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Abstract. Significant economic and technical benefits accrue from the use of
pre-existing and commercially available software components to develop new
systems. However, challenges remain that, if not adequately addressed, will
slow the adoption of software component technology. Chief among these are a
lack of consumer trust in the quality of components, and a lack of trust in the
quality of assemblies of components without extensive and expensive testing.
This paper describes prediction-enabled component technology (PECT). A
PECT results from integrating component technology with analysis models. An
analysis model permits analysis and prediction of assembly-level properties
prior to component composition, and, perhaps, prior to component acquisition.
Analysis models also identify required component properties and their
certifiable descriptions. Component technology supports and enforces the
assumptions underlying analysis models; it also provides the medium for
deploying PECT instances and PECT-compliant software components. This
paper describes the structure of PECT. It discusses the means of establishing the
predictive powers of a PECT so that consumers may obtain measurably bounded
trust in both components and design-time predictions based on the use of these
components. We demonstrate these ideas in a simple but illustrative model
problem: predicting average end-to-end latency of a ‘soft’ real time application
built from off-the-shelf software components.

1 Introduction

Significant economic and technical benefits accrue from the use of pre-existing and
commercially available software components to develop new systems. Variable com-
ponent quality combined with their opacity require designers to rely upon extensive
prototyping just to establish the feasibility of using a component in a particular assem-
bly [1]. Many of the benefits of software component technology evaporate in the pres-
ence of high uncertainty and low consumer trust.

This paper describes a prototype prediction-enabled component technology
(PECT). PECT is both a technology and a method for producing instances of the tech-
nology. A PECT instance results from integrating a software component technology



with one or more analysis models. PECT is designed to enable predictable assembly
from certifiable components. By this we mean:

* Assemblies of components are known, by construction, to be amenable to one or
more analysis method for predicting their emergent (assembly level) properties.

* The component properties that are required to make these predictions are defined,
certified, and trusted.

We therefore see component certification and predictable assembly as correlates.

Our underlying premise is that while it may be impossible to analyze, and thereby
predict the runtime behavior of arbitrary designs, it is possible to restrict our designs to
a subset that is analyzable. This premise has already been seen in the use of logical
(formal) analysis and prediction [2][3], and it can also be applied to empirical analysis
and prediction. Itis a further premise of ours that software component technology is an
effective way of packaging the design and implementation restrictions that yield ana-
lyzable designs, i.e., PECT.

Our research objective is to provide guidelines on how to construct PECT
instances in different domains, and for different properties of interest. While research
in component technology and software and system analysis continues, our focus is on
how advances in these areas can be integrated and deployed. Our approach provides
not only the architectural basis for this integration and deployment, but also criteria
with which to empirically, statistically, and logically demonstrate the predictive effec-
tiveness of PECT instances.

In the remainder of Sect. 1 we define the problem and our approach, and define key
terminology used in this paper. In Sect. 2 we describe in some detail the PECT concep-
tual model. In Sect. 3 we give a brief illustration of these concepts using the
COMTEK- prototype. Sect. 4 discusses related work, and Sect. 5 offers a few final
thoughts.

1.1 Problem and Approach

Component technology, as it exists today, is more a marketplace phenomena than tech-
nology innovation. The major technical elements of component technology—for
example, separate interfaces, multiple interfaces, encapsulation, and designed runtime
environments—have been around for many years. What is significant about compo-
nent technology is that IT producers and consumers have been rapidly adopting it in
the form of Sun Microsystems’ EJB™ and Microsoft's COM™ and many other “com-
mercial off-the-shelf” component technologies [9].

Current generation component technologies address various syntactic and mecha-
nistic aspects of component compositioeéintegration), but more complex forms of
behavioral composition have not been addressed. As software systems become more



complex, and as their quality takes on greater social significance (safety, reliability,
security, and so forth), the limitations of existing component technologies will (and

already have) become manifest. Rely-guarantee reasoning is sufficient in a limited
range of behavioral composition, but is not sufficiently expressive to be a general solu-
tion. And, of course, traditional testing has its own costs and limitations.

Our approach is to augment component technologies with sound analysis and pre-
diction technologies. We refer to the resultant augmentation @ediction-enabled
component technologECT). Indeed, the marriage of component and analysis tech-
nology makes eminent sense:

¢ Analysis models are valid with respect to assumptions about the execution environ-
ment of an end application. For example, a performance model will likely depend
upon assumptions pertaining to scheduling policy, process or thread priority, con-
currency, resource management policies, and many other factors. These assump-
tions can be treated as design and implementation constraints, and made explicit,
supported, and enforced by component technology. That is, assemblies of compo-
nents can be rendered analyzayedesign and construction

* Analysis models refer to (are parameterized by) the properties of components
being modeled. We refer to theseasalytic propertiesand the set of these as the
component’sanalytic interface An explicit, well-defined analytic interface pro-
vides an opportunity for certifying those component properties that support engi-
neering analysis. This, in turn, provides a value proposition for certifietlusted
component properties.

« Component technology jzar excellencea means of packaging and deploying soft-
ware technology. And, it is being adopted by industry. On a very practical level, we
view component technology as a readily available distribution channel for packag-
ing and deploying predictable assembly from certifiable components.

The last, and defining, element of our approach is that the packaging of a PECT is
not complete until its predictive powers have been validated. Our objective is that each
PECT be described by an objective, bounded confidence interval that is backed by
mathematical and empirical evidence. We exclude from our purview any analysis tech-
nology that can not, in principle or practice, support such validation.

1.2 Assumed Terminology and Notation

We assume as background context for our research the existence of two distinct tech-
nologies: component technology and analysis technology. Here we define, without fur-
ther elaboration, a number of terms that denote aspects of these technologies. We
define only those terms most useful for our exposition; we make no effort at complete-
ness. Our terminology is, in the main, consistent with that found in the software com-
ponent technology literature [4][5][6]:



Software componenfn independently deployable and executable software imple-
mentation. Hereafter referred to @amponent

Component modeA specification of component types, allowable patterns of inter-
actions among instances of these typesn{ponenfs and between components
and a component runtime environment.

Component runtime environmemn execution environment that enforces aspects
of the component model. The runtime plays a role analogous to that of an operating
system, only at a higher level of abstraction.

Component assembly environmehtdevelopment environment that provides ser-
vices for component development, composition, and component and application
deployment. The assembly environment may also provide assembly-time enforce-
ment of the component model.

Component technologn integrated component model, component runtime envi-
ronment, and component assembly environment.

Component assembli¥oun—A set of components and their enabled interactions.
Verb—To integrate a set of components, thereby enabling their runtime interaction.

Component propertySomething that is known and detectable about a component,
denoted with ‘dot’ notation, e.g., c.p for component ‘c’ with property ‘p’. Can be a
measurable quantity or a behavioral model such as a state machine.

Assembly propertyAlso known asemergent propertySomething that is known
about an assembly, also denoted using dot notation. Note that we ttegeictea
thatemergent propertis synonymous witlunpredictable property

Our terminology for analysis technology is of our own invention. It reflects the

context in which we use analysis technology, i.e., component technology:

Analysis modelA definition of terms and concepts pertinent to a particular emer-
gent property. The language used by specialists in a particular property domain. An
analysis model is analogous to a component model; it defines conceptual compo-
nents and their relations to one another.

Property theory A theory, expressed in terms consistent with an analysis model,
that can be used to predict the values of an emergent property. Can be, for example,
a closed form formula or a formal theory such as used in model checking [7]. A
property theory is analogous to a component assembly; it is a configuration of
terms and concepts governed by an analysis model.

Analytic property A component property that is required by (is a parameter to) a
property theory. The set of these properties for a property theory is the component’s
analytic interfacefor that theory.

Analytic assemblyA component assembly interpreted in terms of a property the-
ory. This could be a closed form formula, or some alternative view of the compo-
nent assembly such as a state transition model or component and connector model.

Analysis environmenfAn environment for computer-aided analysis of, and predic-
tions about, analytic assemblies.



¢ Analysis technologyAn integrated analysis model, analysis environment, and
property theory(ies).

We use UML as our graphical notation, and UML object constraint language
(OCL) to specify invariants. We assume the reader has some familiarity with this nota-
tion. We occasionally stray from the standard UML, but we do so only when limita-
tions of UML require it; we are careful to highlight each such apostasy. References in
the text to specific elements of diagrams grarénthesized and italicizgd

2 PECT Structure and Method

To give the reader an idea of what PECT is all about, we first describe the use PECT
instances from the perspective of an application assembler (Sect. 2.1). We then turn to
the methodological aspects of producing PECT instances, first by concentrating on the
structure of a PECT instance (Sect. 2.2), and then to the validation of PECT instances
(Sect. 2.3).
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Fig. 1: The user-level workflow for PECT. Note that thea{idate prediction step is distinct

from the validation of the PECT itself. In this workflow, validation refers to a spot check of the
assembly against a prediction. The terwvist(al assembly, (concrete assemblyand @nalytic
assemblyare found in the conceptual schema, in Fig. 2. We have taken liberties with UML by
permitting multiple ‘no’ paths on conditional branches.

2.1 PECT User-Level Overview

A PECT is an infrastructure for predictable assembly and trusted components. But
how is this infrastructure used in practice? The answer to this depends upon which user
role is considered. Fig. 1 specifies a simple view from the perspective of the applica-



tion assembler. The workflow is certainly optimistic, since all paths lead to a running
assembly. A more realistic workflow would include exit paths on failure, and paths to
modify the PECT, perhaps by using an alternative property theory.

Component Runtime I Analysis Environmeﬂt

1 1
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deployei *
Certified ComponerifmTj{ Selected Compor‘ieTt

*

Validation Runtime | Concrete AssembhndVirtual Assembl)}>
are subclasses of the abstract superclass
Constructive Assemb{pot shown).

Fig. 2: The PECT conceptual schema identifies key terms and their relationships.

A conceptual schema in Fig. 2 identifies and relates terms found in the above
workflow and used in the following discussion. The key new terminology is:

« Certified Component Descriptio component can bdescribedy its interface.
Analytic interfaces are descriptive not normative: they describe the properties of a
component; they do not specify the values that components must achieve. An inter-
face description of components that includes analytic interfaces can be imported
into an assembly environment and used for the purpose of assembly-time analysis
and prediction.

< Virtual AssemblandConcrete AssemhhAn assembly of component descriptions
is sufficient for analysis and prediction, but provides no runtime behavior. A con-
crete assembly, on the other hand, consists entirely of components, and therefore
has runtime behavior; naturally, it is also sufficient for analysis and prediction. Vir-
tual and concrete assemblies are mapped to analytic assemblies via analytic inter-
pretations. Analytic interpretations are discussed in Sect. 2.3 Whdeel Validity

« Validation RuntimeThe predictive power of a PECT is qualified by a statistical
confidence interval or its formal equivalent. Nonetheless, an application engineer
may wish to validate a PECT prediction. Doing so may require a specialized com-
ponent infrastructure (i.e., a validation runtime) that is, for example, instrumented
or based on an alternative runtime scheme. Assembly-time validation might be per-
formed on a subset of assemblies, or as a ‘sanity check’ on a particular prediction.



2.2 Conceptual Structure of PECT Instances

A PECT arises from the association of an analysis technology with a component tech-
nology. Therefore, our description of the overall structure of PECT instances in Fig. 3
centers on the UML association clagsddictable Assembly Model

*
Component T Analysis
Technology (CT)) \ Context p CTt: Technology t)
\ p.cm.tp-forAll( tpl |
\ p.pt.tp-exists( tp2 | tpl = tp2)) and
V| p.pt.tpforAli(tpl |
\\ pcmt.oa-exists(tp2 | tpl = tp2))
Component ‘\ (CT-1) , / Analysis
Model Predictable Model
Assembly Model
expandF weaken-
restrict| Constructive Property strengthe
_ 1 Model (CM) Theory (PT) [ ~ -
— - - ~ ~ -
automatio/n plug-in to analyt*ic ;:?ect)g E_,I_a;; c*ertifiable automati;)n plug-in to
runtime environment interfack properties assembly enwronmen&
Other Theory

*

Assumption (OA) |*

Fig. 3: The naming convention we use for PECT instances is to use the name of the component
technology, e.g.,&T), and one or more symbols to denote analysis models, €)gln(this fig-
ure, role cardinalities are 1 unless otherwise specified.

The Constructive Modélis the original component model plus any modifications
that are required to specify the assumptions of a property theory. Component assem-
blies that are conformant to a constructive model are catatstructive assemblies
The Concrete Assemblyand {irtual Assemblyin Fig. 2 are constructive assemblies.

The OCL constraintQontext p CT3tstipulates that each certifiable component prop-
erty (Theory Parametéris found in the analytic interface of the relevant constructive
component types. An analogous constraint, not shown, is require®fthe( Theory
Assumptioh These associations are confirmed during model validation (see Sect. 2.3).

2.3 Validation of PECT Instances

A technology that purports to enable predictable assembly would be meaningless if its
predictions could not be validated. To paraphrase (and perhaps debauch) the wisdom
of Wittgenstein:A nothing will do as well as a something, that is, a prediction, about
which nothing can be said’he consumers of PECT will want to know ahead of time
how much confidence to place in the predictive powers of the technology. This is pro-
vided by two distinct but related forms of validitjiodelandempirical validity.



Model Validity. Our concern is to establish the validity of therédictable Assembly
Model)depicted in Fig. 3. This consists in establishing that two conditions hold:

1. The mapping of assumptions fromRx¢perty Theory}o elements of theGon-
structive Model)again, in Fig. 3, is consistent.

2. The analytic interpretation fronCpnstructive Assembly) (Analytic Assemblyip
Fig. 2 is both consisterandcomplete.

The first condition, which we refer to dggical validity, is analogous to establish-
ing the validity of a theorem in formal logic. That ia,theorem is valid if the conclu-
sions follow from the premisesn PECT, the theorem is a property theory; its
assumptions are the theorem’s premises; and its predictions are the theorem’s conclu-
sions. Establishing logical validity involves demonstrative (mathematical) reasoning.

The second condition, which we refer to iaserpretation validity demonstrates
that each constructive assembly can be interpreted in terms of the property theory
(completeness), and each constructive assembly has at most one interpretation (consis-
tency). This last is a bit subtle. It is possible for a single constructive assembly to cor-
respond to several analytic assemblies, but these analytic assemblies must form an
equivalence class with respect to predictions made under the property theory.

Empirical Validity. Returning to logical validity, we said that a property theory is valid

if its predictions follow from its assumptions (conclusions follow from premises).
Continuing with the analogy to formal logic, a theorens@ndif, in addition to being

valid, the premises hold trudn PECT, establishing that the assumptions hold true
amounts to demonstrating that each theory assumption is enforced by the PECT runt-
ime or assembly environments, by engineering practices

Unfortunately, the soundness of a property theory can almost never be formally
established. Modern computing environments are complex, and one can never be abso-
lutely certain that a property theory has adequately enumerated all its assumptions. In
practice, then, empirical evidence is required. That is, we must treat predictions as fal-
sifiable hypotheses, and each failure to falsify the prediction, within explicitly stated
measurement tolerance, incrementally adds evidence that the theory is sound. That is,
we do notdemonstrateéhat the assumptions of the property theory hold truejnfer
their truth inductively from experimental evidence.

Of course, this is no more than asserting the need for using traditional scientific
method to demonstrate the soundness of property theories. It seems that Simon’s
thoughts on the application of scientific methods to artificial systems, and to engineer-
ing design of complex systems in particular, remain ahead of their time [10].



2.4 Integration by Co-Refinement.

There are many available component and analysis technologies in research and in the
commercial marketplace. An important practical consideration for our research is to
demonstrate that existing technologies can be integrated into viable PECT instances.
However, since component and analysis technologies have developed independently,
and to satisfy different objectives, their integration may not always be straightforward
Where mismatches arise, either or both must be adjusted, as illustrated in Fig. 4.

expand weaken
PECT1_ _ .
l_---
Key: = - _ _PECT2
[ Original Component Modg|l o=
AOriginaI Analysis Model PECT3 _ _ _
A PECT Property Theory "
= PECT Assembly Model restrict strengthen

Fig. 4: Given a component model and analysis model, a PECT instance is produced through a
process of co-refinement. Co-refinement (including a null refinement) transforms a component
model to an assembly model, and an analysis model to a property theory.

Our idea of co-refinement is informal. Intuitively, expanding a component model
removes or weakens design and implementation restrictions, and thus increases the set
of allowable assemblies; restricting the component model has the opposite effect. Sim-
ilarly, weakening an analysis model removes or weakens the assumptions (which can
be thought of as preconditions) of property theories, again increasing the scope of the
property theory to a larger set of assemblies, but perhaps at the cost of precision or reli-
ability of predictions; strengthening an analysis model has the opposite effect. Three
alternative co-refinements are depicted in Fig.RECT-J), (PECT-2 and PECT-3.

Each of these alternatives will exhibit different degrees of design freedom and expres-
siveness, and different degrees of predictive accuracy.

Of course, there are refinements of component and analysis models that do not fit
neatly into the expand/restrict and weaken/strengthen dichotomies. For example, does
modifying a component model to use asynchronous rather than synchronous commu-
nication expand or restrict set of assemblies that are conformant to the component
model? At present, co-refinement appears to be the essential design problem of con-
structing a PECT instance—that is, it requires the use of judgment, experience, and
taste on the part of the PECT designer to make the appropriate trade-off’s that arise
when associating an analysis model with a component model.



2.5 Refinement and Validation Taken Together

Co-refinement and validation are major activities in the development of PECT

instances. Although we do not yet have a complete workflow to describe PECT devel-
opment, one thing is clear: these two activities are mutually reinforcing, and the final
workflow will almost certainly include an approximation of the fragment in Fig. 5.
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[pre: assembly property specified
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confidence specified] interval]
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Validity

Validation

Experimel yes

[post: validated PECT with,

®

Fig. 5: A PECT development process will involve iteration among model validation, co-refine-
ment, and empirical validation.

Although there are various intermediate steps missing in the workflow (such as
implementing any required changes to the component runtime or assembly environ-
ments), the crucial point is that empirical validation is required to satisfy the guard
condition for exiting the workflow. Our own experience suggests that empirical valida-
tion is effective at uncovering hidden, and therefore unsatisfied, assumptions of the
property theory—that is, where these hidden assumptions are exposed by a violation of
required measurement tolerance.

3 lllustration: COMTEK- A

We now describe a prototype PECT, constructed from the COMIEnponent tech-
nology [11], and a widely known, if largely implicit, analysis model for predicting
end-to-end latency. The objective of the prototype was to test the conceptual model of
PECT and the PECT development process sketched in the previous section in a realis-
tic but not overly complex problem setting.

3.1 Component Technology: COMTEK
COMTEK was developed by the Software Engineering Institute (SEI) for the U.S.
Environmental Protection Agency (EPA) Department of Water Quality to support end-

user composition of water quality simulation from third-party simulation components.
COMTEK runs on the Microsoft Windows-NT family of operating systems, and its

1. Formerly known a¥VaterBeans



components are deployed as Microsoft dynamic link libraries (DLL). Fig. 6 presents a
screenshot of the COMTEK assembly environment. Despite its simplicity, the general-
ity of COMTEK was demonstrated in several application domains.

The menu tabs above the assembly canvas in Fig. 6 display four families of com-
ponents: Hydraulic Interfaces, Hydraulic Models, Wave Interfaces, and Test Interfaces.
Fig. 6 shows an assembly built from components of the Wave Interface family. This
and similar assemblies are the subject of the COMDEKustration. These assem-
blies implement audio signal sampling, manipulation, and playback functionality. We
chose to develop a PECT for assembling audio playback applications since we could
develop a simple performance analysis model to accommodate the relative simplicity
of COMTEK.
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Fig. 6: COMTEK has the following high-level characteristics: a) it enforces a typed pipe-and-
filter composition style; b) components may have multiple input and output ports, each of which
may be connected by a pipe to other component ports; c) a round-robin schedule is calculated
from component input/output dependencies; d) the execution of an assembly is sequential, and
components are single-threaded and non-preemptive.

3.2 Analysis Technology: Latency Prediction

The problem we posed was to predict the end-to-end latency of an assembly, where
latency is defined as the time interval beginning with the execution of the ‘first’ com-
ponent executed in an assembly and ending with the return from the ‘last’ component
in that assembly. We required that predicted assembly latency is, on average, within +/
-10% of observed assembly latency. We permitted ourselves such liberality because
WindowsNT provides few performance guarantees. As will be seen, however, we did
much better than a 10% margin of error, although this was never our goal.



The audio playback application lies in the domain of what is sometimes referred
to as ‘soft real-time’ applications. In soft real-time applications, timely handling of
events or other data is a critical element of the application, but an occasionally missed
event is tolerable. In the audio playback application, audio signals received from an
internal CD player must be sampled every 46 milliseconds for each 1,024 bytes of
audio data. A failure to sample the input buffer, or to feed the output buffer within this
time interval, will result in a lost signal. Too many lost signals will disrupt the quality
of the audio playback; however, a few lost signals will not be noticeable to the
untrained ear. Thus, audio playback has ‘soft’ real-time requirements.

3.3 COMTEK-A Assembly Model

We begin with the more complex and extensive constructive model, and then turn to
the property theory.

COMTEKA Constructive ModelThe question of what information to include in a
constructive model, and how to organize this information, is the same question we
might ask of component models. We are not yet prepared to offer normative guidelines
on either, and so the documentation we now describe should be interpreted as sugges-
tive. With time and experience, we hope to propose a standard approach. For this rela-
tively simple prototype, only a few views were needed to describe the essence of the
constructive model. We use UML stereotypgs¢omponent>> and K<analytic>>)

to distinguish those aspects of the specification that derive from the component model,
and those that derive from the property theory, respectively.

Fig. 7 depicts the UML model of COMTER-component metatypes. Instances of
(ComponentTypeare deployable units that are themselves instantiators—they provide
runtime instances of themselves vigefNewlnstance)) The property theory intro-
duces two new component typeBand® whose meaning is described ldteFhese
types of components appear only in analytic assemblies, and have associated analytic
constraints: they must possess specific properties that themselves are constrained, as
specified in the pertinent OCL expressions.

1. These symbols were chosen for their mnemonic value, as will be seen.



<<component> =
. ComponentType 5 .
<<componen> componentTypeName:Smn% <<component>
runnable: Boolean 1=
OutputPort numOutputs: Integer InputPort
portName: String numinputs: Integer portName: String
dataType: String Component:getNewlInstancg() dataType: String
required: Boolean [prop-integef required: Boolean
*
<<component> <<analytic>> <<analytic>> |
Property AnalyticType® AnalyticType® ]
propertyName: String p
propertyType: {pString, external execution execution
pFloat, pinteger, pBool period-g 1 time-e 1 time-e
propertyValue <<analytic>> <<analytic>>
/T\ /T\ p:Property e:Property
| | propertyType = pFloat | propertyType = pFloat]
L <cinstanceOf>> _ ;| .~ | -
L<sinstanceOf> __ _ _ . _ _ _ _ _ . 7
<<analytic>> <<an/alytic>>
context p: context e:
p.propertyValue 0.0 and e.propertyValue 0.0 and
p.propertyValue.isConstant() e.propertyValue.isConstant()

Fig. 7. COMTEK-A Component Metatype Specification. The property theory introduces two
analytic component typesP( and @ . These subclasses @@¢mponentTypehave the addi-
tional constraint that their instances possess specific analytic component propp} idied €).
This constraint is represented using non-standard UML.

Fig. 8 associates the definition of component latency used by the latency property
theory with the COMTEK runtimk Latency is defined as the time interval between
two readings of a hypothetical, infinitely accurate clock. This definition was used for
empirical validation. Fig. 8 also makes explicit the property theory assumptions relat-
ing to the execution schedule of components. Other assumptions, such as single
threaded components and non-preemptive scheduling have been omitted for simplicity.

Property Theory.The COMTEKA latency theory is summarized by the following
open formula:

AN = f(A) = maxD] § @+ . ®0A | &.ph] 1)
A= ()-maxj%l.%qlz ).e qu% max({J | J.p})%

2y OA qoA

Assembly A is an enumerated set of components, andttheoknponent of A is
denoted as either d§, or ¢. These correspond to one of two analytic component

types:Orefers to components that only have dependencies that are internal to A, while
drefers to components that also exhibit dependencies on external periodic evants. A

1. Some of the terms used in Fig. 8 are introduced in views of the constructive model not
discussed in this paper.



is the end-to-end latency of an assembly. E@domponent has two required proper-
ties that describe its latency informatio®e’ and ‘®p,” while each@component has
only the required propert@e (refer to Fig. 7); e and p are defined as:

* e is the execution time of a component, exclusive of component blocking time.
« p:is the period of the external event on whickbalepends and may block.

The functionmax returns the largest of its arguments. Note that this analytic
model is not parameterized by invocation order or connections among components.
Neither the summation nanaxdepend on the order of components &f (n Eqg. (1).

<<analytic>>
—~ 1 pre A.fullyConnected and n =0 and
A.componentforAll(cj | p(cj) = n) and
started = false
post True

(@<

_<<analytic>>
pre: not started
post: t0 = getTime()

————— <<analytic>>
pre A.componentexists(cj | p(cj) = n)
me|()

<<analytic>> post started = True and c0 = getTi
pre started and
A.componentforAll( N
ci.ck | p(c) = p(ek) ,

post t1 = getTime() and <<analytic>>

started = False and preTrue )

n=n@pre +1 and post p(cj) = p@pre(cj) + 1 and

A\ =t1 —t0 -- assembly| c1 = getTime() and

-- latency ¢j.A =10 -- component latenc

Fig. 8: Specification of Assembly Latency and Component Latency. The fungi@k)
returns the number of times component ck has been run. The funcgetBrie() and Eet-
Time() read a hypothetical, infinitely accurate clock.

3.4 PECT Validity

The details of COMTEKA model and empirical validation are available in [12]. Here,
we outline only the most important aspects of these validation exercises.

Model Validity. Our approach to constructing COMTEKwas driven by expediency.
Accordingly, our strategy was to adopt as far as possible the design scheme repre-
sented by PECT-2 in Fig. 4. To do so, we used the COMTEK component model as
given assumptions for a custom fit latency theory. Following this approach was not
especially demanding and worked well. Logical validity was demonstrated by a semi-
rigorous derivation of the latency property theory from our knowledge of the internals
of COMTEK. Interpretation validity was trivial to establish, mostly because the prop-
erty theory was strengthened to deal just with steady state latency, and this, in turn,
meant that order of component execution was irrelevant to latency prediction.



Nevertheless, our first “valid” property theory was falsified when we attempted to
establish empirical validity. As detailed as our understanding of COMTEK was, we
still manage to err by failing to appreciate the distinction betweenbtaed®compo-
nents of Eq. (1). In fact, this distinction never mattered until the latency property the-
ory was introduced, which accounts for our error. We were pleased to discover the
effectiveness of a combined model and empirical validation process, and at the same
time confirm that property theories might impose constraints beyond those of an exist-
ing component technology, and that these constraints would be relevigrib that
property theory.

Empirical Validity. Empirical validity consists in quantifying the accuracy and repeat-
ability of predictions made using an analytic model by statistically comparing those
predictions with actual measurements of assembly properties. The process of empiri-
cally validating a PECT can be summarized in the following steps:

Obtain analytic properties of components (for example, through measurement).
Design validation assemblies and predict the assembly property of interest.
Construct the assemblies and observe their properties.

Statistically analyze the difference between predicted and observed properties.

A wDdRE

We constructed a component benchmarking environment for (1) and instrumented
component runtime for (3). The first turned out to be non-trivial since it was required
to simulate but not re-implement the COMTEK runtime. We used statistical methods
for two different purposes: latency measurement (1) (3), and quantification of accuracy
and repeatability of the predictions (4). The sources of our statistical approach are
[13][14][15]. We consider a large sample of measured latencies and use their mean as
the value to be used.

For statistical analysis of the predicted latency (4) we used both descriptive and
inferential statistics, namely correlation analysis, and confidence and tolerance inter-
vals of the magnitude of relative error (MRE). We used nine sample assemblies as the
basis for statistical analysis of our latency theory (2). Thus, in the summaries in Tables
2 and 3, N) refers to the number of distinct assemblies that we tested,Nle 9). As
we show, this small sample size does not cause difficulties with the confidence inter-
val, but its flaws are revealed in the tolerance interval.

Correlation analysis allows us to assess the strength of the linear relation between
two variables, in our case, predicted and observed latency. The result of this analysis is
the coefficient of determination Rwhose value ranges from 0 to 1; 0 meaning no
relation at all, and 1 meaning perfect linear relation. In a perfect prediction model, one
would expect to have all the predictions equal to the observed latency, therefore the
goal is a linear relation. The results of the correlation analysis are shown in Table 1,
and can be interpreted as the prediction model accounting for 99.99% of the variation



in the observed latency. The significance level means that there is only a 1% probabil-
ity of having obtained that correlation by chance.

Table 1: Correlation Analysis Results

Statistic ‘ Meaning
R2 =0.9999657 ‘ Coefficient of determination
a=0.01 ‘ Significance level

For the statistical inference about the latency property theory, we are interested in
the magnitude of relative error (MRE) between the predicted and the observed latency.
To validate a property theory and draw statistical conclusions, we need a sample of
MREs, based on a set of possible, and distinct, analytic assemblies. That is, for each
assembly in the sample, we compute the MRE, obtaining in that way a sample of
MREs. In doing this, we considered the mean of a sample of 15,000 measured assem-
bly latencies to be the observed latency for each assembly.

We use tolerance intervals for statistical inference. Three types of questions are
addressed by tolerance intervals [14]:

1. What interval will containf) percent of the population?

2. What interval guarantees tha) percent of the population will not fall below a
lower limit?

3. What interval guarantees tha) percent of the population will not exceed an
upper limit?

The first question applies to situations in which we want to control either the cen-
ter or both tails of a distribution. In the case of MRE, because we are using the absolute
value of the error, the predictions with MRE falling in the left tail of the distribution
are even better than those in the center of the distribution. Therefore, it is better to use
a one-sided tolerance interval, as in the case of the third question.

Table 2 is interpreted as saying that the MRE for 9084=(0.90) of assembly
latency predictions will not excee®.83%); moreover, we have a confidence of 0.95
that the upper bound is correct. As can be seen, we achieved our goal of predicting

with MRESs no larger than 10%.

Table 2: Second MRE Tolerance Interval

N =30 sample size
y =0.95 confidence level
p=0.90 proportion

Mvre = 1.99%  over 30 assemblies
UB=6.33% upper bound




4 Related Work

Related Work.Compositional reasoning techniques are a natural foundation upon
which to build PECT property theories. Fisler and Sharygina exploit the idea of design
restrictions to ameliorate the state space explosion associated with compositional
model checking [17][3]. Neither of these approaches, however, address components as
independently deployable implementations. Analysis algorithms that have been devel-
oped for architecture description languages (ADLS) are also relevant, not surprisingly
given their use of “component and connector” abstractions. ADL based analysis mod-
els address liveness and safety [18][19], and performance [20][21]. However, ADLs
treat components as abstractions, not implementations. The difference between inter-
face specification and description causes difficulty in applying ADL-based results to
component technology. Also related is work in component certification and trust. Rep-
resentative is the use of pre/post conditions on component interfaces [22]. This
approach does support compositional reasoning, but only about a restricted range of
properties. Quality attributes, such as security, performance, availability, and so forth,
are beyond the reach of these assertion languages. Commercial ventures in component
certification, such as specified by Underwriter’s Laboratory (UL), lack empirical vali-
dation or compositionality; but these may nonetheless prove influential [23]. Voas has
defined rigorous mathematical models of component reliability derived from testing
[24], but he does not provide an assembly model nor any means of demonstrating the
empirical validity of the resultant reliability properties. Hamlet attacks the problem of
empirical and compositional theories of reliability, but his approach is far too restricted
and microscopic to be of practical utility [25].

5 Conclusion

We have described and illustrated the key ideas of prediction-enabled component tech-
nology. Our approach asserts that component certification and assembly-level predic-
tion are correlates. PECT emphasizes the technical affinities between component
technology and analysis technology to enforce design rules imposed by analysis mod-
els. This enforcement will lead to systems that are, by design and construction, analyz-
able and predictable, and to trusted components, where this trust is bound to specific
engineering predictions. While we have only made initial and tentative steps to
develop PECT ideas, the results are encouraging.
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