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Abstract 

Many software-intensive systems of current and future application domains require (or will require) 

approval from a certification authority before being deployed. Formal methods (FMs) verify proper-

ties of software by proving them mathematically rather than running tests of the software. FMs have 

the potential to help certification. But unfortunately, FMs are currently rarely used because software 

practitioners do not understand how FM tools work internally and do not understand the underlying 

theories that these tools depend on. Since it is hard to trust something that you do not understand and 

have not used before, software practitioners tend to not trust FM tools. If FM tools could explain their 

output, however, then software practitioners would be more likely to trust them and this could bring 

the benefits of (i) faster fielding (because of less testing), and (ii) improved safety (because of better 

coverage). 

Therefore, this report focuses on potential changes in software development practice and the research 

needed for this to be realized. Specifically, it discusses explanations generally, it discusses the way 

explanations can be used in different types of verification, and it presents ideas for creating explana-

tions for FMs. 

1 Introduction 

1.1 Background 

Many software-intensive systems of current and future application domains require (or will require) 

approval from a certification authority before being deployed. Examples of such application domains 

include: aircraft, medical devices, spacecraft, autonomous ground vehicles, autonomous air vehicles. 

Examples of current certification authorities include: Federal Aviation Administration (FAA), Euro-

pean Union Aviation Safety Agency (EASA), Food and Drug Administration (FDA). 
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1.2 Current pain 

Today, many application domains have a set of guidance documents. For example, in civil aviation 

regulated by the FAA, the document DO-178C [DO-178C 2011] provides the most common means 

for approval of software. These guidance documents tend to be process-oriented; i.e., (i) they pre-

scribe how the development of the system should proceed, (ii) they prescribe how the applicant (the 

organization that develops the system) should communicate with the certification authority, (iii) they 

state high-level objectives, and (iv) they state pitfalls that should be avoided. This mindset has been 

successful in many domains. For example, among US air carriers, the safety record today is much bet-

ter than it was decades ago. Unfortunately, this mindset also has some limitations. These include: (i) 

limitations for future application domains, (ii) limitations on permitting frequent and late changes, (iii) 

limitations on being process-driven rather than focusing on direct evidence of the safety of the soft-

ware, and (iv) not taking full advantage of the research within the formal methods and the real-time 

systems research community: the knowledge of these communities is not present in these documents 

and these documents do not cite papers from these research communities.1 Achieving safety through 

extensive testing appears to be problematic because it precludes frequent and late changes. Achieving 

safety through models fed into verification techniques requires tool qualification (for aircraft, see DO-

330 which supports DO-178C [DO-178C 2011]; for automotive, see page 30 of Part 8 of ISO 26262 

[ISO26262part8 2018]). Thus, it is worth exploring alternatives, specifically exploring (i) what ex-

plainability means, (ii) whether explainability can help, and (iii) how it can be achieved for formal 

methods.  

1.3 Goal 

The goals of this report are to 

G1. survey the state-of-the-art in explainability in various disciplines.  

G2. describe situations where explainability is useful.  

G3. generate ideas that can be useful for explainability of formal methods and real-time systems. 

G1 and G2 are useful for (academic) research communities of real-time systems and formal methods. 

G3 might be useful for these communities as well. But it is certainly useful for an SEI internal re-

search agenda. 

Regarding G1, G2, and G3, it is worth noting that explainability of formal methods and real-time sys-

tems is a new research area and it is important to shape it. There is currently no survey and there is 

currently no document that lists ideas for this.  

____________ 

1 A recent survey [Garavel 2020] of practitioners indicate that most believe that FMs will spread more widely in industry 

(see Section 7.1 in [Garavel 2020]) and they will not be overshadowed by other technologies (see Section 7.4 in 

[Garavel 2020]). 
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Regarding G3, it is worth noting that (i) SEI has funded projects on explainability of computer vision 

[SEIGreybook 2022] and robots [Rosenthal 2016], and (ii) SEI researchers have advocated for bi-di-

rectional explainability in Cyber Security [Mellon 2023]. But these are different from our focus, 

which is on explainable verification. Also, there are many academic research efforts focusing on ex-

plainability of artificial intelligence (AI) but, once again, this is different from our focus. 

For these reasons, we believe goals G1, G2, and G3 are worth pursuing. 

1.4 Terminology 

The term FMs can have different meanings in different contexts. In the area of safety, a hazard analy-

sis like failure mode and effect analysis (FMEA) is often labelled as an FM because it is executed for-

mally through worksheets (with guidewords) by a human. However, in academic research in computer 

science, this would not be viewed as an FM. Instead, an FM is a method that uses automation (i.e., the 

work is done by a computer) to reach a conclusion. Typically, such FMs use either (i) deduction, (ii) 

searching, or (iii) experiments that show that a certain behavior is possible. We are primarily inter-

ested in the meaning used in academic research in computer science. 

Also, the word verification can have different meanings in different contexts. A human performing 

inspection of source code is sometimes referred to as verification. However, we are primarily inter-

ested in verification that is performed automatically (i.e., the work is done by a computer). 

Some software practitioners use the word software verification to mean an activity related to a design 

artifact; for example (i) checking source code to determine whether it complies with a certain coding 

convention (e.g., MISRA C), (ii) checking compiler warnings, (iii) checking source code to determine 

whether it is consistent with architectural documents, or (iv) checking source code to determine 

whether it traces to requirements. However, in academic research in computer science, this would not 

be viewed as a verification. Instead, academic research in computer science tends to view verification 

to mean the following: given a design artifact (e.g., source code), the design artifact can generate dif-

ferent behaviors (e.g., execution traces, sequences of state transitions, schedules) and we are interested 

in determining whether a certain property is true for all behaviors (or for all behaviors that satisfy 

some restriction that we impose).  

2 State-of-the-art in explainability 

The area of explainable verification is in its infancy. This section starts by surveying the research liter-

ature in explainability in other areas than explainable verification. Then, it surveys recent work in ex-

plainable verification. 
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2.1 Explainability not related to software 

Explainability has been studied in many disciplines. In philosophy, in ancient Greece, Aristotle stud-

ied causality as part of his four forces in his theory of forms; he also made the distinction between 

“demonstration of the fact” and “demonstration of the reasoned fact,” the latter being an explanation. 

Many philosophers have invoked the “Principle of sufficient reason” as claiming that for each propo-

sition or event, causality exists [Wikipedia 2024]. Later Craik [Craik 1943] introduced the notion of a 

mental model as an explanation. Lipton [Lipton 2001] viewed explanation as understanding and pre-

sented five concepts of understanding, argued their respective merits, and argued that the concept of 

causality is the best of them. Lipton proposed the notion of contrastive explanation; instead of answer-

ing “why X” it explains “Why X rather than Y?” Deutsch [Deutsch 1997,Deutsch 2009,Deutsch 2012] 

argues that (i) explanation is more important than prediction in theory of science, and (ii) a good ex-

planation should be hard to vary; i.e., if we change an element in an explanation, then the explanation 

should be false. David Deutsch also points out that Darwin’s theory of evolution provides explanation 

rather than prediction. As an example, he states that Darwin’s theory does not predict the existence of 

elephants but it explains the existence of elephants [Deutsch 2023]. In psychology, Keil [Keil 2006] 

points out that (i) an older view was that all explanations are deductive proofs (DN model) but this has 

not survived well, (ii) explanations have different purposes (assigning blame, making predictions for 

the future, finding a root cause of an event), (iii) explanations can be categorized as mechanistic, de-

sign, and intent, and (iv) all cultures use the same type of explanations but they vary in which explana-

tion they emphasize. It has been argued [Wikipedia 2023a] (as part of the movement on pragmatic ex-

planations within the area Scientific Explanation) that an explanation should use concepts that are in 

the mind of the person receiving the explanation; this was a critique against the DN model and 

brought the pragmatic model of explanation. Metaphysical explanation [Wikipedia 2023b] considers 

explanations of statements x is X because there is an explanation of x that is derived from the defini-

tion or essence of X. Mathematical explanation [Wikipedia 2023b] focuses on whether proofs are in-

tended to establish truth or provide understanding. In mathematical logic, if a formula A(x,y) ∧ B(y,z) 

is unsatisfiable, then a Robinson interpolation [Hinman 2005, page 66] is a formula that explains the 

unsatisfiability and contains only variables that A and B share. Bermúdez [Bermúdez 2020] provides 

an introduction to cognitive science. It focuses on minds (both human and animals) but goes beyond 

behavioralism; it studies mental processes (not just input-output behavior). Many of the results point 

to limitations in human information processing and how minds take short cuts (e.g., limitations on 

working memory, filtering of information) and learning with conditioning. Human-Centered Design 

[Norman 2013] studies how the human mind interacts with products; pointing out [Norman 2013, 

page 25] “A conceptual model is an explanation, usually highly simplified, of how something works” 

and [Norman 2013, page 52] that users have expectations on behavior of products and when a product 

gives feedback to a user, a user feels more in control; this gives rise to positive emotion. The im-

portance of giving clues to users is also emphasized in Krug [Krug 2010, Krug 2014]. 

2.2 Explainability related to software 

In software testing, a common technique in safety-critical systems is MC/DC testing [Wikipedia 

2023d]; that is, creating a test suite so that each decision in a program is covered and each condition in 
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a decision can affect the outcome. The latter can be viewed as contrastive explanation. In constraint 

satisfaction, explainability has been considered [Gupta 2021] in terms of explaining why a set of con-

straints are unsatisfiable. In computer science, a regular expression can be thought of as an explana-

tion for the set of strings that a finite-state automaton accepts and given a small number of strings, one 

can learn an automaton [Angluin 1987]. Pearl [Pearl 2019] points out that a joint probability distribu-

tion can be represented by a graph where each node represents a random variable and an edge repre-

sents a dependency. In this way, it is possible to model causality and consequences of intervention; 

this can be viewed as explanation. The area of safety can be thought of as: hazard analysis and assur-

ance case. In the former [Ericson 2016], it is common to scan guidewords (e.g., energetic material) in 

design documents to find a hazard (a condition within a system so that if a condition outside the sys-

tem is unfortunate, then a mishap can occur). The latter [Kelly 1998,Diemert 2023] involves con-

structing a tree of claims so that the top-level claim is what we care about (the entire system is safe) 

and for each non-leaf claim, it holds that it can be justified based on its children claims. Both can be 

viewed as providing explanation (of mishap or safety). The standard DO-178C [DO-178C 2011, Hil-

derman 2021] relies on tracing requirements; such tracing can be viewed as explanations. The area of 

statistics provides techniques for exploratory data analysis; for example, reducing a dataset to lower 

dimension so it can be visualized while maintaining some important information about the original da-

taset [Fridman 1974]; the lower dimension representation can be used when explaining phenomena in 

the original dataset.  

2.3 Explainability related to artificial intelligence 

Statistics and Machine Learning (ML) have traditionally had different goals. The latter aims for high 

prediction performance with black boxes; the former starts with a structure and aims for understand-

ing. ML belongs to the broader area of Artificial Intelligence (AI). Explainable AI (XAI) has become 

important because of the desire to use AI in high-stakes decision making. The DARPA XAI program 

[DARPA 2022] studies this and has provided a categorization of XAI in terms of (i) deep explanation, 

(ii) interpretable models, and (iii) model induction. Hagras [Hagras 2018] argues in favor of using 

fuzzy logic for XAI. Holzinger [Holzinger 2018] provides a survey of XAI techniques with emphasis 

on its use in healthcare. Hoffman [Hoffman 2018] studies how to evaluate explainability. Falco et al. 

[Falco 2021] discusses government regulation of XAI. 

Details on explainability are discussed below for both the systems based on large language models 

(LLM), reinforcement learning (RL), and for those without. It is noteworthy that the words explaina-

ble and interpretable are often used as synonyms (also pointed out in [Zhao 2023]). Also, an explana-

tion is said to be local if it applies to a specific input to a function; an explanation is said to be global 

if it applies to all inputs to a function. 

2.3.1 Non-LLM and Non-RL work 

Examples of high-profile works in explainable AI are: 

1. Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro 2016] 
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2. Class Activation Mapping (CAM) [Zhou 2016] 

3. Gradient-weighted Class Activation mapping (Grad-CAM) [Ramaprasaath 2017] 

4. Layer-Wise Relevance Propagation (LRP) [Bach 2015] 

5. SHapley Additive exPlanation (SHAP) [Lundberg 2017] 

6. Deep Learning Important FeaTures (DeepLIFT) [Shrikuma 2017] 

7. Optimal Classification Trees [Bertsimas 2017] 

These works are discussed below. We choose to discuss them because they are highly cited. The fol-

lowing is common among the aforementioned works: (i) they rely on the idea that a human has se-

lected a set of features, and the explanation method explains the current mapping based on those fea-

tures, and (ii) they focus on the use of ML in health care. 

2.3.1.1 LIME and SP-LIME 

LIME and SP-LIME [Ribeiro 2016] are a model-agnostic approach for interpretability of a ML sys-

tem. LIME is a basic version for one type of interpretability (local); SP-LIME is a variation of LIME 

and it performs another type of interpretability (global). Both assume supervised learning but make no 

assumption on training data, inductive bias, training method, or representation of function. They as-

sume that through training, we already have a function f that maps input to output. Then, these ap-

proaches can be applied after training. LIME can be used at inference time and it is run each time we 

get a new input. SP-LIME can be used at any time after training. We can use SP-LIME when a system 

is being deployed and its training has been completed but we have not received any inputs yet. We can 

also use SP-LIME whenever we receive a new input at run-time. LIME solves the problem P1 below. 

SP-LIME solves the problem P2 below. 

P1. Given a specific input I and a function f that maps I to the output O, explain why the output O 

was produced based on I.  

P2. Given a function f that maps inputs to outputs, explain approximately what this function does. 

An explanation for P1 can help a human to trust the ML system for a particular input I. An explana-

tion for P2 can help a human to trust the ML system in general (not just for one input).  

LIME produces an explanation to P1 as follows: One can use any supervised learning technique to 

train the ML system with training data set. Then, at inference time, when the ML system receives one 

input I and is expected to produce an output O, LIME is invoked. LIME generates perturbations of the 

input I and for each such perturbation LIME applies the ML system to get an output. Then, LIME uses 

these perturbations to learn a simple function (which we call g). The function g produces an output in 

the same space as f. However, the input to g is different from the input to f. It is assumed that we have 

a special feature space representation of the input to the ML system. For example, if the input to the 

ML systems is an image, then a feature representation of this image is a vector where each component 

in the vector is zero or one; the interpretation is that if the feature is present in the input, then, the 
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value in the feature vector is one. In this example, a feature could be detection of a certain type of 

edge or line segment. The idea is that when an input is fed into an ML system, we compute the fea-

ture-representation of this input. This input is fed to g and it produces an output. The function g should 

be a linear function of the feature representation and ideally the output produced by g should be ap-

proximately equal to the output produced by f. We should choose the feature representation of an in-

put so that (i) the feature representation is a vector, (ii) the dimensionality of the vector is permitted to 

be large but it should hold for most inputs that in the feature representation, most components are zero 

(i.e., only a small number of components are one). When training g, we use a special type of loss func-

tion (minimize sum of magnitude of weights) that gives us that the coefficient that represents g is 

sparse. We can now interpret f for an input. Given an input I, we create perturbations of I; then com-

pute the feature representation of I and the feature representation of all perturbations of I; then train 

the function g; then identify the coefficients in g that have the largest magnitude; then identify the 

components in the feature representation that corresponds to those coefficients; then report those com-

ponents in the feature representation to the user and state that “these features are responsible for the 

output for function f for this input.” 

SP-LIME produces an explanation to P2 as follows: Generate a set of random inputs to the ML sys-

tem. For each input, obtain an explanation using LIME. Now, we have a set of inputs to the ML and 

for each input, we have an explanation. Then, select a set of features as follows. For feature j, compute 

Ij such that Ij is large if the weight of j is large in many of the explanations. Then, select the features 

with large values of Ij. Then report those features to the users and state that “these features are respon-

sible for the output for function f for the input space.” 

2.3.1.2 CAM 

CAM [Zhou 2016] is not focused on explainability per se but can support it and has been used later for 

explainability. CAM considers an artificial neural network (ANN) that performs image classification. 

The ANN is given as input an image and the ANN is also designed considering a set of categories 

(e.g., “dome’ “palace” “church”) and the ANN is supposed to determine which category is in the im-

age. CAM works as follows. The ANN has a set of layers that are convolution layers; these detect fea-

tures in the image (with earlier layers detecting simpler features). Such an ANN is called a convolu-

tional neural network (CNN). It is assumed that the system has no fully connected layers. When such a 

classifier is designed for CAM, the system does not just output the category that is in the image; it also 

outputs a CAM where a CAM is marking for pixels (actually, pixels in the last convolutionl layer) that 

states how important this pixel is for this category. For example, if an image classifier is given an im-

age of a dome, then the classifier will output a marking that shows which pixels are important for de-

termining that the image is a dome. 

2.3.1.3 Grad-CAM 

Grad-CAM [Ramaprasaath 2017] considers a CNN that performs image classification and it considers 

explainability of the output of the CNN. Grad-CAM extends CAM so that it also allows fully con-

nected layers; hence Grad-CAM has the potential to achieve better prediction performance than CAM. 

The paper [Ramaprasaath 2017] also emphasizes explainability. It also shows how to obtain a set of 
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pixels that serve as counterfactual explanation; that is, changing these pixels will cause the classifier 

to output another category. 

2.3.1.4 LRP 

LRP [Bach 2015] solves the same problem as CAM and Grad-CAM but it differs in that for LRP, 

when an artificial neural network is given an image, LRP assigns a relevance metric for each neuron 

in each layer (that is how much it influences the output). 

2.3.1.5 SHAP 

Many explanations select a set of features; thus, it is necessary to quantify the goodness of the selec-

tion of features. SHAP [Lundberg 2017] uses an idea from cooperative game theory to select features. 

In cooperative game theory, one considers n players and each player decides whether to participate in 

a coalition. There is a function that maps for each set of players a utility that is accrued if this set of 

players form a coalition. The utility needs to be distributed among the members of the coalition. The 

literature provides different constraints on this distribution and different methods for computing the 

utility to each player in the coalition so that this distribution satisfies constraints. There is one set of 

constraints that yields a unique distribution of utility among the participants in the coalition. By sub-

stituting a player for a feature in ML and substituting a coalition for a selected set of features in ML, 

we obtain a method for selecting features. SHAP uses this idea to select a set of features that explains 

the output of an ML system for a given input. 

2.3.1.6 DeepLIFT 

DeepLIFT [Shrikuma 2017] creates an explanation similarly to LIME and has an explanation vector 

x’ associated with each input x (just like LIME) but in DeepLIFT, the 0-1 values in x’ have different 

meaning. In DeepLIFT, if a component in vector x’ is 1, then it means that x’ takes its value from a 

component in x; but if the component in vector x’ is 0, then it means that x’ takes its value from a ref-

erence value. 

2.3.1.7 Optimal Classification Trees 

Bertsimas and Dunn [Bertsimas 2017] argue that decision trees are more explainable than other types 

of machine learning; it is easy for human users to just inspect the decision nodes and if a human feeds 

an ML system with input x, then it is easy to see which path it passes through the tree. However, this 

is only true if the decision tree is sufficiently small. Therefore, Bertsimas and Dunn ask whether it is 

possible to find the smallest decision tree. Previous work on decision tree has used heuristics but Bert-

simas and Dunn improve on that by formulating the construction of a decision tree as a constraint opti-

mization problem (linear constraints with some variables having the domain integer). They argue that 

there have been large improvements in performance in solvers (e.g., Gurobi) so that such construction 

is feasible today; they show this with extensive experiments. 
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2.3.2 Explainable RL 

Maduma [Maduma 2019] presents explainable RL. Specifically, given an agent, and knowledge of 

how the agent’s action influences the environment, explain the agent’s behavior. It can explain why 

the agent took action A rather than not A. 

2.3.3 LLM work 

Zhao [Zhao 2023] provides a survey of explainability of LLMs. There are different types of explana-

tions, discussed below. 

Feature-attribution-based explanations aim to measure the relevance of an input feature (e.g., a word) 

to the prediction. There are many sub-types of them. Perturbation-based explanation is one such ex-

ample. It perturbs input and observes how these perturbations change output. The aim is to find small 

changes in input that leads to a change in output. Gradient-based explanation works similarly but in-

stead of relying on perturbations to find how input changes output, it computes the derivative of the 

output with respect to inputs. Surrogate models use simple models (that are easy for humans to under-

stand) to give similar predictions as the original predictor (which is a black box). Decomposition 

methods break down output as a function of input. 

Attention-based explanation explain behavior based on identifying relevant parts of the input. Visuali-

zation methods visualize attention heads (which are part of the transformer architecture that is used in 

LLMs) for a specific input. Function-based explanation considers the partial derivative of the output 

as a function of attention weights (not the inputs). 

Example-based explanations include one type of explanations called counterfactual explanation. It 

considers the case that given an observed input x and a perturbed input x’ with certain features 

changed, the prediction y would change to y’. Typical perturbations are paraphrasing or word replace-

ment. 

Neuronal activation explanations identify individual neurons that are crucial for performance. It can 

involve two steps: (i) identify important neurons in unsupervised manner, and (ii) learn relations be-

tween linguistic properties and individual neurons in supervised tasks. 

The survey [Zhao 2023] points out that one use of explanations is in debugging. For example, if the 

machine learning model consistently attends to certain tokens in the input sequence regardless of the 

context, this may indicate that the machine learning model relies on heuristics or biases rather than 

truly understanding the meaning of the input sequence. 

2.3.4 Sparsify 

Since ANNs tend to have more weights than training examples, it is common to apply regularization 

techniques to training so as to avoid overfit. L1 regularization is a common one. It introduces an extra 

penalty term in the loss function used for training. This extra penalty is the sum of magnitude of the 

weights. Clearly, this encourages the training to use weights with smaller magnitude. But it also en-

courages the training to sparsify the ANN; that is, assign zero to many of the weights and assign non-
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zero to a small number of weights. For such an ANN, we can remove all connections that have weight 

zero. This makes the ANN simpler and more interpretable. 

Recently, Liu et al. extended this idea to improve interpretability further [Liu 2023]. The idea is to 

embed each neuron in a 2-dimensional space. The jth neuron in the ith layer is placed at coordinate (i,j). 

Then, the training encourages locality. It is achieved as follows. Pairs of neurons that are placed far 

apart in the coordinate system are discouraged from having large weights. And they are discouraged 

from having non-zero weights (that is, they are encouraged to have zero weighs). In this way, after 

training, most of the connections between neurons are local in the sense that for the j:th neuron in the 

ith layer, if it is connected to a neuron in the i+1th layer, it is more likely to be connected to the jth neu-

ron (same row) than some other neuron in the i+1th layer. Hence, the ANN can be thought of as a set 

of modules where the interactions between modules is much smaller than the interactions within a 

module. By identifying the modules “visually” one can “see” how the learned function works from its 

parts. This further improves interpretability. 

A very recent results by Michaud et al. [Michaud 2024] has used sparsity and several other ideas to 

achieve interpretability. They consider a recursive neural network (RNN). An RNN is an ANN such 

that the some of the inputs to the ANN are output signals from the ANN; this is feedback and these 

signals can be thought of as a state. Their idea to achieve interpretability is to decode a given RNN 

into a finite state machine represented as a Python program. Their idea is to run the RNN several times 

and record the states that are reached. Then, one forms clusters so that for each cluster, there are a 

number of states that that are similar. Then, one hypothesizes that there is a set of discrete program 

variables (Booleans, integers) in a Python program such that if one assigns values to these discrete 

program variables, then there is a mapping from these values to a cluster. Michaud et al. [Michaud 

2024] present methods to find such mappings. This requires enumerating hypotheses about program 

variables, and it requires searching through many (or all) assignments of values to program variables; 

but it does not require searching through the set of all Python programs. They also present methods to 

find such mapping with very little searching for the case that there is regularity in the clusters. Given 

this, the only challenge that remains is to find a function f and a function g such that (i) f represents 

the change of values of the program variables for each computation step in the Python program, and 

(ii) g represents the output produced based on the state. Finding f and g can be achieved using sym-

bolic regression. This yields a Python program that represents a finite state machine that behaves like 

the given RNN. 

2.3.5 Explainability of OpenAI’s transformers 

The corporation OpenAI has made public a tool for debugging transformerssee [TDB 2024]. 

2.4 Explainability related to formal methods 

With respect to FMs, explainability has been recognized by a small (but growing) number of authors 

as important because many FM tools have been found to be defective (produces wrong output). This 

has been the case in SAT/SMT solvers which are the foundations of model checking tools [Mansur 

2020, Winterer 2020, Park 2021], it has been the case in model checking tools [Zhang 2019], and it 
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has been the case in timing analysis tools [Davis 2007] (more examples are given in Section 2 in 

[Maida 2022]). CBMC [Biere 1999] (one of the common model checkers) can produce a counterex-

ample but it is difficult for humans to understand a counterexample [Martins 2022] and there is no ex-

planation for the case that the property holds. The SLAM model checker [Ball 2004, Ball 2011] 

(which is based on forming an abstract state machine using predicate abstraction of source code) can 

provide a counterexample; specifically, it provides (as stated on page 5 in [Ball 2011]) “a possible ex-

ecution trace through the driver that shows how the rule can be violated” but no explanation for the 

case that the property is true. [Chechik 2005] considered explanations of counterexamples and pre-

sented two ideas: (i) creating a proof that a state in the counterexample can be reached, and (ii) ab-

straction of counterexample. In the authors opinion, these explanations are quite hard to understand. 

In model checking, it is common to distinguish between safety properties and liveness property where 

(i) in the former, the property states that nothing bad will happens (i.e., the system does not enter an 

error state), and (ii) in the latter, the property states that eventually something good happens (e.g., if a 

process requests a mutually exclusive resource, then eventually it will get it). If a safety property is 

false, then a tool may produce an execution in which the property is violated. This can be presented to 

a user, as discussed above. If a liveness property is false, then a tool may find a cycle of states (often 

called “lasso”) so that the execution is forced to execute in this cycle and hence never reached the de-

sired good state that we would like to eventually reach. Such a cycle can be thought of as an explana-

tion too. 

In recent years, some FMs improve simply because they rely on a SAT/SMT solver and the SAT/SMT 

solver improves. But FMs in themselves have also developed during recent decades. Typically, this 

involves (i) new ways of describing a system and correctness properties, (ii) new ways of reasoning 

about the behavior of a system, (iii) new types of logic applied, (iv) new types of abstraction used, and 

(v) applying results that were known in logic but has hitherto not yet been used in FM. For example, 

in terms of theorem proving, a Hoare triple can describe that if a precondition P is true and one part of 

a program S executes, then a post-condition Q is true. These can describe smaller parts of a program 

and then be combined to describe larger parts of a program so that eventually, they describe the entire 

program. In terms of model checking, a common approach has been to compute the set of reachable 

states and check if it contains an error state. Schedulability analysis views FMs from a high-level ab-

straction, describing the system as a set of concurrently executing tasks where each task is described 

with parameters and one computes the cumulative amount of time that a task can execute in various 

time intervals of given duration. Network calculus has been used to analyze buffers. Lyapunov stabil-

ity criterion has been used to prove stability of a controller together with its plant. Formal verification 

became more visible with the SLAM engine which was part of the Microsoft Static Driver Verifica-

tion [Ball 2004,Ball 2011]; it is based on predicate abstraction (PA) [Graf 1997,Clarke 2018] which 

performs model checking on a coarse-grained state space and refines it as needed. Despite the ad-

vances in formal verification, there has been very little focus on their explainability. We have recently 

organized a workshop (ERSA) and seen an increasing interest in explainability [ERSA 2022, ERSA 

2023]. 

Z3, one of the most popular SMT solvers, provide two features “proof mining” and “tracing.” It is 

possible that these can help to provide explanations of why Z3 produced a certain output (“satisfiable” 



DISTRIBUTION STATEMENT A: This material has been approved for public release and unlimited distribution.  
 

or “unsatisfiable”) and it is possible that such explanations can also be used by tools that rely on SMT 

solvers. 

Recently Kaleeswaran [Kaleeswaran 2023] has written a PhD thesis on the topic of creating explana-

tions for counterexamples output from a model checker. He focuses on processing the counterexample 

(e.g., shortening it, removing states that are not relevant) and on “lifting it” so that the explanation is 

not about an execution trace (sequence of states) on a low level but uses concepts of higher levels 

(components). He gives a design flow where (i) one has a design model (e.g., UML diagram) from 

which one generates a verification model, (ii) one has requirements given in natural language from 

which one generates a specification (i.e., correctness conditions), (iii) the verification model and spec-

ification are fed into a model checker, (iv) if the model checker outputs a counterexample, then this 

counterexample is fed into the explanation generator, (v) the explanation generator processes the 

counterexample (e.g., shortening it and/or removing irrelevant states), (vi) one creates a representation 

of the counterexample (graphical, textual, tabular, trace), and (vii) a human interprets the counterex-

ample by looking at its interpretation. Kaleeswaran conducted a literature survey [page 29-40, 

Kaleeswaran 2023] and found that: 

1. Fault-trees tend to be easier for users to understand that execution traces. 

2. Animations are highly effective for user’s comprehension. 

3. Shorter counterexamples tend to be easier to understand. 

4. In probabilistic model checking where one wants to show that the probability of an error is 

greater than some bound, then an explanation can be a set of execution traces so that the sum 

of probability over these execution traces exceeds the bound. 

5. If one has a counterexample, then it can be helpful to also have a witness trace in which the 

correctness property is true; thus the user can compare the counterexample with the witness 

trace and gain understanding. 

6. In some cases, just visualizing each step of a counterexample may not be sufficient for human 

understanding. 

7. Finding causality of an error may be helpful. 

8. Using a domain-specific vocabulary may improve comprehension. 

9. It is helpful to also create explanations for incomplete input. 

10. A gap in the literature is explanations that considers that the audience of an explanation may 

lack expertise. There are two types of lack of expertise: (i) lack of expertise in formal meth-

ods, and (ii) lack of expertise in the application domain. 

11. A gap in the literature is to create explanations that can “localize the fault precisely within the 

specifications and components of the design.” 
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2.4.1 Potential use of Lagrangian relaxation 

Many formal methods involve proving an upper bound on a quantity (e.g., response time or a program 

variable). We may want to search for a number that is an upper bound on this quantity and then have a 

simple proof that this number is indeed an upper bound. The idea of a Lagrangian relaxation can po-

tentially serve this purpose. It works as follows. Consider an optimization where we want to maximize 

an objective function subject to a set of constraints. Form two partitions of the set of constraints. Cre-

ate a new optimization problem by keeping the first partition of constraints and removing second par-

tition of constraints. Then, modify the objective function by adding a new term so that violation of the 

second partition of constraints decreases this term (penalty). Typically, this term includes a set of ad-

ditional variables called λ1, λ2,… Set it up so that for any assignment of non-negative values to λ1, 

λ2,… it holds that the value of the objective function of an optimal solution for the new problem is an 

upper bound on the value of the objective function of an optimal solution for the original problem. 

Hence, an assignment of values to λ1, λ2,… can be thought of as an explanation for an upper bound of 

the original problem. Note that different values assigned can yield different tightness of these bounds. 

2.5 Verification of AI 

The area of verification of AI does not aim to produce human-understandable explanations. However, 

we list some results from this area here because (i) this area is related to explanations in the sense that 

it aims to prove a property of an AI system, and (ii) this area provides ideas that may be useful for 

later works on explainability of FM tools. The results listed in this section are all about artificial neu-

ral networks (ANNs). 

2.5.1 ANNs are hard to analyze 

It is known that ANNs are hard to analyze [Szegedy 2013, Goodfellow 2015]. 

Szegedy [Szegedy 2013] makes two important remarks regarding image classifiers. First, it is tempt-

ing to view the output from a neuron in the last layer as a basis function that represents a feature in the 

input space and that this basis function (feature) has semantic information and that the last layer com-

bines these features. However, paper [Szegedy 2013] points out that this view is inappropriate. Sec-

ond, paper Szegedy [Szegedy 2013] points out that there are many adversarial examples. An adversar-

ial example is an input x’ that is very close to another input x such that x and x’ output different 

categories; yet the difference between x and x’ are imperceptible to a human. These adversarial exam-

ples persist across training methods, hyperparameters used for training, and ANN architectures. 

Goodfellow [Goodfellow 2015] points out that the cause of adversarial examples is linearity. To see 

this, consider a single training example and an ANN with a large number of weights. Compute the loss 

function used during training for this training example. Then, compute the gradient of this loss func-

tion with respect to input to the ANN. This gives us the direction in the input at which the loss func-

tion increases the most. This direction is a vector. We can multiply this vector by a scalar ε (which is a 

small number) and this yields a small perturbation on this single training example so that the loss 

function increases by an amount that is the inner product of the perturbation and the gradient; this can 
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become a large amount. Even if ε is small, this increase in the loss function can be large because the 

number of weights is large and hence the two vectors that we multiply have large dimension. Goodfel-

low [Goodfellow 2015] finds that (i) a training procedure can be created that mitigates adversarial ex-

amples by adding a new example to each of the original examples and these added examples are cre-

ated using the insight above, (ii) Radial Basis Function (RBF) networks resist adversarial examples, 

(iii) adversarial examples exist in broad subspaces [page 7, Goodfellow 2015], and (iv) ensamples are 

not resistant to adversarial examples [page 9, Goodfellow 2015]. 

2..5.2 Proving properties of ANNs 

For ANNs, an important work has been the Reluplex algorithm [Katz 2017, Karz 2022]. It allows ask-

ing questions about a neural network that uses rectified linear unit (ReLU) neurons. The way it works 

is that one introduces a variable that represents each signal within the ANN. For example, if the ANN 

takes n inputs, then we have n variables for that. For the 1st layer, one introduces, for each neuron, 

one variable that represents the output of the neuron. For the 1st layer, one introduces, for each neu-

ron, a variable that represents the signal that is fed into ReLU of the neuron. Then, one also introduces 

constraints expressing how the output of a neuron depends on the signal that was fed into the ReLU 

and how this signal depends on the input to the neuron. With these variables and constraints, one can 

ask questions about the ANN. An example of a question is: for a given neuron in the last layer, can its 

output be greater than 42? This is achieved by checking whether this constraint satisfaction instance is 

satisfiable. Reluplex answers this question by (i) reformulating the Simplex algorithm, originally de-

veloped for Linear Programming (LP), as a set of rules, and (ii) incorporating these rules and this con-

straint satisfaction instance in a Satisfiability Modulo Theories (SMT) framework. The original ver-

sion of Reluplex [Katz 2017, Karz 2022] worked only for ANNs with ReLU neurons but a later 

version is more general [Katz 2019]. 

Dvijotham [Dvijotham 2018] studies the same problem of proving a property of the output of a neuron 

in the last layer. It considers that the property is expressed as a linear combination being less than or 

equal to a bound. It expresses that we are only interested in proving this for the case that certain re-

strictions apply to the input. This restriction is a neighborhood of one nominal input (e.g., a single 

training example). The main idea of paper [Dvijotham 2018] is the following. One can express this as 

an optimization problem: maximize a linear function of the output neuron of interest subject to con-

straints that express what the neurons does. If the maximum obtained is less than or equal to a certain 

bound, then the property is true. The optimization problem is very hard to solve, however. Therefore, 

paper [Dvijotham 2018] presents a relaxation technique. It applies Lagrange relaxation; that is, some 

constraints are removed and instead one models their effect by introducing a penalty term in the objec-

tive function so that the violation of a constraint makes the objective function worse. The paper [Dvi-

jotham 2018] observes that if we have lower and upper bounds on the variables that express the inter-

nal signals of the ANN, then this optimization problem can be rewritten so that it is separable over 

layers. Hence, we obtain one optimization problem per layer and this optimization problem is easy to 

solve. Combining the solutions to these optimization problems yields an upper bound on the original 

problem and this can be used to prove that the original property is true. The paper [Dvijotham 2018] 

also presents an approach called interval arithmetic that can be used to compute the lower and upper 

bounds mentioned above. 
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2.5.3 Provably correct ANN through training 

There have been works on training ANN to be correct [Gowal 2018, Wong 2018, Ehlers 2017, Lin 

2022, Raghunathan 2018]. 

Gowal [Gowal 2018] considers an ANN used as a multi-class classifier. Gowal [Gowal 2018] uses 

ideas similar to the ones in paper [Dvijotham 2018] but in addition, paper [Gowal 2018] presents a 

training procedure to satisfy the property. The idea of the training procedure is as follows. Normal 

ANN training uses a loss function, and this loss function describes, for a training example, how much 

the ANN output deviates from the expected output of the training example. The training procedure 

[Gowal 2018] uses a loss function that includes two terms. The first term states a lower bound on the 

confidence on how well the expected output fits the class of the training example, and the second term 

states an upper bound on the confidence on how well the output fits a class that is not the expected 

output of the training example. The latter term applies to an entire neighborhood. Hence, this training 

makes sure that the trained ANN fits the training example and changing the input by some small 

amount does not produce an incorrect output. 

Wong [Wong 2018] also considers an ANN used as a multi-class classifier. The paper [H] observes 

that, using a technique earlier presented by Ehlers [Ehlers 2017], the constraint that expresses ReLU 

activation function can be relaxed with three linear constraints (that form a triangle) if we know lower 

and upper bounds on the signal before the activation function is applied. Using this idea, Wong [Wong 

2018] introduces an optimization problem, for a single given training example. For this training exam-

ple, there is a correct class as output. Let us also select another class and call it the not-correct-class. 

We can now state an optimization problem: minimize the output (i.e., confidence level) of the neuron 

of the correct class minus the output of the neuron of the not-correct-class, subject to the constraint 

that the input to the ANN should be in a neighborhood of the input of the example. Since ReLU can be 

relaxed as mentioned above, it holds that this optimization problem is a linear program (LP). There are 

two things remaining however: (i) finding upper and lower bound, for each neuron, on the signal be-

fore activation function is applied, and (ii) finding some way to repeat the above for all neurons. The 

paper points out that one can obtain the dual problem to the original LP problem. This dual problem 

yields an upper bound on the optimal solution to the original LP problem. The paper proposes that we 

can simply select one feasible solution and plug that into the dual problem (rather than actually solv-

ing it). This yields a non-optimal solution for the dual problem. But it still provides a lower bound on 

the original problem. This has the advantage that it can be computed very quickly. The paper also uses 

this idea to compute lower and upper bounds on pre-activation signals. With these ideas, one can de-

velop a robust training procedure. Instead of minimizing the loss function that expresses how the 

ANN fits the actual training examples, one minimizes a loss function that expresses how the ANN fits 

worst-case bounds of the training examples. The paper also points out that the bounds on performance 

expressed by the dual optimization problem can be thought of as a certificate of the performance of 

the ANN. This can be thought of as an explanation of the performance of the ANN (robustness).  

Lin [Lin 2022] focuses on using correctness properties to drive training (similar to [Gowal 2018, 

Wong 2018]). The paper [Lin 2022] uses six ideas. First, it defines a measure (called concrete correct-

ness loss function). For a given input, there is a set of correct output. This measure states how much 

an output from an ANN differs from the closest element in the set of correct output. If the output is 
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correct, then this distance is zero. Second, it introduces abstract domains and operations. For example, 

the number 2.5 may be an element in the concrete domain but the interval [2,5] may be an element in 

the abstract domain. A concrete element may be in an abstract domain. Operations can be formulated 

on abstract domains. For example, [2,5]+[11,18]=[13,23]. Third, the forward operation of an ANN 

(computing weighted sums and applying ReLU) can be formulated using the abstract domain. Fourth, 

training examples can be transformed to the abstract domain. Fifth, a training procedure can be formu-

lated on the abstract domain (since both the ANN and the training examples are represented in the ab-

stract domain). Sixth, the training procedure can detect which training example would benefit the most 

from a refinement of the abstraction. One could imagine (though not mentioned in the paper) that such 

an abstraction domain could also be used to explain the behavior of ANNs. 

Raghunathan [Raghunathan 2018] focuses on using correctness properties to drive training. A key 

idea is to formulate the mathematical expression that yields the error bound so that although it de-

pends on weight and biases in the ANN, it does not depend in the input. Hence, it applies to all inputs. 

2.5.3 Provably correct ANN through training considering the environment 

To have a correct ANN, it is necessary to (i) specify correctness, and (ii) make sure that the ANN is 

correct. We have already discussed techniques for the latter for the case that the ANN is a feedforward 

ANN (that is, no feedback). However, these works have three limitations. First, they assume an ANN 

in isolation (without its context). Second, they assume that correctness property is already given (i.e.., 

we do not need to figure it out). Third, they assume that the ANN does not rely on feedback. These 

limitations are serious for the case that an ANN is used to control an autonomous system (e.g., a ro-

bot) that operates in a physical environment.  

Therefore, recent research [Sun 2019] has considered the problem of proving the correct behavior of 

an autonomous system that uses ANN. These works consider a state of the physical environment (e.g. 

x,y,z coordinates of the autonomous system, angles indicating heading, and time-derivatives of them) 

and it considers a state space. It defines a subset of states as safe states and another subset of states as 

unsafe states. An example of an unsafe state can be that the autonomous system hits an obstacle. 

These works aim to prove that the autonomous system never visits an unsafe state; for example, prove 

that the autonomous system never hits an obstacle.  

It is assumed that the autonomous system has sensors and can compute a state based on these sensors 

and this state is fed as input to an ANN which computes an actuation command. This actuation com-

mand influences the physical environment. These works compute the transition function of the sys-

tem; that is, the next state as a function of the current state. Based on this, one can compute the set of 

reachable states and compute the intersection between the set of reachable states and the set of unsafe. 

If this is empty, then the system is safe; otherwise, the system is unsafe. Computing this set of reach-

able states is very computationally demanding, however. Therefore, they use an overapproximation of 

the state space and define the transition function of that (because of the overapproximation, it be-

comes a transition relation). Computing the reachable states on this overapproximation is computa-

tionally cheaper. If this overapproximated on the reachable states does not intersect with the unsafe 

states, then the system is safe. 
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2.6 Current results at ERSA 

ERSA is a recently started workshop focused on explainable verification. ERSA means explainability 

of real-time systems and their analysis. There have been two editions of ERSA so far. The first edition 

of ERSA presented the following papers/ideas/results: 

1. Baruah [Baruah 2022] points out that in many schedulability analyses for real-time systems, 
there is a condition with existential quantification. This yields a witness. This witness can be 
thought of as an explanation.

2. Romagnoli [Romagnoli 2022] points out that in control theory, the Lyapunov function is used 
to prove stability of a feedback control system. This Lyapunov function can be thought of as 
an explanation.

3. Mitsch [Mitsch 2022] points out that for deductive proofs, if the architectural elements are 
used as symbols in the proof, then the proof is easier to understand.

4. Martins [Martins 2022] points out that a model checker can determine whether a certain prop-

erty of a system is true; if it is false, then it can produce a counterexample, but it is hard for 
humans to understand the counterexample.

The second edition of ERSA presented the following papers/ideas/results: 

1. Ahmad [Ahmad 2023] points out the use of simulation to highlight the output of schedulabil-

ity analysis.

2. Romagnoli [Romagnoli 2023] builds on his previous result [Romagnoli 2022] to extend it for

the case where it can happen that a controller fails to produce output (e.g., because of dead-

line misses).

3. Baruah [Baruah 2023] builds on his previous result[Baruah 2022] to also consider random-

ized verification.

4. Martins [Martins 2023] points out that LLMs can be used to explain properties of constraint

satisfaction problems; specifically, the pigeon-hole principle.

2.7 Results at real-time systems conferences 

There have been two papers in the area of real-time systems that deal with explainability, namely the 

following: 

1. Maida [Maida 2022] presented a machine-checkable proof of a schedulability test and views

this as an explanation.

2. Baruah [Baruah 2023b] builds on his previous work [Baruah 2022] and studies how to create

small certificates.
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2.8 Results at formal methods conferences 

Cherukuri [Cherukuri 2022] presents a method to translate Linear Temporal Logic (LTL) formulas to 

natural language. The reason for creating this method is that most FM tools take a correctness specifi-

cation as input and this correctness specification is often stated in LTL. 

A blog post [Moy 2023] argues that it is important to start a new area called “Explainable Program 

Proofs.” However, there is very little detail on how this should be achieved.  

3 Situations where explainability is beneficial 

Below, we list situations where explainability is beneficial. We start by listing situations that are in 

verification (our main focus), and then list situations that are outside verification (not in our main fo-

cus). 

3.1 Explainability in verification 

Figure 1 illustrates explainability in verification. It shows a formal methods tool (denoted by a filled 

black rectangle with the text “FM tool” in the figure). This formal methods tool takes as input a ques-

tion and outputs an answer and an explanation to the answer. The question is whether a correctness 

property ϕ holds for all executions that are possible in model M of system S. 

The FM tools that are available in the research literature takes a question as input and produces an an-

swer. Often it is as is shown in the figure. There are some variants, however. For example, some for-

mal methods tool may output “undecided.” Also, in this figure, the correctness property is “for all exe-

cutions ϕ holds.” This can be rewritten as “for all executions it never happens that  ¬ϕ holds.” This is 

called a safety property. The literature also includes liveness properties; they express that eventually 

something good happens. Liveness properties are relevant for systems where we do not have enough 

information to make sure that forward progress will happen but we still want to make sure that eventu-

ally something good happens. For example, consider a set of processes scheduled on a single proces-

sor where we do not know the scheduler and consider that we have a mutual exclusion protocol be-

tween them. In this case, we may be interested in proving that when a process requests the execution 

under mutual exclusion, then it will be granted eventually. 
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Figure 1: Illustration of Explainability in Verification 

Figure 1 applies to a very large number of situations, including the following: 

1. Real-time schedulability analysis. Here, M is the taskset and ϕ means meeting deadlines and 

all executions refers to all schedules that the system can generate.  

2. Model checking of finite state machines. Here, M is the finite state machine and ϕ is a state-

ment that no error state is reached. 

3. Software model checking. Here, M is the source code of the computer program considered 

and ϕ is an assertion in the source code.  

4. Control theory of state-feedback systems. Here, M is the differential equation describing the 

dynamics of the plant and how the actuation command is computed based on the state and ϕ 

is an assertion that the system is stable. 

5. Buffer analysis in a computer networks. Here, M is the topology and the computer nodes in a 

computer network, including the queues in each computer node (for sending and transmitting) 

and queuing disciplines and traffic model. ϕ is an assertion that no buffer will overflow. 

6. Mode confusion analysis. As an illustration, consider an aircraft and in the aircraft there are 

two computers and a human pilot. The aircraft can be in a mode; e.g., taxiing, or taking-off, 

flying horizontally, landing. A computer holds a view about what the current mode of the air-

craft is; e.g., it is stored as a variable in a memory location in the aircraft. The human pilot 

holds a view about what the current mode of the aircraft is. Ideally, the views that the two 

computers have and the view that the human pilot has should be exactly the same. But if it is 

not, then there is mode confusion. A computer in an aircraft can be in a taxiing mode or take-

off mode; the mode represents what the computer “believes” to be the state of the aircraft. 

Analogously, a human can be in taxiing mode or take-off mode; the mode represents what the 

human believes to be the state of the aircraft. Ideally, the mode that the human holds and the 

mode that the computer holds should be exactly the same. But in some cases they are not and 

FM tool 
Question 

Answer 

Given model M of 

software system S, 

is correctness 

property ϕ true 

for all executions? 

Yes/No 

Explanation 

E 
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this is called Mode confusion. Mode confusion is a major cause of accidents but unfortu-

nately, the research literature on FM tools to analyze mode confusion is currently scarce. 

Therefore, a mode confusion analysis can be thought of as taking as input M, which is a sys-

tem of entities (humans or computers or both) and a description of how each of them switches 

modes, and also take as input ϕ, which is an assertion that at each time, for each pair of enti-

ties, the mode of these two entities do not differ too much (e.g., if they are in different modes, 

then these two modes are similar; or if they are in different modes, then one will switch to a 

new mode so that in a short amount of time, they will be in the same mode). 

Figure 1 may also apply to worst-case execution time (WCET) analysis. In WCET analysis, one seeks 

an upper bound on the execution time of a given program. The execution time of a program depends 

not just on the source code or executable code of the program but also on the computer hardware it 

executes on. Therefore, WCET of a program depends on the hardware it executes on and hence 

WCET depends on information of the hardware. If M describes both the hardware and the computer 

program, then Figure 1. applies. However, in practice, one often does not know the hardware because 

hardware vendors do not disclose this information (or even if one has this information, it is very com-

plex and often has errors). Therefore, in practice, WCET analysis must rely on measurements of the 

program or parts of the program. A WCET analysis may involve measurements and reasoning steps. 

Explainability can be applied nonetheless. For example, (i) explainability can be applied to the reason-

ing steps, and (ii) explainability can state which input was used for a test, and this can explain the out-

put of a WCET analysis.  

3.1.1. Why was this output produced given input? 

The research literature in AI has already presented a large number of methods for local explanation; 

for example LIME. These answer the question “Why was this output produced given this input?” It is 

tempting to believe that these can be applied also for explanation of formal verification.  

There are number of reasons why LIMEand explanation methods like that in AIdo not work well 

for explainable verification; these include: 

1. The output in explainable verification tends to be boolean; e.g., “yes/no” or “True/False” or in 

some cases “don’t know.” But the output for which LIME was designed is a scalar. 

2. The output in explainable verification is about a predicate “forall executions x it holds that 

property ϕ is true.” Hence, there is a special meaning of this Boolean output. When creating 

an explanation we want to take advantage of this special meaning, For example, in real-time 

schedulability analysis where the input is a taskset, the output is “forall schedules it holds that 

forall tasks for each job of this task the deadline of this job is met.” In case the output is false, 

we can show a schedule and indicate a specific job of a specific task and show that its dead-

line is missed. Note that the objects that are used in the explanations here refer to the execu-

tion/schedule rather than the objects of the input (which is a taskset). Thus, in LIME, the ex-

planation is an object that is of the same type as the input but in explainable verification, the 

explanation may be of a very different type than the input to the verification procedure. For 

example, in LIME, the explanation is a feature vector of input (which can be computed based 
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on the input) and the input and the explanation both refer to images. But in explainable verifi-

cation, the input may be a taskset and the explanation may be a schedule and there is no sin-

gle obvious way to compute the explanation (a schedule) from the taskset. A taskset describes 

a system but a schedule describes behavior. 

3. In explainable verification, we are also interested in explaining the meaning of input and the 

meaning of the output. For example, in real-time scheduling, we may need to explain the 

meaning of T2; we also may need to explain the meaning of the phrase “schedulable.” The 

reason for this is that their meanings are different for different scheduling theories and hence 

they are also different for different tools that perform schedulability testing. 

3.1.2 Why is this condition true? 

Many verification procedures are expressed as: if (condition is true), then (correctness property is 

true). Hence, we are often interested in evaluating this condition. And consequently, we are interested 

in explaining why this condition is true. In some cases, the above verification procedure is expressed 

as: if (∃y such that g(y) is true), then (correctness property is true). In this case, y is a certificate (also 

called witness). And then, we can use y as an explanation for the truth of this condition. Note that this 

only explains why the condition is true; it does not explain why the correctness property is true. To do 

that, we also need to explain why “if (condition is true), then (correctness property is true)” holds. 

This type of explanation applies to many practically important situations; for example (i) in model 

checking the condition may be a set of reachable states, and (ii) in real-time scheduling theory, the 

condition may be a vector of response times of all tasks. 

This type of explanation is discussed by Baruah [Baruah 2022] for real-time schedulability analysis. 

3.1.3 Why is this condition false? 

Note that an explanation method for explaining why a condition is true does not necessarily work for 

explaining why a certain condition is false. A simple way to see this is as follows. Consider the condi-

tion: ∃x x2=9. For this condition, x=3 is a witness that shows that this condition is true. Here, our ex-

plan3.1.3ation method is simply to present the witness. Let us now consider the condition ∃x x=x+1. 

Suppose that we want to explain why this condition is false. If we simply pick one value of x, then it 

can demonstrate that x=x+1 is false for this value of x. But it does not demonstrate that x=x+1 is false 

for all other values. One could subtract x on both sides and this yields “0=1” and this is simple enough 

that a human can see that it is false; but note that this is another type of reasoning than just giving a 

witness for an existential quantifier. 

In formal languages and theoretical computer science, it is well-known that a method for generating a 

certificate for one problem/language is not necessarily useful for generating a certificate for the com-

plement of the language. For example, it is not known whether NP=coNP. Most researchers suspect 

that NP≠coNP. 
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In the area of real-time schedulability analysis, it is noteworthy that a method for generating a certifi-

cate for schedulability typically cannot be used as a method for generating a certificate for unsched-

ulability (and vice versa). 

3.1.4 What does this input mean? 

Our goal is to allow human users to trust FMs better. To do so, we need to eliminate doubts on trust. 

One such doubt is that the user may feed input to an FM tool and this input is a model of a system but 

this model is not what the user wants to feed as input. This can happen because the user does not un-

derstand the meaning of what is fed in. The following are examples of the need for explanation of the 

input: 

1. In real-time schedulability analysis, the user may feed the input as a taskset where each task is 

described with parameters. For task 2, there may be a parameter T2. However, for different 

tools and different theories, the parameter T2 has different meanings. In some tools, T2 means 

period of task 2 and the first time that task 2 arrives is at time 0. For some other tools, T2 

means period of task 2 and the first time that task 2 arrives is non-deterministic. Yet, for other 

tools, T2 means minimum inter-arrival time of task 2. 

2. In model checking of timed automata, it is common to introduce state invariants and transi-

tion guards. It is important for a user to understand whether a condition enables a transition or 

forces a transition. Also, clocks in timed automata bring the need to specify whether a loca-

tion is a committed location or urgent location. 

3. In software model checking, it is common to take source code (e.g., in the C programming 

language) as input. Often this source code is annotated with assertions and assumptions. A 

software model checker determines whether assertions are true; an example of this is the 

CBMC model checker for the C programming language. However, the software model 

checker needs to have a semantics of the programming language; in many cases this seman-

tics is not specified and may be different from the semantics of the compiler used for this lan-

guage. For example, we have experienced a case where an assertion in a C program is vio-

lated when running a compiled version of the C program but the CBMC model checker does 

not find it. 

As can be seen from the above, it is helpful to provide explanation of the input to an FM tool so that 

the human user knows the meaning of what (s)he inputs to the tool. 

3.1.5 What does this output mean? 

FM tools typically produce an output; for example, the truth or falsity of an assertion. It is important 

to know what this truth and falsity refers to. For example, in real-time schedulability analysis, the user 

feeds the input as a taskset and it is assumed that the correctness property is schedulability. However, 

there is no explicit statement of this correctness property in the input; it is “hard coded.” Nonetheless, 

the real-time schedulability analysis outputs an answer (False/True) based on this. Hence, it is im-

portant for the user to know what True/False refers to. In this case, it refers to schedulability. Also, 
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even if the human user knows that True/False refers to schedulability, it is important that the human 

user knows what schedulability means. In many theories, schedulability means that for all possible ar-

rival times of jobs that are legal with respect to the model and for all possible execution times of jobs 

that are legal with respect to the model, it holds for the resulting schedule that for each task, for each 

job of this task, the deadline of the job is met. Note that this notion depends on how a schedule is gen-

erated at run-time and this depends on tie-breaking rules in the run-time scheduler (e.g., if two tasks 

have the same priority, then we need to apply a tie-breaking rule); typically tie-breaking rules are un-

specified. For some models, the tie-breaking rule does not matter. But for some models (global-EDF 

scheduling on a multiprocessor), whether a taskset is schedulable depends on the tie-breaking rule 

used.  

3.2 Explainability outside verification 

There is a tension between the academic view of how to assure software systems versus the view that 

many industry practitioners (developers and certification authorities) hold. The former tends to hold 

the view that one should model a system and then mathematically prove its correctness (typically us-

ing FM tools). The previous section describes the role of explainability assuming this view. However, 

industry practitioners today tend to have another view which is based on (i) observing actual behavior 

in testing or operation, and (ii) requirements (like bi-directional tracing in DO-178C). For this reason, 

we discuss below explainability outside verification. 

3.2.1 Why did this event occur in execution trace? 

Unfortunately, a software developer often detects that the actual behavior of the software is different 

from the intended behavior. There is often an externally visible event that occurs but should not occur 

(or vice versa). In this case, the software developer often wants to explain this behavior. It often in-

volves finding the root cause which could be either of the following: 

1. Find the earliest computational step or state in the execution where there is a difference be-

tween actual behavior and intended behavior. 

2. Find an element in a design artifact (e.g., executable code, source code, or architectural 

model) that causes this deviation.  

A similar type of explanation is also needed in retro-active accident (or incident) investigation; e.g., an 

airplane has crashed and we want to know why. It is also needed in retro-active incident investigation. 

3.2.2 What is the tracing between these two execution traces? 

Software practitioners often mix development and assurance by starting with a high-level artifact and 

then making it more detailed. In some cases, the high-level artifact is executable and the more detailed 

artifact is also executable. And in this case, it is desirable to explain why two execution traces (one in 

the high-level artifact and one in the detailed artifact) do approximately the same thing. Often the 

more detailed artifact is exercised in a more realistic environment. Examples of such more realistic 
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environment include (i) hardware in-the-loop-simulation, (ii) real environment but that is not the one 

intended for operations, or (iii) real environment that is intended for operations. In this case, there is a 

need to explain tracing between two execution traces (one trace from high-level artifact and one trace 

from detailed artifact). 

The academic literature offers an idea that compares two execution traces as well. The academic liter-

ature offers an idea called bisimulation which relates one execution trace in one system with an execu-

tion trace in another system. 

3.2.3 What is the tracing between a requirement on a high level and a set of requirements on a 

low level? 

Many safety standards use requirements on different levels. For example, DO-178C specifies system 

requirements, high-level software requirements, low-level requirements, and source code (here four 

different levels). It is common to establish tracing between requirements on two different levels so 

that (i) the set of requirements on a lower level makes sure that a requirement on a higher level is sat-

isfied, and (ii) for each requirement on a low level, there is a requirement on a high level to which the 

low-level requirement contributes. A similar mindset exists in the area of assurance case (where a 

claim plays the same role as a requirement). 

In these situations, there is a need to form an explanation between a requirement on a high level and a 

set of requirements on a low level. 

3.2.4 Did the verification fail because of bad configuration? 

For software systems with real-time requirements, we are often interested in proving (or disproving) 

correct timing of a set of threads/processes executing concurrently on a shared hardware platform. 

This depends on configuration; for example, if priority-based scheduling is used in the operating sys-

tem, then it can happen that with Rate-Monotonic priority assignment, it is possible to prove correct-

ness but with other priority assignment it is not. Therefore, verification can fail because of bad config-

uration. 

In these situations, there is a need for a software tool to state that with the current configuration, it is 

not possible to prove the desired property but with another configuration it is. It is helpful to explain 

why different configurations makes a difference. 

There is a variant of this where a system is underspecified. Consider for example a system where we 

do not know the priority assignment. In early design, it may be beneficial for a timing verification tool 

to output “I can’t guarantee that timing will be correct; it depends on the priority assignment and you 

have not specified any priority assignment. Here is one priority assignment PR1 in which timing will 

be correct and here is another priority assignment PR2 in which timing will be incorrect. As you can 

see PR2 and PR1 differs in a very small way and this small difference yields a different in the verifica-

tion output.”  
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3.2.5 Compiler warnings 

There are many software tools that provide warnings on what appear to be a defect in an artifact. A 

common example of this is compilers. These often output a list of warnings when compiling source 

code of a computer program. Compilers can detect common programming errors (copy and paste er-

rors, forgetting to initialize a variable) and recently some compilers also include FM tools that can 

prove properties of source code (using abstract interpretation). There are some signs of interest for 

compilers to provide explanations. A good example of this is gcc which today is not just capable of 

outputting warnings but is also capable of outputting explanations of warningssee [FANALYZER 

2024]. It can explain why a program does not halt and suggest that this non-halting is caused by a pro-

gramming error. It can also visually explain buffer overflows. 

4 Ideas for explainability 

In this section, we present ideas for explanations in explainable verificationwe neither focus on ex-

planation of behavior nor focus on explanations in general. We can think of an explanation as a static 

object and an explanation as a process. Below, we focus mostly on the former but occasionally on the 

latter. 

Recall from Figure 1. that we consider a question, an answer, and an explanation where: 

1. The question is “given a model M of a system S, is correctness property true for all execu-

tions?,” 

2. The answer is False/True/Undecided. 

An explanation method for “yes” does not necessarily work as an explanation method for “no.” We 

discuss ideas for explanation methods below. 

4.1 Explanation for the case that property is false 

When the property is false, we can present a counterexample. 

4.1.1 Model checking: counterexample-of-execution-as-explanation 

In model checking, if a property is false, then we can construct an execution in which the property is 

false. This can be shown to the human user. It has been reported, however, that counterexamples from 

model checkers are hard to read for humans [Martins 2022]. 

A possible idea would be to select a subset of states in the counterexample execution and present this 

to a human user. For example, if the counterexample is a sequence of states 

<s0,s1,s2,…,s1000,s1001,s1002,…,s2000> where s2000 is the last state in the sequence and s1000 is the first 
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state that violates a correctness property, then we can clearly remove all states after s1000 and still have 

a counterexample. But we may decide to prune even further. We may find out that state s200 is critical 

for understanding why the execution ended up in state s1000 later on. Therefore, we may present the 

sequence of states <s1,s200, s1000> to the human user. 

Another possibility is the following. We form an abstraction of the state space and then form the coun-

terexample as a sequence of abstract states. Then, we convert each state in the counterexample to an 

abstract state. Now, we have a counterexample which is a sequence of abstract states. We can select a 

small subset of these and obtain a sequence of abstract states that explain why the property is false. 

There have been many previous works on abstracting a state space with the intention to speed up 

model checking. However, in this case, our purpose is different. Here, we would like to form an ab-

straction of the state space to facilitate human understanding. We would like to learn the human user’s 

mental model and use that to drive the abstraction of states. 

4.1.2 Schedulability analysis: schedule-with-deadline-miss-as-explanation 

In real-time schedulability analysis, if a taskset is unschedulable, then we can construct a legal sched-

ule that the system can generate in which a deadline is missed. Similar to the above discussion on 

counterexample in model checking, we can select part of the schedule and present it to the user. Con-

sider a schedule that leads to a deadline miss. Suppose that the first job that misses its deadline is the 

qth job of task τi. One could present as a counterexample to the user the schedule from when the sys-

tem starts until the deadline of the qth job of task τi. But this may be a long schedule that is hard to un-

derstand. To create a simple schedule to present to the human user, we may want to select the sched-

ule from the time of the arrival of the qth job of task τi until the deadline of the qth job of task τi. We 

may want to make even further simplification of the counterexample. For example, there may be some 

tasks that have no influence on the execution of the qth job of task τi (these could be lower priority 

tasks). We may choose to not show those in the schedule. 

We may simplify this further as follows. Replace execution of all other tasks than τi with a dummy 

task. This creates a schedule with only two tasks: τi and dummy task; here there is just a single job of 

task τi. This can be presented to the human as an explanation for the claim that the taskset is unsched-

ulable. When the human user has this simple explanation, (s)he can request more detailed explanations 

depending on her/her appetite for more details and depending on whether he/she trusts the simplest 

explanation. 

There are additional ways to explain the counterexample. We may simply add up all the execution of 

the qth job of task τi and all the execution that prevents this execution (interference and blocking) and 

show that number to the user and also show the deadline (Di). This also gives an explanation why a 

deadline was missed. 

4.1.3 WCET analysis: program-input-as-explanation 

For WCET, we may want to explain why the execution time of a program P is greater than some 

bound B. This is interesting because it obviously implies that the WCET of a program P is greater than 
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B. One way to do so is to simply find the input to the program P that causes this long execution time, 

then give this input to the user. There may be a need to give additional information like initial state of 

the program. 

4.1.4 Software model checking: program-repair-as-explanation 

A software model checker may find that an assertion in a source code file is false. To explain this, we 

may seek a repair for this program so that the assertion is true. Ideally, we would like the repair to be 

as small as possible (e.g., modifying as few lines of code as possible). There is a research area called 

program repair (also called automatic bug fixing) that does this. An example of such a tool is Wolver-

ine [Wolverine 2023] which is based on LLM. 

Note that here, we are not interested in actually repairing the program; we use a program repair simply 

to explain why a property is false. 

4.2 Explanation for the case that property is true 

When a property is true, we cannot simply present a counterexample to explain why it is true; we need 

to produce an argument that helps a human to get confidence in believing that the property is true.  

4.2.1 Model checking: proof-as-explanation 

Some model checkers of finite state-machines today are able to produce a proof that the property is 

true. Let us assume (as is common) that a proof is a sequence of assertions where each assertion in the 

sequence is either (i) an axiom/assumption, or (ii) an assertion obtained from applying a proof rule on 

a set of assertions earlier in the sequence. Then, we can simply present this proof to the user and treat 

that as an explanation. 

To make the explanation easier to understand for humans, we may prune this sequence so that it only 

contains the most important steps. This produces an explanation that may be easier for humans to un-

derstand. Yet another approach is to generate new proof rules so that with these proof rules, the se-

quence of assertions can be made much shorter. 

Examples of work on software model checkers that produce proofs are: (i) developing proof harness 

and proof makefile for CBMC, and (ii) the use of Craig interpolation in software model checkers.  

4.2.2 Schedulability analysis: worst-case-situation-as-explanation 

Real-time schedulability analyses often rely on a worst-case phasing. For example, in some task mod-

els, the Liu-and-Layland condition for critical instant applies. It states that the response time of a task 

is maximized for the case that its job arrives simultaneously with higher-priority tasks. In other mod-

els, when we are interested in whether task τi meets its deadline, we check all jobs of task τi in a so 

called busy window. In these cases, we may simply show a simulation of the job of this task of interest 

and show that for this particular phasing, the response time is at most the deadline. With this particular 
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phasing, we can make very small changes to the phasing and show that the response time of the task 

under interest (task τi) is non-increasing. This gives an informal argument that this is the worst-case 

phasing (at least as a local maximumnot necessarily global maximum). We may want to do this as a 

process so that initially, we simply present the worst-case phasing and a Gantt chart of its schedule. 

Then, we state that this is the worst case. If the human user trusts that, then there is no need for further 

explanation. If the human user does not trust that, then the tool gives the aforementioned information 

to provide an explanation for why this is the worst case. 

Some schedulability tests depends on a more complex form of phase. For example, in fixed-priority 

preemptive scheduling in time partitioned systems according to ARINC 653, the response time of a 

job of a task depends not only on its arrival relative to arrival times of other tasks but it also depends 

on the arrival relative to the start time of partition time windows.  

Furthermore, some schedulability tests are sufficient but not exact; that is, they compute an upper 

bound on the response time but this computed number may be greater than the actual response time. In 

this case, one can create a schedule that is not necessarily legal schedule with respect to the taskset but 

nonetheless explains a response time. For example, considering a single job of task τi, the schedulabil-

ity analysis may have an over-approximation of carry-in execution of other tasks. Then, we can show 

the schedule from when this single job of task τi arrives until this single job finishes; at the time of ar-

rival, we assume that other tasks have remaining execution that is equal to the assumed carry-in in the 

schedulability analysis. 

4.2.3 WCET analysis: program-input-as-explanation 

Today, it is very hard to find the WCET of a program because the execution time of a program de-

pends on hardware details (e.g., how does the memory controller work, how does the hardware 

prefetcher work, how does a cache miss influence the execution time considering an out-of-order pro-

cessor). So in practice, we should not expect to be able to prove with 100% certainty a WCET of a 

program executing on a real processor (although on simple, non-realistic, hardware models this may 

work). However, given a number which we believe is the WCET and given an input that causes the 

program to execute with this believed WCET, we may want to argue that this is the WCET. Examples 

of such argument could be as follows. 

Show that for each minor change in the input (flipping a bit), the execution time is non-increasing 

(hence, we have an argument that supports the assertion that the current input 

1. is a local maximum of execution time). If the number of bits in the input is N, then this re-

quires that we show N other inputs to the user. Typically, N is large so this type of explana-

tion is not user-friendly. However, among these N other inputs, we may select a small number 

of them (e.g., 3 of them) so that they represent an important change in the program behavior 

(e.g., the execution takes another branch or a memory access that is a cache hit becomes a 

cache miss). This gives us a single input and certain perturbations and we can output an ex-

planation: “Here is an input that we believe yields the WCET and here are perturbations to 

this input and these perturbation change the program behavior in important ways, yet they do 

not increase the execution time.” 
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2. For this input, record the events that the execution of the program with this input experiences; 

in particular, identify the path in the control flow graph. Then, visualize this path and these 

events to the user. Now, the user should be allowed to modify events. For example, consider 

that part of the program is “if (cond) { exec_block1(); } else { exec_block2(); } Suppose that 

the path is such that cond is true and exec_block1 executes. Then, the user should be able to 

instruct the explanation tools that “I want to explore the case that cond is false.” The tool 

should then generate a new input so that in this place in the execution, cond is false and then 

the user should be able to run the target program with this input and see the execution time. In 

this way, the user can use his/her sources of doubts on whether the believed WCET is actually 

a WCET and use these doubts to check whether these doubts were well-founded. If the user 

has exercised the program sufficiently in this way, then eventually, the user’s doubts are elim-

inated. We can reason similarly with cache misses; e.g., one execution may have a cache hit 

at one location and the human users may state: “change it so that I get an input in which this 

memory access is a cache miss.” 

4.2.4 Software model checking: proof-as-explanation 

This is similar to proof-as-explanation for model checking of finite state machines. 

4.2.5 Software model checking: worst-case-execution-as-explanation 

Many assertions in software model checking is of the type: “assert(x<=B)” where x is a program vari-

able and B is a constant. Note that in real-time systems, we often have requirements that for each exe-

cution it should hold that the response time is <= D. We can apply those explanation techniques also 

to software model checking if the assertion is expressed as above. In this way, we can obtain argu-

ments that a certain execution causes x to be as large as possible. In a sense, this execution is the 

worst-case execution for the assertion “assert(x<=B)” We can visualize such an execution to the hu-

man user and this helps the user to trust the tool. 

4.3 Explanation for either case 

Here, we discuss explanations that may apply to the case that the property is false, the case that the 

property is true, or both. 

4.3.1 Set of all systems with true/false 

Some systems are described by assigning values to parameters. For example, this is the case in real-

time scheduling theory where we may describe a system with two tasks using the parameters 

T1,C1,T2,C2. In this case, we can view a system as a 4 dimensional vector. More generally, if a system 

has n tasks and each task is described by k parameters, then the description of the system is a n*k di-

mensional vector. We can compute the set of all vectors for which the answer is “True” and we can 

compute the set of all vectors for which the answer is “False.” We can then visualize these sets and 
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show these sets to the user. Since the user can see that the current taskset is in the set of schedulable 

tasksets, then the user can get more confidence in a schedulability analysis tool. 

Humans are typically able to see visualizations of 2-dimensional vectors and 3-dimensional vectors. 

But the aforementioned vector spaces have much larger dimensionality. So we may need to apply di-

mensionality reduction techniques from exploratory data analysis. 

4.3.2 Dimensionality reduction of execution 

We can represent an execution or schedule as a vector. We can apply dimensionality reduction of a 

vector so that it is easier to visualize. This idea can be combined with many of the aforementioned 

ideas. 

4.3.3 Structured argument 

There are formats for structuring arguments. Examples of these include Goal Structuring Notation 

(GSN) and Claim Argument Evidence (CAE). These can be used to present explanations.  

4.3.4 LLM, chain-of-thought 

Some of the explanations mentioned earlier may be difficult to understand. We can address this by 

simply taking an explanation and feeding it into an LLM and ask the LLM to create a simpler explana-

tion. We can use prompting techniques to get better results; e.g., chain-of-thought prompting. 

As an illustration, consider that we are interested in software model checking of source code file S and 

this source code file has been annotated with assumptions and an assertion/property and feeding S into 

a model checker (like CBMC) and the output from the model checker was that the property is false 

and it produced a counterexample CTX. Now, we want to obtain a human-understandable explanation 

E for this counterexample. We can do it as follows. We generate another source code file S’ for which 

the property is also false and it produces a counterexample CTX’ and we as human decide that E’ is a 

good explanation for this. Then, we can feed the following to the LLM: Given S’, CTX’, E’, S, CTX, 

find E. That is, S’, CTX’, E’ helps the LLM to understand the general idea about what we mean with 

explanation. Then S and CTX tells the LLM the specific situation for which we want the explanation.  

4.3.5 LLM, interactive book 

Tyler Cowen has recently [Cowen 2023] written a book “Greatest Economist of All Times.” This is 

not a book with pages; instead, it is a published LLM that allows a human reader to query it and then 

it responds. In this case, the content of a book is conveyed by allowing users to query the content. This 

has the advantage that the user’s curiosity can drive the interaction and that the user can get content 

that (s)he is interested in.  

One could potentially transfer this idea to explainable verification. Specifically, when an FM tool has 

produced an output (False/True) and exposed some internal information, then we can think of this in-

ternal information as content, and we train an LLM based on this content. Then, this LLM is presented 
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to the human user. Note that this involves re-training the LLM each time the human user uses an FM 

tool. One may think this is very expensive. However, there are techniques for incrementally train-

ing/fine tuning LLMssee for example LoRA [Hu 2023]. 

4.3.6 Generative AI, video generation 

Recent advances in generative AI have provided the capability to generate video based on a string of 

text that specifies the content of the video. An example of this is SORA from OpenAI. This could be 

useful for creating explanations. For example, a formal verification tool that has found a counterexam-

ple could generate an animation of state transitions that generate a counterexample. If this counterex-

ample can only occur in a certain context, then this can be part of the animation as well. For example, 

if the input to the computer program that triggers this counterexample can only occur in an aircraft 

when it lands, then the video may show an aircraft that lands in addition to the visualization of the 

state changes of the software. 
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