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Abstract 

This report describes a model problem to support research in large-scale assurance. In this report, 
the model problem is illustrated using a scenario that involves an emergency response agency on a 
humanitarian mission that must be carried out autonomously by an unmanned aerial vehicle to de-
liver life-saving supplies in a disaster zone. In addition to describing this mission, we describe the 
architecture of the system used to accomplish the mission and a number of assurance issues that 
should be addressed. Although the model problem is based on this particular scenario, it repre-
sents use in other domains where the same assurance issues can be present. The model problem 
we present in this report can be used not only to drive the research in this area of assurance but 
also to demonstrate possible solutions. 
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1 Introduction 

We at the Software Engineering Institute (SEI) are conducting research in the area of large-scale 
assurance with the goal of reducing the time and effort required to (re-)assure large systems. We 
consider an assured system to be a system for which suitable evidence has been gathered from 
verification and validation and sufficient arguments have been made to have confidence that the 
software system is certified for operational use and will work as intended. This notion of system 
assurance extends beyond security to encompass multiple levels of criticality and a wide range of 
architecturally significant concerns (e.g., performance, modifiability, safety, reliability). 

The increasing scale of systems and their resulting complexity make it difficult to combine capa-
bilities from separately developed systems or subsystems to incorporate innovations and subse-
quently re-assure systems with speed and confidence. This difficulty is due, in part, to a system’s 
scale, which is not just about how large—by whatever measure is chosen—a system is. Instead, 
the challenges of scale arise predominantly from the complexity of a system’s interactions.  

The increasing scale of systems causes unexpected interactions that have not yet been exposed in 
the context where subsystems have been developed or where the system has been executed. These 
unexpected interactions can occur due to new contexts, which include new physical and computa-
tional environments, interactions with new subsystems, or changes to existing integrated subsys-
tems. 

The challenge to assure systems in these circumstances stems from the inability to automatically 
integrate the complex interacting assurance techniques (e.g., those required for control stability, 
timing, security, logical correctness) from a system’s multiple interacting subsystems. Moreover, 
the lack of awareness of assurance interdependencies and the lack of effective reuse of prior as-
surance results leads to considerable re-assurance costs. These costs are due to the need for exten-
sive simulations and tests to discover the interactions among multiple subsystems, especially 
cyber-physical systems. 

Consequently, research is needed to address the challenges to achieving cost-effective (re-)assur-
ance of large systems. To support this research, we present a model problem and scenario that 
represents it in this report that, while relatively small, reflects the challenges that must be ad-
dressed in large-scale assurance. When considering design issues, “a model problem is a reduction 
of a design issue to its simplest form from which one or more model solutions can be investi-
gated” [Hissam 2004]. The model problem we present in this report poses assurance issues, and it 
can be used to drive the research for solutions to those assurance issues and demonstrate those so-
lutions. 

Our model problem uses a scenario that describes an unmanned aerial vehicle (UAV) that must 
execute a humanitarian mission autonomously. In this mission, the UAV must fly to a specific lo-
cation and drop life-saving supplies to people who are stranded and unreachable by land after a 
natural disaster has altered the terrain and isolated the inhabitants. This scenario, described in Sec-
tion 2, demonstrates the model problem to research, present, and compare assurance approaches.  
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We describe the model problem at a high level without any design or implementation details.1 We 
avoid prescribing specific forms of analysis or assurance results to be used for system assurance. 
Some or all of these elements will be needed to demonstrate how assurance approaches address 
the assurance issues described in Section 5. However, we chose to leave these elements unspeci-
fied so that the assurance solutions can focus on addressing the general assurance issues we de-
scribe later in the report without limiting which forms of assurance to apply with specific imple-
mentation details. The model problem still provides the context for applying assurance research 
results (e.g., showing how to assure a safety-critical function involving more than one subsystem). 

 

 

____________ 
1  An open source implementation of the model problem, including design or implementation details, is available 

on GitHub (https://github.com/cmu-sei/FALSA-model-problem) [Moreno 2024]. 

https://github.com/cmu-sei/FALSA-model-problem
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2 Model Problem Mission Context 

In this section, we describe the scenario we use to illustrate the model problem. In this scenario, 
an emergency response agency acquired UAVs to help people effected by a natural disaster.  

2.1 Scenario Context 

In recent years, several natural disasters (e.g., hurricanes, earthquakes) have occurred that caused 
destruction and left people isolated and unreachable, stranded in homes or other buildings. De-
spite the best efforts by rescue and evacuation operations, the progress was slow, and some people 
remained unreachable for days. However, some of these people required life-saving supplies right 
away, and by the time rescuers got to them, in some cases, it was too late. 

2.2 Scenario Description 

In this scenario, a natural disaster has occurred. The agency in charge of handling emergency re-
sponse must provide scarce life-saving supplies and deliver them only if certain conditions are 
met; this approach ensures the supplies are delivered when they are truly needed. More specifi-
cally, these supplies must be delivered at specific locations within specified time windows.  

The emergency response agency has acquired new UAVs that can deliver the needed supplies au-
tonomously. These UAVs can be invaluable since they can take off, fly to a programmed destina-
tion, and drop supplies before returning to the initial launch location. 

The UAV vendor affirms that its UAVs can execute these types of missions while meeting the as-
sociated stringent requirements. However, there may be unforeseen interactions that the vendor 
may not have discovered during testing that may occur among the subcontracted parts that were 
integrated into the UAV. For these reasons, the emergency response agency should require addi-
tional assurance from the vendor that the UAVs can execute this mission and its requirements. 

2.3 Mission Description 

In this section, we provide details about the emergency response agency’s mission to provide 
needed supplies to isolated people affected by a natural disaster. The mission consists of multiple 
steps, most of which are executed autonomously.  

Initially, the UAV operator uses the ground control station (GCS) to enter the drop parameters, 
which include the coordinates of the drop location, the time window for dropping the life-saving 
supplies, and an aerial image of the drop site that is used to confirm the supplies are dropped at 
the right place. These parameters are automatically loaded into the UAV.  

Using the GCS, the operator sends authorization to the UAV for takeoff, and the UAV executes 
the rest of the mission autonomously. The only possible actions the operator might take after 
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providing authorization for takeoff is to abort the mission, which causes the UAV to immediately 
return to base (RTB). 

The autonomous execution of the mission consists of several steps, starting with taking off and 
flying to the drop location. Once the UAV reaches the drop location, it must check that the site 
matches the pre-loaded aerial site image and that the current time is within the specified time win-
dow for dropping the supplies. Only when these conditions are met should the UAV drop the sup-
plies. Otherwise, it must RTB with the supplies.  

At any point during the mission, if the UAV determines that it will not be possible to complete the 
mission (e.g., strong headwinds cause higher power usage), it must RTB.  

After dropping the supplies, the UAV must RTB. 

Table 1 describes all the steps of the mission. 

Table 1: UAV Mission Steps 

Mission Step Label Mission Step Responsibility Description 

S-1 Load drop 
parameters. 

Operator The operator enters the drop parameters into 
the GCS, and the parameters are loaded into 
the UAV. Drop parameters include latitude and 
longitude coordinates, altitude, image of the 
site where supplies are to be dropped, and the 
time window for dropping the supplies. 

S-2 Authorize takeoff. Operator The operator provides authorization for the 
UAV’s takeoff. 

S-3 Fly to the drop 
location. 

UAV The UAV takes off and flies to the drop 
location. 

S-4 (optional) Abort the 
mission. 

Operator At any time after S-2 but before S-8, the 
operator can abort the mission from the GCS. 
When this occurs, the UAV executes an RTB. 

S-5 (optional) Abort the 
mission. 

UAV If the UAV determines that it will be unable to 
complete the mission (e.g., strong headwinds 
will deplete the battery before returning to 
base if mission execution is continued), the 
UAV executes an RTB. 

S-6 When reaching the 
drop location, 
compare the site 
image to the site 
location. 

UAV If the drop location does not match the loaded 
site image, the UAV executes an RTB. 

S-7 Check the delivery 
time window. 

UAV If the drop location is reached outside of the 
delivery time window, the UAV executes an 
RTB. 

S-8 Drop the supplies. UAV The UAV drops the supplies at the drop 
location. 

S-9 Return to base. UAV The UAV executes an RTB. 
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3 High-Assurance Functions 

There are several functions that must be executed to drop supplies only under specified condi-
tions. Given the importance of this mission requirement, these are considered high-assurance 
functions (HAFs), because it is important that they perform their function only if their precondi-
tions are satisfied and only if they are triggered by corresponding high-assurance signals (HASs). 
(We describe HASs in Section 3.1.) 

We list the HAFs for the model problem in Table 2. Even though there are other important func-
tions for the mission (e.g., flying to the drop location), the HAFs ensure that the UAV will not 
drop the supplies at the wrong place and time, even if the UAV fails to fly to the drop location.  

HAFs are classified as safety critical if their execution under the proper conditions must be as-
sured. For example, HAF-4 is safety critical because, if the operator aborts the mission, it is criti-
cal for the safety of the mission that the abort function is executed. On the other hand, a function 
such as taking off (HAF-3) is not safety critical because, even if failure to execute prevents the 
successful completion of the mission, it does not hinder safety.  

Table 2: High-Assurance Functions 

Function Label Function Safety Critical Description 

HAF-1 Set the destination 
parameters. 

No Unaltered destination parameters (i.e., location, 
time window) are received by the UAV. This func-
tion can be reversed by clearing the destination 
parameters. 

HAF-2 Clear the 
destination 
parameters. 

Yes The destination parameters are cleared from the 
UAV, which prevents a takeoff command from 
being accepted. 

HAF-3 Take off. No The UAV takes off and carries out the mission. 
No further operator input is required other than to 
abort the mission. This function can be reversed 
with the abort function. 

HAF-4 Abort the mission. Yes The mission is aborted, and the UAV must RTB. 

HAF-5 Unlock the release 
mechanism. 

No The mechanism to release the supplies is un-
locked. This function can only be executed when 
the UAV is within a predefined range from the 
destination and within the destination time win-
dow. 

HAF-6 Lock the release 
mechanism. 

Yes The mechanism to release the supplies is locked. 
This function must be executed if the mission is 
aborted. 

HAF-7 Drop the supplies. No The supplies are dropped. This function should 
only be executed after the destination has been 
confirmed (e.g., by visual image matching). Sup-
plies will be dropped only if the release mecha-
nism has been unlocked, but this is not simply a 
logical check; it must have been unlocked using 
HAF-5 before the drop. 
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3.1 High-Assurance Signals 

A high-assurance signal (HAS) is an action or information transfer that intentionally contributes 
to the system properly engaging or activating an HAF or disabling an HAF to contribute to the 
safety of the system.  

From an assurance point of view, HASs are as important as HAFs because they should allow the 
activation of an HAF only in the proper manner, and they should not prevent the activation of an 
HAF for safety (e.g., lock release system). Therefore, it is important to assure the following about 
HASs:  
• They cannot be issued or propagated without the appropriate preconditions (e.g., the signal 

for executing the takeoff function must not be issued before setting the destination parame-
ters).  

• They are reliably propagated when they are intended to activate a safety-critical HAF. 
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4 System Architecture 

Figure 1 shows a component diagram of the architecture for the UAV system. The two main sub-
systems are the UAV itself and the GCS. The GCS provides the interface for the operator to do 
the following: 
1. Load the mission parameters into the UAV. 
2. Authorize the UAV for takeoff. 
3. Abort the mission if needed.  

The UAV carries out the rest of the mission autonomously. 

 

Figure 1:  System Component Diagram 
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The main functions included in a UAV’s architecture are guidance, navigation, and control 
(GNC), which allow controlling its movement and enable its accurate navigation [Isser 2021]:  
• Guidance controls the trajectory the UAV follows to the destination. 
• Navigation estimates the state of the UAV, including location, velocity vector, and attitude. 
• Control issues actuation commands to execute the guidance commands while controlling the 

UAV’s stability.  

These functions can be organized in different ways, from federated architectures to integration 
into a single package. In the model problem UAV’s architecture, the guidance function is pro-
vided by the Guidance subsystem, while navigation and control are functions provided by the 
Flight Controller subsystem.  

The Flight Controller is realized by an autopilot, such as PX4 [PX4 Autopilot 2024] or ArduPilot 
[ArduPilot 2024], which is configured in a mode that disables its guidance function. All the sen-
sors that the autopilot uses for navigation and control (e.g., magnetometer and inertial measure-
ment unit) are part of this subsystem. The Flight Controller provides a MAVLink interface [Kou-
bâa 2019] that other subsystems use to interact with the Flight Controller to either get information 
from it (e.g., estate estimate) or send commands to it (e.g., velocity vector for the control function 
to execute). 

The Payload Controller subsystem controls the hardware used to drop supplies when com-
manded. The Mission Manager subsystem provides the high-level control of the UAV to execute 
the mission. After receiving the mission parameters from the GCS, it controls all aspects of the 
mission, including 
• providing Guidance with the waypoints to fly to 
• monitoring the estimated position provided by the Flight Controller to determine when the 

drop location has been reached 
• commanding the Payload Controller to drop the supplies if all the necessary conditions are 

met 
• aborting the mission if it is no longer feasible or if it is otherwise commanded to abort 

These subsystems are deployed onto different devices as shown in Figure 2. The Flight Controller 
runs on a specialized computer (i.e., the Flight Computer), which is suitable for real-time control 
of the UAV and includes the sensors needed for navigation and control. The rest of the UAV’s 
subsystems execute on the Mission Computer (a separate dedicated computer). The Flight Com-
puter and Mission Computer are connected with a high-speed dedicated wired connection. The 
Ground Computer, where the GCS software executes, is connected via a wireless connection to 
the UAV. However, that connection is assumed to be secure and reliable, and thus is not a con-
cern for the assurance of the system. 
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Figure 2:  System Deployment Diagram 

4.1 System Behavior Model 

Considering the importance of system behavior in this model problem (especially the behavior as 
it relates to HAFs and HASs), it is of utmost importance to assure the properties related to system 
behavior. For example, in the scenario described in Section 2, an analyst will want to assure that 
the UAV cannot take off without the mission parameters first being set. Different forms of analy-
sis can be used to ensure that happens, including model checking a formal model of the behavior 
and simulating a state machine modeling the behavior [Liu 2013].  

The unified modeling language (UML) state machine shown in Figure 3 models the behavior of 
the UAV system in greater detail than described in previous sections. This increased specification 
detail enables analyses that can be used to assure system behavior. 

<<platform>>

UAV

<<device>>

Miss ion Computer

<<device>>

Fl ight Computer

<<device>>

Ground Computer

<<subsystem>>
Miss ion Manager

<<subsystem>>
Payload Control ler

<<subsystem>>
Guidance

<<subsystem>>
Fl ight Control ler

<<subsystem>>
Ground Control  Station

seria l

wireless



 

CMU/SEI-2024-TN-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  10 
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

 

Figure 3: State Machine Diagram for UAV System Behavior 
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5 Assurance Issues 

The goal of the model problem is to provide the context to research and develop assurance ap-
proaches that can address different assurance issues that are key to achieving large-scale assur-
ance and reducing assurance effort and cost. 

The following are these key assurance issues: 
• Different kinds of assurance analyses and results (e.g., response time analysis, temporal logic 

verification, test results) are needed and must be combined into a single assurance argument. 
• Each analysis makes different assumptions, which must be consistent across analyses and 

must be satisfied. 
• Different subsystems can be developed by different organizations, which provide assurance 

results for the subsystem. 
• The different assurance analyses and results used in the assurance argument may have differ-

ent levels of strength—from the simple testing of a few cases to exhaustive model checking. 
Therefore, conclusions about claims supported by the assurance argument must consider 
these different strength levels. 

• It may not be feasible or desirable to build a complete assurance argument before some sys-
tem assurance results can be provided. Therefore, it should be possible to build the assurance 
argument incrementally. 

• The system is likely to evolve due to changes or upgrades in individual subsystems. It should 
be possible to reuse assurance results when only part of the system changes. 

The following section provides some claims for assurance that researchers can use to demonstrate 
how advances in the state of the art and practice can tackle these issues. 

5.1 Claims for Assurance 

An assurance argument proves or supports a claim about a system (e.g., the system is safe to oper-
ate in a given environment). Different stakeholders have different assurance concerns about the 
UAV: 
• its ability to successfully execute the mission 
• its safety  
• its security so that a malicious actor cannot force it to deviate from its intended mission 

The model problem enables researchers to explore the assurance concerns of different stakehold-
ers. Table 3 lists the top-level claims that can be used to drive different assurance efforts. In gen-
eral, a claim is typically decomposed into other claims, as necessary, to prove or support the claim 
that the system satisfies the property stated in the top-level claim. Furthermore, proving that the 
system satisfies a claim can involve analyses in different domains.  
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For example, in the UAV scenario described in Section 2, proving the last claim in the table re-
quires showing that the control algorithm in Guidance can command the UAV to fly the trajec-
tory, but the control algorithm assumes that it has up-to-date state information, which is provided 
by the Flight Controller. Therefore, proving this claim requires showing that the Flight Controller 
provides that information with the needed frequency, and that the transmission of that information 
to the Guidance subsystem does not introduce a delay that results in the information being stale 
by the time the control algorithm uses it.  

Table 3 provides examples of claims that present different assurance challenges. However, the ac-
tual approach to decompose these claims, along with the analyses and assurance results used, are 
determined by the approaches developed to address the assurance challenges inherent in this 
model problem. 

Table 3: Claims for Assurance 

 Claim 

1 The system will meet the mission requirements. 

2 If there is a failure in a non-critical part of the system, the system will be resilient and continue to perform 
the mission as well as possible. 

3 A safety-critical HAF is always executed when its HAS is issued. 

4 An HAF can never execute without the required preconditions and its HAS. 

5 If there is a failure in the execution of an HAF or the propagation of its HAS, the system will always fail 
safely. 

6 A malicious actor cannot make the system execute HAFs and bypass the necessary preconditions. 

7 The UAV follows the intended trajectory within its performance thresholds. 
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6 Conclusion 

In this report, we presented a model problem using a scenario that revolved around the successful 
execution of an autonomous humanitarian mission to deliver life-saving supplies with a UAV in a 
disaster zone. We described a scenario and the architecture of the system used to carry out the sce-
nario mission, including multiple subsystems and computing platforms. This system and its sub-
systems represent the assurance challenges experienced in large-scale assurance.  

In this report, we also provided a list of assurance issues that solutions should address and a list of 
assurance claims that cover the concerns of different stakeholders. These assurance claims can be 
used to demonstrate solutions to the assurance issues posed by the model problem.  
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