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Abstract
Vulnerability management is an important cybersecurity func-
tion. Within vulnerability management, there are multiple
points where knowing whether an exploit targeting a given
vulnerability is publicly available would inform vulnerability
mitigation priority. Despite the value of this question, there
is no available historical baseline of when and how many
vulnerabilities get associated public exploits. We analyze
all vulnerabilities with CVE-IDs since two common reposi-
tories of public exploit data became available and find that
4.1%±0.1% of CVE-IDs have public exploit code associated
with them within 365 days. We analyze eight features of a
CVE-ID for how they influence exploit publication. Some
categories of vulnerability (CWE) are much more likely to
have exploit code published than others. Vendor is a sporadic
predictor of exploit publication likelihood. More vendors
involved in a CVE-ID does not appear to affect exploit pub-
lication. CVSS score, commonness of the CWE, and how
recently the CVE-ID was published all slightly increase the
exploit publication likelihood; the confidence intervals for the
size of these three effects overlap. Of 75,807 vulnerabilities
studied, 3,164 had public exploits over the whole six year
study; for those with exploits, the median time to publication
is two days, though the mean time is 91 days.

1 Introduction

When prioritizing which vulnerabilities to respond to, whether
a vulnerability is currently being actively exploited is an im-
portant feature. Predicting which exploits will become ac-
tively used would be a step better, as it would give defenders
some time to patch or otherwise mitigate the vulnerability
before exploitation. While predicting each and every vul-
nerability specifically is likely not possible, the community
does not currently have access to a broad historical analysis
of the usual cases for vulnerabilities and what features might
indicate a vulnerability will get exploited faster than the usual
case.

There are more vulnerabilities documented per year than
any individual vulnerability management analyst can track.
In 2019, the National Vulnerability Database (NVD)1 added
just under 20,000 vulnerabilities. Vulnerability analysts do
not currently have an automated source of information about
the state of exploitation of each vulnerability. Our research
tools can likely be re-purposed for preliminary automated
enrichment of vulnerability information.

Our research questions are shaped by this pragmatic focus.
The goal of this research is to directly support vulnerabil-
ity management decisions. The basic parts of vulnerability
management are documented by [3]. We study exploitation
because practitioners take active exploitation as “a strong
indication” to respond faster [12, §6.6]. Our research goal is
to provide more detail and nuance to that risk assessment by
studying the historical relationship between identified vulner-
abilities and public exploit code. Public exploit code is not
the same as active exploitation. Active exploitation may use
private code, and not all public code need be used in active
exploits.

To make progress on this goal, we investigate three research
questions:

RQ1 How many CVE-IDs (Common Vulnerabilities and Ex-
posures) get public exploit code within 365 days of pub-
lication? For how many CVE-IDs is public exploit code
contemporaneous with the first public documentation?

RQ2 Of those CVE-IDs that get public exploit code, how
quickly is such code published? Do different sub-
populations of vulnerabilities, as defined by the Common
Weakness Enumeration (CWE), have different publica-
tion rates?

RQ3 Are there any features of a CVE-ID that are correlated
with likelihood of public exploit code or speed of its
publication?

1The NVD is maintained by the US Department of Commerce, National
Institute of Standards and Technology (NIST). China has its own national
database (CNNVD), which has a related but different set of vulnerabilities
for 2019.



The rest of the paper is organized as follows. Section 2 in-
troduces related work studying vulnerability management and
prioritization. Section 3 describes data collection as well as
the methodology for approaching each RQ. Section 4 presents
the results, while Section 5 discusses their implications for
vulnerability management.

Our study is appropriate for CSET, though we are not
proposing a randomized control trial as an experiment. Our
method is historiographic, and draws from medical studies
on survival. If security is going to advance as a science, it
will have to be able to integrate information and constraints
on our knowledge into a kind of mosaic unity of different
methods appropriate for different situations [23]. Vulnerabil-
ity exploitation is an important but understudied facet of the
cybersecurity picture, and we present this study not just for its
results but also as an example of a method to study historical
security data.

2 Related work

Our first priority with related work is to search for systematic
review articles that contextualize our problem. Based on avail-
able reviews, exploit availability is recognized as valuable but
does not appear to have been publicly measured. There is also
some work in the area of vulnerability prioritization that is
directly relevant that we opportunistically bring in to suggest
how information about exploit availability might get used.

Searching for systematic reviews about“vulnerability man-
agement” returned only two results.2 One only mentions vul-
nerability management in passing in relation to security or-
chestration [13]. The other is a demonstration of how CVSS
(Common Vulnerability Scoring System) could be better ap-
plied to vulnerability prioritization in the industrial control
system space [10]. Inspired by the precursor to [21], Figueroa-
Lorenzo et al. [10] includes one database of exploit code as
part of its data sources for assessment of a vulnerability, but
does not provide any baseline assessment of exploit availabil-
ity or any method for reliably acquiring information about
exploit code for CVE-IDs.

Searching ACM CSUR instead for “CVSS” returns six
more papers. Those about cloud computing are out of scope,
as is game-theoretic intrusion detection. Within the informa-
tion sharing literature, there has been work on the empirical
and theoretical impact of vulnerability disclosure [17]. How-
ever, the state of empirical research on exploit availability as
it relates to vulnerability disclosure was “a large amount of
web resources contain information on available exploits” [17,
p.17]. System security metrics recognize that exploit maturity
is related to an increase in future attack attempts, but [19]
does not indicate that exploit availability has been measured.
Similarly, several metrics proposed by [5] are influenced by

2All searches were conducted on Google Scholar using ‘source:CSUR’
to restrict to ACM CSUR for any article available prior to the search date of
May 14, 2020.

exploit availability (for example, attack type, attack resources,
attack cost, and attack power), but exploit availability is not
measured directly.

There is some recent related work of which we are op-
portunistically aware. The Stakeholder-Specific Vulnerability
Categorization (SSVC) [21] has an exploitation decision point
which we can inform. The SSVC paper also surveys some
related practitioner perspectives on the relative value of pub-
lic exploit code versus other risk measures, such as CVSS.
The Exploit Prediction Scoring System (EPSS) [14] relies
on having information about the current state of proof-of-
concept (PoC) exploit code and active exploitation before
EPSS can make predictions. EPSS is far from the only at-
tempt at using machine learning to predict exploitation (see
for example [8, 9, 20]), but it has gained significant traction
in the practitioner community [15].

Earlier work has answered similar but less satisfying ver-
sions of our research questions. For example, related to
RQ1 [4] appears to report 42% of vulnerabilities are exploited
within 30 days, but this is out of about 100 Windows vul-
nerabilities targeting end-user machines running Symantec
anti-virus software, and it does not have the breadth and diver-
sity needed for our proposed historical analysis. [2] identifies
exploit availability as a better indicator of patch priority than
CVSS score; this motivates our work but does not address our
research questions of describing properties of exploit code
availability. There has also been work on the consistency, or
rather inconsistency, with which security professionals assign
severity to vulnerabilities [1], which suggests that more re-
peatable methods for assessing features of a vulnerability are
warranted.

The research questions and automated data collection
methodology we present here are compatible with and com-
plementary to these efforts in the vulnerability management
space.

3 Methodology

All three research questions share the same data collection and
curation methodology, so we address that first in Section 3.1.
Then we address the methodology for each research question
in turn. The statistical methods for RQ1 and RQ2 are similar.
For all three research questions, we base the analysis on a
metaphor with survival. A CVE-ID “survives” for X days if
there is not a public exploit known to target it within X days
of the CVE-ID publication date.

3.1 Data

All of the data we use for our analysis is publicly available.
However, it requires some effort to conveniently collect it
all for analysis in one place with a consistent view. Data
sources can conceptually be separated into two focus areas:



vulnerability description and publication data; and exploit
code.

The common key across data sources is the CVE-ID. There-
fore, our research is restricted to vulnerabilities that receive
CVE-IDs. On the one hand, this analysis choice is helpful –
we can exhaustively analyze the entire population of CVE-
IDs, and so avoid any sampling bias. On the other hand,
CVE-IDs are provided to vulnerabilities that require public
coordination and tend to be given to software flaws, rather
than say configuration errors [7]. To help keep these popu-
lation considerations in mind during analysis, our research
questions ask about CVE-IDs, not vulnerabilities in general.
The vulnerabilities that get CVE-IDs are an important set of
vulnerabilities, and are worth studying at least in part because
they are the ones that require coordination and so consume a
lot of effort by security teams. However, it is an open problem
how vulnerabilities with CVE-IDs relate to vulnerabilities in
general.

Vulnerability description data is collected from the follow-
ing sources.

• NVD, nvd.nist.gov/vuln/full-listing
• CVE, cve.mitre.org/data/downloads/index.
html

• CWE, cwe.mitre.org/data/downloads.html
• Common Platform Enumeration (CPE), cpe.mitre.
org/specification/

• CERT/CC vulnerability notes, kb.cert.org
• TrendMicro’s Zero Day Initiative (ZDI), www.
zerodayinitiative.com/advisories/published/

Four of these sources provide the vulnerability CVE-ID and
date of publication (NVD, CVE, CERT/CC, and ZDI). We
treat the earliest date across these sources as the date of publi-
cation. The CERT/CC data goes back as far as 1994. However,
we limit our analysis to CVE-IDs published from December
2013 because that is the first date both exploit data sources
are available. The end of the analysis is January 2020, so the
last vulnerability publication date analyzed is the first day of
2019.

These sources also provide some features associated with
each CVE-ID, such as the CVSS (Common Vulnerability
Scoring System) base score. CWE and CPE provide other
associations between CVE-IDs. CWE groups CVEs into
conceptual classes of weaknesses in information systems.
CPE is a consistent method for identifying what type of device
or software component contain the vulnerability.

We collect exploit data from the following sources.

• Exploit Database (ExploitDB), https://github.com/
offensive-security/exploitdb

• Metasploit Framework, https://github.com/
rapid7/metasploit-framework

These sources of public exploit code are not structured
databases as the vulnerability description sources are. We use

the Github repositories, rather than the web front ends for the
databases, both to make it easier to automate and also so we
can search developer comments and other code decoration for
CVE information that is not available otherwise.

There are two challenges in mapping exploits to vulnerabil-
ities, one structural and one logistical. The structural problem
is that of identifying a minimal exploitable test case and all
other test cases that are equivalent to it. This problem is stud-
ied by the fuzzing literature [18]; generally, it is accepted
there is no automatic way to decide whether two exploits tar-
get the same vulnerability or to identify which vulnerability
an arbitrary sample of exploit code targets. So we have to
rely on human-produced notation. Thus we hit the logistical
challenge of semi-structured human-produced text. The ex-
ploit data sources only care about whether an exploit sample
works, not whether it is correctly tagged with a CVE-ID or if
a CVE-ID exists. Exploit authors and the penetration testing
companies that manage these data sources do want them to be
usable, however, so we find the data quality to be adequate.

3.2 Method for RQ1

The framing of CVE-IDs “surviving” until they have
associated public exploits motivates our analysis of the
problem with the Kaplan-Meier estimator [16]. We
use the python lifelines implementation, specifically
lifelines.KaplanMeierFitter().

For each CVE-ID, there are two data points, the date public
and the date, if any, an exploit was published (the metaphori-
cal date of death). We truncate times to the day, rather than
treating time as a continuous variable, with all times UTC.
The Kaplan-Meier estimator provides the fraction of the popu-
lation of CVE-IDs that survived for at least X days, as well as
a confidence interval (α = 0.05). We have the entire popula-
tion of past CVE-IDs, but we interpret the confidence interval
as indicative of the range the population will continue to oc-
cupy into the future. Thus, the answer for RQ1 is the result
from the estimator after 365 days.

The second part of this research question is how many CVE-
IDs survived zero days; that is, the exploit code was either
the first public mention or was published on the same day as
disclosure of the CVE-ID. Because we are not measuring
active exploitation, this is not quite the same idea as a “zero-
day exploit” because the usual understanding of zero-day is
active exploitation events before the system owner or vendor
is aware of the vulnerability. Our measured quantities contain
neither adversary activity nor vendor awareness. The date a
CVE-ID is published by a vendor is almost always well after
they became privately aware of the problem. A vendor may or
may not privately notify other important stakeholders before
publication, as well. So CVE-IDs for which our survival value
is 0 days indicate everyone knows how to exploit the CVE-
ID on or before the day everyone knows about the CVE-ID.
Strictly speaking, “or before” is superfluous in that definition,

nvd.nist.gov/vuln/full-listing
cve.mitre.org/data/downloads/index.html
cve.mitre.org/data/downloads/index.html
cwe.mitre.org/data/downloads.html
cpe.mitre.org/specification/
cpe.mitre.org/specification/
kb.cert.org
www.zerodayinitiative.com/advisories/published/
www.zerodayinitiative.com/advisories/published/
https://github.com/offensive-security/exploitdb
https://github.com/offensive-security/exploitdb
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework


because publishing an exploit for a CVE-ID is a kind of
vulnerability disclosure even if it is not the preferred kind.
This situation is not the usual definition of zero-day, but it is
certainly a situation that vulnerability managers would also
like to avoid.

3.3 Method for RQ2
RQ2 has two parts, both related to the rate at which exploit
code is published. The first part is the rate for the population
of CVE-IDs as a whole; the second part is about if subpopu-
lations, as defined by CWEs, have different publication rates.
For each group of CWEs, we conduct the survival analysis
described in Section 3.2. The exploit rate is the inverse of
the survival rate . To describe the population dynamics of
the speed with which CVE-IDs receive public exploits, we
simply provide the descriptive statistics of the difference be-
tween date public and date of exploit for each CVE-
ID – quartiles, mean and standard deviation.

Two CWEs have different survival rates after X days if the
confidence intervals at that day are non-overlapping. Strictly,
this intepretation of the confidence interval is if the two groups
will continue to be different in the future, but it is a convenient
method of representing uncertainty in CWEs that have a low
sample size of public exploits.

3.4 Method for RQ3
We employ Cox proportional hazard (CPH) models [6] to de-
termine whether a feature of CVE-IDs increases or decreases
the rate at which a CVE-ID is exploited. Specifically, we
use the Python lifelines.CoxPHFitter() implementation.
This modeling choice commits us to the assumption that the
different influences we want to test for can be modeled as
multiplicative relationship in how they contribute to exploit
occurrence. There is not prior evidence for or against this as-
sumption in vulnerability analysis, so we adopt it tentatively.

We hypothesize the following features may influence ex-
ploitation of CVE-IDs.

• CVSSv2 base score
• CVSSv3 base score
• CWE type
• CWE size (number of CVE-IDs associated with the

CWE)
• recency
• Vendor name (derived from CPE)
• CPE prefix (Vendor plus product type)
• Number of vendors involved

For each test of each feature, the method is the same. The
data sources described in Section 3.1 publicly associate each
of these features with CVE-IDs. Thus for each CVE-ID with
a documented exploit, we check for correlated features using
fit() with a step size of 0.25. The “recency” item is how

vendor name CVE-IDs with exploits
microsoft 100
oracle 71
debian 54
apple 51
canonical 49
linux 46
redhat 44
cisco 40
apache 38
adobe 31

Table 1: Ten vendors with the most CVE-IDs with associated
public exploit code.

recent the CVE-ID publication date is compared to the date
of the study; that is, it tests whether exploit publication rate
has been changing over time. We would expect the rate to
increase if adversaries’ skill accumulates faster than systems
re-invent themselves [22].

The result of a Cox proportional hazard model is a coeffi-
cient of relative hazard based on the group being tested. The
coefficient represents a proportional increase or decrease in
risk, with numbers between 0 and 1 indicating decrease (that
is, multiplication by a number less than 1).

For vendor name, we required that the name have at least
five CVE-IDs with published exploits to be included in the
analysis. Table 1 displays the ten vendor names that are most
commonly associated with published exploits.

4 Results

This section describes the results of our research questions in
order. Discussion of the results is held back until Section 5.

As Figure 1 shows, the answer to RQ1 is 4.1± 0.1% of
CVE-IDs published between 2013 and 2019 had an associated
public exploit within 365 days. Over the entire course of the
study, 3,164 out of 75,807 CVE-IDs, or 4.2%, had associated
public exploits. Of these 3,164 with public exploits, 1,326, or
42%, had public exploit code published on the same day the
CVE-ID was publicly disclosed.

In response to RQ2, Figure 1 suggests that those CVE-IDs
that do see public exploits tend to see them relatively quickly.
Table 2 presents these results. Conditional on if a CVE-ID
eventually gets an associated exploit during the study, the
median time is two days. Although 75% of exploit code is
observed within 28 days, there are CVE-IDs that are public
for as long as six years before an exploit is published.

The rest of this section presents results for the different
features examined for RQ3. The Cox proportional hazards
model suggests that a higher CVSS score is slightly positively
correlated with exploit code. The 95% confidence interval
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Figure 1: Fraction of CVE-IDs that have gone at least X days without an associated public exploit.

statistic value (days)
min 0
first quartile 0
median 2
third quartile 28
max 2004
mean 91.5
σ 257.6

Table 2: Descriptive statistics for the speed (days) with which
exploits associated with CVE-IDs are published.

for the coefficient for CVSSv2 base scores is [1.17,1.22]; for
CVSSv3 base scores it is [1.21,1.30].

Some CWEs are highly correlated with exploit publication.
There are 95 unique CWEs which are represented among the
CVE-IDs for which public exploits were observed. Many of
these are sparsely represented, and so we have little confi-
dence in which direction they may impact exploit code publi-
cation. Table 3 presents a selection of the propotional hazard
model results for CWEs.

CWE-362 (race condition) and CWE-367 (time-of-check
to time-of-use race condition) are related; the latter is a subset
of the former. The values in Table 3 for these two CWEs
suggest that a general CWE category many have an uncertain

CWE number CPH coefficient 95% CI
CWE-20 [1.77,2.32]
CWE-22 [3.74,5.37]
CWE-74 [1.22,2.94]
CWE-78 [8.0,11.25]
CWE-89 [6.3,8.33]
CWE-113 [59.74,91.84]
CWE-119 [2.39,3.06]
CWE-120 [0.56,2.27]
CWE-125 [0.1,0.35]
CWE-191 [20.7,40.45]
CWE-269 [1.51,3.03]
CWE-287 [7.17,9.78]
CWE-294 [0.5,25.53]
CWE-312 [0.37,5.99]
CWE-347 [29.67,45.6]
CWE-362 [0.84,2.41]
CWE-367 [3.13,22.42]
CWE-400 [0.12,0.51]
CWE-425 [0.97,15.64]
CWE-434 [3.03,5.7]
CWE-476 [0.2,0.65]
CWE-798 [5.31,9.03]

Table 3: Results for Cox proportional hazard model intervals
for selected CWE.



vendor name CPH coefficient 95% CI
jio [10.18,98.49]
domainmod [8.5,47.94]
nuuo [6.05,25.03]
pimcore [2.14,46.99]
computrols [3.63,21.76]
alienvault [3.6,14.3]
flexense [2.56,17.81]
sophos [2.53,8.33]
zte [1.7,8.17]
nagios [1.77,6.96]
netgear [1.46,6.75]
advantech [1.4,3.9]
microsoft [1.34,1.9]
ibm [0.64,0.85]

Table 4: Results for Cox proportional hazard model intervals
for vendor name from CPE for those prefixes with a p-value
under 0.005.

vendor : product name CPH
coefficient
95% CI

domainmod:domainmod [8.25,46.53]
mcafee:virusscan_enterprise [6.05,27.66]
thekelleys:dnsmasq [4.31,33.78]
computrols:building_automation_software [3.56,21.33]
zohocorp:manageengine_servicedesk_plus [2.16,34.12]
alienvault:unified_security_management [2.59,18.36]
seeddms:seeddms [1.9,24.53]
nagios:nagios_xi [1.6,10.59]

Table 5: Results for Cox proportional hazard model intervals
for vendor:product prefix from CPE for those prefixes with a
p-value under 0.005.

effect on exploit publication but that certain sub-categories
may significantly increase likelihood of published exploit
code.

Regardless of the CWE name, as the number of CVE-IDs
associated with a CWE increases the likelihood that a CVE
that is a member of that CWE will have an associated public
exploit increases. That is, common CWEs have proportionally
more associated public exploits. The CPH 95% confidence
interval for the coefficient representing the effect of CWE size
is [1.15,1.43].

Recency is positively correlated with exploit publication,
though the effect is relatively small. CVE-IDs published
towards the end of the study are more likely to be have associ-
ated published exploits than those published at the beginning.
The 95% confidence interval for the coefficient representing
the effect of recency is [1.23,1.32].

number of vendors CPH coefficient 95% CI
>1 [0.85,1.15]
>2 [0.9,1.48]
>3 [0.9,2.1]
>4 [0.61,2.48]
>5 [0.86,18.54]
>6 [0.05,6.49]
>7 [0.17,34.47]

Table 6: Results for Cox proportional hazard model intervals
for number of vendors affected by the CVE-ID.

Some vendors and vendor:product pairs have a reliable
effect on exploit publication. Table 4 displays the vendors
where the model reports a low p-value. The high variance in
the confidence interval for many of these suggest that there
are few observations associated with them; Microsoft and
IBM are notable exceptions. Table-5 shows even fewer ven-
dor:product pairs produce a reliable effect on exploit publi-
cation. There were 112 total vendor-product pairs, and 90
that had at least five observations. Table 6 presents the results
based on more vendors being associated with the CVE-ID,
regardless of who the vendors are.

5 Discussion

The answers to RQ1 and RQ2 are straightforward – 4.1±
0.1% and half of them within two days, respectively. The in-
terpretation of the results to RQ3 is more difficult to interpret.
We first discuss the implications of the results to RQ1 and
RQ2 before moving on to the interpretation of RQ3’s results.

Our results may both give vulnerability managers and cy-
bersecurity defenders hope and fear. On the one hand, rel-
atively few CVE-IDs have exploit code publicly available.
On the other hand, for those CVE-IDs that do, it is usually
public quite quickly – the median time is within two days.
This result is consistent with case studies from 2011 [11] and
available IDS data from 2019 [14]. Attackers do not use most
vulnerabilities – because using just a few reliable ones tends
to be enough for them to achieve their goals.

The recommendation for vulnerability prioritization is
to heavily prioritize those vulnerabilities actively being ex-
ploited by adversaries. This is not new advice [2, 11]. Both
[2, 11] warn that what exploit code adversaries actually use
is not the same as what exploit code is public. But while
public exploit databases are not identical with what attack-
ers use, they are certainly an indication on what it would be
trivial for attackers to use. If vulnerability managers priori-
tized mitigating the vulnerabilities that are trivial to exploit
because code is public, our study suggests less than 4.5% of
CVE-IDs need be prioritized. Our professional position is
that blocking what adversaries are actively exploiting widely



is the first priority, but knowing what vulnerabilities an ad-
versary could trivially switch to and preemptively mitigating
those can be equally important depending on the properties
of the vulnerable system [21].

Our code for searching these exploit sources and connect-
ing exploits with CVE-IDs is also a practical benefit to cyber-
security practitioners, who may want to know which CVE-
IDs have public exploit code available and prioritize mitigat-
ing those vulnerabilities. We plan to publish this code (link
redacted for blind review).

Not all vulnerabilities get CVE-IDs, and not all kinds of
vulnerability are equally likely to get public exploit code.
Our results demonstrate some CWEs that are more likely
to see public exploit code. But there are also some kinds
of vulnerabilities, such as network replay attacks, that are
trivial to conduct with open-source tools (in this case, such
as Nessus) [21]. Some of these may be added to Metasploit
or ExploitDB as a tool config, but we have not assessed the
extent to which this happens. Therefore, we expect we are
slightly undercounting which CVE-IDs have public proof-of-
concept exploit code.

What factors influence which CVE-IDs in particular will
see exploits rather than other CVE-IDs is less clear. We
have analyzed some different features than [14], but some
are the same. Our perspective of the metaphor of survival
analysis provides a different perspective on those features
which are shared. Vendor is the most prominent shared feature.
For example, both models find that CVE-IDs in Microsoft
products are more likely than average to have an associated
public exploit. Most incident responders probably did not
need a study to tell them that, but it is nice to have intuition
align with systematic results.

Unfortunately, both our study and [14] only measure corre-
lations; causation is not highly constrained. There are some
ready explanations for some of the vendors we find linked to
higher chance of a public exploit. Anti-virus software and
other security products are, unsurprisingly, more likely than
average to have public exploit code. For vendors that special-
ize in security software, the effect is easier to detect. A vendor
such as Microsoft is not cleanly delineated; and neither are
all its products. Microsoft and Oracle may not primarily be
security vendors, but they certainly develop security software
that is integrated into their offerings. We hypothesize that
this sort of cross-over is why vendor is not a consistent indi-
cator of increased exploit publication risk; essentially, it is
too coarse of an indicator. It is also a feature that might be
unstable; mergers and acquisitions do not change the underly-
ing software as much as they might change these labels, and
sudden popularity such as Zoom experienced in March 2020
is also likely to cause discontinuities. Finally, if the end-goal
of our research is to help practitioners prioritize future CVE-
IDs based on past CVE-IDs, it is of limited practical use to
recommend “patch all your Microsoft systems.”

Some categories of vulnerability (CWE) are much more

likely to have exploit code published than others. HTTP
response splitting (CWE-113) is the most influential type;
CVE-IDs in this category are over 60 times as likely to see
exploits released. This is not entirely surprising, as web
servers are both common and exposed, and this particular
weakness gives the attacker a particularly high amount of
control and flexibility in their attack. On the other hand, it
is surprising that some CWEs are not indicative of increased
risk. For example, the classic buffer overflow (CWE-120)
basically has no effect. One way to interpret this result is
that buffer overflow is part of the baseline from which other
CVE-IDs are deviating. And perhaps, like “Microsoft,” CWE-
120 is so common and in such diverse applications that it
is not a reliable predictor; this might indicate that it is not
so much how a system is attacked but rather what value the
system has that influences exploit development. For example,
databases tend to be high value and we see that SQL injection
(CWE-89) increases the probability of exploit publication by
between 6.3 and 8.3 times. Unfortunately, we are not aware
of a comprehensive metric of system value that could be used
to test this hypothesis. This would be a promising direction
for future work.

A large number of vendors involved in a CVE-ID has no
reliable effect on the likelihood an exploit will be published.
However, as only vulnerabilities that will be publicly dis-
closed receive CVE-IDs in the first place, we cannot rule out
some confounding effects here. If many vendors are involved,
a vulnerability is probably more likely to be publicly dis-
closed. It is unclear what effect this population change may
have on the data analysis. If many vulnerabilities with few
vendors are being fixed without being disclosed and given a
CVE-ID, it is possible we are undercounting vulnerabilities
with few vendors and how that influences the relationship
between number of vendors and exploit publication depends
on the properties of those invisible low-vendor-count vulnera-
bilities. If those vulnerabilities are systematically not seeing
public exploits, then the influence of a high vendor count is
higher than our study reports. However, given the high vari-
ance in the 95% confidence intervals for higher numbers of
vendors, it is also possible we do not have enough observa-
tions to make reliable estimates. CVE-IDs with one vendor
make up 85% of the observed exploits, and 9% have exactly
two vendors. Only 0.03% CVE-IDs with vendors have over
seven vendors.

CVSSv3 base score, commonness of the CWE, and how
recently the CVE-ID was published all slightly increase the
exploit publication likelihood; the confidence intervals for the
size of these three effects overlap. The confidence intervals
for these three features all include the Cox coefficient range of
[1.23,1.30]. This range indicates a rather small but consistent
effect for all three of these features. This result does not
indicate that these three features are related, only that all three
are correlated with exploit publication to approximately the
same degree. On the one hand, users of CVSS may find this



disappointing; on the other hand, CVSS base scores are not
designed to score what attackers will use and so this result is
unsurprising. This result is a reminder that CVSS base scores
are not, by themselves, a comprehensive hazard measure
(as argued by [21], for example). Public exploit availability
is also not a comprehensive hazard measure, but it clearly
captures something that is not captured by CVSS base scores.

The trend that CVE-ID recency influences exploit publica-
tion is mildly worrisome. It suggests that the publication of
exploit code is getting faster over time. This result may be
innocuous – it may be due to improved market penetration
of ExploitDB and the Metasploit Framework and more com-
prehensive integration of those data sources into penetration
testers’ workflows. However, our hypothesis is that attackers
are just getting better at weaponizing vulnerabilities, either
because those doing it have gotten more practice or because
more people are involved. This hypothesis is consistent with
the adversary capability model proposed by [22]; namely that
adversary capability against any given system can only in-
crease over time (barring major police action to arrest the
actors or some such).

6 Conclusion

We have presented a historical analysis of exploit availability
between 2013 and 2020. We posed three research questions
with practical relevance to day-to-day vulnerability manage-
ment. The first two questions, about number and speed of
CVE-IDs that see exploit code published, have straightfor-
ward factual answers; 4.1±0.1% and within two days are the
rough answers, respectively. Our results for why this is the
case, or what factors could be used to predict which CVE-IDs
will fall in that 4.1±0.1%, are less satisfying. We find several
factors correlated with exploit publication, but our research
methods do not enable a clear causal explanation. Within
these correlations, we find that even coarse measures such as
vendor or CWE are often more highly correlated with exploit
publication than the existing vulnerability severity measures
represented by CVSS base scores. We hypothesize that many
of the highly correlated values may be a proxy for the value of
vulnerable systems; this is a question to investigate in future
work.
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