

Design: REV-03.18.2016.0 | Template: 01.04.2023

A Model Problem for Assurance Research:
An Autonomous Humanitarian Mission
Scenario

Gabriel A. Moreno
Anton Hristozov
John Robert
Mark Klein

July 2024

TECHNICAL NOTE
CMU/SEI-2024-TN-001
DOI: 10.1184/R1/26322166

Software Solutions Division

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

http://www.sei.cmu.edu

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Copyright 2024 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-
strued as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu-
tion. Please see Copyright notice for non-US Government use and distribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Re-
quests for permission for non-licensed uses should be directed to the Software Engineering Institute at per-
mission@sei.cmu.edu.

DM24-0707

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table of Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Model Problem Mission Context 3
2.1 Scenario Context 3
2.2 Scenario Description 3
2.3 Mission Description 3

3 High-Assurance Functions 5
3.1 High-Assurance Signals 6

4 System Architecture 7
4.1 System Behavior Model 9

5 Assurance Issues 11
5.1 Claims for Assurance 11

6 Conclusion 13

References 14

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

List of Figures

Figure 1: System Component Diagram 7
Figure 2: System Deployment Diagram 9
Figure 3: State Machine Diagram for UAV System Behavior 10

List of Tables

Table 1: UAV Mission Steps 4
Table 2: High-Assurance Functions 5
Table 3: Claims for Assurance 12

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Acknowledgments

We appreciate the contributions of Stephen Beck, Jason Popowski, David Walbeck, and Dionisio
de Niz, who helped create the model problem described in this report.

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Abstract

This report describes a model problem to support research in large-scale assurance. In this report,
the model problem is illustrated using a scenario that involves an emergency response agency on a
humanitarian mission that must be carried out autonomously by an unmanned aerial vehicle to de-
liver life-saving supplies in a disaster zone. In addition to describing this mission, we describe the
architecture of the system used to accomplish the mission and a number of assurance issues that
should be addressed. Although the model problem is based on this particular scenario, it repre-
sents use in other domains where the same assurance issues can be present. The model problem
we present in this report can be used not only to drive the research in this area of assurance but
also to demonstrate possible solutions.

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1 Introduction

We at the Software Engineering Institute (SEI) are conducting research in the area of large-scale
assurance with the goal of reducing the time and effort required to (re-)assure large systems. We
consider an assured system to be a system for which suitable evidence has been gathered from
verification and validation and sufficient arguments have been made to have confidence that the
software system is certified for operational use and will work as intended. This notion of system
assurance extends beyond security to encompass multiple levels of criticality and a wide range of
architecturally significant concerns (e.g., performance, modifiability, safety, reliability).

The increasing scale of systems and their resulting complexity make it difficult to combine capa-
bilities from separately developed systems or subsystems to incorporate innovations and subse-
quently re-assure systems with speed and confidence. This difficulty is due, in part, to a system’s
scale, which is not just about how large—by whatever measure is chosen—a system is. Instead,
the challenges of scale arise predominantly from the complexity of a system’s interactions.

The increasing scale of systems causes unexpected interactions that have not yet been exposed in
the context where subsystems have been developed or where the system has been executed. These
unexpected interactions can occur due to new contexts, which include new physical and computa-
tional environments, interactions with new subsystems, or changes to existing integrated subsys-
tems.

The challenge to assure systems in these circumstances stems from the inability to automatically
integrate the complex interacting assurance techniques (e.g., those required for control stability,
timing, security, logical correctness) from a system’s multiple interacting subsystems. Moreover,
the lack of awareness of assurance interdependencies and the lack of effective reuse of prior as-
surance results leads to considerable re-assurance costs. These costs are due to the need for exten-
sive simulations and tests to discover the interactions among multiple subsystems, especially
cyber-physical systems.

Consequently, research is needed to address the challenges to achieving cost-effective (re-)assur-
ance of large systems. To support this research, we present a model problem and scenario that
represents it in this report that, while relatively small, reflects the challenges that must be ad-
dressed in large-scale assurance. When considering design issues, “a model problem is a reduction
of a design issue to its simplest form from which one or more model solutions can be investi-
gated” [Hissam 2004]. The model problem we present in this report poses assurance issues, and it
can be used to drive the research for solutions to those assurance issues and demonstrate those so-
lutions.

Our model problem uses a scenario that describes an unmanned aerial vehicle (UAV) that must
execute a humanitarian mission autonomously. In this mission, the UAV must fly to a specific lo-
cation and drop life-saving supplies to people who are stranded and unreachable by land after a
natural disaster has altered the terrain and isolated the inhabitants. This scenario, described in Sec-
tion 2, demonstrates the model problem to research, present, and compare assurance approaches.

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

We describe the model problem at a high level without any design or implementation details.1 We
avoid prescribing specific forms of analysis or assurance results to be used for system assurance.
Some or all of these elements will be needed to demonstrate how assurance approaches address
the assurance issues described in Section 5. However, we chose to leave these elements unspeci-
fied so that the assurance solutions can focus on addressing the general assurance issues we de-
scribe later in the report without limiting which forms of assurance to apply with specific imple-
mentation details. The model problem still provides the context for applying assurance research
results (e.g., showing how to assure a safety-critical function involving more than one subsystem).

1 An open source implementation of the model problem, including design or implementation details, is available

on GitHub (https://github.com/cmu-sei/FALSA-model-problem) [Moreno 2024].

https://github.com/cmu-sei/FALSA-model-problem

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2 Model Problem Mission Context

In this section, we describe the scenario we use to illustrate the model problem. In this scenario,
an emergency response agency acquired UAVs to help people effected by a natural disaster.

2.1 Scenario Context

In recent years, several natural disasters (e.g., hurricanes, earthquakes) have occurred that caused
destruction and left people isolated and unreachable, stranded in homes or other buildings. De-
spite the best efforts by rescue and evacuation operations, the progress was slow, and some people
remained unreachable for days. However, some of these people required life-saving supplies right
away, and by the time rescuers got to them, in some cases, it was too late.

2.2 Scenario Description

In this scenario, a natural disaster has occurred. The agency in charge of handling emergency re-
sponse must provide scarce life-saving supplies and deliver them only if certain conditions are
met; this approach ensures the supplies are delivered when they are truly needed. More specifi-
cally, these supplies must be delivered at specific locations within specified time windows.

The emergency response agency has acquired new UAVs that can deliver the needed supplies au-
tonomously. These UAVs can be invaluable since they can take off, fly to a programmed destina-
tion, and drop supplies before returning to the initial launch location.

The UAV vendor affirms that its UAVs can execute these types of missions while meeting the as-
sociated stringent requirements. However, there may be unforeseen interactions that the vendor
may not have discovered during testing that may occur among the subcontracted parts that were
integrated into the UAV. For these reasons, the emergency response agency should require addi-
tional assurance from the vendor that the UAVs can execute this mission and its requirements.

2.3 Mission Description

In this section, we provide details about the emergency response agency’s mission to provide
needed supplies to isolated people affected by a natural disaster. The mission consists of multiple
steps, most of which are executed autonomously.

Initially, the UAV operator uses the ground control station (GCS) to enter the drop parameters,
which include the coordinates of the drop location, the time window for dropping the life-saving
supplies, and an aerial image of the drop site that is used to confirm the supplies are dropped at
the right place. These parameters are automatically loaded into the UAV.

Using the GCS, the operator sends authorization to the UAV for takeoff, and the UAV executes
the rest of the mission autonomously. The only possible actions the operator might take after

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

providing authorization for takeoff is to abort the mission, which causes the UAV to immediately
return to base (RTB).

The autonomous execution of the mission consists of several steps, starting with taking off and
flying to the drop location. Once the UAV reaches the drop location, it must check that the site
matches the pre-loaded aerial site image and that the current time is within the specified time win-
dow for dropping the supplies. Only when these conditions are met should the UAV drop the sup-
plies. Otherwise, it must RTB with the supplies.

At any point during the mission, if the UAV determines that it will not be possible to complete the
mission (e.g., strong headwinds cause higher power usage), it must RTB.

After dropping the supplies, the UAV must RTB.

Table 1 describes all the steps of the mission.

Table 1: UAV Mission Steps

Mission Step Label Mission Step Responsibility Description

S-1 Load drop
parameters.

Operator The operator enters the drop parameters into
the GCS, and the parameters are loaded into
the UAV. Drop parameters include latitude and
longitude coordinates, altitude, image of the
site where supplies are to be dropped, and the
time window for dropping the supplies.

S-2 Authorize takeoff. Operator The operator provides authorization for the
UAV’s takeoff.

S-3 Fly to the drop
location.

UAV The UAV takes off and flies to the drop
location.

S-4 (optional) Abort the
mission.

Operator At any time after S-2 but before S-8, the
operator can abort the mission from the GCS.
When this occurs, the UAV executes an RTB.

S-5 (optional) Abort the
mission.

UAV If the UAV determines that it will be unable to
complete the mission (e.g., strong headwinds
will deplete the battery before returning to
base if mission execution is continued), the
UAV executes an RTB.

S-6 When reaching the
drop location,
compare the site
image to the site
location.

UAV If the drop location does not match the loaded
site image, the UAV executes an RTB.

S-7 Check the delivery
time window.

UAV If the drop location is reached outside of the
delivery time window, the UAV executes an
RTB.

S-8 Drop the supplies. UAV The UAV drops the supplies at the drop
location.

S-9 Return to base. UAV The UAV executes an RTB.

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3 High-Assurance Functions

There are several functions that must be executed to drop supplies only under specified condi-
tions. Given the importance of this mission requirement, these are considered high-assurance
functions (HAFs), because it is important that they perform their function only if their precondi-
tions are satisfied and only if they are triggered by corresponding high-assurance signals (HASs).
(We describe HASs in Section 3.1.)

We list the HAFs for the model problem in Table 2. Even though there are other important func-
tions for the mission (e.g., flying to the drop location), the HAFs ensure that the UAV will not
drop the supplies at the wrong place and time, even if the UAV fails to fly to the drop location.

HAFs are classified as safety critical if their execution under the proper conditions must be as-
sured. For example, HAF-4 is safety critical because, if the operator aborts the mission, it is criti-
cal for the safety of the mission that the abort function is executed. On the other hand, a function
such as taking off (HAF-3) is not safety critical because, even if failure to execute prevents the
successful completion of the mission, it does not hinder safety.

Table 2: High-Assurance Functions

Function Label Function Safety Critical Description

HAF-1 Set the destination
parameters.

No Unaltered destination parameters (i.e., location,
time window) are received by the UAV. This func-
tion can be reversed by clearing the destination
parameters.

HAF-2 Clear the
destination
parameters.

Yes The destination parameters are cleared from the
UAV, which prevents a takeoff command from
being accepted.

HAF-3 Take off. No The UAV takes off and carries out the mission.
No further operator input is required other than to
abort the mission. This function can be reversed
with the abort function.

HAF-4 Abort the mission. Yes The mission is aborted, and the UAV must RTB.

HAF-5 Unlock the release
mechanism.

No The mechanism to release the supplies is un-
locked. This function can only be executed when
the UAV is within a predefined range from the
destination and within the destination time win-
dow.

HAF-6 Lock the release
mechanism.

Yes The mechanism to release the supplies is locked.
This function must be executed if the mission is
aborted.

HAF-7 Drop the supplies. No The supplies are dropped. This function should
only be executed after the destination has been
confirmed (e.g., by visual image matching). Sup-
plies will be dropped only if the release mecha-
nism has been unlocked, but this is not simply a
logical check; it must have been unlocked using
HAF-5 before the drop.

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.1 High-Assurance Signals

A high-assurance signal (HAS) is an action or information transfer that intentionally contributes
to the system properly engaging or activating an HAF or disabling an HAF to contribute to the
safety of the system.

From an assurance point of view, HASs are as important as HAFs because they should allow the
activation of an HAF only in the proper manner, and they should not prevent the activation of an
HAF for safety (e.g., lock release system). Therefore, it is important to assure the following about
HASs:
• They cannot be issued or propagated without the appropriate preconditions (e.g., the signal

for executing the takeoff function must not be issued before setting the destination parame-
ters).

• They are reliably propagated when they are intended to activate a safety-critical HAF.

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4 System Architecture

Figure 1 shows a component diagram of the architecture for the UAV system. The two main sub-
systems are the UAV itself and the GCS. The GCS provides the interface for the operator to do
the following:
1. Load the mission parameters into the UAV.
2. Authorize the UAV for takeoff.
3. Abort the mission if needed.

The UAV carries out the rest of the mission autonomously.

Figure 1: System Component Diagram

UAV

<<subsystem>>
Payload Control ler

<<subsystem>>
Miss ion Manager

<<subsystem>>
Fl ight Control ler

M
is

si
on

M
gt

<<subsystem>>
Guidance

M
is

si
on

M
gt

MAVLink

<<subsystem>>
Ground Control Station

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The main functions included in a UAV’s architecture are guidance, navigation, and control
(GNC), which allow controlling its movement and enable its accurate navigation [Isser 2021]:
• Guidance controls the trajectory the UAV follows to the destination.
• Navigation estimates the state of the UAV, including location, velocity vector, and attitude.
• Control issues actuation commands to execute the guidance commands while controlling the

UAV’s stability.

These functions can be organized in different ways, from federated architectures to integration
into a single package. In the model problem UAV’s architecture, the guidance function is pro-
vided by the Guidance subsystem, while navigation and control are functions provided by the
Flight Controller subsystem.

The Flight Controller is realized by an autopilot, such as PX4 [PX4 Autopilot 2024] or ArduPilot
[ArduPilot 2024], which is configured in a mode that disables its guidance function. All the sen-
sors that the autopilot uses for navigation and control (e.g., magnetometer and inertial measure-
ment unit) are part of this subsystem. The Flight Controller provides a MAVLink interface [Kou-
bâa 2019] that other subsystems use to interact with the Flight Controller to either get information
from it (e.g., estate estimate) or send commands to it (e.g., velocity vector for the control function
to execute).

The Payload Controller subsystem controls the hardware used to drop supplies when com-
manded. The Mission Manager subsystem provides the high-level control of the UAV to execute
the mission. After receiving the mission parameters from the GCS, it controls all aspects of the
mission, including
• providing Guidance with the waypoints to fly to
• monitoring the estimated position provided by the Flight Controller to determine when the

drop location has been reached
• commanding the Payload Controller to drop the supplies if all the necessary conditions are

met
• aborting the mission if it is no longer feasible or if it is otherwise commanded to abort

These subsystems are deployed onto different devices as shown in Figure 2. The Flight Controller
runs on a specialized computer (i.e., the Flight Computer), which is suitable for real-time control
of the UAV and includes the sensors needed for navigation and control. The rest of the UAV’s
subsystems execute on the Mission Computer (a separate dedicated computer). The Flight Com-
puter and Mission Computer are connected with a high-speed dedicated wired connection. The
Ground Computer, where the GCS software executes, is connected via a wireless connection to
the UAV. However, that connection is assumed to be secure and reliable, and thus is not a con-
cern for the assurance of the system.

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 2: System Deployment Diagram

4.1 System Behavior Model

Considering the importance of system behavior in this model problem (especially the behavior as
it relates to HAFs and HASs), it is of utmost importance to assure the properties related to system
behavior. For example, in the scenario described in Section 2, an analyst will want to assure that
the UAV cannot take off without the mission parameters first being set. Different forms of analy-
sis can be used to ensure that happens, including model checking a formal model of the behavior
and simulating a state machine modeling the behavior [Liu 2013].

The unified modeling language (UML) state machine shown in Figure 3 models the behavior of
the UAV system in greater detail than described in previous sections. This increased specification
detail enables analyses that can be used to assure system behavior.

<<platform>>

UAV

<<device>>

Miss ion Computer

<<device>>

Fl ight Computer

<<device>>

Ground Computer

<<subsystem>>
Miss ion Manager

<<subsystem>>
Payload Control ler

<<subsystem>>
Guidance

<<subsystem>>
Fl ight Control ler

<<subsystem>>
Ground Control Station

seria l

wireless

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 3: State Machine Diagram for UAV System Behavior

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5 Assurance Issues

The goal of the model problem is to provide the context to research and develop assurance ap-
proaches that can address different assurance issues that are key to achieving large-scale assur-
ance and reducing assurance effort and cost.

The following are these key assurance issues:
• Different kinds of assurance analyses and results (e.g., response time analysis, temporal logic

verification, test results) are needed and must be combined into a single assurance argument.
• Each analysis makes different assumptions, which must be consistent across analyses and

must be satisfied.
• Different subsystems can be developed by different organizations, which provide assurance

results for the subsystem.
• The different assurance analyses and results used in the assurance argument may have differ-

ent levels of strength—from the simple testing of a few cases to exhaustive model checking.
Therefore, conclusions about claims supported by the assurance argument must consider
these different strength levels.

• It may not be feasible or desirable to build a complete assurance argument before some sys-
tem assurance results can be provided. Therefore, it should be possible to build the assurance
argument incrementally.

• The system is likely to evolve due to changes or upgrades in individual subsystems. It should
be possible to reuse assurance results when only part of the system changes.

The following section provides some claims for assurance that researchers can use to demonstrate
how advances in the state of the art and practice can tackle these issues.

5.1 Claims for Assurance

An assurance argument proves or supports a claim about a system (e.g., the system is safe to oper-
ate in a given environment). Different stakeholders have different assurance concerns about the
UAV:
• its ability to successfully execute the mission
• its safety
• its security so that a malicious actor cannot force it to deviate from its intended mission

The model problem enables researchers to explore the assurance concerns of different stakehold-
ers. Table 3 lists the top-level claims that can be used to drive different assurance efforts. In gen-
eral, a claim is typically decomposed into other claims, as necessary, to prove or support the claim
that the system satisfies the property stated in the top-level claim. Furthermore, proving that the
system satisfies a claim can involve analyses in different domains.

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

For example, in the UAV scenario described in Section 2, proving the last claim in the table re-
quires showing that the control algorithm in Guidance can command the UAV to fly the trajec-
tory, but the control algorithm assumes that it has up-to-date state information, which is provided
by the Flight Controller. Therefore, proving this claim requires showing that the Flight Controller
provides that information with the needed frequency, and that the transmission of that information
to the Guidance subsystem does not introduce a delay that results in the information being stale
by the time the control algorithm uses it.

Table 3 provides examples of claims that present different assurance challenges. However, the ac-
tual approach to decompose these claims, along with the analyses and assurance results used, are
determined by the approaches developed to address the assurance challenges inherent in this
model problem.

Table 3: Claims for Assurance

 Claim

1 The system will meet the mission requirements.

2 If there is a failure in a non-critical part of the system, the system will be resilient and continue to perform
the mission as well as possible.

3 A safety-critical HAF is always executed when its HAS is issued.

4 An HAF can never execute without the required preconditions and its HAS.

5 If there is a failure in the execution of an HAF or the propagation of its HAS, the system will always fail
safely.

6 A malicious actor cannot make the system execute HAFs and bypass the necessary preconditions.

7 The UAV follows the intended trajectory within its performance thresholds.

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6 Conclusion

In this report, we presented a model problem using a scenario that revolved around the successful
execution of an autonomous humanitarian mission to deliver life-saving supplies with a UAV in a
disaster zone. We described a scenario and the architecture of the system used to carry out the sce-
nario mission, including multiple subsystems and computing platforms. This system and its sub-
systems represent the assurance challenges experienced in large-scale assurance.

In this report, we also provided a list of assurance issues that solutions should address and a list of
assurance claims that cover the concerns of different stakeholders. These assurance claims can be
used to demonstrate solutions to the assurance issues posed by the model problem.

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

References

URLs are valid as of the publication date of this report.

[ArduPilot 2024]
ArduPilot. ArduPilot: Versatile, Trusted, Open. ArduPilot Website. July 15, 2024 [accessed].
https://ardupilot.org/

[Hissam 2004]
Hissam, Scott A. & Klein, Mark. A Model Problem for an Open Robotics Controller. CMU/SEI-
2004-TN-030. Software Engineering Institute, Carnegie Mellon University. 2004. https://in-
sights.sei.cmu.edu/library/a-model-problem-for-an-open-robotics-controller/

[Isser 2021]
Isser, Abraham. Introduction to Guidance, Navigation, and Control (GNC). DSIAC-BCO-2021-
172. Defense Systems Information Analysis Center (DSIAC). 2021. https://dsiac.org/wp-con-
tent/uploads/2022/10/AD1182620.pdf

[Koubâa 2019]
Koubâa, Anis; Allouch, Azza; Alajlan, Maram; Javed, Yasir; Belghith, Abdelfettah; & Khalgui,
Mohamed. Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey. IEEE Access. Volume 7.
Pages 87658−87680. 2019. http://doi.org/10.1109/ACCESS.2019.2924410

[Liu 2013]
Liu, Shuang; Liu, Yang; Sun, Jun; Zheng, Manchun; Wadhwa, Bimlesh; & Dong, Jin Song.
USMMC: A Self-Contained Model Checker for UML State Machines. Pages 623–626. In Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE).
August 2013. https://doi.org/10.1145/2491411.2494595

[Moreno 2024]
Moreno, Gabriel A. FALSA Model Problem. GitHub. May 2024. https://github.com/cmu-
sei/FALSA-model-problem

[PX4 Autopilot 2024]
PX4 Autopilot. Open Source Autopilot for Drone Developers. PX4 Website. July 15, 2024 [ac-
cessed]. https://px4.io/

https://ardupilot.org/
https://insights.sei.cmu.edu/library/a-model-problem-for-an-open-robotics-controller/
https://insights.sei.cmu.edu/library/a-model-problem-for-an-open-robotics-controller/
https://dsiac.org/wp-content/uploads/2022/10/AD1182620.pdf
https://dsiac.org/wp-content/uploads/2022/10/AD1182620.pdf
http://doi.org/10.1109/ACCESS.2019.2924410
https://doi.org/10.1145/2491411.2494595
https://github.com/cmu-sei/FALSA-model-problem
https://github.com/cmu-sei/FALSA-model-problem
https://px4.io/

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

July 2024
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
A Model Problem for Assurance Research: An Autonomous Humanitarian Mission Scenario

5. FUNDING NUMBERS
FA8702-15-D-0002

6. AUTHOR(S)
Gabriel A. Moreno, Anton Hristozov, John Robert, & Mark Klein

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2024-TN-001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
SEI Administrative Agent
AFLCMC/AZS
5 Eglin Street
Hanscom AFB, MA 01731-2100

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
This report describes a model problem to support research in large-scale assurance. In this report, the model problem is illustrated using
a scenario that involves an emergency response agency on a humanitarian mission that must be carried out autonomously by an un-
manned aerial vehicle to deliver life-saving supplies in a disaster zone. In addition to describing this mission, we describe the architec-
ture of the system used to accomplish the mission and a number of assurance issues that should be addressed. Although the model
problem is based on this particular scenario, it represents use in other domains where the same assurance issues can be present. The
model problem we present in this report can be used not only to drive the research in this area of assurance but also to demonstrate
possible solutions.

14. SUBJECT TERMS

large-scale assurance, model problem, assured system
15. NUMBER OF PAGES

21
16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Acknowledgments
	Abstract
	1 Introduction
	2 Model Problem Mission Context
	2.1 Scenario Context
	2.2 Scenario Description
	2.3 Mission Description

	3 High-Assurance Functions
	3.1 High-Assurance Signals

	4 System Architecture
	4.1 System Behavior Model

	5 Assurance Issues
	5.1 Claims for Assurance

	6 Conclusion
	References

