
Reachability of System Operation Modes in

AADL

Lutz Wrage

May 2024

TECHNICAL REPORT
CMU/SEI-2024-TR-003
DOI: 10.1184/R1/24764256

Software Solutions Division

[Distribution Statement A] Approved for public release and unlimited distribution.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright 2024 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not
be construed as an official Government position, policy, or decision, unless designated by other docu-
mentation.

References herein to any specific entity, product, process, or service by trade name, trade mark, man-
ufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute nor of Carnegie Mellon Uni-
versity - Software Engineering Institute by any such named or represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTI-
TUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUD-
ING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EX-
CLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNI-
VERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Requests for permission for non-licensed uses should be directed to the Software Engineering Institute
at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM24-0349

Table of Contents

Abstract ii

1 Introduction 1
1.1 Modes in AADL 1
1.2 System Operation Modes 2

2 SOM Reachability Analysis 5
2.1 Overview 5
2.2 Adding Modes to a System Operation Mode 5
2.3 Creating SOM Transitions 6

2.3.1 Transitions for Non-Modal Connections 8
2.3.2 Transitions for Modal Connections 13

2.4 Testing SOM Reachability 16
2.5 The Full Algorithm 16

3 Example Models 19
3.1 Non-Modal Connections 19
3.2 Modal Connections 26

4 Conclusion and Future Work 29

A Appendix 30
A.1 Data Model 30
A.2 Java Implementation 33

References 47

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i
[Distribution Statement A] Approved for public release and unlimited distribution.

Abstract

Components in an Architecture Analysis and Design Language (AADL) model can have modes
that determine which subcomponents and connections are active. Transitions between modes
are triggered by events originating from the modeled system’s environment or other
components in the model. Modes and transitions can occur on any level of the component hi-
erarchy. The combinations of component modes (called system operation modes or SOMs)
define the system’s configurations. It is important to know which SOMs can actually occur in
the system, especially in the area of system safety, because a system may contain components
that should not be active simultaneously, for example, a car’s brake and accelerator. This
report presents an algorithm that constructs the set of reachable SOMs for a given AADL
model and the transitions between them.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii
[Distribution Statement A] Approved for public release and unlimited distribution.

1 Introduction

1.1 Modes in AADL

AADL (the Architecture Analysis and Design Language) [3] defines components, their inter-
connectivity, and their relationship to each other. AADL software components communicate
via ports that are connected to ports of other components. Execution platform components
are linked to each other via access features that are connected to other access features. An
AADL model forms a hierarchical structure by allowing components to be nested inside other
components as subcomponents. Software components are bound to execution platform compo-
nents. Each AADL (instance) model has a single top-level root element, the system instance.

AADL elements can have properties that provide additional information for use when analyz-
ing the model or generating code from it.

Each AADL component can have one or more modes that define a configuration of the com-
ponent, that is, which of its subcomponents are active, together with the values of its prop-
erties in this mode. If a component has several modes, one of them is marked as the initial
mode. A component transitions from one mode to another in response to one of the following
events:

• one received on a port

• one generated internally by the component itself

• one generated by one of its subcomponents

AADL elements such as subcomponents or connections are called modal if they are active in
only some, but not all, modes of their containing component. In this case, the element’s decla-
ration lists the modes in which it is active. In terms of model analysis, an inactive component
may be treated as not present, and the details are dependent on the analysis. For example, a
scheduling analysis can ignore inactive threads because they do not consume processor time.
In contrast, an analysis that sums the weights of physical components must still consider the
weight of inactive processor or memory components. Software bindings to execution platform
components can also be modal, for example, to indicate that a thread runs on different pro-
cessors, depending on the system’s operating mode.

The model in Listing 1.1 shows a system with two modes: m0 and m1. Transitions between
these modes can be triggered by an external event that enters the system via port e0. The
system has three subcomponents: a, b, and c. Components a and b are always active, but c is
active only if the system is in mode m1.

Subcomponent b has modes itself (m10 and m11), and transition between them can be trig-
gered by event e1 originating in component a. From port a.e1, the event travels along con-
nection c1 to component b. Note that the connection is modal and exists in mode m0 only.
Whenever the system is in mode m1, no event from a can trigger a transition in b.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
[Distribution Statement A] Approved for public release and unlimited distribution.

1 package ModesIntro
2 public
3 system S
4 features
5 e0: in event port;
6 modes
7 m0: initial mode;
8 m1: mode;
9 m0 −[e0]−> m1;

10 m1 −[e0]−> m0;
11 end S;
12
13 system implementation S.i0
14 subcomponents
15 a: system A;
16 b: system B;
17 c: system C in modes (m1);
18 connections
19 c1: port a.e1 −> b.e1 in modes (m0);
20 end S.i0;
21
22 system A
23 features
24 e1: out event port;
25 end A;
26
27 system B
28 features
29 e1: in event port;
30 modes
31 m10: initial mode;
32 m11: mode;
33 m10 −[e1]−> m11;
34 m11 −[e1]−> m10;
35 end B;
36
37 system C
38 end C;
39 end ModesIntro;

Listing 1.1: Introductory Mode Example

1.2 System Operation Modes

The set of all component modes in an AADL instance model is called the system operation
mode (SOM). The initial SOM is defined as the model components’ set of initial modes. Each
mode transition in a component is related to a transition between SOMs for the complete sys-
tem.

The possible SOMs of a system are defined as all combinations of component modes. In the
example above, the possible SOMs are

• (m0,m10)

• (m0,m11)

• (m1,m10)

• (m1,m11)

In general, some SOMs may not be reachable.

This is the first set of rules that influence which SOMs are possible:

• The modes of an inactive component do not contribute to the set of SOMs.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[Distribution Statement A] Approved for public release and unlimited distribution.

• The modes of its subcomponents do not contribute either, since they are all inactive too.

Following these rules, we refine the SOM definition: The set of SOMs is defined as the combi-
nation of the reachable modes of all active components.1 For the purposes of this report, we
include inactive components in an SOM: An SOM defines the following for each component C
in a model:

• whether it is active

• its mode, if it has one

When considering events and connections, possible SOMs are not reachable when

• an event that triggers a mode transition is not connected to an event’s source, that is,
either

– a component’s out port for an event generated inside the system

– a system instance’s in port for an event generated in the system’s environment

• a component that can generate a trigger event is inactive

• a connection that can transport a trigger event is inactive

• a component mode is not reachable via a sequence of mode transitions from the initial
mode

The possible SOM transitions are further limited by a rule in the AADL standard demanding
that all component mode transitions triggered by the same event happen simultaneously.

AADL version 2 introduced modes that are derived from the modes of their containing com-
ponent. AADL does not allow direct transitions between derived modes. These derived modes
are added to the system’s SOMs but do not influence the number of SOMs or which SOM
transitions are possible.

In this report, we describe an algorithm that uses all the above rules to determine the set of
reachable SOMs in a system instance and the possible transitions between them. Our algo-
rithm is a significant extension of the first step of an algorithm to translate AADL mode state
machines into timed Petri nets [1]. That algorithm, documented by Bertrand et al., has a few
shortcomings compared to ours. It does the following:

• only handles mode transitions triggered by external events

• assumes that all connections are non-modal

• does not address the resumption policy for reactivating components

In addition, Bertrand et al.’s paper addresses transitions triggered simultaneously in several
components only in the special case of a component and its subcomponents, but not for unre-
lated components.

We have implemented the reachability analysis algorithm as a plug-in to the Open Source
AADL Tool Environment (OSATE [5]), which enables new verifications that could be run on
an AADL model.

Knowing which SOMs are reachable helps to answer questions such as the following about cor-
rectness of a system design:

• Is it possible for the autopilot subsystem to be active when the system is in takeoff or
landing mode?

• Does the system contain components that are never active?

1Model instantiation in OSATE generates SOMs according to this definition.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[Distribution Statement A] Approved for public release and unlimited distribution.

• Are all modes of a component reachable?

• Is it possible for components C1 and C2 to be active simultaneously? Or is that always
the case?

• Which modes are possible for component C1 when component C2 is in mode m?

Knowing the possible transitions allows exporting the SOMs and transitions for further analy-
sis with a model checker to answer additional questions such as

• Can the system get into a state where a component C is inactive and unable to be reac-
tivated?

• Which modes are possible for component C1 before component C2 is in mode m?

Our OSATE plug-in includes an export to the NuSMV [2] input language. A user can
add LTL or CTL formulae that represent the above questions and verify them by running
NuSMV.2

The rest of this report is organized as follows:

• Chapter 2 describes our reachability analysis algorithm and gives the pseudocode for two
variants.

• Chapter 3 shows the analysis output for a few small non-modal and modal AADL mod-
els.

• Chapter 4 (the conclusion) describes outstanding extensions to all AADL models and
future work.

• Appendix A describes the data model used in the analysis implementation and includes
the main Java code of our prototype implementation.

2NuSMV is available at https://nusmv.fbk.eu/

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[Distribution Statement A] Approved for public release and unlimited distribution.

https://nusmv.fbk.eu/

2 SOM Reachability Analysis

In this section, we describe the algorithm for determining which SOMs are reachable for a
given AADL instance model. We make the simplifying assumption that the system is syn-
chronized, that is, all components use the same globally synchronized reference time. In such
a system, it makes sense to talk about mode transitions occurring simultaneously if they are
triggered by the same event. We only consider events that originate at a component feature
and ignore internal features. We also assume that the model does not contain derived modes.
In Chapter 4, we discuss how the algorithm can handle internal features and derived modes.

2.1 Overview

The basic idea of our SOM reachability analysis is to create a state machine for a subset of a
model’s components. This state machine contains the SOMs and transitions between them for
this subset of components. We start with the root system instance component R. This com-
ponent is always active. The corresponding SOMs and SOM transitions are just the modes
and mode transitions of R, restricted to the modes that are reachable from the initial mode.
If the root component has no modes, a single SOM represents this active component.

We then incrementally add components until all components in the analyzed model are han-
dled. For each new component C, we extend the set of SOMs to include the modes of the new
component and merge C’s mode transitions into the set of SOM transitions. Once all compo-
nents have been added, we have the complete set of reachable SOMs and SOM transitions for
the analyzed model.

For the incremental processing, a subcomponent should be added only after the parent com-
ponent that contains it has been added. Following this order constraint, we know if the newly
added component is active or inactive when it is added for each existing SOM, because sub-
components cannot influence whether a parent component is active. The simplest process-
ing sequence is to traverse the component containment hierarchy and add components in pre-
order, although other traversals (e.g., level-order) would lead to the same result.

We can extend an existing SOM by creating a new SOM for each mode of C, together with
an indication of whether C is active in the new SOM. After that, merging transitions is the
crucial step that takes into account if transitions are triggered by the same event, if the source
component of the trigger event is active, and so on. Finally, we remove any SOMs that are
not reachable from the initial SOM by following the new set of SOM transitions.

In the next sections, we describe in detail how to create extended SOMs and transitions sets
when processing a component.

2.2 Adding Modes to a System Operation Mode

An SOM consists of a sequence of modes for each component that has been processed and an
indication of whether the component is active or inactive in the SOM. We use the following
symbols to represent component Ck in an SOM:

• ⊤k – Ck is active and has no modes.

• ⊤k
m – Ck is active, and its mode is m.

• ⊥k – Ck is inactive and has no modes.

• ⊥k
m – Ck is inactive and resumes in mode m.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[Distribution Statement A] Approved for public release and unlimited distribution.

If a component that is active with mode m is deactivated during an SOM transition
and later reactivated, the component continues in either mode m0 (the initial mode)
or m. In the AADL model, the reactivation behavior can be selected using property
Thread Properties::Resumption Policy with values restart (to continue in m0)
and resume (to continue in m).1

When the component is obvious from the context, we leave out the superscript k. We gen-
erally use m0 to represent the initial mode of a component and m1,m2, . . . for its remaining
modes. To simplify the discussion, we treat a component without modes as if it has a single
mode m0 so that we do not need to treat a component without modes as a special case. With
this notation, we define the mode states of component Ck with modes m0,m1, . . . ,mjk as this
set:

MSk =


{⊤m0

,⊤m1
, . . . ,⊤mjk

} if Ck is active

{⊥m0
} if Ck is inactive with resumption policy restart

{⊥m0
,⊥m1

, . . . ,⊥mjk
} if Ck is inactive with resumption policy resume

We write SOMk for the set of SOMs in the model that contains components C0, C1, . . . , Ck,
where C0 is the top-level system instance.

When processing C0, we initialize the set SOM0 as follows. Note that C0 is always active.

SOMi
0 = MS0 =

{
{⊤m0

} if C0 has no modes

{⊤m0
,⊤m1

, . . . ,⊤mjk
} if C0 has one or more modes

SOM0 is the set of reachable SOMs in SOMi
0.

Whether a component Ck, k > 0 is active is determined by the mode state of its parent com-
ponent. This mode state is part of the SOMs in SOMk−1 where MSk can be interpreted as a
function from SOMk−1 to the set of mode states for Ck.

When processing component Ck, the set SOMk is constructed based on SOMk−1:

∀k > 0 : SOMi
k =

⋃
s∈SOMk−1

s×MSk(s)

SOMk is the set of reachable SOMs in SOMi
k.

2.3 Creating SOM Transitions

Before describing the algorithm to determine SOM transitions, we must discuss how connec-
tion instances relate to connections in a declarative AADL model. A connection declaration
describes either a mapping between a component port and a port of one of its subcomponents,
or the connection of ports that belong to its sibling component—that is, direct subcompo-
nents of the same parent component. The AADL standard describes how a sequence of declar-
ative connections defines a semantic connection between two components.

In the context of an AADL instance model, we use the more general notion of connection in-
stance, which is a sequence of declarative connections that is complete in the sense that it
cannot be extended by another declarative connection. A connection instance is allowed to
start and end at components with any category, whereas a semantic connection is defined only

1The AADL standard defines no default value for this property. In our implementation we use restart behavior
for all components that have no value for this property.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[Distribution Statement A] Approved for public release and unlimited distribution.

for port connections between threads. Mode transitions are triggered by events that are trans-
ported via port (or feature) connections. These events can be internal or external to the mod-
eled system:

• an internal trigger event

– is generated by a component C in the model

– starts at one of C’s ports

– follows a sequence of declarative connections that map to outgoing ports of parent
components

– goes to an incoming port of a sibling component

– follows a sequence of mappings to subcomponent ports

• an external trigger event

– is generated outside the modeled system

– starts at an incoming port of the top-level component C0

– follows a sequence of mappings to subcomponent ports

In the rest of this report, we use connection for a connection instance and segment for the
declarative connections that make up the connection instance.

An event can trigger multiple mode transitions via several connections but also via a single
connection: Each component the connection passes through may contain a mode transition
that names a port in this connection as a trigger.

We define TNk as the set of SOM transitions between the SOMs in SOMk. A mode transi-
tion is a tuple tn = (s, tg, d) with s, d ∈ SOMk, and tg as the source of the event triggering
the transition. The trigger source is generally the feature at the source of the connection that
transports the trigger event. In contrast, the mode transition in the declarative model typi-
cally lists the destination features of such connections as triggers. Multiple connections can
go through the same feature, so a single trigger for a mode transition in the declarative model
can result in multiple triggers for a corresponding SOM transition. In addition, AADL allows
multiple connections between the same features, so a trigger event could follow two or more
paths to the same transition. For modal connections, these paths may be active in different
SOMs.

In a modal model, connections can be active or inactive in an SOM just like components. A
connection is modal if at least one of its segments is modal. A modal connection is

• active if all of its segments are active

• inactive if at least one of its segments is inactive

A segment is inactive if one of the following conditions is true:

• Its containing component is inactive.

• The segment is modal, and the component’s current mode is not listed in the segment’s
in modes clause.

Creating the correct set of SOM transitions is the core step of our reachability algorithm. We
present this step in two parts:

1. We give the algorithm for models where all connections that transport trigger events are
non-modal.

2. We extend it for the case of modal connections.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[Distribution Statement A] Approved for public release and unlimited distribution.

somk−1
i

⊥k
m0

⊥k
m1

⊥k
mn

· · ·

somk−1
j

⊥k
m0

⊥k
m1

⊥k
mn

· · ·

tgl

tgl tgl
tgl

Figure 2.1: Inactive Component Ck

2.3.1 Transitions for Non-Modal Connections

A non-modal connection is active in an SOM if all of these elements are active:

• the source component

• all components through which the connection passes

• the destination component

To determine whether a non-modal connection is active, look at the source and destination
components. If they are both active, the non-modal connection is too, since all their parent
components must be active.

The initial set TNi
0 is the set of mode transitions in the system instance component C0:

TNi
0 =

{
∅ if C0 has no mode transitions

{tn0, . . . , tnj} if C0 has j > 0 mode transitions

The individual transitions tni are constructed from the mode transition in Ck. For each com-
bination of triggering port and mode transition from mode ms to mode md, determine the
trigger sources TG. Then, add all transitions: {(⊤ms)} × TG×{(⊤md)}.

TN0 is the set of transitions where the source SOM is reachable from the initial SOM.

Adding SOM transitions during processing component Ck requires careful consideration of the
possible cases. At this point, we have created these sets:

• SOMk−1

• TNk−1

• SOMi
k

First, consider all SOMs somi ∈ SOMk−1 for which Ck is inactive and transitions tn =
(somi, tgl, somj) ∈ TNk−1. We disregard transitions where the trigger tgl is a port of Ck, be-
cause it is inactive and thus cannot emit the trigger event. If Ck is inactive in the target SOM
somj too, we add the following mode transition to TN i

k for each mode m in Ck:

(somk−1
i ×{⊥k

m}, tgl, somk−1
j ×{⊥k

m})

Figure 2.1 depicts this situation.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[Distribution Statement A] Approved for public release and unlimited distribution.

somk−1
i

⊥k
m0

⊥k
m1

⊥k
mn

· · ·

somk−1
j

⊤k
m0

⊤k
m1

⊤k
mn

· · ·

tgl

tgl tgl
tgl

Figure 2.2: Activating Component Ck (resume)

somk−1
i

⊥k
m0

somk−1
j

⊤k
m0

⊤k
m1

⊤k
mn

· · ·

tgl

tgl

Figure 2.3: Activating Component Ck (restart)

If the state of Ck changes to active in somj as shown in Figure 2.2 and Figure 2.3, we add the
following transitions to TNi

k:
2{

(somk−1
i ×{⊥k

m}, tgl, somk−1
j ×{⊤k

m})∀m ∈ Ck for policy resume

(somk−1
i ×{⊥k

m0
}, tgl, somk−1

j ×{⊤k
m0

}) for policy restart

2The AADL standard does not fully define the mode behavior in case of component activation and deactivation.
We adopt the interpretation that a component activated during an SOM transition with trigger tg does not simultane-
ously perform any internal mode transition, even if there is a transition triggered by tg. Similarly, we assume that a
component deactivated in an SOM transition does not simultaneously perform an internal mode transition.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[Distribution Statement A] Approved for public release and unlimited distribution.

somk−1
i

⊤k
m0

⊤k
m1

⊤k
mn

· · ·

somk−1
j

⊥k
m0

tgl

tgl

tgl

tgl

Figure 2.4: Deactivating Component Ck (restart)

somk−1
i

⊤k
m0

⊤k
m1

⊤k
mn

· · ·

somk−1
j

⊥k
m0

⊥k
m1

⊥k
mn

· · ·

tgl

tgl tgl
tgl

Figure 2.5: Deactivating Component Ck (resume)

Now we consider the cases where Ck is active in somi. If Ck is inactive in somj , the compo-
nent is deactivated in any SOM transition (somi, tgl, somj). If the component has only a sin-
gle target mode state ⊥m0 (i.e., it has a single mode only or restart activation semantics),
we add this transition to TN i

k for each mode m in Ck (see Figure 2.4):

(somk−1
i ×{⊤k

m}, tgl, somk−1
j ×{⊥k

m0
})

When there are several target mode states, that is, Ck has resume activation semantics, we
add a transition for each mode m in Ck (see Figure 2.5):

(somk−1
i ×{⊤k

m}, tgl, somk−1
j ×{⊥k

m})

In this case, the deactivated mode state stores the last active mode so it can be used in a
SOM transition that reactivates Ck (see Figure 2.2).

The remaining cases involve transitions where Ck remains active in the target SOM.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[Distribution Statement A] Approved for public release and unlimited distribution.

somk−1
i

⊤k
m0

⊤k
m1

⊤k
mn

· · ·

somk−1
j

⊥k
m0

⊥k
m1

⊥k
mn

· · ·

tgl

tgl tgl
tgl

Figure 2.6: Active Component Ck Without Internal Transition

If Ck does not contain any mode transition triggered by tgl, Ck does not change its mode in
the SOM transition. For each mode m of Ck, we add the following mode transition to TNk

(see Figure 2.6):

(somk−1
i ×{⊤k

m}, tgl, somk−1
j ×{⊤k

m})

Trigger tgl cannot be inactive, because it is active in somi and Ck is active.

If Ck contains a mode transition (m, tgl,m
′), we add the following transition to TNk:

(somk−1
i ×{⊤k

m}, tgl, somk−1
j ×{⊤k

m′})

For all modes m of Ck that have no outgoing transition triggered by tgl, we add the following
transition to TNk:

(somk−1
i ×{⊤k

m}, tgl, somk−1
j ×{⊤k

m})

Figure 2.7 illustrates this case for an internal mode transition between m0 and m1 in compo-
nent Ck.

In the last remaining case, Ck contains a mode transition (m, tg,m′) with a trigger that is not
part of any SOM transition between somi and somj . For each such mode transition, we add

the following SOM transition to TNk, if the trigger tg is active in somi (see Figure 2.8):

(somk−1
i ×{⊤k

m}, tg, somk−1
j ×{⊤k

m′})

Note that each set TNk (except the last one) may contain transitions that reference a trigger
source in a component Cj , j > k that has not yet been processed. We consider such a transi-
tion as active when evaluating SOM reachability. When processing Cj , such a transition will
be ignored if it starts in an SOM where Cj is inactive. Transitions that refer to triggers origi-
nating outside the system instance are considered to be always active.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[Distribution Statement A] Approved for public release and unlimited distribution.

somk−1
i

⊤k
m0

⊤k
m1

⊤k
mn

· · ·

somk−1
j

⊤k
m0

⊤k
m1

⊤k
mn

· · ·

tgl

tgl

tgl tgl

Figure 2.7: Active Component Ck with Internal Transition m0 → m1

somk−1
i

⊤k
m0

⊤k
m1

⊤k
mn

· · ·

tg

Figure 2.8: New Trigger tg in Ck with Internal Transition m0 → m1

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[Distribution Statement A] Approved for public release and unlimited distribution.

2.3.2 Transitions for Modal Connections

A modal connection can be inactive even if all components in the model are active. For non-
modal connections, it is sufficient to check that the originating component of a trigger is ac-
tive. For modal connections, we must also check if all segments of the connection that trans-
ports the trigger event are active in an SOM. Furthermore, for a particular transition to be
active, several connections might have to be active. This situation occurs when the same trig-
ger event triggers multiple component mode transitions simultaneously. Which transitions
happen simultaneously depends on which connections are active in an SOM. The algorithm
must be extended to record the set of connections that must be active for an SOM transition
to be possible.

It is possible for the same event to trigger mode transitions in multiple components via a sin-
gle connection. Listing 2.1 and Figure 2.9 illustrate the situation where transitions are trig-
gered in a component and its subcomponent by the same external event. The connection
segment to the outer component is always active, whereas the connection segment to the in-
ner component is active only if the outer component is in mode m0. The instance model for
Top.i contains a single connection instance ci that consists of these two segments. Following
the previous definition of when a connection instance is active, ci is active only if the outer
component is mode m0, so there are two possible SOMs:

• (⊤,⊤m0
,⊤m0

)

• (⊤,⊤m1 ,⊤m1)

Additional trigger events result in no further mode transitions because ci remains inactive.
This explanation is somewhat unsatisfactory, because triggering a mode transition in the outer
component does not seem to require the continuation of the connection into outer’s subcom-
ponents. As an alternative, we can treat event delivery to a mode transition and a subcom-
ponent equivalent to fan-out, that is, connections to several subcomponents from the same
parent component port. In the instance model, fan-out results in multiple independent con-
nection instances, one for each destination subcomponent.

In the following example, we adopt this view and consider partial connection instances for de-
livering trigger events. The relevant partial connections are the prefixes of a connection in-
stance that lead to a mode transition. We refer to such prefixes as trigger connections. A trig-
ger connection is active if and only if each of its segments is active. The example model, then,
has the following two trigger connections where tc1 is always active and tc2 is active if compo-
nent outer is in mode m0:

tc1 = (Top i.c)

tc2 = (Top i.c,Top i.outer.c)

The system can now reach the following SOMs when a sequence of trigger events arrives at
the external port:

• (⊤,⊤m0 ,⊤m10)

• (⊤,⊤m1
,⊤m11

)

• (⊤,⊤m0
,⊤m11

)

After the first trigger event, the SOM alternates between these two SOMs:

• (⊤,⊤m1 ,⊤m11)

• (⊤,⊤m0 ,⊤m11)

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[Distribution Statement A] Approved for public release and unlimited distribution.

1 system Top
2 end Top;
3
4 system implementation Top.i
5 subcomponents
6 outer: S.outer;
7 connections
8 c: port tg −> outer.tg;
9 end Top.i

10
11 system S
12 features
13 tg: in event port;
14 end S;
15
16 system implementation S.outer
17 subcomponents
18 inner: system S.inner;
19 connections
20 c: port tg −> inner.tg in modes (m0);
21 modes
22 m0: initial mode; m1: mode;
23 t0: m0 −[tg]−> m1;
24 t1: m1 −[tg]−> m0;
25 end s.outer;
26
27 system implementation S.inner
28 modes
29 m10: initial mode; m11: mode
30 t10: m10 −[tg]−> m11;
31 end inner;

Listing 2.1: Mode Transitions on Several Levels

m0 m1

m11m10

inner

outer

Top i

tg

tg

tg

c

c (in m0)

Figure 2.9: Graphical View of the Model from Listing 2.1

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[Distribution Statement A] Approved for public release and unlimited distribution.

We now define an SOM transition as a 4-tuple (s, tg, d, tc) ∈ SOMk×TG×SOMk×2TC, where
TG is the set of all trigger sources in the model and TC is the set of trigger connections. The
set tc consists of all trigger connections that must be active for the transition to be enabled.

All cases from the previous section must be modified as follows except where a trigger tg trig-
gers an SOM transition in SOMk and a mode transition in Ck:

• When adding transitions for component Ck, we disregard all transitions that are not en-
abled, because either the originating component is inactive or at least one of its trigger
connections in tc is inactive in the source SOM.

• When a mode transition t in Ck has a new active trigger, we add transitions for this
trigger and each active trigger connection by which the trigger event can reach t. The
same event could potentially reach a mode transition via more than one connection, and
each of these connections can be active independent of the others.

Special consideration is required when both of these things are present:

• an SOM transition (somi, tg, somj , tc) ∈ TNk−1

• a transition (m, tg,m′) in component Ck

Assume tg reaches Ck via a trigger connection c. If c is active in somi× {⊤m}, we must add
this SOM transition:

(somi×{⊤m}, tg, somj×{⊤m′}, C ∪ c)

In contrast, when c is not active, we add this transition:

(somi×{⊤m}, tg, somj×{⊤m}, C)

In general, it is unknown which connections are active before all components have been pro-
cessed, except if c is a non-modal connection:

• If c is non-modal, it is active, and only the first candidate transition must be added.

• If c is modal, we must add both transitions as candidates and disregard transitions that
will become inactive when additional components are processed.

The SOM transitions of the example model are

TN = {(som0, tg, som1, {cn1}),
(som1, tg, som2, {cn1, cn2}),
(som2, tg, som1, {cn1})}, where

som0 = (⊤,⊤m0
,⊤m10

),

som1 = (⊤,⊤m1
,⊤m11

),

som2 = (⊤,⊤m0
,⊤m11

)

Once all N components in the model are processed, the last set of SOM transitions TNN may
still contain SOM transition candidates that must be discarded before determining final SOM
reachability. At this point, all the remaining transitions are active, which implies that all con-
nections that occur in a transition are active. This means that we can remove any SOM tran-
sition that is dominated by another transition. A transition tn = (somi, tg, somj , C) dominates
another transition tn′ = (somi, tg, somk, C

′), if C ′ ⊂ C.

Note that adding transition candidates can potentially lead to a combinatorial explosion of
transitions, most of which may be removed only in this last step.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[Distribution Statement A] Approved for public release and unlimited distribution.

2.4 Testing SOM Reachability

An SOM can be discarded if it is not reachable from the initial SOM. The initial SOM som0

is the SOM that consists of initial component modes only, that is, each mode state in som0 is
one of the following:

• ⊤m0
for an active component

• ⊥m0
for an inactive component

The initial SOM is, of course, reachable. Another SOM som′ is reachable if TNi
k contains a

transition from a reachable mode to som′.

Processing parent components before their subcomponents guarantees that an unreachable
SOM cannot become reachable by extending it with modes from subsequent components.
Adding a subcomponent cannot influence whether a component is active or activate an inac-
tive transition. Therefore, we can discard unreachable SOMs after processing each component
to keep the number of candidate SOMs as small as possible.

2.5 The Full Algorithm

Putting everything together, we arrive at the algorithm shown in this section. The first ver-
sion (see Figure 2.10) is simpler but creates the same transitions multiple times, whereas the
second version (see Figure 2.11) creates each transition only once.

In the pseudocode, we use the notation l[k] to extract the k-th element from a list l; and (t;n)
to append an element n to a tuple t:

if t = (e1, e2, . . . , en), then (t; e) = (e1, e2, . . . , en, e)

For set comprehension, we use an abbreviated notation. For example, if the variable a is de-
fined elsewhere, the notation

{(b, c) | ∃(a, b, c) ∈ SET}

is short for

{(b, c) | ∃x, b, c : (x, b, c) ∈ SET ∧ x = a)}.

We use several predefined functions:

• len(l) – returns the length of the list l

• modes(C) – returns the set of modes of component C

• init(C) – returns the initial mode of component C

• trans(C) – returns the mode transitions of component C as a set of tuples (s, tg, d, c),
where

– s and d are the source and destination modes of the transition

– tg is the source feature of the trigger event

– c is the trigger connection

• state(somk−1,m) – returns the mode state st ∈ {⊤m,⊥m} such that (somk; st) ∈ SOMk,
if such an st exists; otherwise returns ⊥m0

, where m0 is the initial state of the compo-
nent containing m

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[Distribution Statement A] Approved for public release and unlimited distribution.

• MS0(C), MSk(C, som) – returns the set of mode states of component C = C0, or C =
Ck, k ≥ 1 for som ∈ SOMk as defined in Section 2.2

• active(som, e), active(som,E) – returns true if and only if the AADL element e (or none
of the AADL elements in the set E) is inactive based on the mode states in the given
SOM. Each element can be a component, a trigger, or a connection.

• removeUnreachable(SOM, i,TN) – returns (SOM′,TN′) where SOM′ ⊂ SOM is the set
of SOMs reachable from the initial SOM i, and TN′ ⊂ TN is the set of SOM transitions
starting at an element of SOM′

Input : The list CS of component instances as visited by pre-order traversal of an AADL instance
model M

Output: The tuple (SOM, i,TN), where SOM is the set of reachable system operation modes in
M , i is the initial SOM, and TN is the set of transitions between them

for k← 0 to len(CS)− 1 do
C← CS [k]
if k = 0 then // root component

SOM0 ← MS0(C)
i← ⊤init(C)

TN0 ← {(⊤m, tg,⊤m′ , {tc}) | ∃(m, tg,m′, tc) ∈ trans(C)}
else

SOMk ←
⋃

s∈SOMk−1
s×MSk(C, s)

i← (i; state(i, init(C))
TNk ← ∅
forall (ps, ptg, pd,TC) ∈ TNk−1 do

PTGS← {tg | ∃(ps, tg, pd, TC) ∈ TNk−1} // previously used triggers
forall (ms, tg,md, tc) ∈ trans(C) do

TGS← {tg | active(ps,C) ∧ ∃(m, tg,m′, c) ∈ trans(C)} // triggers used in Ck

s← (ps; state(ps,ms))
if ptg = tg ∧ active(s, {ptg} ∪ TC)} ∧ active(s, {C, tg, tc}) then

tn← (s, tg, (pd; state(pd,md)),TC ∪ {tc}) // merged transition (Fig. 2.7)
TNk ← TNk ∪ {tn}

else
if ptg /∈ TGS ∧ active(s, {ptg} ∪ TC) then

tn← (s, ptg, (pd; state(pd,ms)),TC) // copy transition (Fig. 2.6)
TNk ← TNk ∪ {tn}

if tg /∈ PTGS ∧ active(s, {C, tg, tc}) then
tn← (s, tg, (ps; state(ps,md)), {tc}) // transition for new trigger (Fig. 2.8)
TNk ← TNk ∪ {tn}

(SOMk,TNk)← removeUnreachable(SOMk, i,TNk)

// remove dominated transitions
TNk ← TNk \{(s, tg, d, TC) ∈ TNk | ∃(s, tg, d, TC′) ∈ TNk : TC ⊊ TC′}
(SOM,TN)← removeUnreachable(SOMk, i,TNk)

return (SOM, i,TN)

Figure 2.10: Reachability Algorithm

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
[Distribution Statement A] Approved for public release and unlimited distribution.

Input : The list CS of component instances as visited by pre-order traversal of an AADL instance
model M

Output: The tuple (SOM, i,TN), where SOM is the set of reachable system operation modes in
M , i is the initial SOM, and TN is the set of transitions between them

for k← 0 to len(CS)− 1 do
C← CS [k]
if k = 0 then // root component

SOM0 ← MS0(C)
i← ⊤init(C)

TN0 ← {(⊤m, tg,⊤m′ , {tc}) | ∃(m, tg,m′, tc) ∈ trans(C)}
else

SOMk ←
⋃

s∈SOMk−1
s×MSk(C, s)

i← (i; state(i, init(C))
TNk ← ∅
forall ps ∈ SOMk do

TGS← if active(ps,C) then {tg | ∃(m, tg,m′, c) ∈ trans(C)} else ∅ // triggers used in C
PTGS← {tg | ∃(ps, tg, pd, TC) ∈ TNk−1} // previously used triggers
forall (ps, ptg, pd,TC) ∈ TNk−1 do // propagate transitions from TNk−1 to TNk

if ptg ∈ TGS then
forall (ms, tg,md, tc) ∈ trans(C) such that tg = ptg do

s← (ps; state(ps,ms))
if active(s, {tg} ∪ TC) then

if active(s, {tg, tc}) then // create merged transition (Fig. 2.7)
tn← (s, tg, (pd; state(pd,md)),TC ∪ {tc})

else // copy transition (Fig. 2.6)
tn← (s, tg, (pd; state(pd,ms)),TC)

TNk ← TNk ∪ {tn}
else

if active(s, {tg, tc}) then // like new trigger (Fig. 2.8)
tn← (s, tg, (ps; state(ps,md)), {tc})
TNk ← TNk ∪ {tn}

else // copy transition (Fig. 2.6)
forall m ∈ modes(C) do

s← (ps; state(ps,m))
if active(s, {ptg} ∪ TC) then

tn← ((s, ptg, (pd; state(pd,m)),TC)
TNk ← TNk ∪ {tn}

forall (ms, tg,md, tc) ∈ trans(C) do // transitions for new triggers (Fig. 2.8)
s← (ps; state(ps,ms))
if tg /∈ PTGS ∧ active(s, {C, tg, tc}) then

tn← (s, tg, (ps; state(ps,md)), {tc})
TNk ← TNk ∪ {tn}

(SOMk,TNk)← removeUnreachable(SOMk, i,TNk)

// remove dominated transitions
TNk ← TNk \{(s, tg, d, TC) ∈ TNk | ∃(s, tg, d, TC′) ∈ TNk : TC ⊊ TC′}
(SOM,TN)← removeUnreachable(SOMk, i,TNk)

return (SOM, i,TN)

Figure 2.11: Reachability Algorithm Without Duplicate Transition Creation

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
[Distribution Statement A] Approved for public release and unlimited distribution.

3 Example Models

In this section, we show four example models and their resulting SOMs and SOM transitions.
Some examples have variants to demonstrate how the result changes when components or con-
nections are active in different modes.

The analysis results are shown in form of a diagram to be read as follows:

• Each rectangle represents a model component and is labeled with a component’s name.
The components are listed in the order in which they are processed by the reachability
analysis algorithm.

• Inside each component, we show possible mode states as ovals (active or inactive, and
associated component mode). The same mode state may occur multiple times if it is
part of multiple SOMs. Mode states are connected with read lines to form one or more
tree structures.

• The reachable SOMs of the system are the paths from the root to a leaf of a tree. Such
a path selects a mode state for each component in an SOM. The initial SOM is the sin-
gle path where all mode states are filled.

The SOM transitions are shown as arrows between the tree leaf nodes in the component at
the bottom of the diagram. Each transition is labeled with the fully qualified name of the
trigger event port in the instance model.

3.1 Non-Modal Connections

In the first three example models, all connections are non-modal.

Example 1

The first example (Listing 3.1 and Figure 3.1) has a modal system instance with mode transi-
tions triggered by

• an external event e0

• a subcomponent a emitting a trigger event e1

• a subcomponent b with modes and transitions triggered by the event from a

In the first variant (3.1a), subcomponents a and b are always active. In the next two variants
(3.1b and 3.1c), one subcomponent is active only in mode m0. The final variant (3.1d) pre-
vents the two subcomponents from being active simultaneously so a mode change to m11 in b
is never triggered.

Note that for the second variant (3.1b), the components are processed in a different order
compared to the other variants. This is an artifact of the model instantiation as implemented
in OSATE: Refined subcomponents are inserted into the instance model before inherited com-
ponents.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[Distribution Statement A] Approved for public release and unlimited distribution.

1 package Example 1
2 public
3 system S
4 features
5 e0: in event port;
6 end S;
7
8 system implementation S.i0
9 subcomponents

10 a: system A;
11 b: system B;
12 connections
13 c: port a.e1 −> b.e1;
14 modes
15 m0: initial mode;
16 m1: mode;
17 m0 −[e0]−> m1;
18 m1 −[e0]−> m0;
19 end S.i0;
20
21 system implementation S.i1 extends S.i0
22 subcomponents
23 a: refined to system A in modes (m0);
24 end S.i1;
25
26 system implementation S.i2 extends S.i0
27 subcomponents
28 b: refined to system B in modes (m0);
29 end S.i2;
30
31 system implementation S.i3 extends S.i0
32 subcomponents
33 a: refined to system A in modes (m0);
34 b: refined to system B in modes (m1);
35 end S.i3;
36
37 system A
38 features
39 e1: out event port;
40 end A;
41
42 system B
43 features
44 e1: in event port;
45 modes
46 m10: initial mode;
47 m11: mode;
48 m10 −[e1]−> m11;
49 m11 −[e1]−> m10;
50 end B;
51 end Example 1;

Listing 3.1: Example 1

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[Distribution Statement A] Approved for public release and unlimited distribution.

S_i0_Instance

a

b

⊤[m0]

⊤

⊤[m1]

⊤

⊤[m10]

⊤[m11] ⊤[m10]

⊤[m11]

a.e1 e0a.e1

e0

e0

a.e1e0 a.e1

(a) System S.i0

S_i1_Instance

b

a

⊤[m0]

⊤[m10] ⊤[m11]

⊤[m1]

⊤[m10] ⊤[m11]

⊤

⊤ ⊥

⊥

a.e1 e0a.e1

e0

e0

e0

(b) System S.i1

S_i2_Instance

a

b

⊤[m0]

⊤

⊤[m1]

⊤

⊤[m10]

⊤[m11]

⊥[m10]

a.e1

e0

a.e1

e0

e0

(c) System S.i2

S_i3_Instance

a

b

⊤[m0]

⊤

⊤[m1]

⊥

⊥[m10]

⊤[m10]

e0 e0

(d) System S.i3

Figure 3.1: SOMs and SOM Transitions for Example 1

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[Distribution Statement A] Approved for public release and unlimited distribution.

Example 2

In this example (Listing 3.2 and Figure 3.2), we show a system implementation with two
modes m0 and m1 and with mode transitions back and forth that are triggered by an event
from a subcomponent a.

In the first variant (3.2a), a is always active, so both transitions are possible. The second vari-
ant (3.2b) has a active only in the initial mode, so the system can reach, but never leave,
mode m1. In the third variant (3.2c), a is not active in the initial mode, such that no mode
transition can occur.

1 package Example 2
2 public
3 system S
4 end S;
5
6 system implementation S.i0
7 subcomponents
8 a: system A;
9 modes

10 m0: initial mode;
11 m1: mode;
12 m0 −[a.e1]−> m1;
13 m1 −[a.e1]−> m0;
14 end S.i0;
15
16 system implementation S.i1 extends S.i0
17 subcomponents
18 a: refined to system A in modes (m0);
19 end S.i1;
20
21 system implementation S.i2 extends S.i0
22 subcomponents
23 a: refined to system A in modes (m1);
24 end S.i2;
25
26 system A
27 features
28 e1: out event port;
29 end A;
30 end Example 2;

Listing 3.2: Example 2

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[Distribution Statement A] Approved for public release and unlimited distribution.

S_i0_Instance

a

⊤[m0]

⊤

⊤[m1]

⊤
a.e1

a.e1

(a) System S.i0

S_i1_Instance

a

⊤[m0]

⊤

⊤[m1]

⊥
a.e1

(b) System S.i1

S_i2_Instance

a

⊤[m0]

⊥

(c) System S.i2

Figure 3.2: SOMs and SOM Transitions for Example 2

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[Distribution Statement A] Approved for public release and unlimited distribution.

Example 3

In this example (Listing 3.3 and Figure 3.3), the system instance has an array of subcompo-
nents with two modes each. All mode transitions in the array components are triggered by the
same external event; transitions happen simultaneously in all array components, resulting in
two SOMs.

1 package Example 3
2 public
3 system S
4 end S;
5
6 system implementation S.i0
7 subcomponents
8 a: system A;
9 b: system B.i[4];

10 connections
11 c: port a.e1 −> b.e1 {Connection Pattern => ((One To All));};
12 end S.i0;
13
14 system A
15 features
16 e1: out event port;
17 end A;
18
19 system B
20 features
21 e1: in event port;
22 end B;
23
24 system implementation B.i
25 modes
26 m10: initial mode;
27 m11: mode;
28 m10 −[e1]−> m11;
29 m11 −[e1]−> m10;
30 end B.i;
31 end Example 3;

Listing 3.3: Example 3

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[Distribution Statement A] Approved for public release and unlimited distribution.

S_i0_Instance

a

b[1]

b[2]

b[3]

b[4]

⊤

⊤

⊤[m10] ⊤[m11]

⊤[m10] ⊤[m11]

⊤[m10] ⊤[m11]

⊤[m10] ⊤[m11]
a.e1

a.e1

Figure 3.3: SOMs and SOM Transitions for Example 3

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[Distribution Statement A] Approved for public release and unlimited distribution.

3.2 Modal Connections

The final example uses modal connections.

Example 4

The fourth example (Listing 3.4 and Figure 3.4) has

• a modal system instance with mode transitions triggered by an external event e0

• a subcomponent a emitting a trigger event e1

• subcomponents b1 and b2 with modes and transitions triggered by the event from a

The model has three variants, where the connections from a to b1 and b2 are

• always active (S.i0, Figure 3.4a)

• active in mode m1 only (S.i1, Figure 3.4b)

• active in different modes (S.i2, Figure 3.4c)

When the connections are active in different modes (variant 3.4c), the mode transitions in
subcomponents b1 and b2 are no longer simultaneous, resulting in more reachable SOMs than
in the first two variants.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
[Distribution Statement A] Approved for public release and unlimited distribution.

1 package Example 4
2 public
3 system S
4 features
5 e0: in event port;
6 modes
7 m0: initial mode;
8 m1: mode;
9 m0 −[e0]−> m1;

10 m1 −[e0]−> m0;
11 end S;
12
13 system implementation S.i0
14 subcomponents
15 a: system A;
16 b1: system B;
17 b2: system B;
18 connections
19 c1: port a.e1 −> b1.e1;
20 c2: port a.e1 −> b2.e1;
21 end S.i0;
22
23 system implementation S.i1 extends S.i0
24 connections
25 c1: refined to port in modes (m1);
26 c2: refined to port in modes (m1);
27 end S.i1;
28
29 system implementation S.i2 extends S.i0
30 connections
31 c1: refined to port in modes (m1);
32 c2: refined to port in modes (m0);
33 end S.i2;
34
35 system A
36 features
37 e1: out event port;
38 end A;
39
40 system B
41 features
42 e1: in event port;
43 modes
44 m10: initial mode;
45 m11: mode;
46 m10 −[e1]−> m11;
47 m11 −[e1]−> m10;
48 end B;
49 end Example 4;

Listing 3.4: Example 4

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
[Distribution Statement A] Approved for public release and unlimited distribution.

S_i0_Instance

a

b1

b2

⊤[m0]

⊤

⊤[m1]

⊤

⊤[m10] ⊤[m11] ⊤[m10] ⊤[m11]

⊤[m10]

⊤[m11]

⊤[m10]

⊤[m11]

a.e1

e0

a.e1

e0

e0

a.e1

e0

a.e1

(a) System S.i0

S_i1_Instance

a

b1

b2

⊤[m0]

⊤

⊤[m1]

⊤

⊤[m10] ⊤[m11]⊤[m10] ⊤[m11]

⊤[m10]

⊤[m11]

⊤[m10]

⊤[m11]

e0

e0

e0

a.e1

e0

a.e1

(b) System S.i1

S_i2_Instance

a

b1

b2

⊤[m0]

⊤

⊤[m1]

⊤

⊤[m10]⊤[m11]⊤[m10] ⊤[m11]

⊤[m10]

⊤[m11]

⊤[m11]

⊤[m10]

⊤[m10]

⊤[m11]⊤[m10]

⊤[m11]

a.e1e0 a.e1

e0

e0a.e1

e0

a.e1 e0

a.e1

a.e1

e0 e0 a.e1a.e1e0

(c) System S.i2

Figure 3.4: SOMs and SOM Transitions for Example 4

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
[Distribution Statement A] Approved for public release and unlimited distribution.

4 Conclusion and Future Work

In this report, we described an algorithm that determines the system operation modes and
transitions between them for AADL models under a few simplifying assumptions. In this sec-
tion, we give a brief overview of how the algorithm can be extended to include a wider set of
AADL models. As future work, we want to implement all these extensions and potentially in-
tegrate the analysis with the instantiation process in OSATE.

Derived Modes

It is also possible to extend the algorithm to handle models with derived modes. If a compo-
nent C with derived modes is active, we create its mode state as ⊤m̄, and the associated mode
m̄ is computed from the mode mapping in the AADL model. If C is inactive, its mode state is
⊥. We cannot associate a single mode with this state because C’s mode at resumption is de-
termined by the resuming mode in the parent component. As a result, the resumption policy
property does not apply to C. This straightforward change is already part of our Java imple-
mentation.

Internal and Processor Features

The next assumption concerns the origin of trigger events. So far we assumed that these start
at a port of a component. However, AADL also allows internal features as the source of an
event.

In AADL, an internal feature if can be referenced as self.if in a mode transition or a
connection declaration. For the purposes of analyzing SOM reachability, such a port is equiva-
lent to a subcomponent port, where the subcomponent is left out of the model. We can, there-
fore, preprocess the AADL model, replace each internal feature with a new subcomponent
that has a single event (or event data) port, and use the new port wherever the internal port
occurs. These additional components are non-modal and have only an initial mode, such that
their mode states can simply be removed from the SOMs in the algorithm’s output.

Similarly, an AADL processor feature pf can be referenced as processor.pf in a mode
transition or connection declaration. It acts as a proxy for a feature of the processor the
component is bound to, such that the actual port is determined by the value of property
Actual Processor Binding. In the reachability analysis, a processor feature can be han-
dled by extending trigger connections that end at a processor feature with a segment that
ends at the actual processor’s port. If the processor binding is modal, multiple extended trig-
ger connections must be created, one for each binding, and the added segment must be modal.
The analysis algorithm itself does not need to be modified.

Multiple Synchronization Domains

In an AADL model with multiple synchronization domains Dj , 0 ≤ j ≤ n, each domain is a
synchronized system on its own. For the SOM reachability analysis, we must consider events
that originate in one domain and trigger mode transitions in another. Events that are trans-
mitted between domains can have arbitrary delays, making it impossible, in general, to derive
constraints on the order of such events. It should be possible to analyze each domain sepa-
rately, treating inter-domain events as external events for purposes of the analysis, and then
merging the results (SOM, i,TN)j into a combined transition system. Working out the details
of how to merge the results is left for future work.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[Distribution Statement A] Approved for public release and unlimited distribution.

A Appendix

In this appendix, we describe the data model and Java implementation of the SOM reachabil-
ity analysis.

A.1 Data Model

The data model for the analysis implementation is defined as an Ecore model using the
Eclipse Modeling Framework (EMF) [4]. Figure A.2 shows a class diagram for the data model.

The top-level class is the SOMGraph, which contains the data objects created for the analy-
sis, and the result of the analysis is the fully filled SOMGraph data structure, from which the
reachable SOMs and SOM transitions can be extracted.

SOMs are represented as a tree of SOMNodes, where each node represents a mode state of a
component in the instance model. The SOMNodes for a component are owned by a SOMLevel
object that references the component instance. There is one level per component instance.
The levels are organized in a list that is owned by the graph object.

With the two subclasses ActiveNode and InactiveNode, we represent mode states as fol-
lows:

Mode State Class Referenced
Mode

Description

⊤ ActiveNode Active component without modes
⊤m ActiveNode m Active component in mode m
⊥ InactiveNode Inactive component without modes
⊥m InactiveNode m Inactive component resuming in mode m

Each SOMNode object references its predecessor in the current SOM. The sequence of mode
states in an SOM is the reverse of the sequence of SOMNodes starting from the last level and
following the parent references to a node on the first level. The set SOMk, then, is the set of
all such paths that start on the level for component Ck.

The initial SOM is identified by the path that starts at the initial mode (initialNode) of
the last level. The parent of an initial node in level k is the initial node of level k − 1 if k > 1.

Figure A.1 shows a notional example of the correspondence between the SOM graph and the
components in the instance model. The gray nodes mark the initial SOM.

In addition to nodes, a level also contains transitions between nodes on this level. Each
Transition object represents a transition or transition candidates between SOMs in this
level, that is, a transition’s source (src) and destination (dst) nodes are contained in the
same level as the transition itself. The transitions in the level for a component instance
Ck are the elements of TNk. Each transition references the set of connections (reference
connections) that must be active for the transition to be enabled.

Each transition references the event that can trigger it. These events are represented by class
Trigger. A trigger also references the component in which the event originates. All possible
triggers are stored in a map TriggerMap that enables finding the trigger that corresponds
to, for example, an event port instance. Because of the way EMF handles object identity, we
cannot use features directly as keys in the map but instead must create separate key objects
(TriggerKey). The data model supports regular component and internal features as trig-
gers. However, internal features are not yet supported in the implementation, because they
are not part of the AADL instance model in OSATE.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
[Distribution Statement A] Approved for public release and unlimited distribution.

SOM Graph

Level 0

Level 1

Level 2

Level 3

Instance Model

C0

C1 C2

C3

Figure A.1: Relationship Between SOM Graph and Components Instances

Each SOMNode has additional references to components and connections that are known to be
inactive in the SOM that this node represents. These lists store the results of determining if a
component or connection is inactive to avoid repeated calculation of the same results.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
[Distribution Statement A] Approved for public release and unlimited distribution.

Fi
gu

re
A

.2
:

C
la

ss
D

ia
gr

am
fo

rt
he

A
na

ly
si

s
D

at
a

M
od

el

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
[Distribution Statement A] Approved for public release and unlimited distribution.

A.2 Java Implementation

This section includes the Java code that implements the SOM reachability algorithm. The
OSATE plug-in includes additional code that is generated from the Ecore data model de-
scribed in Section A.1, as well as code and configuration files needed for integration into the
Eclipse plug-in framework.

The implementation is in a class ReachabilityAnalyzer. The field graph contains the
data structure that is filled by an invocation of method createSOMGraph (line 23).

Compared to the algorithm presented in Chapter 2, an additional step is needed be-
cause the instance model does not contain the necessary trigger connections. The method
populateTriggers (line 66) collects the event ports that can trigger a mode transition and
also creates the trigger connections. These connections are added to the instance model EMF
resource such that we can use EMF functionality to find connections that traverse a compo-
nent to determine if the connection is active. Note that we create trigger connections also if
no actual connection is involved, that is, if

• an external event triggers a mode transition in the system instance object

• a mode transition is triggered from a subcomponent event port that is not connected
inside the subcomponent

The first level is then populated with nodes and transitions from the system instance in
method populateRootLevel (line 204). The levels for each subsequent component are
filled by a call to populateNextLevel in processComponent (line 55).

After levels for all components have been created, the final step is to delete any re-
maining dominated transition candidates from the last level. This happens in method
removeDominatedTransitions (line 401).

For each component, we do the following:

• create a new level

• add nodes based on the component’s modes (populateNodes)

• add transitions based on transitions on the previous level and the component’s mode
transitions (populateTransitions)

• mark reachable nodes

• remove unreachable nodes (checkReachability and cleanUp)

The nodes for a component level are created in populateNodes (line 271). The implemen-
tation also handles derived nodes: If a component with derived modes is active, we create an
ActiveNode with the mode value computed from the mode mapping in the AADL model.
For an inactive component with derived modes, we create an InactiveNode without a
mode. This is sufficient because the mode at resumption is determined by the resuming mode
in the parent component.

If a component is inactive, we initially create InactiveNodes for each component mode. We
later create the transitions based on the resumption policy so superfluous inactive nodes are
unreachable.

The transitions for a level (for component Ck) are created in populateTransitions
(line 343) in two steps:

1. For a given parent node pn, we add transitions to its child nodes based on Ck’s mode
transitions, provided Ck is active in both the SOM represented by pn and the target
SOM.

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
[Distribution Statement A] Approved for public release and unlimited distribution.

• If the mode transition in Ck has the same trigger as a transition out of pn, the
transitions are merged into one.

• If it does not, a new transition is created.

This step handles the situations shown in Figure 2.8 and one transition in Figure 2.7.

2. We propagate the transitions that leave pn to the child nodes (see Figure 2.6). For
merged transitions, we also add a modal trigger connection. For merged transitions that
are triggered via a non-modal connection, we store the parent transition and child node
in a map skip to indicate that the parent transition should not be propagated to the
child node because it is dominated by the child transition.

Note that no special handling for transitions between derived modes is necessary since
such a component cannot contain mode transitions. All transitions between nodes repre-
senting derived modes are propagated from the previous level.

1 public final class ReachabilityAnalyzer {
2
3 private SOMGraph graph;
4
5 private SOMLevel lastLevel;
6
7 /** Container for trigger connections */
8 private ComponentInstance tcHolder;
9

10 /** Map component instances to the corresponding level in the SOM graph */
11 private Map<ComponentInstance, SOMLevel> ci2sl = new HashMap<>();
12
13 /**
14 * Create a reachability analyzer with default configuration
15 */
16 public ReachabilityAnalyzer() {
17 }
18
19 /**
20 * Fill the SOM graph data for an instance model
21 * @param root − the system instance
22 */
23 public void createSOMGraph(ComponentInstance root) {
24 var rs = root.eResource().getResourceSet();
25 var uri = makeURI(root);
26 var res = rs.getResource(uri, false);
27
28 if (res == null) {
29 res = rs.createResource(uri);
30 } else {
31 res.unload();
32 }
33 graph = new SOMGraph();
34 res.getContents().add(graph);
35
36 // create dummy component to hold trigger connections
37 tcHolder = InstanceFactory.eINSTANCE.createComponentInstance();
38 root.eResource().getContents().add(tcHolder);
39
40 // populate triggers and create trigger connections
41 populateTriggers(root);
42
43 // fill first level
44 populateRootLevel(root);
45 // process remaining components
46 root.getComponentInstances().stream().forEach(this::processComponent);
47
48 removeDominatedTransitions();
49 }
50
51 /**
52 * Process component instances depth−first, pre−order
53 * @param c − the current component instance
54 */
55 private void processComponent(ComponentInstance c) {
56 populateNextLevel(c);

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
[Distribution Statement A] Approved for public release and unlimited distribution.

57 c.getComponentInstances().stream().forEach(this::processComponent);
58 }
59
60 /**
61 * Add mode transition triggers to the SOM graph and create trigger connections
62 * that connect the triggers to the transitions. The connections are added to a
63 * synthetic component at the root level of the instance model.
64 * @param root − the system instance
65 */
66 private void populateTriggers(ComponentInstance root) {
67
68 var visitor = new InstanceSwitch<Boolean>() {
69
70 @Override
71 public Boolean caseComponentInstance(ComponentInstance ci) {
72 return false;
73 }
74
75 @Override
76 public Boolean caseModeTransitionInstance(ModeTransitionInstance mt) {
77 for (var f : mt.getTriggers()) {
78 Iterator<ConnectionReference> crIter = CrossReferenceUtil.getInverse(
79 InstancePackage.eINSTANCE.getConnectionReference Destination(), f, f.eResource());
80 if (f.getContainingComponentInstance() == mt.getContainingComponentInstance()) {
81 // triggered from outside
82 if (f.getContainingComponentInstance() instanceof SystemInstance) {
83 // f is a feature of the system instance that triggers a
84 // mode transition in the system instance itself
85 addTrigger(f);
86 addTriggerConnection(f, mt);
87 }
88 } else {
89 // triggered from inside
90 if (!crIter.hasNext()) {
91 // f is subcomponent feature that is not connected inside the subcomponent
92 addTrigger(f);
93 addTriggerConnection(f, mt);
94 }
95 }
96 while (crIter.hasNext()) {
97 // trigger comes via a connection
98 var cr = crIter.next();
99 var conn = (ConnectionInstance) cr.getOwner();

100 addTrigger(conn.getSource());
101 addTriggerConnection(conn, cr, mt);
102 }
103 }
104 return true;
105 }
106
107 @Override
108 public Boolean defaultCase(EObject object) {
109 return true;
110 }
111
112 /**
113 * Create a trigger in the SOM graph
114 * @param f − the trigger in the instance model
115 */
116 private void addTrigger(ConnectionInstanceEnd f) {
117 Assert.isTrue(f instanceof FeatureInstance, ”connection doesn’t start with feature”);
118 var tk = new FeatureKey((FeatureInstance) f);
119 graph.getTriggers().putIfAbsent(tk, tk.getTrigger());
120 }
121
122 /**
123 * Create a trigger connection from a connection instance.
124 * @param conn − the connection in the instance model
125 * @param last − the last segment in the trigger connection
126 * @param mt − the triggered mode transition
127 */
128 private void addTriggerConnection(ConnectionInstance conn, ConnectionReference last,
129 ModeTransitionInstance mt) {
130 var crs = new ArrayList<ConnectionReference>();
131 int tcLen = 0;
132 for (var cr : conn.getConnectionReferences()) {
133 crs.add(cr);
134 tcLen += 1;
135 if (cr == last) {

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
[Distribution Statement A] Approved for public release and unlimited distribution.

136 break;
137 }
138 }
139 for (var c : tcHolder.getConnectionInstances()) {
140 if (c.getSource() == conn.getSource() && c.getDestination() == mt
141 && c.getConnectionReferences().size() == tcLen) {
142 int i = 0;
143 while (i < tcLen) {
144 var cr0 = c.getConnectionReferences().get(i);
145 var cr1 = crs.get(i);
146
147 if (cr0.getContext() == cr1.getContext()
148 && cr0.getConnection() == cr1.getConnection()) {
149 i++;
150 }
151 }
152 if (i >= tcLen) {
153 return;
154 }
155 }
156 }
157 var tc = InstanceFactory.eINSTANCE.createConnectionInstance();
158 tc.setKind(ConnectionKind.MODE TRANSITION CONNECTION);
159 tc.setSource(conn.getSource());
160 tc.setDestination(mt);
161 boolean modal = false;
162 for (var cr : crs) {
163 var r = InstanceFactory.eINSTANCE.createConnectionReference();
164 r.setContext(cr.getContext());
165 r.setConnection(cr.getConnection());
166 tc.getConnectionReferences().add(r);
167 modal = modal | | !cr.getConnection().getAllInModes().isEmpty();
168 }
169 tcHolder.getConnectionInstances().add(tc);
170 }
171
172 /**
173 * Create a trigger connection without connection instance.
174 * @param f − the triggering feature
175 * @param mt − the triggered mode transition
176 */
177 private void addTriggerConnection(FeatureInstance f, ModeTransitionInstance mt) {
178 for (var c : tcHolder.getConnectionInstances()) {
179 if (c.getSource() == f && c.getDestination() == mt
180 && c.getConnectionReferences().isEmpty()) {
181 return;
182 }
183 }
184 var tc = InstanceFactory.eINSTANCE.createConnectionInstance();
185 tc.setSource(f);
186 tc.setDestination(mt);
187 tcHolder.getConnectionInstances().add(tc);
188 }
189
190 };
191
192 for (var iter = EcoreUtil.<EObject> getAllContents(root, true); iter.hasNext();) {
193 var eo = iter.next();
194 if (visitor.doSwitch(eo)) {
195 iter.prune();
196 }
197 }
198 }
199
200 /**
201 * Add modes and transitions for the root component
202 * @param root
203 */
204 private void populateRootLevel(ComponentInstance root) {
205 var newLevel = createSOMLevel(root);
206 var nodes = newLevel.getNodes();
207 var transitions = newLevel.getTransitions();
208 SOMNode initial = null;
209
210 if (root.getModeInstances().isEmpty()) {
211 // system instance has no modes
212 var n = new ActiveNode();
213 initial = n;
214 nodes.add(n);

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
[Distribution Statement A] Approved for public release and unlimited distribution.

215 } else {
216 // system instance has modes
217 var somNodes = new HashMap<ModeInstance, SOMNode>();
218 for (var m : root.getModeInstances()) {
219 var n = createActiveNode(m);
220 nodes.add(n);
221 if (m.isInitial()) {
222 Assert.isTrue(initial == null, ”initial already set”);
223 initial = n;
224 }
225 somNodes.put(m, n);
226 }
227 for (var mt : root.getModeTransitionInstances()) {
228 for (var tc : mt.getDstConnectionInstances()) {
229 var s = somNodes.get(mt.getSource());
230 var d = somNodes.get(mt.getDestination());
231 var end = tc.getSource();
232 var tk = new FeatureKey((FeatureInstance) end);
233 var tg = graph.getTriggers().get(tk);
234 var t = createTransition(s, d, tg, tc);
235 transitions.add(t);
236 }
237 }
238 }
239
240 // mark reachable som nodes in new level
241 Objects.requireNonNull(initial);
242 newLevel.setInitialNode(initial);
243 checkReachability(initial);
244 cleanUp(newLevel);
245
246 lastLevel = newLevel;
247 }
248
249 /**
250 * Add modes of current component to the SOMGraph.
251 *
252 * @param c
253 */
254 private void populateNextLevel(ComponentInstance c) {
255 var newLevel = createSOMLevel(c);
256
257 populateNodes(newLevel, c);
258 populateTransitions(newLevel, c);
259
260 checkReachability(newLevel.getInitialNode());
261 cleanUp(newLevel);
262
263 lastLevel = newLevel;
264 }
265
266 /**
267 * Extend the SOMs with modes of the next component.
268 * @param level − the new level
269 * @param c − the component to process
270 */
271 private void populateNodes(SOMLevel level, ComponentInstance c) {
272 var nodes = level.getNodes();
273 SOMNode initial = null;
274
275 for (var pn : lastLevel.getNodes()) {
276 if (!pn.isReachable()) {
277 continue;
278 }
279 // ci active in current partial SOM?
280 var active = isActive(c, pn);
281 var modes = c.getModeInstances();
282 if (modes.isEmpty()) {
283 // component has no modes
284 // create one node for c
285 var n = active ? createActiveNode(pn) : createInactiveNode(c, pn);
286 nodes.add(n);
287 if (pn == lastLevel.getInitialNode()) {
288 Assert.isTrue(initial == null, ”initial already set”);
289 initial = n;
290 }
291 } else if (modes.get(0).isDerived()) {
292 // component has derived modes
293 if (active) {

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
[Distribution Statement A] Approved for public release and unlimited distribution.

294 // find the derived mode for the current SOM
295 // create at most one active node for c
296 for (var m : modes) {
297 Assert.isTrue(active);
298 var pm = getContainerMode(c, pn);
299 if (m.getParents().contains(pm)) {
300 var n = createActiveNode(m, pn);
301 n.setDerived(true);
302 level.getNodes().add(n);
303 if (pn == lastLevel.getInitialNode() && pm.isInitial()) {
304 Assert.isTrue(initial == null, ”initial already set”);
305 initial = n;
306 }
307 break;
308 }
309 }
310 } else {
311 // create one inactive node for c
312 var n = createInactiveNode(c, pn);
313 n.setDerived(true);
314 nodes.add(n);
315 var pm = getContainerMode(c, pn);
316 if (pn == lastLevel.getInitialNode() && pm.isInitial()) {
317 Assert.isTrue(initial == null, ”initial already set”);
318 initial = n;
319 }
320 }
321 } else {
322 // component has regular modes
323 // create one node per mode
324 for (var m : modes) {
325 var n = active ? createActiveNode(m, pn) : createInactiveNode(m, pn);
326 nodes.add(n);
327 if (pn == lastLevel.getInitialNode() && m.isInitial()) {
328 Assert.isTrue(initial == null, ”initial already set”);
329 initial = n;
330 }
331 }
332 }
333 }
334 Objects.requireNonNull(initial);
335 level.setInitialNode(initial);
336 }
337
338 /**
339 * Add transitions on the level for the new component.
340 * @param level − the new level
341 * @param c − the component instance to process
342 */
343 void populateTransitions(SOMLevel level, ComponentInstance c) {
344 var transitions = level.getTransitions();
345
346 for (var pn : lastLevel.getNodes()) {
347 // source nodes to which the transition may not be propagated
348 Map<Transition, Set<SOMNode>> skip = new HashMap<>();
349 Set<TriggerKey> ptks = pn.getOutTransitions()
350 .stream()
351 .map(tn −> tn.getTrigger().getKey())
352 .collect(Collectors.toCollection(HashSet::new));
353
354 for (var ptn : pn.getOutTransitions()) {
355 skip.put(ptn, new HashSet<SOMNode>());
356 }
357 if (pn.getChildren().get(0).isActive()) {
358 // new component is active before transition
359 for (var mt : c.getModeTransitionInstances()) {
360 for (var tc : mt.getDstConnectionInstances()) {
361 var tk = new FeatureKey((FeatureInstance) tc.getSource());
362 var tg = graph.getTriggers().get(tk);
363
364 if (ptks.contains(tk)) {
365 for (var ptn : pn.getOutTransitions()) {
366 var d = ptn.getDst().getChildren().get(0);
367
368 if (d.isActive() && ptn.getTrigger().equals(tg)) {
369 // c is active before and after transition
370 // => merge old and new transitions
371 mergeTransition(ptn, mt, tg, tc, transitions);
372

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
[Distribution Statement A] Approved for public release and unlimited distribution.

373 if (!isModal(tc)) {
374 // ptn is dominated by the merged transition
375 skip.get(ptn).add(findChildNode(pn, mt.getSource()));
376 }
377 }
378 }
379 } else {
380 // add transitions for trigger that occurs on the new level
381 // but not on the previous level
382 addTransition(pn, mt, tg, tc, transitions);
383 }
384 }
385 }
386 }
387
388 // propagate transitions for triggers from the previous level
389 for (var ptn : pn.getOutTransitions()) {
390 propagateTransition(ptn, c, transitions, skip);
391 }
392 }
393 }
394
395 /**
396 * Remove all outgoing transitions on the last level that are dominated by another transition
397 *
398 * A transition tn is dominated by another transition otn if they have the same trigger
399 * and otn requires more active connections than tn.
400 */
401 private void removeDominatedTransitions() {
402 var toRemove = new ArrayList<Transition>();
403
404 for (var n : lastLevel.getNodes()) {
405 var byTrigger = n.getOutTransitions()
406 .stream()
407 .collect(Collectors.groupingBy(Transition::getTrigger));
408
409 for (var tns : byTrigger.values()) {
410 if (tns.size() > 1) {
411 tns.stream()
412 .filter(tn −> tns.stream()
413 .anyMatch(otn −> otn != tn
414 && otn.getConnections().containsAll(tn.getConnections())))
415 .forEach(tn −> toRemove.add(tn));
416 }
417 }
418 }
419 for (var tn : toRemove) {
420 tn.getSrc().getOutTransitions().remove(tn);
421 tn.getDst().getInTransitions().remove(tn);
422 tn.getTrigger().getTransitions().remove(tn);
423 lastLevel.getTransitions().remove(tn);
424 }
425
426 // maybe an SOM is now unreachable
427 lastLevel.getNodes().stream().forEach(n −> n.setReachable(false));
428 checkReachability(lastLevel.getInitialNode());
429 cleanUp(lastLevel);
430 }
431
432 /**
433 * Propagate old transition to new level except for nodes where the propagated transition
434 * is known to be dominated by an existing transition.
435 * @param ptn − the transition to propagate
436 * @param c − the current component
437 * @param transitions − the list of transitions on the new level
438 * @param skip − child nodes for which to skip the propagation
439 */
440 private void propagateTransition(Transition ptn, ComponentInstance c,
441 List<Transition> transitions, Map<Transition, Set<SOMNode>> skip) {
442 var psn = ptn.getSrc();
443 var pdn = ptn.getDst();
444 var sn = psn.getChildren().get(0);
445 var dn = pdn.getChildren().get(0);
446
447 Assert.isTrue(psn.getChildren().size() == pdn.getChildren().size());
448 if (sn.isActive() && !dn.isActive()) {
449 // deactivating, need to interpret policy
450 var policy = getResumptionPolicy(c);
451 for (int i = 0; i < psn.getChildren().size(); i++) {

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
[Distribution Statement A] Approved for public release and unlimited distribution.

452 var s = psn.getChildren().get(i);
453 if (!skip.get(ptn).contains(s) && isTransitionActive(s, ptn)) {
454 SOMNode d;
455 if (s.hasMode() && policy.get(s.getMode()) == ResumptionPolicy.RESTART) {
456 d = findChildNode(pdn, getInitialMode(c));
457 } else {
458 d = pdn.getChildren().get(i);
459 }
460 var tn = createTransition(s, d, ptn);
461 transitions.add(tn);
462 }
463 }
464 } else {
465 for (int i = 0; i < psn.getChildren().size(); i++) {
466 var s = psn.getChildren().get(i);
467 if (!skip.get(ptn).contains(s) && isTransitionActive(s, ptn)) {
468 var d = pdn.getChildren().get(i);
469 var tn = createTransition(s, d, ptn);
470 transitions.add(tn);
471 }
472 }
473 }
474 }
475
476 /**
477 * Add a transition to the new level based on a triggered a mode transition.
478 * @param pn − the parent SOM node
479 * @param mt − the mode transition
480 * @param tg − the trigger
481 * @param tc − the trigger connection
482 * @param transitions − the list of transitions on the current lager
483 */
484 private void addTransition(SOMNode pn, ModeTransitionInstance mt, Trigger tg,
485 ConnectionInstance tc, List<Transition> transitions) {
486 if (!(tg instanceof FeatureTrigger)) {
487 return;
488 }
489 SOMNode sn = findChildNode(pn, mt.getSource());
490 Assert.isNotNull(sn, ”no node for source”);
491 if (sn.isActive() && isTriggerActive(sn, tg, tc)) {
492 SOMNode dn = findChildNode(pn, mt.getDestination());
493 Assert.isNotNull(dn, ”no node for destination”);
494 Assert.isTrue(dn.isActive(), ”dst not active”);
495 var tn = createTransition(sn, dn, tg, tc);
496 transitions.add(tn);
497 }
498 }
499
500 /**
501 * Merge a new transition and a parent transition if they are triggered by the same event.
502 * @param ptn − the parent transition
503 * @param mt − the mode transition
504 * @param tg − the trigger
505 * @param tc − the trigger connections
506 * @param transitions − the list of transitions on the current lager
507 */
508 private void mergeTransition(Transition ptn, ModeTransitionInstance mt, Trigger tg,
509 ConnectionInstance tc, List<Transition> transitions) {
510 if (!(tg instanceof FeatureTrigger)) {
511 return;
512 }
513 SOMNode psn = ptn.getSrc();
514 SOMNode pdn = ptn.getDst();
515 SOMNode sn = findChildNode(psn, mt.getSource());
516 Assert.isNotNull(sn, ”no node for source”);
517 Assert.isTrue(sn.isActive(), ”trying to merge with inactive source”);
518 if (isTriggerActive(sn, tg, tc)) {
519 SOMNode dn = findChildNode(pdn, mt.getDestination());
520 Assert.isNotNull(dn, ”no node for destination”);
521 Assert.isTrue(dn.isActive(), ”trying to merge with inactive destination”);
522 var tn = createTransition(sn, dn, tg, tc);
523 tn.getConnections().addAll(ptn.getConnections());
524 transitions.add(tn);
525 }
526 }
527
528 /**
529 * Check if a trigger is active.
530 *

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
[Distribution Statement A] Approved for public release and unlimited distribution.

531 * A trigger is active if the originating component is active and
532 * the connection that transports the trigger is active.
533 * @param n − the current SOM, tg is assumed to be active in parent SOM
534 * @param tg − the trigger to check
535 * @param tc − the connection via which the trigger enters the component, may be null
536 * @return whether the trigger is active in the current sOM
537 */
538 private boolean isTriggerActive(SOMNode n, Trigger tg, ConnectionInstance tc) {
539 if (n.getInactiveComponents().contains(tg.getComponent())) {
540 return false;
541 }
542 return tc == null | | !n.getInactiveConnections().contains(tc);
543 }
544
545 /**
546 * Check if a transition is active.
547 *
548 * A transition is active if the originating component is active and
549 * all connections that transport the trigger to this transition are active.
550 *
551 * @param n − the current SOM
552 * @param tn − the transition to check
553 * @return whether the transition is active in the current SOM
554 */
555 private boolean isTransitionActive(SOMNode n, Transition tn) {
556 Trigger tg = tn.getTrigger();
557 if (n.getInactiveComponents().contains(tg.getComponent())) {
558 return false;
559 }
560 var inactiveConns = n.getInactiveConnections();
561 return tn.getConnections().stream().noneMatch(cr −> inactiveConns.contains(cr.getOwner()));
562 }
563
564 /**
565 * Check which nodes in the current level are reachable.
566 * @param from
567 */
568 private void checkReachability(SOMNode from) {
569 from.setReachable(true);
570 for (var t : from.getOutTransitions()) {
571 var d = t.getDst();
572 if (!d.isReachable()) {
573 checkReachability(d);
574 }
575 }
576 }
577
578 /**
579 * Delete unreachable nodes and transitions between unreachable nodes.
580 * @param level − the level to clean up
581 */
582 private void cleanUp(SOMLevel level) {
583 var tns = (level.getTransitions()).stream()//
584 .filter(tr −> !tr.getSrc().isReachable())
585 .map(tr −> {
586 // clean up bidi cross references
587 tr.setSrc(null);
588 tr.setDst(null);
589 tr.setTrigger(null);
590 return tr;
591 })
592 .toList();
593 level.getTransitions().removeAll(tns);
594
595 var ns = (level.getNodes()).stream().filter(n −> !n.isReachable()).toList();
596 level.getNodes().removeAll(ns);
597 }
598
599 /**
600 * Check if a component is active in the current SOM.
601 *
602 * This requires that the modes for the containing component have already
603 * been entered into the graph.
604 *
605 * @param ci − the component instance to check
606 * @param n − the current leaf SOM node
607 * @return whether the component is active in the current SOM
608 */
609 private boolean isActive(ComponentInstance ci, SOMNode n) {

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
[Distribution Statement A] Approved for public release and unlimited distribution.

610 var pci = (ComponentInstance) ci.eContainer();
611 var pl = getSOMLevel(pci);
612 var pn = n;
613 while (pn.eContainer() != pl) {
614 pn = pn.getParent();
615 }
616 // pn is the som node for the containing component in the current som ending with n
617 Assert.isNotNull(pn);
618 // ci is active if the container is active and
619 // ci is active in the current mode of the container
620 return pn.isActive() && (ci.getInModes().isEmpty() | | ci.getInModes().contains(pn.getMode()));
621 }
622
623 /**
624 * Get the containing component’s mode in the current SOM.
625 *
626 * This requires that the modes for the containing component have already
627 * been entered into the graph.
628 *
629 * @param ci − the component instance to check
630 * @param n − the current leaf som node
631 * @return the mode of the component containing ci, null if no mode
632 */
633 private ModeInstance getContainerMode(ComponentInstance ci, SOMNode n) {
634 var pci = (ComponentInstance) ci.eContainer();
635 var pl = getSOMLevel(pci);
636 var pn = n;
637 while (pn.eContainer() != pl) {
638 pn = pn.getParent();
639 }
640 // pn is the som node for the containing component in the current som ending with n
641 Assert.isNotNull(pn);
642 return pn.getMode();
643 }
644
645 /**
646 * Create a new SOM level for a given component and add it to the SOM graph.
647 *
648 * @param c − the component associated with the new level
649 * @return the new SOM level
650 */
651 private SOMLevel createSOMLevel(ComponentInstance c) {
652 var newLevel = new SOMLevel();
653
654 newLevel.setComponent(c);
655 ci2sl.put(c, newLevel);
656 graph.getLevels().add(newLevel);
657 return newLevel;
658 }
659
660 /**
661 * Get the SOM level for a component
662 * @param c − the component
663 * @return the level for the given component
664 */
665 private SOMLevel getSOMLevel(ComponentInstance c) {
666 return ci2sl.get(c);
667 }
668
669 /**
670 * Create an active SOM node.
671 * @param m − the mode for which to create the node
672 * @return the new node
673 */
674 private ActiveNode createActiveNode(ModeInstance m) {
675 return createActiveNode(m, null);
676 }
677
678 /**
679 * Create a node for an active component without modes
680 *
681 * Inactive components and connections are the same as for the parent
682 * @param pn − the parent node
683 * @return the new node
684 */
685 private ActiveNode createActiveNode(SOMNode pn) {
686 var n = new ActiveNode(pn);
687 var iconns = n.getInactiveConnections();
688

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
[Distribution Statement A] Approved for public release and unlimited distribution.

689 iconns.addAll(pn.getInactiveConnections());
690 return n;
691 }
692
693 /**
694 * Create a node for an active component in a mode.
695 *
696 * Inactive components are the same as for the parent, but
697 * there may be additional inactive connections.
698 * @param m − the mode for the new node
699 * @param pn − the parent node
700 * @return the new active node
701 */
702 private ActiveNode createActiveNode(ModeInstance m, SOMNode pn) {
703 var n = new ActiveNode(m, pn);
704 var iconns = n.getInactiveConnections();
705
706 if (pn != null) {
707 iconns.addAll(pn.getInactiveConnections());
708 }
709
710 var c = m.getComponentInstance();
711 var crIter = CrossReferenceUtil
712 .getInverse(InstancePackage.eINSTANCE.getConnectionReference Context(), c, c.eResource());
713 while (crIter.hasNext()) {
714 var cr = (ConnectionReference) crIter.next();
715 var conn = (ConnectionInstance) cr.getOwner();
716 if (conn.getKind() == ConnectionKind.MODE TRANSITION CONNECTION) {
717 var ims = cr.getConnection().getAllInModes();
718 if (!ims.isEmpty() && !ims.contains(m.getMode())) {
719 iconns.add(conn);
720 }
721 }
722 }
723 return n;
724 }
725
726 /**
727 * Create a node for an inactive component without modes.
728 * @param c − the component
729 * @param pn − the parent node
730 * @return the new inactive node
731 */
732 private InactiveNode createInactiveNode(ComponentInstance c, SOMNode pn) {
733 var n = new InactiveNode(pn);
734
735 fillInactiveNode(n, c, pn);
736 return n;
737 }
738
739 /**
740 * Create a node for an inactive component.
741 * @param m − the mode after resumption
742 * @param pn − the parent node
743 * @return the new inactive node
744 */
745 private InactiveNode createInactiveNode(ModeInstance m, SOMNode pn) {
746 var c = m.getComponentInstance();
747 var n = new InactiveNode(m, pn);
748
749 fillInactiveNode(n, c, pn);
750 return n;
751 }
752
753 /**
754 * Store the inactive components and connections for a new inactive node.
755 * @param n − the new node
756 * @param c − the component
757 * @param pn − the parent node
758 */
759 private void fillInactiveNode(InactiveNode n, ComponentInstance c, SOMNode pn) {
760 var ics = n.getInactiveComponents();
761
762 ics.addAll(pn.getInactiveComponents());
763 ics.add(c);
764
765 var iconns = n.getInactiveConnections();
766 iconns.addAll(pn.getInactiveConnections());
767

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
[Distribution Statement A] Approved for public release and unlimited distribution.

768 var crIter = CrossReferenceUtil
769 .getInverse(InstancePackage.eINSTANCE.getConnectionReference Context(), c, c.eResource());
770 while (crIter.hasNext()) {
771 var cr = (ConnectionReference) crIter.next();
772 var conn = (ConnectionInstance) cr.getOwner();
773 if (conn.getKind() == ConnectionKind.MODE TRANSITION CONNECTION) {
774 iconns.add(conn);
775 }
776 }
777 }
778
779 /**
780 * Create a transition.
781 * @param sn − the source SOM node of the new transition
782 * @param dn − the destination SOM node of the new transition
783 * @param tg − the trigger of the new transition
784 * @param tc − the trigger connection
785 * @return the new transition
786 */
787 private Transition createTransition(SOMNode sn, SOMNode dn, Trigger tg, ConnectionInstance tc) {
788 var tn = new Transition();
789
790 tn.setSrc(sn);
791 tn.setDst(dn);
792 tn.setTrigger(tg);
793 if (tc != null) {
794 tn.getConnections().add(tc);
795 }
796 return tn;
797 }
798
799 /**
800 * Create a transition based on a parent transition.
801 * @param src − the source SOM node of the new transition
802 * @param dst − the destination SOM node of the new transition
803 * @param ptn − the parent transition
804 * @return the new transition
805 */
806 private Transition createTransition(SOMNode src, SOMNode dst, Transition ptn) {
807 var t = new Transition();
808
809 t.setSrc(src);
810 t.setDst(dst);
811 t.setTrigger(ptn.getTrigger());
812 t.getConnections().addAll(ptn.getConnections());
813 return t;
814 }
815
816 /**
817 * Get the initial mode of a component.
818 * @param c − the component
819 * @return the initial mode of this component; null if the component has no modes.
820 */
821 private ModeInstance getInitialMode(ComponentInstance c) {
822 for (var m : c.getModeInstances()) {
823 if (m.isInitial()) {
824 return m;
825 }
826 }
827 return null;
828 }
829
830 /**
831 * Get the child of a given SOM node for a specific mode.
832 * @param pn − the parent node
833 * @param m − the mode
834 * @return the child node for the mode
835 */
836 private SOMNode findChildNode(SOMNode pn, ModeInstance m) {
837 if (pn.getChildren().size() == 1) {
838 return pn.getChildren().get(0);
839 }
840 for (var n : pn.getChildren()) {
841 if (n.getMode() == m) {
842 return n;
843 }
844 }
845 return null;
846 }

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44
[Distribution Statement A] Approved for public release and unlimited distribution.

847
848 /**
849 * Get the resumption policy of a component.
850 * @param c − the component
851 * @return a map containing the resumption policy value for each component mode
852 */
853 private Map<ModeInstance, ResumptionPolicy> getResumptionPolicy(ComponentInstance c) {
854 if (c.getModeInstances().isEmpty()) {
855 return Collections.emptyMap();
856 }
857
858 Map<ModeInstance, ResumptionPolicy> m2policy = new HashMap<>();
859 ResumptionPolicy policy = ResumptionPolicy.RESTART;
860 try {
861 // try to get non modal value
862 var nmv = ThreadProperties.getResumptionPolicy(c);
863 if (nmv.isPresent()) {
864 policy = nmv.get();
865 }
866 m2policy = new HashMap<>();
867 for (var m : c.getModeInstances()) {
868 m2policy.put(m, policy);
869 }
870 } catch (PropertyIsModalException e) {
871 // get modal property value
872 var p = ThreadProperties.getResumptionPolicy Property(c);
873 var ipa = c.getOwnedPropertyAssociations()
874 .stream()
875 .filter(pa −> pa.getProperty() == p)
876 .findFirst();
877 Assert.isTrue(ipa.isPresent());
878 var dpa = ((PropertyAssociationInstance) ipa.get()).getPropertyAssociation();
879 int i;
880 for (i = 0; i < dpa.getOwnedValues().size(); i++) {
881 var mpv = dpa.getOwnedValues().get(i);
882 for (var m : mpv.getInModes()) {
883 for (var mi : c.getModeInstances()) {
884 if (mi.getMode() == m) {
885 var pe = mpv.getOwnedValue();
886 pe = CodeGenUtil.resolveNamedValue(pe);
887 m2policy.put(mi, ResumptionPolicy.valueOf(pe));
888 break;
889 }
890 }
891 }
892 }
893 var mpv = dpa.getOwnedValues().get(i − 1);
894 if (mpv.getInModes().isEmpty()) {
895 var pe = mpv.getOwnedValue();
896 pe = CodeGenUtil.resolveNamedValue(pe);
897 policy = ResumptionPolicy.valueOf(pe);
898 m2policy = new DefaultedHashMap<ModeInstance, ResumptionPolicy>(policy, m2policy);
899 }
900 }
901 return m2policy;
902 }
903
904 public void setConfiguration(ReachabilityConfiguration config) {
905 this.config = config;
906 }
907
908 public ReachabilityConfiguration getConfiguration() {
909 return config;
910 }
911
912 private URI makeURI(ComponentInstance root) {
913 var uri = root.eResource().getURI();
914 var fn = uri.segment(uri.segmentCount() − 1);
915 uri = uri.trimSegments(1)
916 .appendSegment(”reports”)
917 .appendSegment(”som−reachability”)
918 .appendSegment(fn);
919 uri = uri.trimFileExtension().appendFileExtension(”modemodel”);
920 return uri;
921 }
922
923 /**
924 * @return the config
925 */

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
[Distribution Statement A] Approved for public release and unlimited distribution.

926 public ReachabilityConfiguration getConfig() {
927 return config;
928 }
929
930 /**
931 * @param config the config to set
932 */
933 public void setConfig(ReachabilityConfiguration config) {
934 this.config = config;
935 }
936
937 /**
938 * @return the graph
939 */
940 public SOMGraph getGraph() {
941 return graph;
942 }
943
944 /**
945 * @return the lastLevel
946 */
947 public SOMLevel getLastLevel() {
948 return lastLevel;
949 }
950
951 /** Cache if a trigger connection is modal */
952 private Map<ConnectionInstance, Boolean> tcModal = new HashMap<>();
953
954 /**
955 * Determine if a trigger connection is modal.
956 *
957 * The result is cached.
958 *
959 * @param tc
960 * @return
961 */
962 private boolean isModal(ConnectionInstance tc) {
963 if (tcModal.containsKey(tc)) {
964 return tcModal.get(tc);
965 }
966 boolean modal = false;
967 for (var cr : tc.getConnectionReferences()) {
968 if (!cr.getConnection().getAllInModes().isEmpty()) {
969 modal = true;
970 break;
971 }
972 }
973 tcModal.put(tc, modal);
974 return modal;
975 }
976 }

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46
[Distribution Statement A] Approved for public release and unlimited distribution.

References

URLs are valid as of the publication date of this document.

[1] Dominique Bertrand, Anne-Marie Déplanche, Sébastien Faucou, and Olivier H. Roux. A
Study of the AADL Mode Change Protocol. In 13th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS 2008), pages 288–293, 2008.

[2] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A New Symbolic Model
Verifier. In N. Halbwachs and D. Peled, editors, Proceedings Eleventh Conference on
Computer-Aided Verification (CAV’99), number 1633 in Lecture Notes in Computer Sci-
ence, pages 495–499, Trento, Italy, July 1999. Springer.

[3] SAE International. Architecture Analysis & Design Language (AADL). Aerospace Stan-
dard AS5506D, SAE International, 2022.

[4] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Mod-
eling Framework. Eclipse Series. Addison-Wesley, Upper Saddle River, NJ, Second edition,
2009.

[5] Carnegie Mellon University. Open Source AADL Tool Environment (OSATE). https:
//osate.org. Accessed: 2023-08-31.

https://osate.org
https://osate.org

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY
(Leave Blank)

2. REPORT DATE
May 2024

3. REPORT TYPE AND DATES
COVERED
Final

4. TITLE AND SUBTITLE
Reachability of System Operation Modes in AADL

5. FUNDING NUMBERS
FA8702-15-D-0002

6. AUTHORS
Lutz Wrage

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2024-TR-003

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
SEI Administrative Agent
AFLCMC/AZS
5 Elgin Street
Hanscom AFB, MA 01731-2100

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
N/A

11. SUPPLEMENTARY NOTES

12A. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B. DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
Components in an AADL (Architecture Analysis and Design Language) model can have modes that de-
termine which subcomponents and connections are active. Transitions between modes are triggered by
events originating from the modeled system’s environment or other components in the model. Modes
and transitions can occur on any level of the component hierarchy. The combinations of component
modes (called system operation modes or SOMs) define the system’s configurations. It is important to
know which SOMs can actually occur in the system, especially in the area of system safety, because
a system may contain components that should not be active simultaneously, for example, a car’s brake
and accelerator. This report presents an algorithm that constructs the set of reachable SOMs for a given
AADL model and the transitions between them.

14. SUBJECT TERMS
AADL, Architecture Analysis and Design Language, system operation
mode, SOM, reachability

15. NUMBER OF PAGES
52

16. PRICE CODE

17. SECURITY
CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

CMU/SEI-2024-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48

[Distribution Statement A] Approved for public release and unlimited distribution.

	Abstract
	Introduction
	Modes in AADL
	System Operation Modes

	SOM Reachability Analysis
	Overview
	Adding Modes to a System Operation Mode
	Creating SOM Transitions
	Transitions for Non-Modal Connections
	Transitions for Modal Connections

	Testing SOM Reachability
	The Full Algorithm

	Example Models
	Non-Modal Connections
	Modal Connections

	Conclusion and Future Work
	Appendix
	Data Model
	Java Implementation

	References

