
Automated Repair of Static Analysis Alerts | sei.cmu.edu/publications/podcasts

 1

SEI Podcasts
Conversations in Artificial Intelligence,

Cybersecurity, and Software Engineering

Automated Repair of Static Analysis
Alerts
Featuring David Svoboda as Interviewed by Suzanne Miller

Welcome to the SEI Podcast Series, a production of the Carnegie Mellon University

Software Engineering Institute. The SEI is a federally funded research and

development center sponsored by the U.S. Department of Defense. A transcript of

today’s podcast is posted on the SEI website at sei.cmu.edu/podcasts.

Suzanne Miller: Welcome to the SEI Podcast Series. My name is Suzanne

Miller, and I am a principal researcher in the SEI’s Software Solutions

Division. Today, I am joined by my friend and colleague, David Svoboda, a

software security engineer in the SEI's CERT Division. In this podcast, we are

going to explore using automated code repair technology to improve static

analysis alerts during the software debugging process, and I am very excited

about this particular podcast because anybody who writes software in

controlled environments knows that the static analysis alerts are a bane on

their existence. I am so excited, David, that you are here today, and welcome

back to our podcast. For those who do not know you already, can you tell us

a little bit about how you ended up at the SEI and the cool work that you do

here?

David: I joined the SEI in 2007, and before then I had been a professional

programmer for about 18 years. And during that time, of course, I had read

lots of stuff about how to program and talked with people about how to

program well. But there was always something missing. Until I joined the SEI,

https://sei.cmu.edu/publications/podcasts
https://www.sei.cmu.edu/publications/podcasts/index.cfm
https://sei.cmu.edu/about/divisions/software-solutions-division/index.cfm
https://sei.cmu.edu/about/divisions/software-solutions-division/index.cfm
https://insights.sei.cmu.edu/authors/david-svoboda/
https://www.sei.cmu.edu/about/divisions/cert/index.cfm
https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Static_program_analysis

Automated Repair of Static Analysis Alerts | sei.cmu.edu/publications/podcasts

SEI Podcasts

 2

I did not know about how to program securely. It was kind of this hidden

section about programming that is critically important. It is much more

important now even than it was in 2008. But I had something of an epiphany

where I realized that it was kind of scary in that I had programmed for 18

years without knowing all this stuff. I knew that if you try and write 12

characters to a 10-character array, you can get, the behavior is undefined. Do

not do that. But I did not know how easy it was to hack someone who had

done that. The first major task that I did in the SEI was teach secure coding,

and I have seen students and professional programmers who learn secure

coding also get this epiphany. They realize that they have been in secure

programming for their professional lives, and they had to go and sin no

more. It was an epiphany. It was a come to Jesus moment, and I have seen

this in many other people. That is why I joined. That is how I joined. And that

is what I have been working on since I joined the SEI.

Suzanne: Excellent. All right. One of the tools that came into being as part of

the whole secure coding movement is a type of tool called a static analysis

tool. And there is good and bad about those tools if you are a programmer.

But what are they, and what is the good part of static analysis tools?

David: I am reminded that when I first joined here, the job description said,

familiarity with static analysis. And I did not know at the time what static

analysis was. I knew static analysis tools. I just did not recognize the phrase.

But fortunately, that ignorance did not stop me from getting this job. The

best way to think of…

Suzanne: We were grateful that it did not stop you.

David: Thank you, Suzanne. The best way to think of static analysis tools, if

you are not a programmer, is think of it as a spell checker. If you are working

with a document like Microsoft Word, it will highlight the words that you

misspell and it will now highlight grammar things, if your verb and noun

doesn’t agree, for instance. In our secure coding business, we have

sometimes made a business of, we will audit your code and tell you what is

wrong with your code for X dollars. There are several government and military

groups that do the same thing, and businesses. That is analogous to

proofreading a document looking for spelling errors, doing it yourself. But if

you are proofreading a document, then you could spend the time just

reading through the document from top to bottom. And that takes a long

time. Or you could just see what the spell checker says and fix things as the

spell checker notices it.

https://sei.cmu.edu/publications/podcasts

Automated Repair of Static Analysis Alerts | sei.cmu.edu/publications/podcasts

SEI Podcasts

 3

Suzanne: OK. That is a good thing, that we can spell check and not make

mistakes, and similarly, that we can use static analysis tools and highlight

potential mistakes. But I will note that using a spell checker, sometimes it is

wrong. Sometimes I have some context of use that is different than what the

spell checker and the grammar checker is thinking. It is what we would call a

false positive in terms of what the spell checker shows. A human typically has

to make that decision as to whether I am going to accept what the spell

checker gave me or if I am going to ignore it or add it to the dictionary or

whatever. What is the analog in static analysis tools? Because I know there is

one.

David: Yes, I still am trying to convince Microsoft Word that Svoboda is not a

misspelled word.

Suzanne: There you go.

David: I am guessing you do not have that problem yourself.

Suzanne: Miller is not one of the names that causes that problem. But, yes, I

get it.

David: Right. Lucky you. Of course, static analysis tools are often subject to

false positives. In fact, the definition of static analysis is it studies your code

without actually trying to run it. You know, if there is a concern that the code

might have malware in it, then not running the code is a very good thing. But,

as you noted, it has a problem with false positives. And sometimes there can

be so many false positives that the programmers just say, you know, screw it.

I am not running this. I am ignoring the rest of this stuff. It dampens people’s

faith in the tool and makes them want to switch, want to ignore it from then

on. There are other problems with static analysis. Probably the biggest

problem is something that no one really talks about, and that is false

negatives. Static analysis tools do not find every possible problem. Partially

that is because the problems are often not well defined, but sometimes they

are simply too difficult for the tool. Static analysis tools, for instance, are not

that good. They will try, but the are not that good at, say, discovering SQL

injection. It is just a naturally difficult problem to detect statically without

actually trying to run the code. But the biggest problem, and this is not so

much the fault of static analysis as it is the fault of the programs, is that

sometimes programs are large. We have done some analyses here at the SEI,

and the average size of code that we have analyzed is about two million lines

of code.

https://sei.cmu.edu/publications/podcasts
https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/SQL_injection

Automated Repair of Static Analysis Alerts | sei.cmu.edu/publications/podcasts

SEI Podcasts

 4

Suzanne: That is the average.

David: That is the average. I have seen code, you know, you can write code

that is as small as one line of code or as large as 300 million lines of code,

and, you know, trying to statically analyze two million lines of code is going to

get you lots and lots of alerts. Some of those alerts are going to be false

positives. I actually did a back-of-the-envelope calculation last year, where I

discovered that trying to analyze all the alerts produced by the average code

base and fix them all would take about 15 person-years. It would take you or

me 15 years to do it. It would take 15 people one year to do it, and that is just

not reasonable. That is far too many. We have now nicknamed this problem

the deluge. But that is really the biggest problem facing static analysis today.

Suzanne: But you are researching at least a partial solution to this problem.

Tell us about your automated code repair, which just the name alone, you

know, makes me feel happy, but I know that it cannot be a complete solution

at this point in time, so tell us about it. How far have you gotten?

David: I did not invent that name, actually. That name came five years before

on different research. But what I am solving, on the first level, the program

basically does repairs based on static analysis tools. If a tool complains that,

you know, you are adding two numbers which might overflow on line 10,

then we write a check on top of that. It is actually rather difficult to statically

analyze if an addition overflow is possible, but it is easy to add an automated

check saying is an addition overflow possible? If so, then, raise the alarm, you

know, sound the trumpets or something, and if not, then just keep going on.

That is pretty easy to add automatically. And the nice thing about this is that

we are ignoring the fact that an alert might be a false positive. In fact, the

original title of this project was called Redemption of False Positives. It used

to be that if we find an alert that is a false positive, we ignore it and discard it

and it never gets fixed, and that means the static analysis tool keeps

complaining about it forevermore. But if we fix them, then the false positive

is not ignored; it is redeemed, and so, it has unofficially been called the

Redemption project. We are trying to basically take three types of alerts that

most tools produce. They will tell you if a pointer might be null when it is

dereferenced, which is a no-no. They will tell you if you are trying to read a

variable that has never been initialized, that is also bad. And they can tell you

if you are ever executing code that has never executed, dead code. We are

basically trying to fix these three categories of static analysis alerts. And with

those three we are trying to obtain—we are trying to make sure that we

repair as many of them as possible. We probably cannot repair 100 percent

of them, so we just drew a line in the sand and said 80 percent. We will try

https://sei.cmu.edu/publications/podcasts
https://insights.sei.cmu.edu/library/automated-code-repair-3/
https://insights.sei.cmu.edu/library/redemption/
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/908.html
https://cwe.mitre.org/data/definitions/908.html
https://cwe.mitre.org/data/definitions/561.html

Automated Repair of Static Analysis Alerts | sei.cmu.edu/publications/podcasts

SEI Podcasts

 5

and get 80 percent, see if we can repair 80 percent, and we will report on

how many of these things that we repair over the course of our two-year

project.

Suzanne: How is that going? I mean, are you seeing measurable progress

towards that 80 percent goal? I have to imagine there is a lot of nuance in

terms of, you know, this kind of error in this category has, you know, six or

seven or 20 different symptoms, and you have got to be able to deal with all

those symptoms to be able to actually figure out what the correct

redemption—I love that word—what the correct redemption is. How is that

coming along?

David: It has now become the official name of the tool itself. We had to

change the name of the project to Automated Repair of Static Analysis Alerts,

which is, you know, wordy and more descriptive but less memorable. To get

back to your question, of course, we picked those three categories because

they are the most prominent. They are, first of all, fairly well-known

categories of vulnerabilities. Secondly, they are the most prominent. We

basically ran some static analysis tools on some open source software,

specifically Git, which lots of people use, and Zeek, which is not as widely

known, but it is used by several of our more important clients, so they would

love to see some repairs to add into Zeek. And in these two code bases, we

found lots of alerts of null pointers and uninitialized variables and dead code.

We basically have lots of examples that can be repaired. Well, there are too

many examples for us to even look at them all, so we have a whole bunch of

buckets of subcategories of these, and we basically picked five alert

categories for each one. We are trying to repair all five. And at this point, you

know, the code is all written, the testing is there. It is sort of approaching 80

percent. It is not quite there yet. Our hope is that it will be 80 percent by the

end of, well, by the end of June [2024].

Suzanne: Excellent.

David: At this point, we have until September [2024] to finish because that is

when the project ends and the funding stops. Our hope is that we can

convince either our collaborators or external people to continue funding so

that we can add more repair algorithms and give it more capabilities. Right

now, the project is an open source project, it is available on GitHub, and we

can publish the URL, so anyone can download it, play with it. And it is

containerized; it is running inside a single Docker container, which removes,

well, it removes lots of portability issues, both for people who need to run

the tool and for us, in that we are all developing the tool, and you know,

https://sei.cmu.edu/publications/podcasts
https://git-scm.com/
https://zeek.org/
https://github.com/cmu-sei/redemption
https://www.docker.com/

Automated Repair of Static Analysis Alerts | sei.cmu.edu/publications/podcasts

SEI Podcasts

 6

some people have Windows with Linux virtual machines. Some people have

Macs, and so it saves us from a bunch of headaches.

Suzanne: When you start thinking about automating this process, what that

opens up is the ability for this automated code repair to be integrated into a

continuous integration [CI] pipeline. And are you doing that? Can you give us

an overview, first of all, give us a quick overview of continuous integration so

those that have not run into it will know what we are talking about? What are

you doing in relation to bringing this into the continuous integration

pipeline?

David: Sure. In fact, I am now realizing that when I compare static analysis to

a spell checker, that glosses over several additional difficulties because a

spell checker will highlight your words as you are typing them, which means

you get feedback very quickly. Static analysis is slower. It does not give you

feedback immediately. I mean, there are a few tools that specialize in that,

but most tools do not; they take a long time.

Suzanne: The metaphor holds well enough.

David: Fair enough, yes. To me, continuous integration kind of solves two

problems. First of all, there are lots of tests that we need to do in order to

make sure that our software works as well as it does. It is very easy to modify

software, to introduce a bug, or to break some code, something that used to

work well and no longer works. There are lots of testing that has to be done,

and unless the testing is automated, it does not get done consistently. I

might have someone run a test, and they say they ran the test. Well, did they

run the test? Not really sure. They did not complain. They said it worked, so

you kind of have to take their word for it. But if the test is run by an

automated system, then you can always look back and it is logged, and it will

simply say, the test succeeded. It did not tell you anything about it. The

second problem that—well, it occurs even with individuals, but it occurs a lot

more with organizations. We wind up going through a lot of computers. We

wind up having a lot of old hardware around. Still works, still perfectly good,

but what do you do with it? When I first started programming, programmers

were cheap, and computers were really expensive. And today, the opposite is

true. CPUs are especially cheap. You can rent CPU usage on Amazon or Azure

Cloud. Today, continuous integration sort of kills both these birds with one

stone. We have a lot of extra CPU cycles. Let’s put those CPU cycles to

running automated tests. Even though the tests are unlikely to come up with

a problem, they still are useful in detecting the regressions when they

happen. Continuous integration is a very good thing that, you know, the SEI is

https://sei.cmu.edu/publications/podcasts
https://en.wikipedia.org/wiki/Continuous_integration

Automated Repair of Static Analysis Alerts | sei.cmu.edu/publications/podcasts

SEI Podcasts

 7

now promoting and, you know, we are using it, we are using it in our own

project, but everyone should be using it. They should be making their tests as

automatic as possible so that you do not have to rely on the perseverance of

people who would rather be writing code anyway rather than testing it. That

is why continuous integration is a good thing. Most development teams will

simply have a continuous integration server that monitors any time someone

submits new code, it will simply try and build the code, run the automated

tests, and holler if the tests fail. If anything fails with it, then the CI system will

say, you have a failure. This test at this time, given this input, you know, this is the

bug that you need to fix. That is continuous integration in general. How does

that work with our automated code repair, our Redemption tool? The answer

is that oftentimes, people will already run static analysis inside a CI system,

run a CI, sorry, run a static analysis tool and take the alerts the tool generates

and send them back to the developers, and then let them figure out what to

do with them. Now as we already know, there can be a deluge of static

analysis alerts, far too many for developers to deal with. In our case, let’s

simply embed the Redemption tool into our CI system and have it offer a

repair, have it repair the code. Actually, it does not have to repair the main

code. It can simply fork a branch off of the main code, repair the branch, and

say, here’s some repaired code. Would you like to accept this repair or reject it or

modify the code yourself? It is a lot like a spell checker that if you right-click on

a misspelled word, it can offer you, you could spell this word or this word or

this word, or you could decide to accept the current spelling as it is. We are

not judging here. We are just simply saying this is the traditional way to do

things. Basically, CI, continuous integration, lets us turn the problem of static

analysis and redemption into something that looks a lot more automated

and quick like a real spell checker. That makes my analogy better.

Suzanne: Yes, there you go, and I can imagine that there are a whole bunch

of programmers listening to the podcast with the words where do I get it? on

their lips. Let’s talk a little bit about how we are transitioning this tool out into

the community. You mentioned that in our GitHub, we have got a Docker

with the tool inside available for people to use. Are there other transition

materials? Do we have any training materials? Any other things that people

can use to become familiar with this Redemption tool and to make best use

of it?

David: Well, the answer is yes, and to go into details. I will simply say that the

materials that we are developing are mostly demand-driven by our

collaborators. At this point, we have four collaborators in the DoD, and we

are mainly doing things to try and convince them, hey, this tool is worth using.

You should try it. It should, you know, try using it to repair some code on your

https://sei.cmu.edu/publications/podcasts

Automated Repair of Static Analysis Alerts | sei.cmu.edu/publications/podcasts

SEI Podcasts

 8

end. Our end goal is that they decide this is so good we are going to use it

ourselves. We are going to integrate it into our own CI processes and, you

know, that is my end goal. That is what I hope that happens by September

30th. However, what they have done, of course, is as any users do, they ask

questions, and they say, can you do this? Can you add, you know, support for

fractions? I am thinking, what is support for fractions? What does that have to

do..? Well, and I say, tell me more. What do you mean? What do you—what are

you thinking of? For instance, a few of them initially said, you know, this is hard

to use. I am not sure, like, what the correct command line invocation is. How do

you—how would you put this into a CI system? What we have done, what I have

been doing for the past two months is making demos. First of all, the demos

were partially to try and make it easier to use from the command line, and I

have created some demos. They are in the GitHub repository. Right now,

they are just simple README files. You know, first do step one, then do step

two, then do step three. We are now actually making a few demo videos

where I simply step through the demos and show them. We have not

published any of the videos yet, but we are now talking about the feasibility

of putting these videos on somewhere public, like YouTube. That is to be

discussed. At this point, I mean, for this…

Suzanne: We have an SEI YouTube channel, so what better use to make of it?

David: We do. That is probably one place we are going to be looking at. Right

now, the demos are primarily for instruction. It is simply easier for me to

make a demo video than it is for me to fly down to Florida or wherever and

sit with them while they try and type their way through the demo. Eventually,

I think we are going to be making some promotional demos to simply

convince people, hey, you need this Redemption tool.

Suzanne: In your research review presentation, which you did last year, you

talked about there are—we are only dealing with three of the categories. If I

remember correctly, you said there were at least 10 categories of significant

vulnerabilities that static analysis will typically catch or attempt to catch. Is

that how you are going to go forward, is to kind of go against those other 10

or other seven, and/or do you have something else in mind for continuing

the project? What is next?

David: That is what I have in mind for the project; however, I also have

collaborators, and what they have in mind is that they want—is simply that

they want their code to work. The answer to your question is we are kind of

transitioning from development to transition. Put another way, we are

transitioning from developing the things that I think that the tool should do

https://sei.cmu.edu/publications/podcasts
https://github.com/cmu-sei/redemption/tree/main/doc/examples
https://www.youtube.com/watch?v=wUl9LTy5vv0

Automated Repair of Static Analysis Alerts | sei.cmu.edu/publications/podcasts

SEI Podcasts

 9

to things that our collaborators think that the tool should do. You know, if

the collaborators say, do what you think is best, then I am going to start

adding the other seven CERT rules to the list so that we do what I think is the

10 rules that give the biggest bang for our buck. Of course, the collaborators

might have different ideas, and they will certainly, such as they want support

for fractions. I do not even know what that means as far as my tool, but we

will have a discussion and probably wind up doing that.

Suzanne: Well, and to be fair, there are domains, if you think about nuclear

power plants for an example, where there are some very specific kinds of

vulnerabilities that are particularly dangerous in that domain that may not be

as dangerous in other domains, and so…

David: Especially buffer overflows.

Suzanne: Well, there you go. You want to—you know, those domains may be

ones that really have a particular need that does not come under the sort of

just the general 10, so you can see where that can happen.

David: Right. The CERT coding standard is a general purpose standard for all

C programmers, but there are specific domains, as you say, where certain

things are far more critical or they have more stringent requirements such

as, you know, they are using the MISRA standard or—well, I do not

remember details, but yes, the nuclear, the National Nuclear Safety

Administration has their own set of standards which I think are based off of

MISRA, but they extend it. Yes, there are far more specific things you can do.

Suzanne: I cannot tell you how excited I am about this. I would call myself a

retired programmer. I have not been, you know, actually building code for a

long time, but there was static analysis in my day and the idea of having to

deal with all of those alerts and either ignore them and know that they were

going to be coming back again or try and deal with them. But we never had

the 15 staff years to deal with just one batch of code. I am thrilled that the

SEI has taken this on and that you are moving forward with it. And I want to

give you great congratulations on achieving, just the top three is an amazing

accomplishment in my book. Thank you very much, and thank you for talking

about it today.

Suzanne: Well, thank you, Suzanne.

Suzanne: I hope other people will find this and will become happy coders

that can be more secure in the way that they approach their code.

https://sei.cmu.edu/publications/podcasts
https://en.wikipedia.org/wiki/Buffer_overflow
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://misra.org.uk/
https://www.energy.gov/nnsa/national-nuclear-security-administration
https://www.energy.gov/nnsa/national-nuclear-security-administration

Automated Repair of Static Analysis Alerts | sei.cmu.edu/publications/podcasts

SEI Podcasts

 10

David: They will be more secure coders and they will still have some alerts to

deal with, but the alerts will be more interesting because there will be like the

one-of-a-kind alert that simply does not occur enough for us to try and do a

repair for it.

Suzanne: Right. All right. Thank you again, David. I look forward to talking

with you in the future about more progress with this. We will leave that open.

For our audience, we will include links in the transcript to the thing you really

want, which is the link to the GitHub where you can get this thing, but also to

other resources that David has mentioned, and there is a blog post on this

topic. Things like that, you will be able to look at beyond just grabbing the

Docker. Finally, a reminder to our audience that our podcasts are available

wherever you get podcasts: SoundCloud, Apple, and of course, as we talked

about earlier, the SEI’s YouTube channel. When we are not putting up demo

videos for David, we have got a whole bunch of podcasts out there that we

hope that you will enjoy. If you like what you see and hear today, please give

us a thumbs up, and thank you again for joining us.

Thanks for joining us, this episode is available where you download podcasts.

Including SoundCloud, TuneIn radio, and Apple podcasts. It is also available on

the SEI website at sei.cmu.edu/podcasts and the SEI’s YouTube channel. This

copyrighted work is made available through the Software Engineering Institute, a

federally funded research and development center sponsored by the U.S.

Department of Defense. For more information about the SEI and this work, please

visit www.sei.cmu.edu. As always, if you have any questions, please don’t hesitate

to e-mail us at info@sei.cmu.edu. Thank you.

https://sei.cmu.edu/publications/podcasts
https://soundcloud.com/cmu-sei-podcasts
https://tunein.com/podcasts/Technology-Podcasts/Software-Engineering-Institute-(SEI)-Podcast-Serie-p1137152/
https://podcasts.apple.com/us/podcast/software-engineering-institute-sei-podcast-series/id566573552?mt=2
https://www.sei.cmu.edu/publications/podcasts/index.cfm
https://www.youtube.com/playlist?list=PLSNlEg26NNpzVT_Ozbo_xbs4a-lmtRUea
https://www.sei.cmu.edu/
mailto:info@sei.cmu.edu

	Automated Repair of Static Analysis Alerts

