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Abstract

We present a preliminary report for xBD, a new large-
scale dataset for the advancement of change detection and
building damage assessment for humanitarian assistance
and disaster recovery research. Logistics, resource planning,
and damage estimation are difficult tasks after a disaster,
and putting first responders into post-disaster situations is
dangerous and costly. Using passive methods, such as analy-
sis on satellite imagery, to perform damage assessment saves
manpower, lowers risk, and expedites an otherwise danger-
ous process. xBD provides pre- and post-event multi-band
satellite imagery from a variety of disaster events with build-
ing polygons, classification labels for damage types, ordinal
labels of damage level, and corresponding satellite meta-
data. Furthermore, the dataset contains bounding boxes
and labels for environmental factors such as fire, water, and
smoke. xBD will be the largest building damage assessment
dataset to date, containing ∼700,000 building annotations
across over 5,000 km2 of imagery from 15 countries.

1. Introduction
With recent, abrupt changes in weather patterns around

the world, natural disasters have become more unpredictable
and have wider impacts than ever before [1]. Improvements
in the fields of machine learning and computer vision have
led to increased interest in creating smart, autonomous solu-
tions to problems that many first responders face worldwide.
The increasing availability of satellite imagery from sources
such as USGS, NOAA, and ESA allows researchers to create
models for a variety of humanitarian assistance and disas-
ter recovery (HADR) tasks. Training accurate and robust
models necessitates large, diverse datasets. Unfortunately,
datasets for these use cases are hard to obtain. Although
large-scale disasters bring catastrophic damage, they are rel-
atively infrequent, so the availability of relevant satellite
imagery is low. Furthermore, building design differs depend-
ing on where a structure is located in the world. As a result,
damage of the same severity can look different from place

Figure 1: From top left (clockwise): California wildfire;
Sulawesi tsunami; India monsoon; Lombok earthquake. Im-
agery from DigitalGlobe.

to place, and data must exist to reflect this phenomenon.
Last, guidance for assessing building damage from satellite
imagery for a wide variety of disasters is lacking in available
literature.

In order to fully support machine learning for building
damage assessment, datasets of appropriate scope, scale,
size, and standard must be available. For this reason, we
introduce xBD, a satellite imagery dataset for building dam-
age assessment. xBD addresses the limitations enumerated
above by collecting data across 8 disaster types, 15 countries,
and thousands of square kilometers of imagery. Furthermore,
we introduce a Joint Damage Scale that provides guidance
and an assessment scale to label building damage in satellite
imagery. xBD is used to introduce the xView 2.0 challenge
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problem and address operational concerns of the HADR and
emergency response community.

2. Related Work

Assessing damage from satellite imagery, especially for
disparate disaster types, is a complicated task. Intuitively,
it is easy to imagine that different disasters—for example,
floods versus fires—would impact buildings in drastically
different ways. In order to train robust building damage
assessment models, datasets that can provide imagery from
multiple types and severities of disasters are critical.

2.1. Existing data sources

Existent satellite imagery datasets that contain damaged
buildings cover only single disaster types, with different
labeling criteria for damaged structures [14, 4, 28, 12].

Furthermore, there are limited datasets that provide la-
bels for forces of nature (fire, water, wind, etc.) that caused
damage to a building visible in satellite imagery. Related
datasets [9, 15] provide derivative location information of
where these forces may occur, but they do not contain im-
agery of the damaged structures themselves. From an op-
erational perspective, it is much more useful to be able to
classify a building as, for example, “damage level 5 caused
by fire and wind” as opposed to simply “damage level 5.”
For any given disaster, currently it is too difficult and time
consuming to assess which factors damaged a given build-
ing to any level of granularity. It is simply assumed that a
tornado caused wind damage, a wildfire caused fire-related
damage, and more. However, this ignores secondary issues
that arise because of natural disasters, such as fires that start
after earthquakes, wind damage associated with flooding dis-
asters, and more. A lack of datasets for this problem directly
impedes any potential for model development.

Similarly, there are few public datasets of satellite im-
agery with associated bounding boxes and labels for en-
vironmental factors such as smoke, water, lava, and fire.
Existence of these environmental factors in the satellite im-
agery provides insights that can aid HADR image analysts
in disambiguating the causal factors and severity of building
damage.

Last, many available datasets present multi-view imagery
for change detection, land classification, and other tasks [7,
6, 2, 18]. Imagery from these datasets can span multiple
visits over one site and provide a rich resource for any sort of
time-series imagery analysis. xBD emulates these datasets
and provides pre- and post-disaster imagery over consistent
sites for additional environmental context.

2.2. Assessment scales

There is a large corpus of literature that addresses how to
assess damage after disasters such as fires, earthquakes, and

hurricanes [20, 27, 24, 13]. However, since each scale in
this corpus is specifically scoped to a limited set of disaster
types and is generally meant for in-person damage assess-
ment, the scales cannot be simultaneously used to assess
building damage by multiple disasters in satellite imagery.
There are some notable attempts to assess multiple types of
disasters. The HAZUS software from FEMA [11] is used to
assess earthquakes, floods, and hurricanes. More generally,
the FEMA Damage Assessment Operations Manual [10] de-
scribes damage qualitatively, but mostly relies on in-person
assessments and provides specific criteria only for residen-
tial dwellings. As a result, there does not exist a standard
scale for assessing damage across damage types from aerial
imagery.

3. Dataset Details
In this section we describe the xBD dataset in detail, in-

cluding the image collection considerations, damage scale,
annotation process, and quality control. We also show statis-
tics about the dataset that describe the diversity, scale, and
depth of the imagery.

The dataset consists of the following: building polygons,
which are granular representations of a building footprint;
ordinal regression labels for damage, which rate how dam-
aged a building is on an increasing integer scale; multi-class
labels, which relate all the environmental factors that caused
the damage seen in the imagery; and environmental factor
bounding boxes and labels, which are a rough approxima-
tion of the area covered by smoke, water, fire, and other
environmental factors.

3.1. Motivating processes for image collection

In collaboration with imagery analysts from the Califor-
nia Air National Guard, we identified the process by which
human analysts currently label building damage from satel-
lite imagery and the implicit decisions they make in order
to provide insights to first responders. The process is as
follows: when a disaster occurs, analysts receive aerial and
satellite imagery of the impacted regions from state, federal,
and commercial sources. Analysts make an initial overall
assessment of what sub-regions look the most damaged and
further analyze, identify, and count the number of structures
damaged. The scale used to assess the damage as well as the
types of structures that will be assessed depend on the type of
disaster, requesting agency, and use case for the assessment.

This process informed a set of criteria that guided the
specific data we targeted for inclusion in the dataset, as well
as weaknesses of the current damage assessment processes.
Each disaster is treated in isolation. The process human an-
alysts use is not repeatable or reproducible across different
disaster types. This irreproducible data presents a major
issue for use by machine learning algorithms; different disas-
ters affect buildings in different ways, and building structures



Figure 2: Disaster types and disasters represented in xBD over the world.

vary from country to country, so determinism in the assess-
ment is a necessary property to ensure machine learning
algorithms can learn meaningful patterns. Therefore, to en-
sure a holistic view of building damage, we source imagery
from a variety of disaster types across many countries and
environments. Table 2 lists all disasters in xBD and their
corresponding disaster types.

An additional consideration for the dataset is the inclusion
of labeled environmental factors such as smoke, landslide,
and water. Human analysts implicitly acknowledge the ex-
istence of these factors, which affects their assessment as
they mentally categorize the type of damage to expect. xBD
contains explicit labels to assist any downstream machine
learning task in accomplishing the same categorization.

A clear understanding of what buildings do not look like
is necessary when training models to look for buildings,
damaged or otherwise. Explicit techniques to establish this
understanding exist; one example is hard negative mining
[26, 25]. In order to support such techniques, we included a
large amount of satellite imagery in xBD that may contain
objects such as vehicles or natural features but no buildings.

3.2. Joint Damage Scale

To address the lack of a scale for building damage as-
sessment that covers the various types of damage in this
satellite imagery dataset, we present the Joint Damage Scale
(Table 3), based mainly on HAZUS [11], FEMA’s Damage

Assessment Operations Manual [10], the Kelman scale [21],
and the EMS-98 [16]. Furthermore, various literature from
the GIS community [5, 30, 8], paired with expert insights
from the California and Indiana Air National Guards and the
US Air Force, help ground the scale in operational relevance.
Assessing damage via satellite imagery is a proxy for the real
task, which requires on-the-ground human analysts using
these cited scales to assign a metric of damage based on the
functionality of the building, not its looks. It is not simple
to reconcile this highly objective task of assessing function-
ality in person with assessing functionality from top-down
satellite imagery. As such, this scale is not meant as an au-
thoritative damage assessment rating, but it does provide the
first attempt to create a unified assessment scale for building
damage in satellite imagery across multiple disaster types,
structure categories, and geographical location. Imagery an-
alysts who provide preliminary building damage assessment
as well as related machine learning applications would find
this scale to be applicable.

The Joint Damage Scale ranges from no damage (0) to
destroyed (3). This granularity is based on satellite imagery
resolution, available imagery features, and operational use-
fulness. The descriptions of each damage level have been
generalized to handle the wide variety of disasters present
in xBD. The scale allows room for analyst discretion, which
can result in some amount of label noise. Although such
nuance is not ideal from an objective assessment standpoint,



it allows analysts to gracefully handle tough cases that fall
between classification boundaries. Figure 5 and Appendix
Figure 6 show examples of what it means to be in one of
these categories.

Due to the limitations presented by the modality of satel-
lite imagery, such as resolution, azimuth, and smear [29], this
scale presents a best-effort trade-off between operational rel-
evance and technical correctness, and thus cannot accommo-
date the degree of precision that a scale meant for in-person,
human assessment provides.

Figure 3: Joint Damage Scale descriptions on a four-level
granularity scheme.

3.3. Polygons

Polygons for all buildings are provided in standard, well-
known text representation conformant to the ISO/IEC 13249-
3:2016 standard [19]. Polygons will be provided in terms
of their latitude and longitude as well as their respective
pixel location in a given swath of imagery. Structures that
are below a set size in terms of square pixels will not be
annotated in the dataset.

Bounding boxes for environmental factors are rough and
potentially overlap annotated buildings as well. These boxes
are provided for a relative understanding of the environment.

3.4. Multi-class labels

We provide multi-class labels for environmental fac-
tors that caused damage to structures. These labels are
“fire”, “water”, “wind”, “land shift”, and “other” in the
form of a many-hot vector (i.e., a vector in the form of
[0, 1, 0, 0, 1, 0, ...], where a 1 is present at the index of the
correct classes). These labels are high level and meant to
provide a coarse level of discrimination to maintain a low
level of noise in this set of annotations.

3.5. Quality control

Quality control is an essential part of creating an accu-
rate dataset with many labels and often complicated poly-
gons. A three-stage quality control process was adapted

Figure 4: Polygons over a small part of the coast of Florida
with damage labels. Imagery from DigitalGlobe.

from xView 1.0 [22] with significant alterations to account
for the initial round of automated labeling. The first stage
consists of global verification where all annotators verify
the orientation, positioning, and fidelity of all automatic and
human-extracted polygons. After all polygons are verified,
all human-annotated labels are verified.

The second stage uses a targeted, experienced set of an-
notators to check for continuity of polygons, granularity of
multi-class labels, empty chips, and any disagreeing labels.

The final, third stage relies on expert annotators that con-
sist of the authors, HADR subject matter experts, and remote-
sensing/satellite imagery experts who randomly sample 4%
of all individual tasks. If any task is found to be incorrect,
the entire batch—which itself consists of many tasks—is
re-submitted for annotation and sent back for expert verifica-
tion.

3.6. Targeted dataset statistics

All imagery for xBD is sourced from DigitalGlobe.1 Digi-
talGlobe provides high-resolution imagery at ∼0.5m ground
sample distance, which provides ample resolution for this
labeling task. Furthermore, we are able to obtain pre- and
post-disaster imagery in multi-band (3, 4, or 8) formats,
which give xBD greater representational capacity. Each im-
age is also accompanied by metadata such as “sun azimuth”
and “off-nadir”, which enable data processing pipelines to
account for various skews in the imagery itself. The imagery
consists of 22 different disasters and is gathered from 15
countries (Figure 2) at various times of the year. Disasters
were picked on the basis of what impact people often and at a
high severity. Furthermore, disasters had to have a range on
their levels of severity, otherwise their impact on buildings
would not be differentiable enough to provide good labels.

Overall, xBD will provide approximately 700,000 build-
ing polygons with ordinal damage and multi-class damage

1https://www.digitalglobe.com/

https://www.digitalglobe.com/


causal labels, as well as approximately 1,000 environmental
factor bounding boxes with corresponding class labels. The
distributions over the labels are unknown at this time, but
figures and exact numbers will be provided once the entire
data collection process has ended.

3.7. Unique dataset features

As briefly covered in Section 2, xBD presents many at-
tributes that are not available in other datasets that could be
used for this task.

xBD contains imagery from the majority of common dis-
aster types labeled with a common, expert-verified damage
assessment scale. By including vastly different modes of
damage in the dataset, we provide a much more robust view
of damage than related datasets.

The dataset also has large geographical diversity. In par-
ticular, imagery contains buildings in both highly dense and
hyper-sparse settings. This range presents difficulties for
proper localization methods. Furthermore, since imagery
is sourced from around the world, buildings are organized
and designed in different ways, providing a representational
complexity not present in existent literature.

4. Challenge
xBD is being released in conjunction with the second

iteration of the global xView challenge. For the purposes
of the challenge, the dataset is used in a specific fashion
that balances research interest and the operational concerns
of various relief-providing agencies, but this use does not
preclude it from being used for other tasks.

4.1. Challenge statement

xBD provides building polygons, ordinal regression la-
bels for building damage, and multi-class labels for environ-
mental factors that caused the damage. Given training data,
the challenge is to create models and methods that can ex-
tract building polygons and assess the building damage level
of polygons on an ordinal scale. Furthermore, the models
and methods must assign an additional multi-class label to
each polygon that indicates which natural force caused the
damage to the building.

4.2. Performance metric

A metric for scoring the xView 2.0 challenge needs to
smoothly combine scores for the tasks of regression, clas-
sification, and localization. An ideal metric would weight
these tasks from high to low in their listed order. xView
1.0 had to make explicit design trade-offs which resulted in
certain classes of objects being scored higher for accurately
localizing them. In the case of xView 2.0, every disaster type
is treated as equally important, but due to the prevalence of
models that can localize building polygons, the weighting for

localization is not high. The majority of the difficulty relies
on the fine-grained regression and classification required to
accurately assess building damage.

4.3. Challenge restrictions

To better accommodate operational use cases, the data
used for inference in the challenge will be purposefully
lowered in resolution in a stochastic fashion. Since high-
resolution imagery cannot be guaranteed for all parts of the
world, for all disasters, around the clock, any models created
must work across dynamic resolution limitations.

As with xView 1.0, inference for any submitted model
will be limited to CPU only with an upper limit on computa-
tion time per image.

5. Potential Use Cases
We provide a brief, non-exhaustive list of compelling

use cases for xBD that are both operationally useful and
academically interesting.

Obstructed road segmentation. The dataset includes
images of many roads that are broken, covered with a variety
of debris, flooded, and otherwise obstructed. Unsupervised
models already excel at road segmentation in satellite im-
agery [3, 23, 17], but limited literature currently addresses
segmentation and identification of roads with obstructions.
Models that can detect obstructed roads would provide ad-
vanced routing capabilities to first responders and disaster
planners who need to know how to navigate through a disas-
ter environment.

Routing across obstructed roads. As an extension to
the previous use case, xBD could also be used as a dataset
for automatic route planning across obstructed or no-longer-
usable roads. Not much literature exists that targets this
problem, partially due to a lack of datasets providing ob-
structed roadways.

Force of nature identification. xBD provides bounding
boxes and labels for many environmental factors—such as
fire, water, and lava—that cause damage. It is essential for
first responders to know where any of these factors may be
present. It is possible to create robust detection models for
this task with the data provided in xBD.

6. Conclusion
xBD presents the largest satellite imagery dataset for

building damage assessment with over 700,000 labeled build-
ing instances covering over 5,000 km2 of imagery.

Furthermore, xBD contains labeled data about environ-
mental factors and hazards that can be used to aid building
damage assessment or other research tasks not considered
by the xView 2.0 challenge.

By combining insights from disaster recovery and emer-
gency response experts from many US Government agencies,



Figure 5: (From left to right) “No damage”, “minor”, and “major” wind damage. “Destroyed” example not available yet.

we are able to generate a high-quality dataset for research
purposes while maintaining operational relevance.
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Appendices

Figure 6: (Top) “Major” and “destroyed” examples for flooding. (Bottom) “No damage” and “destroyed” examples for fire.

Figure 7: The same chip in red/green/blue (left) and red/near-IR/blue (right).


