2/13/24

ADD 3.0: Rethinking Drivers and
Decisions in the Design Process

Rick Kazman

Humberto Cervantes

SATURN 2015

Outline

=) Presentation

 Architectural design and types of drivers
The Attribute Driven Design Method
Design decisions

Example

Conclusion

Speakers

* Rick Kazman
* Humberto Cervantes

Learning Objectives

* At the end of the presentation, participants
should be able to understand:
— The different types of architectural drivers

— What are design concepts and the decisions
regarding their selection

— What ADD is and how an architecture is designed
iteratively using this method

2/13/24

Outline

* Presentation
W) Architectural design and types of drivers
* The Attribute Driven Design Method
* Design decisions
* Example

* Conclusion

Software Architecture

£33

Software

* The software architecture of a Architccture

in Practice
Third Edition

system is the set of structures
needed to reason about the
system, which comprise software
elements, relations among them,

and properties of both.
Architectural drivers
* The architecture development S
lifecycle is divided in 4 phases, g

documentation

here we are interested in design

i <<precedes>>

Architectural
evaluation

2/13/24

Architecture design

Problem " - Solution
Design activit ;
domain domain

Objectives

I
[

,,,,,,,,,,,,,,,,,,,,,,,,,,, Design

Ml Primary Functional Decisions
Requirements i

N Quality Attribute |
3 Scenarios : A A

<<uses>> V

o
Concerns |
- The Architect [_ ‘

Drivers (inputs) Design of the architecture (output) D|

Constraints

Architectural drivers

* They are a subset of the requirements that shape
the architecture

— Functional requirements
— Quality attribute requirements
— Constraints
* But other drivers include
— The type of system that is being designed ‘

— Design objectives
— Concerns l‘ {'

* These are the inputs to the design process

2/13/24

Functional drivers

* Functional drivers: typically involve primary
functionality, i.e. functionality that directly
supports the business goals

Ao une

nak so that wid-
What

Quality attribute drivers

* Quality attributes are measurable characteristics of
interest to users and developers
— Performance, Availability, Modifiability, Testability, etc...
— Can be specified using the scenario technique

——,
A
Artifact 2 —
| Stimulus Response

Environment
Stimulus Response

source measure

An internal failure occurs in the system during normal operation. The
system resumes operation in less than 30 seconds, and no data is lost.

— Prioritized by the customer according to importance to the
success of the system (H, M, L) and by the architect
according to technical risk (H, M, L)

10

2/13/24

Constraints

* Constraints are limitations or restrictions

— They may be technical or organizational

— They may originate from the customer but also
from the development organization

— Usually limit the alternatives that can be
considered for particular design decisions

— They can actually be
your “friends”

11

Types of systems

* Greenfield systems in novel domains
— E.g. Google, Amazon, WhatsApp
— Less well known domains, more innovative

* Greenfield systems in mature domains

— E.g. “Traditional” enterprise applications,
standard mobile applications

— Well known domain, less innovative

* Brownfield systems
— Changes to existing system

12

2/13/24

Architecture design objectives

* Before you can begin you need to be clear about
why you are designing. Your objectives will
change what and how you design, e.g.

— For a pre-sales proposal, which usually involves the
rapid design of an initial solution in order to produce
an estimate

— For a custom system with established time and costs
and which may not evolve much once released

— For a new increment or release of a
continuously evolving system

13

Concerns

* Concerns represent design decisions that should
be made whether or not they are stated explicitly
as part of the goals or the requirements.
Examples include:

— Creating an overall logical and physical structure
— Input validation

— Exception management and logging

— Communications

— Deployment and updating

— Data migration and backup

— Organization of the codebase

14

2/13/24

Outline

* Presentation

* Architectural design and types of drivers
W) The Attribute Driven Design Method

* Design decisions

* Example

e Conclusion

15
15
Architecture design methods
* There exist several architecture development methods
— Viewpoints and Perspectives
— Microsoft
— Process of Software Architecting Architectural drivers
— ACDM !
: <<precedes>>
— RUP ,
— ADD Architectural design
y i <<precedes>>
* Most of them cover the whole Architectural
architecture lifecycle and provide documentation
few details on how to perform { <cprecedes>>
the design activity Architectural
evaluation
®
16

2/13/24

Why is a design method necessary?

Architecture design is notoriously difficult to master
— Many aspects need to be considered when making design decisions

— It requires extensive knowledge of the domain and existing
solutions

However, design can (and should) be performed in
a systematic way

— To ensure that decisions are made with respect to the drivers.

— To ensure that decisions are recorded and justified and to make the
architect accountable for them

— To provide guidance to less experienced people

Otherwise, architecture design may end up
being seen a mystic activity performed by gurus.

17

Attribute Driven Design (ADD)

ADD is an architecture design method "driven" by
quality attribute concerns

— Version 2.0 released November 2006

The method promotes an iterative approach to
design

It provides a detailed set of steps for architecture
design

— enables design to be performed in a systematic,
repeatable way

— leading to predictable outcomes.

18

18

2/13/24

ADD 2.0 Limitations

* Using ADD in practice has revealed some
limitations in the original method

m Reason why this is a limitation

Inputs are just QA & functional ~ There are other inputs to design, such as the design
requirements + constraints (step objectives, and architecture concerns.

0)

A single element of the system A design iteration may require decomposing several

is decomposed in each iteration elements (e.g. several layers may need to be decomposed to
(step 2) support a use case).

The element to decompose is Drivers to be addressed in an iteration are usually identified
chosen before the drivers to be as the iteration begins.

addressed (step 3)

Design concepts used to satisfy Architects design using not only conceptual primitives but
drivers only include patterns also more concrete design primitives such as frameworks
and tactics (step 4) and reference architectures.

Initial documentation and Not really a limitation since it is mentioned in ADD but only
analysis are not steps of the as part of one of the steps. This may not reinforce the idea
process itself that initial documentation is an important part of design.

19

Design objectives Primary functional Quality attribute
requirements scenarios

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the

iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsibilities and
define interfaces

Step 8: Refine as necessary

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture — Input/output artifact

design
[Process step

20

2/13/24

10

2/13/24

Primary functional Quality attribute

Design objectives ‘
requirements scenarios

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Before starting with design
ensure that there is clarity
on the overall design
problem that needs to be
solved.

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iter:

Step 5: Instantiate architectural elements, allocate responsibilities and
define interfaces

Step 8: Refine as necessary

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and

design objectives

Software architecture — Input/output artifact

design
[Process step

21

ADD

Primary functional Quality attribute

Design objectives
requirements scenarios

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteratit

The design problem is
divided into several sub-
problems.

Step 5: Instantiate architectural elements, allocate responsil
define interfaces

Step 8: Refine as necessary

An iteration start Step 6: Sketch views and record design decisions

deciding which
Step 7: Perform analysis of current design and review iteration goal and

problem to address. Bl

Software architecture — Input/output artifact

design
[Process step

22

11

3 types of decisions are
made to address the sub-
problem:

1.- Selection of the parts
that need to be

decomposed

2.- Identification

selection of existing
solutions that support the
decomposition

3.- Creation of elements
from the existing solution

and establishment of their

responsibilities and
interfaces

Primary functional Quality attribute

requirements scenarios

Step 8: Refine as necessary

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsibilities and
define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture

I input/output artifact

[Process step

design

23

Design objectives

ADD

Primary functional Quality attribute
requirements scenari

The “blueprint” is refined.
This may be done in
parallel with step 5.

Note: This is not full blown
documentation but rather
sketches.

8: Refine as necessary

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsil
define interfaces

Step 6: Sketch views and record design decisions

: Perform analysis of current design and review iteration goal and
design objectives

Software architecture

— Input/output artifact
[Process step

design

24

2/13/24

12

ADD

Primary functional

Quality attribute

requirements scenarios

Decisions made at this
point are analyzed along
with the advances in the
overall design process in
order to decide if more
iterations are necessary.

Step 8: Refine as necessary

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsibilities and
define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture
design

I input/output artifact
[Process step

25

Design objectives

Primary functional

ADD

Quality attribute

requirements scenarios

The design is produced.

Note: This may be only a
partial architecture design

and is not Big Design Up
Front (BDUF)!

Step 8: Refine as necessary

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteratit

Step 5: Instantiate architectural elements, allocate responsil
define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture
design

I input/output artifact
[Process step

26

2/13/24

13

Outline

* Presentation

* Architectural design and types of drivers

* The Attribute Driven Design Method
W) Design decisions

* Example

e Conclusion

27

27

Design decisions

* The design process involves different making
design decisions

— Step 3: Selecting elements to decompose

— Step 4: Choosing one or more design
concepts that satisfy the inputs considered
in the iteration

— Step 5: Instantiating architectural elements, allocating
responsibilities and defining interfaces

* Step 4 (selecting design decisions) can be
particularly challenging...

28

2/13/24

14

2/13/24

Design Concepts

* Most sub-problems that are addressed during an iteration can be
solved using existing solutions, i.e. design concepts
— We want to avoid re-inventing the wheel

— Itis better (and faster) to use a proven solution to a problem for which
we may not be experts

— Creativity in design involves identifying, adapting and combining them

* There are several categories of design concepts, some are abstract
and some more concrete. Here we consider:
— Reference Architectures
— Deployment Patterns
Architectural / Design Patterns
Tactics

Externally developed
components (e.g. Frameworks)

29

Reference Architectures

* They provide a blueprint for structuring an
application. Examples for the enterprise

application domain include

— MOblle appllcatlons Rizch Client Application p \
R' h I' I' H gg Ul Components (YY)
— Rich client applications .
. . . . E‘d Ul Process Components B
— Rich internet applications | (& o |l
. . . £ 2 2
— Service Applications g T it facade SREIHEE
—————————————————————————— al &z | E
_ W b I' t' §§ Business Business Business 2 2l &
eb applications . EEDCE I
o
il =& | Data Access \/ Data Helpers/\| Service
g: Components. Utilities Agents WA\,
- N J
Local Data
4 Sources D
f,é,"% \ J
External
https://msdn.microsoft.com/en-us/library/ee658107.aspx [Data O] [servces)

30

15

Deployment Patterns

Deployment patterns provide guidance on how to

structure the system from a physical standpoint. Good

decisions with respect to the deployment of the
software system are essential to achieve quality

attributes such as availability.

* Examples

— 2, 3, 4 and n-tier deployment
— Load balanced cluster

— Failover cluster

— Private/public cloud

— Etc...

https://msdn.microsoft.com/en-us/library/ee658120.aspx

31
» What are tactics?
— Design decisions that influence the control of a quality attribute
response.
. Availability Tactics
* There are tactics
categorizations for the | ceme mcousboran
quality attributes of:

Preparation Reintroduction

— Availability ot Fppel

— Interoperability PIOTE Ry e Seriea "

_ Mod ifi a bi | ity softwuc Al a— ;:Zi\:zancy F::sy:\crwronizancn ':ar;s.alv:tions

imestam scalating redictive
— Performance | o e o
. Checking H’;Z’;r"‘;" Non-Stop E::f:r‘]ﬁ;‘n
- Secu I'Ity '(\3; g:g Rollback Femerdng Increase
e Competence Set
— Testability votng ey i’
. Boplon rory

~ Usability R
Degradation
Reconfiguration

32

2/13/24

16

Architectural / Design patterns

* Patterns are proven — .
(conceptual) solutions to |.hi™ i Eemae

PATTERNS

recurring design
problems. Originated in
building architecture.

* Many patterns exist
(thousands), and they
are documented across &
several pattern catalogs. BT | mme

* Itis difficult to draw a =
clear boundary between
“design” and
“architectura

III

patterns.

33

Externally developed components

* These are reusable code solutions
— E.g. Middleware, frameworks
* A Framework is a reusable software element that

provides generic functionality, addressing
recurring concerns across a range of applications.

— Examples for Java:

Local user interface Swing Inheritance

Web Ul Java Server Faces (JSF) XML, Annotations

Component connection Spring XML, Annotations

Security (authentication, auth) Spring-Security XML, Annotations

OO - Relational Mapping Hibernate XML, annotations
34

2/13/24

17

2/13/24

Selecting design concepts (step 4)

| |

Generation of candidates Selection

35

Selection roadmap

* Greenfield systems in mature domains

Iteration goal Design concepts

Reference architectures

Structure
the
Deployment patterns

Architectural Patterns
primary

functionality

Support
quality

e
attribute
scenarios
additional
ccomponents

concerns

< Design concept

tergtions

— > Design concept

36

18

Outline

Presentation

Architectural design and types of drivers
The Attribute Driven Design Method

* Design decisions

W5 Example

* Conclusion

37
37
Example
* Network Management System “Marketecture”

diagram

@ CEventise

) / ;j:tzrformance ~Events/Data |[mes . CHmEm GeiREE |/
. > I § //-Configurations \

z e —
changes (B EEOmEER
¥ < newox —]
- management .
Administrator
system Network devices

38

2/13/24

19

. e Primary functional i i
Design objectives Y Quality attribute
requirements scenarios

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsibilities and
define interfaces

Step 8: Refine as necessary

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture — Input/output artifact

design

[Process step

39

Example

* Type Of System: Greenfield in mature domain

* Obijective: Design in preparation for construction of an
increment of the system

* Concerns

— Structure the system
Organization of the codebase
Input validation
Exception management

40

2/13/24

20

Time

Technicia

Administr

Use Cases

Network Management System

/

UC-2: Detect fault

UC-3: Display event history

UC-4: Manage network device
UC-5: Configure network device

UC-6: Restore configuration

UC-7: Collect performance data
UC-8: Display information
UC-9: Visualize performance data

UC-10: Log in

/

|

ator UC-11: Manage users

UC-1: Monitor network status >

\\//

Network
device

Key: UML

Fault Mgmt

Config Mgmt

Accounting

Pert. Mgmt

Security

41
Quality Attribute S [
ID Quality Attribute |Scenario Associated use |Priority
case

QA1 Performance Several network devices send traps to the management system at |Detect network H H
peak load. 100% of the traps are successfully processed and device fault (UC-2)
stored.

QA2 Modifiability A new network device management protocol is introduced to the [Configure network ~ [M, M
system as part of an update. The protocol is added successfully |device (UC-5)
without any changes to the core components of the system.

QA-3 Availability A failure occurs in the management system during operation. The |All H H
management system resumes operation in less than 30 seconds.

QA4 Performance 'The management system collects performance data from a Collect performance [H, H
network device during peak load. The management system data (UC-7)
collects all performance data within 5 minutes to ensure no loss of
data.

QA5 Performance, A user displays the event history of a particular network device Display Event history|H, M

Usability during normal operation. The list of events from the last 24 hours |(UC-3)

is displayed within 1 second.

QA-6 Security A user performs a change in the system during normal operation. It|All H M
is possible to know who performed the operation and when it was
performed 100% of the time.

42

2/13/24

21

Constraints

Constraint

CON-1

A minimum of 50 simultaneous users must be supported.

CON-2

User workstations use the following operating systems: Windows, OSX, and Linux.

CON-3

An existing relational database server must be used.

CON-4

Network connection between users workstations and the server is unreliable

CON-5

Future support for mobile clients

CON-6

A minimum of 600 time servers must be supported (Initial deployment 100 time servers, 100 more /
year during 5 years)

CON-7

Each time server sends, on average, 10 traps/hour.

CON-8

Performance data needs to be collected in intervals of no more than 5 minutes as higher intervals
result in time servers discarding data.

CON-9

Events from the last 30 days must be stored

CON-10

The development team is familiar with Java technologies

43

Design objectives

ADD: Iteration 1

Primary functional Quality attribute
requirements scenarios

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the

iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsil
define interfaces

Step 8: Refine as necessary

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture — Input/output artifact

design

[Process step

44

2/13/24

22

2/13/24

Iteration goal and inputs

hd Ite rat i O n goa I Iteration goal Design concepts

Reference architectures

— Create an overa” tsht;ucture
system structure [

Deployment pattems
(tiers)

Support

* Inputs to
be considered i .
— All

Support
quality
attribute
scenarios
and
additional
concerns

45

ADD: Iteration 1

Primary functional Quality attribute

Design objectives
requirements scenarios

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Since this is a greenfield
system, the only element to
decompose is the system
itself

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsi
define interfaces

Step 8: Refine as necessary

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture — Input/output artifact

design
[Process step

46

23

ADD: Iteration 1

. e Primary functional i i
Design objectives Y Quality attribute
requirements scenarios

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsibilities and
define interfaces

Step 8: Refine as necessary

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture

I nput/output artifact

design

[Process step

47

Selection of design concepts

» Reference architecture alternatives
— Mobile applications
— Rich client applications
— Rich internet applications
— Service Applications
— Web applications

Source: https://msdn.microsoft.com/en-us/library/ee658107.aspx
* Distributed deployment patterns alternatives
— 2 tier
— 3 tier il

ARCHITECTURE (IS

— 4 tier Il

Source: https://msdn.microsoft.com/en-us/library/ee658120.aspx

48

2/13/24

24

Design decisions

* Two reference architectures are chosen

Rich client - Supports rich user interface
application onthe - Portability (CON-2)
client side
E
Service - Support mobile clients in the
° application on the future (CON-5)
server side

=] |

3 Tier application - Existing database server
(CON-3)

* Distributed deployment patterns alternatives

- 3 tle r Client Tier Web/App Tier Database Tier

i Web/App
Client Server Databas

49

ADD: Iteration 1

n N Pri functional i i
Design objectives rimary functiona Quality attribute
requirements P Canarios

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

In this initial iteration, ; Step 5: Instantiate architectural elements, allocate responsibilities and
. . define interfaces

interfaces are not defined

yet

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture — Input/output artifact

design

[Process step

50

2/13/24

25

2/13/24

Step 5
cemrt sty [roperies |

Application - Hosts the elements of the 0S = Centos
Server service reference architecture

- Connects to network devices

- Connects to database server

Presentation This layer contains components
layer which control user interaction
(Client side) and use case control flow.

Ul Components These are components which
(Client side) render the user interface and
receive user interaction.

Service These is a group of components
Interfaces that expose services that are
consumed by the clients

51

Documenting During Design

* As you instantiate design concepts you will typically
create sketches. These are initial documentation for
your architecture.

— capture them and flesh
them out later

— if you use informal
notation, be consistent

— develop a discipline of
writing down the responsibilities that you allocate to
elements and the relevant design decisions that you have
made

weR seRVER

ProTECTed
1 NeTwoek

MeDows.
AR et FINNEAE o
% ABASE RoLeS

* Recording during design ensures you won’t have to
remember things later...

52

26

ADD: Iteration 1

Design objectives

Primary functional Quality attribute
requirements scenarios

Step 8: Refine as necessary

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsibilities and
define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture
design

I input/output artifact

[Process step

53

Step 7: Design Kanban board

Not addressed

Structure the system

CON-3

I%%ﬁﬁ
O

Partially addressed

Addressed

54

2/13/24

27

Design objectives

ADD: Iteration 2

Primary functional

Quality attribute

requirements scenarios

Step 8: Refine as necessary

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsibilities and
define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture
desij

I input/output artifact
[Process step

55

* lteration goal:

— ldentify the
elements
that support
the primary
functionality

* Inputs

— Primary Use
Cases

Iteration goal Design concepts

Iteration goal and inputs

Reference architectures

Structure
the
system

Support
primary
functionality

Support
quality
attribute

scenarios o “
and eployment patterns

additional
concerns

Externally developed
components Hergtions.

Architectural Patters

56

2/13/24

28

2/13/24

ADD: Iteration 2

Primary functional Quality attribute
requirements scenarios

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Since functionality is
typically supported by

Step 3: Choose one or more elements of the system to decompose

elements that are spread
across the layers of the
system, the elements are
the different layers that
were identified in the
previous iteration.

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsibilities and

efine as necessary

define interfaces

step

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture

soin I input/output artifact

[Process step

57

ADD: Iteration 2

Primary functional Quality attribute
requirements scenarios

Design objectives

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteratit

Step 5: Instantiate architectural elements, allocate responsil

efine as necessary

define interfaces

Step

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture

; — Input/output artifact
design

[Process step

58

29

Framework for
Ul

Use Hibernate - CON-10
for OR Mapping - New Database (not legacy)

Selection of design concepts

* Design concepts

— Domain objects

— Externally developed
components

Use domain
objects (e.g.
components) to and associating technologies

Decomposition of the layers
facilitates work assignment

decompose to components
layers
Use Swing Developers are familiar with

this framework (CON-10)

208

From Mud To Structure

Domain Object **

When realizing a Dowan Mot (182), or its technical architecture
in terms of Lavers (185), MopeL View ControLier (188), PreseNtaTio
Asstracrion.CoroL (191), Microkerses (194), Resiecrion (197), Pies
awp Furess (200), Saren Reposmrony (202), or Biacksoarn (205) .

a key concern of all destgn work 1s to decouple self-contatned and
coherent application responstbilities from one another.

"

The parts that make up a software system often expose mani-
fold ion and i to one another.
However, i i ity without

such i
care can result in a design with a high structural complexity.

Separation of concerns 15 a key property of well-designed software.
The more decoupled are the different parts of a software system, the

PATTERN-ORIENTED | better they can be developed and evolved independently. The fewer

SOFTWARE

ARCHITECTURE

for
Resaurce Nansgome

relationships the parts have to one another, the smaller the struc-
tural complexity of the software architecture. The looser the parts
are coupled, the better they can be deployed in a computer net-
work or composed Into larger applications. In other words, a proper
partitioning of a software system avoids architectural fragmentation,
and developers can better matntain, evolve and reason about it. Yet
despite the need for clear separation of concerns, the implementation
of and collaboration between different parts in a software system
must be effective and effictent for key operational qualities, such as
performance, error handling, and security.

Therefore:

each distinct i of an application in a
self-contained building-block—a domain object.

Domain Object _ _
intoriace

-
Domain Object ~
Implomntaton

Domain Object 3

59

ADD: Iteration 2

Primary functional

Design objectives

requirements

Quality attribute

scenarios

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the

efine as necessary

step

iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iterati

Step 5: Instantiate architectural elements, allocate responsil

define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and

design objectives

Software architecture
design

I input/output artifact
[Process step

60

2/13/24

30

NetworkDeviceConnector

NetworkDeviceEventContro
ller

Topology Controller

Region Data Mapper

NetworkStatusMonitoringVi
ew

* Logical view |

[

Step 5

ayen

Gt s

g

oy
Business logio CS

o cogearvale w1

v

g

Communicate with
network devices and

isolate the rest of the
system from specific
protocol

———

Process events that o—
are received from the Servioes 58

Ginarsae

network devices

Provides access to the Type =

network topology stateless

oyers 7
Business Logic 55 |

rom Logia vevs Vragen 1

information and

changes in it

Manage persistence of ~ Framework =
Regions Hibernate
Display the network Framework =
topology and events Swing

that occur on the

devices

61

defined F=
—UC-1

Step 5: Interfaces

* Once the elements have been identified,
dynamic analysis allows interfaces to be

Lo | |

Requestsanies

TopologyContaier

RegonDatatiepper

NetworkStatusMonitoringContoller

Method name

Description

boolean initialize()

Opens up the network representation so that users
can interact with it.

Region getRootRegion()

RequestService:

Returns a reference to the root region

Method name

Description

Response
sendRequest(Request)

This method receives a request. Just this method is
exposed in the service interface. This simplifies the
addition of other functionality in the future without
having to modify the existing service interface.

geTopoiony0

Regon

62

2/13/24

31

ADD: Iteration 2

Primary functional Quality attribute

requirements scenarios

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsibilities and
define interfaces

Step 8: Refine as necessary

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture — Input/output artifact

design

[Process step

63

Step 7: Design Kanban board

=2
o
-+
Q
[oX
Q.
3
™
»
m
@
o

uc-2

Partially addressed Addressed

Structure the system

CON-3

64

2/13/24

32

ADD: Iteration 3

Primary functional Quality attribute
requirements scenarios

Design objectives

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsibilities and
define interfaces

Step 8: Refine as necessary

Step 6: Sketch views and record design decisions

: Perform analysis of current design and review iteration goal and
design objectives

Software architecture

P [input/output artifact

[Process step

65

Iteration goal and inputs

* |teration goal:

— Address quality Srucurs
attribute QA-3: S
A failure occurs in
the network
management system S

Iteration goal Design concepts

Reference architectures
Deployment patterns
(ters)

Architectural Patterns
(Domain objects / components)

i ion. SR e,
during operation :
components
The system resumes | T
operation in less p—

Architectural Pattems

than 30 seconds. i

scenarios T
and ployment patterns

additional Externally developed
concerns components Mergtions

66

2/13/24

33

2/13/24

ADD: Iteration 3

Primary functional Quality attribute
requirements scenarios

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Since the scenario

involves a failure of the
whole system, the
selected elements are the
tiers identified in the first
iteration.

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsibilities and
define interfaces

efine as necessary

step

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture

soin I input/output artifact

[Process step

67

ADD: Iteration 3

Primary functional Quality attribute
requirements scenarios

Design objectives

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteratit

Step 5: Instantiate architectural elements, allocate responsil

efine as necessary

define interfaces

Step

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture

; — Input/output artifact
design

[Process step

68

34

Step 4

Detedt Faults Recover ffom Faults.

Prevent Faults

* |tis recommended to start with tactics and
from there go to patterns or technologies

N Introduce active By replicating the critical
Reintbaction redundancy by components, the system can
l replicating the withstand the failure of one of
IS Srodow ki application server the replicated elements without
Monitor tate)
Hosrtbeat P ey oeonzaton Traneactns | Fut - and other critical affecting functionality.
Escalating Predictive or
L G Resn © Mods Fer cOmMponents such
~ Sanity n xception -
Creors g ensen OO as the database
Gordton oipack .
Voting Safwere Competence Set Implement Apache serves as the point of
Upgrade
eined . redundancy using entry, mod_proxy serves as load
Sewest o Apache + balancer
Recontiguration mod_proxy

69

ADD: Iteration 3

Design objectives

Primary functional
requirements

Step 8: Refine as necessary

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the iteration

Step 5: Instantiate architectural elements, allocate responsil
define interfaces

Step 6: Sketch views and record design decisions

: Perform analysis of current design and review iteration goal and
design objectives

Software architecture
design

I input/output artifact
[Process step

70

2/13/24

35

deployment QA3 Layout /

«replicateds

«JDBCs»

:LoadBalancer

«replicateds

\ ‘Database Server

Server2 :Application «JDBC»
Server
TrapReceiver
Relocatable IP sddress| «SNMP»

device’
NetworkDevice

TrapReceiver

Receive traps from network devices, Framework = SNMP4)

convert them into events and put these
events into a message queue

71

ADD: Iteration 3

Primary functional Quality attribute
requirements scenarios

Design objectives

Step 1: Review Inputs

Step 2: Establish iteration goal and select inputs to be considered in the
iteration

Step 3: Choose one or more elements of the system to decompose

Step 4: Choose one or more design concepts that satisfy the inputs
considered in the itera

Step 5: Instantiate architectural elements, allocate responsibil
define interfaces

Step 8: Refine as necessary

Step 7: Perform analysis of current design and review iteration goal and
design objectives

Software architecture

design

I input/output artifact
[Process step

72

2/13/24

36

Step 7: Design Kanban board

Not addressed Partially addressed Addressed

Structure the system

uc-1

73

Design Process Termination Criteria

» The design process continues across
several iterations:

— until design decisions have been made for all
of the driving architectural requirements
(design goal reached); or

— until the most important technical risks have
been mitigated; or

— until the time allotted for architecture design is
consumed (not very desirable!).

74

2/13/24

37

Additional aspects

Architectural drivers

Creating prototypes as part
of the design process is
recommended

| <<precedes>>
:

Architectural design

Creating documentation and ! <cprecedes>>
performing architectural

. documentation
evaluation can be performed

| <<precedes>>
’

more easily if the ADD steps
were performed systematically Evallation
®

75

Summary

Architecture design transforms drivers into structures.

Architectural drivers include functional requirements,
quality attributes and constraints but also objectives,
concerns and the type of system

ADD is a method that structures architecture design so it
may be performed systematically.

Design concepts are building blocks from which the design
is created. There are several important types: Reference
Architectures, Deployment patterns, Architectural Patterns,
Tactics, and Externally developed components such as
frameworks.

ADD can be performed in an agile way by using initial
documentation (sketches) and a design kanban board to
track design advancement

76

2/13/24

38

Thank you

Questions?

Rick Kazman kazman@sei.cmu.edu

Humberto Cervantes hcm@xanum.uam.mx

Don’t miss the Smart Decisions: An Architecture
Design Game session! (Wednesday, 11:00)

77

2/13/24

39

mailto:kazman@sei.cmu.edu
mailto:hcm@xanum.uam.mx

