjeng 14% 58% 18% 14%

mcf 30% 45% 25% 0%

lbm 40% 40% 20% 0%

hmmer 27% 62% 9% 2%

gobmk 23% 58% 16% 3%

bzip2 53% 23% 17% 9%

0% 25% 50% 75% 100%

bzip2

gobmk

hmmer

lbm

mcf

sjeng

sphinx3

All equiv All differ Mixed Crashes

16Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Some causes of non-equivalence

• Wrong type of global variable.
• Wrong number of arguments.
• Missing or extraneous return value.

17Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Example of non-equivalence: bzip2: setExit

Original
static void setExit (Int32 v)
{
 if (v > exitValue) exitValue = v;
}

Decompiled
void setExit(int param_1)
{
 if (exitValue < param_1) {
 exitValue = param_1;
 }
 return;
}

• Global variable exit_value is defined as a 32-bit integer type in the original source.
• Ghidra didn’t define this global variable at all. Our postprocessing script added a

definition of type undefined (an 8-bit integer type).
• The mismatch in bit-width causes non-equivalence when the value doesn’t fit in 8 bits.

18Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Example of non-equivalence: bzip2: spec_rewind

Original
int spec_rewind(int fd) {
 spec_fd[fd].pos = 0;
 return 0;
}

Decompiled
undefined8 spec_rewind(int param_1)
{
 *(undefined4 *)(spec_fd + (long)param_1 * 0x18 +
8) = 0;
 return 0;
}

• Global variable spec_fd is defined as an array of structs in the original source.
• Ghidra didn’t define this global variable at all. Our postprocessing script added a

definition of type undefined (an 8-bit integer type).
• In the decompiled code, there is a memory read to get the value of spec_fd,

but in the original source code, there is no corresponding memory read,
since the address of the global array spec_fd is known at compile-time.

19Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Semantic-Equivalence failures in gobmk

• 2693 unique functions in gobmk source code
• 1637 autohelper functions (in src/patterns/*.c)
• 1583 autohelper functions recompile,

• but all fail semantic equivalence. Why?
• All autohelper functions have this signature:
 static int autohelper…(int trans, int move, int color, int action);

• But 1572 of these files have 5 or more function parameters, so their parameter
declarations do not match their original source declarations.

• And 1566 of these definitely use their 8th through 11th parameters in the code
• E.g. not just by passing parameter lists to sub-functions

v not autohelp function
v does not compile
v 4 or less arguments
v >=5 args, but only 4 used
v args 8-11 used in code

20Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Platform Information

• 64-bit Ubuntu 18.04
• Ghidra 9.1.2 10.1.4
• Java (openjdk 11.0.10)
• Clang 6.0 and 8.0

21Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Postprocessing Ghidra Output

Python script, to be run after Ghidra:
• Splits a.out.c into many files, one per function
• All files go into a newly-created src directory
• Fixes simple errors
• Does not alter original input files
• Independent & ignorant of Ghidra

22Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Postprocessing Ghidra Output (cont.)

Ghidra

Original
binary Postprocessing

script

Individual “.c” files and
“a.out.h” header file

Decompiler

File Purpose

a.out.h Header file with all function declarations
including all included declarations, like puts()

a.out.c File with all function implementations

a.out.sym File with all declared symbols

23Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Code Recompilation
Project

Source
Functions

FY21 Recomp
Success Rate

FY22 Recomp
Success Rate

dos2unix 48 35% 81%
jasper 725 52% 74%
lbm 21 62% 71%
mcf 24 75% 88%
libquantum 94 36% 52%
bzip2 120 67% 84%
sjeng 144 65% 67%
milc 235 57% 78%
sphinx3 370 49% 65%
hmmer 657 42% 61%
gobmk 2,693 32% 76%
hexchat 2,076 53% 53%
git 6,832 44% 39%
ffmpeg 23,053 44% 57%
Average 51% 68%

SPEC 2006
Benchmarks

The table shows the percentage
of source-code functions that are
extracted as recompilable (i.e.,
syntactically valid) C code.

24Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

SPEC 2006 Benchmarks

0

10

20

30

40

50

60

70

80

90

100

dos2u
nix

jas
per lbm mcf

lib
quan

tum
bzip

2
sje

ng
milc

sp
hinx3

hmmer

go
bmk

hex
ch

at git

ffm
peg

AVERAGE

Recompilation Improvement over Last Year
FY21 Recomp Success Rate FY22 Recomp Success Rate

25Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

OTHER

expected (parse error)

cast error

Struct has no member named...

where arithmetic or pointer type is required

subscripted value is

Use of undeclared identifier

Request for member in something not a structure or union

is not assignable

from incompatible type

too many arguments to function

too few arguments to function

FY22 Recompilation Error Partition

dos2unix jasper lbm mcf libquantum bzip2 sjeng milc sphinx3 hmmer gobmk hexchat git

In FY21, these were the two most
prominent error categories

26Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Ghidra Bugs: Extra Typedefs
When Ghidra creates a struct, it also adds this line:

 typedef struct foo foo, *Pfoo;

But consider the POSIX stat(2) function:

 int stat(const char *restrict pathname,
 struct stat *restrict statbuf);

When Ghidra decompiles any code that calls this function, it produces:

 int stat(const char*,struct stat*); /* stat is a function */
 typedef struct stat stat, *Pstat; /* stat is a typedef */

FY22: The same problem occurs with the POSIX sigaction(2) and sysinfo(2)
functions/structs.

27Semantic-Equivalence Checking to Determine Decompilation Fidelity
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Other FY22 Postprocessor Improvements

• Turn on Ghidra’s Decompiler Parameter ID feature
• This fixed most of the too few/many arguments errors

• Force correct declaration of main():
 int main(int, char**, char**);

• Ghidra produces C function names that start with digits (not valid in C)
• Our fix: Prepend function name with FN_

• Remove duplicate enumeration constants

