
Mapping MetaH
into ACME

Mario R. Barbacci

Charles B. Weinstock

July 1998

SPECIAL REPORT
CMU/SEI-98-SR-006

Pittsburgh, PA 15213-3890

Mapping MetaH
into ACME

CMU/SEI-98-SR-006

Mario R. Barbacci

Charles B. Weinstock

Unlimited distribution subject to the copyright.

July 1998

Architecture Tradeoff Analysis Initiative

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in
the interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Mario Moya, Maj, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1998 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document should
be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATE-
RIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANT-
ABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-pur-
pose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under the clause at
52.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark
holder.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350
Earl L. Core Road; PO Box 3305; Morgantown, West Virginia 26505 / Phone: (304) 284-9000 or toll-free
in the U.S. 1-800-547-8306 / FAX: (304) 284-9001 World Wide Web: http://www.asset.com / e-mail:
sei@asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For in-
formation on ordering, please contact NTIS directly: National Technical Information Service, U.S. Depart-
ment of Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides
access to and transfer of scientific and technical information for DoD personnel, DoD contractors and po-
tential contractors, and other U.S. Government agency personnel and their contractors. To obtain a copy,
please contact DTIC directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman
Road / Suite 0944 / Ft. Belvoir, VA 22060-6218 / Phone: (703) 767-8274 or toll-free in the U.S.: 1-800
225-3842.

CMU/SEI-9

Table of Contents
1 Introduction to MetaH and ACME 1

2 Software Architecture Specification 3
2.1 The ACME “MetaH_Family” 3
2.2 Interface and Implementation Classes 5

2.2.1 Type Packages 5
2.2.2 Subprograms 6
2.2.3 Packages 6
2.2.4 Monitors 6
2.2.5 Processes 6
2.2.6 Macros 8
2.2.7 Modes 8
2.2.8 Applications 10
2.2.9 Error Models 10

2.3 Component Declarations 11
2.3.1 Component Classes, Types, and Subclasses 11

2.3.1.1 Port Type and Subclass Declaration 11
2.3.1.2 Event Subclass Declaration 11
2.3.1.3 Process Subclass Declaration 13
2.3.1.4 Mode Subclass Declaration 14
2.3.1.5 State Subclass Declaration 14

2.3.2 Component Visibility and Naming 14
2.4 Connection Declarations 14

2.4.1 Port Connections 15
2.4.2 Event Connections 15

2.4.2.1 Event to Event Connections 16
2.4.2.2 Event to Process Connections 16
2.4.2.3 Event to Mode Connections 17

2.4.3 Equivalence Connections 17
2.4.4 Path Declarations 17

2.4.4.1 Execution Paths 17
2.4.4.2 Error Paths 18

2.4.5 Attribute Assignments 18

3 A Complete MetaH Example 19
8-SR-006 i

ii
4 The MetaH Example Translated into ACME 21

5 Generating Rapide Behavioral Specifications from
MetaH Descriptions 25

References 27
CMU/SEI-98-SR-006

CMU/SEI-9

List of Figures
Figure 2-1 MH_Family 4

Figure 2-2 MetaH Type Package and Translation into ACME 7

Figure 2-3 MetaH Process and Translation into ACME 9

Figure 2-4 MetaH Interface and Implementation with
Components and Translation into ACME 12

Figure 2-5 MetaH Port Declaration and Translation into ACME 13

Figure 2-6 MetaH Port Connection and Translation into ACME 16
8-SR-006 iii

iv CMU/SEI-98-SR-006

Abstract

This report explores the translation of MetaH into ACME as a first step into the translation of
MetaH to other architecture description languages (e.g., Rapide) to take advantage of any
toolsets developed for the target language. We start by comparing the meta-models of ACME
and MetaH, we establish mapping rules for each MetaH construct, and we present a full
MetaH example taken from the MetaH Library at Honeywell. The report concludes with a
brief description of possible alternative paths to obtain (limited) Rapide behavioral specifica-
tions from MetaH timing and sequencing of operations.
CMU/SEI-98-SR-006 v

vi CMU/SEI-98-SR-006

l

g to
nsla-

port
rt alter-
 for
CME
ng
lars in
this

ools,
or-
mmu-

CME
tion,
n dif-
tle (or
t of

n pro-
 the
ger
1 Introduction to MetaH and ACME

The ACME interchange format was originally conceived as a way to share tool capabilities
provided by a particular ADL with other ADLs, while avoiding the production of many pair-
wise language translators. ACME has been embraced the DARPA EDCS Program as a
“domain-neutral” architecture description language for building a core set of architectura
tools and as a common core representation for more domain-specific ADLs.

The basic aim of translating architectural design descriptions in an ADL to and from the
ACME interchange format is to provide access to emerging tool capabilities without havin
produce a redundant architectural specification in their native ADLs. In general, such tra
tors present two basic difficulties:

• meta-model differences between an ADL and ACME

• attribute labeling and semantic differences between ADLs

ACME’s meta-model includes a first-class connector concept, whereas not all ADLs sup
such a concept. ADLs that do not support first-class connectors do, by necessity, suppo
native interconnection or configuration concepts. The challenge of producing translators
these ADLs is to determine what kinds of simple or complex connectors can be used in A
for whatever the ADL provides to describe component inter-relationships, while preservi
their structural and coordination semantics. For the ADLs that have been used as exemp
the development of ACME—UniCon and Rapide, for example—reasonable solutions to
problem have been found.

Attributes present more significant challenges to constructing translators. Non-structural
design information, which is typically the subject of modeling, analysis, and generation t
is expressed in ACME by attribute, or property lists. ACME is not concerned with this inf
mation per se, but merely associates it with elements of the structural description and co
nicates it between translations. The problems arise between two different ADLs using A
as an interchange format. The two may use the same attribute label for different informa
different attribute labels for the same information, or may provide the same information i
ferent ways. They may also provide the same information in the same way, but have sub
not so subtle) differences in interpretation within the context of particular tools. As a face
the ongoing development of ACME, although not directly related to its design, it has bee
posed that a core set of attributes with consistent semantics across ADLs be adopted. In
interim, issues of agreement must be considered pairwise between ADLs, and in the lon
term such issues will remain for attributes outside of the core set.
CMU/SEI-98-SR-006 1

The MetaH architectural description language (ADL) and associated toolset support architec-
tural modeling of embedded real-time system applications. Based on the architectural model
the toolset performs syntactic consistency checks regarding the architectural structure, schedu-
lability analysis of the real-time tasks, and generates executable code that integrates applica-
tion components into a communicating set of processes, complemented with a runtime system
that contains a tailored scheduler and communication support.

MetaH focuses on system integration and is designed to interface with more
specialized toolsets that produce functional components (in the paper, “An
aspect of MetaH extensibility is the ability to interface with other ADLs and
associated analysis capabilities.”) These are often called DSLs, but I think they
often have the flavor of specialized ADLs. For example, one could think of inte-
grating the USC/ISI message handling code generator with MetaH, so that
MetaH could be used to integrate message-handling subsystems generated by
those tools into an overall embedded system [Vestal 98].

Honeywell has used MetaH as an architectural language in a number of application settings
and has extended and completed the modeling capability with specialized sub-languages and
tools. An aspect of MetaH extensibility is the ability to interface with other ADLs and associ-
ated analysis capabilities.

This report explores the translation of MetaH into ACME as a first step into the translation of
MetaH to other ADLs (e.g., Rapide) to take advantage of any toolsets developed for the target
language. We start by comparing the meta-models of ACME and MetaH, we establish map-
ping rules for each MetaH construct, and we present a full MetaH example taken from the
MetaH Library at Honeywell. The report concludes with a brief description of possible alter-
native paths to obtain (limited) Rapide behavioral specifications from MetaH timing and
sequencing of operations.

We appreciate the comments and suggestions on earlier drafts of this report offered by Peter
Feiler (CMU/SEI) and Steve Vestal (Honeywell). Dave Garland (CMU/SCS) and his team
made available to us the AcmeStudio tools used to test the translations.
2 CMU/SEI-98-SR-006

 will
ake

-

2 Software Architecture Specification

This chapter explains the syntax and semantics of the MetaH architecture description language
and their translation into ACME. We have tried to the maximum extent to retain the structure
of Chapter 5 in the MetaH Programmer’s Manual [MetaH 98] to check the completeness of
the approach, i.e., we have accounted for each and every MetaH feature.

A MetaH software architecture specification for an application consists of a series of interface
and implementation specifications (the components), together with a single application speci-
fication that describes the connections between components. The interface and implementa-
tion specifications explain how types of objects are constructed from previously specified
types of objects. The application specification combines a software object with a hardware
object (the execution platform) and type packages (the data types exchanged between compo-
nents) to specify a complete system architecture.

We retain this flavor in the translation to ACME. MetaH interface specifications are translated
to ACME component types. MetaH implementation specifications are translated into ACME
component types extending the previous type. MetaH objects are translated into ACME
instances of the appropriate type (i.e., the type derived from the implementation specification).
Finally, a MetaH application is also translated into an ACME component type. After the
MetaH description is translated, a single ACME system is declared as an instance of the
ACME component type generated from the MetaH application.

Whenever we discuss ACME and MetaH constructs with similar names (e.g., “Port”) we
prefix the name of the construct with the name of the language (e.g., “ACME Port”) to m
explicit which flavor of the construct we are talking about.

2.1 The ACME “MetaH_Family”
To facilitate the translation to ACME we use the ACME Family construct to declare a collec-
tion of standard MetaH-related types, types used in any MetaH to ACME translation. This
family (“MetaH_Family,” Figure 2-1) is augmented with the (translated) MetaH type pack
ages, interfaces, implementations, and application.
CMU/SEI-98-SR-006 3

Figure 2-1: MH_Family

Family MetaH_Family () =
{/* BEGIN STANDARD METAH DECLARATIONS */

property type MH_mode_subclass =
enum {MH_initial, MH_other};

property type MH_port_subclass =
enum {MH_in, MH_out};

property type MH_process_subclass =
enum {MH_periodic, MH_aperiodic};

property type MH_event_subclass =
enum {MH_interrupt, MH_signal, MH_nudge, MH_node};

property type MH_execution_path = sequence;
property type MH_error_path = sequence
property type MH_Implementation_name = string;
property type MH_Interface_name = string;

port type MH_port = {};
port type MH_event = {};

component type MH_mode =
{port MH_event_port: MH_port

= {property MH_port_subclass = MH_in;};};
component type MH_macro = {};
component type MH_monitor = {};
component type MH_package = {};
component type MH_subprogram = {};
component type MH_process =

{port MH_event_port: MH_port
= {property MH_port_subclass = MH_in;};};

component type MH_error_model = {};
component type MH_error_state = {};

connector type MH_connector =
{roles {MH_source; MH_sink};
property MH_port_identifier: string;};

 /* The MetaH connector roles are wired-in */

/* BEGIN EXAMPLE SPECIFIC DECLARATIONS */
.......
}; /* End MetaH_Family */

System identifier: MetaH_Family =
{component identifier = new identifier;};
4 CMU/SEI-98-SR-006

s

nd
til we
 third
notate

uffer

E
ated
pe
 this
l
 citi-

ype

asic
The ACME system declared at the end of the translation uses the declarations in MH_Family
and declares an instance of the ACME component type derived from the MetaH application.
This should become clear through the examples provided in the report.

2.2 Interface and Implementation Classes
MetaH interface and implementation specifications can be divided into two main groups based
on the class of object being specified: source objects (type packages, subprograms, packages,
and monitors) and higher-level objects (processes, macros, modes, and applications) ([MetaH
98], Section 5.1.3). We make no distinction between these two groups and how they are trans-
lated into ACME.

With three exceptions, all MetaH constructs can be translated one-to-one into ACME con-
structs. That is, we can translate interfaces, implementations, and systems into ACME types as
they occur. Although there is no requirement that the translation be done “on the fly”, it i
reassuring that this simple rule applies!

The first two exceptions to the rule are MetaH type packages interfaces (Section 2.2.1) a
MetaH interfaces (Section 2.3) with internal components. In both cases we must wait un
have the corresponding implementation before translating the construct into ACME. The
exception are MetaH equivalence connections (Section 2.4.3). We need to go back an an
sets of components with an ACME attribute identifying them as members of a set.

2.2.1 Type Packages

A MetaH type package consists of a collection of type declarations for input and output b
variables. These buffer variables are the ports. ([MetaH 98], Section 5.1.3.1.1)

Type packages1 are one case in which a MetaH entity does not map directly into one ACM
entity. We have to break the type package so that each individual type identifier is transl
into an ACME port type declaration (i.e., a MetaH type package is a collection of data ty
declarations, each of which is translated into a different ACME port type.) We need to do
bundling and breaking because each data type must be annotated with its own individua
MetaH attributes. To achieve the same effect in ACME we make the variables first class
zens, i.e., ACME port types and then we annotate them with ACME properties.

For example, consider the following MetaH type package in Figure 2-2 (a). The MetaH t
package “PORT_TYPES” declares two data types (“ANY_TYPE” and “ANOTHER_TYPE”).
Each of these is translated into a separate ACME port type, declared by extending the b

1. Type packages were known as “port type modules” in previous version of the MetaH documentation and toolset.
CMU/SEI-98-SR-006 5

(out
Section

t the

 the
ackage
ther

e

aH

 com-

rocess
an be
type MH_port_type declared in MH_Family, and annotated with all the various MetaH
attributes (actually, it is more than just attributes; any piece of information available about the
types is captured as an ACME property. For example, we have no use for “PORT_TYPES”
itself but it is useful to remember the name of the original MetaH enclosure, thus
PORT_TYPES is saved as a property of both ANY_TYPE and ANOTHER_TYPE). The result-
ing ACME port type declarations appear in Figure 2-2 (b)

2.2.2 Subprograms

MetaH subprogram interfaces identify the events that might be raised by a subprogram
events) and ports that a subprogram sends or receives messages through ([MetaH 98],
5.1.3.1.2).

MetaH subprograms are translated just like MetaH processes (Section 2.2.5) except tha
ACME component type extends a predefined ACME type “MH_subprogram.”

2.2.3 Packages

A package is a collection of executable subprograms. MetaH package interfaces identify
events that might be raised by subprograms in a package; ports that subprograms in a p
send or receive messages through; and subprograms and packages that are visible to o
objects. ([MetaH 98], Section 5.1.3.1.3).

MetaH packages are translated just like MetaH processes (Section 2.2.5) except that th
ACME component type extends a predefined ACME type “MH_package.”

2.2.4 Monitors

A monitor is a special type of package object that is shared by multiple processes. ([Met
98], Section 5.1.3.1.4).

MetaH monitors are treated like MetaH processes (Section 2.2.5) except that the ACME
ponent type extends a predefined ACME type “MH_monitor.”

2.2.5 Processes

MetaH process interfaces identify events that might be raised by a process, ports that a p
sends or receives messages through, and subprograms, packages, and monitors that c
shared with other processes ([MetaH 98], Section 5.1.3.2.1)..
6 CMU/SEI-98-SR-006

om-
, the
ME
Figure 2-2: MetaH Type Package and Translation into ACME

MetaH process interfaces are translated into ACME component types extending a predefined
ACME type “MH_process.” MetaH process implementations are translated into ACME c
ponent types extending the ACME type derived from the process interface. For example
MetaH process interface and implementation in Figure 2-3 (a) are translated into the AC
component types in Figure 2-3 (b).

type package PORT_TYPES is
 ANOTHER_TYPE: type;
 ANY_TYPE: type;
end PORT_TYPES;

type package implementation PORT_TYPES.I80960MC is
attributes
 ANY_TYPE’SourceDataSize := 16 B;
 ANY_TYPE'SourceFile := “port_types.a”;
 ANOTHER_TYPE'SourceDataSize := 32 B;
 ANOTHER_TYPE'SourceFile := “port_types.a”;
end PORT_TYPES.I80960MC;

(a) MetaH Type Package Declaration

port type any_type
extends MH_port_type
with

{property MH_Interface_name = “port_types”;
property MH_Implementation_Name = “I80960MC”;
property MH_SourceDataSize = 16;
property MH_SourceFile = “port_types.a”;};

port type another_type
extends MH_port_type
with

{property MH_Interface_name = “port_types”;
property MH_Implementation_Name = “I80960MC”;
property MH_SourceDataSize = 32;
property MH_SourceFile = “port_types.a”;};

(b) ACME Port Type Declarations
CMU/SEI-98-SR-006 7

lish

pes
o

o an

a
etaH

E

 sends
hared
ode of

com-

here
a-
Pro-
rty is
e.
MH_process includes a pseudo input port “MH_port_event.” This “port” is used to estab
event-to-port connections.

MetaH event and ports declarations are translated into instances of predefined ACME ty
“MH_event” or “MH_port.” All additional information (e.g., port direction) is translated int
ACME properties as illustrated in Figure 2-5.

If a process contains internal components, the implementation structure is translated int
ACME representation, i.e., a System plus (optional) Bindings.

2.2.6 Macros

A MetaH macro allows multiple processes to be grouped to form an abstract object and
macro component can be declared anywhere a process component can be declared ([M
98], Section 5.1.3.2.2).

MetaH macros are treated just like MetaH processes (Section 2.2.5) except that the ACM
component type extends a predefined ACME type “MH_macro.”

2.2.7 Modes

MetaH mode interfaces identify events that might be raised by a mode, ports that a mode
or receives messages through, and subprograms, packages, and monitors that can be s
with other modes, macros, and processes. An application can only be executing in one m
operation at a time ([MetaH 98], Section 5.1.3.2.3).

MetaH modes are treated just like MetaH Macros (Section 2.2.6) except that the ACME
ponent type extends a predefined ACME type “MH_mode.”

MetaH modes differ from MetaH macros in that only one mode can be active at a time. T
is no counterpart to MetaH’s modes in ACME, i.e., there are no dynamic configuration fe
tures. We choose instead to treat Modes the same way we treat Macros (i.e., groups of
cesses), with an added property “MH_Mode_Class_Name.” The semantics of this prope
that if multiple “macros” share the same class name, only one may be executing at a tim
8 CMU/SEI-98-SR-006

Figure 2-3: MetaH Process and Translation into ACME

process P1 is
p1_input: in port PORT_TYPES.ANY_TYPE;
update: out port PORT_TYPES.ANOTHER_TYPE;
feedback: in port PORT_TYPES.ANOTHER_TYPE;

end P1;

process implementation P1.EXAMPLE is
attributes
 self’Period := 25 ms;
 self'SourceFile := “p1_ports.a”, “p1.a”;
 self'SourceTime := 2 ms;
end P1.EXAMPLE;

(a) MetaH Process Declaration

component type p1
extends MH_process
with

{port p1_input: MH_port =
{property MH_port_type = “any_type”;
property MH_port_subclass = MH_in;};

port update: MH_port =
{property MH_port_type = “another_type”;
property MH_port_subclass = MH_out;};

port feedback: MH_port =
{property MH_port_type = “another_type”;
property MH_port_subclass = MH_in;};

};

component type p1_example
extends p1
with

{property MH_Period = 25;
property MH_SourceFiles = {“p1_ports.a”, “p1.a”};
property MH_SourceTime = 2;};

(b) ACME Process Declaration
CMU/SEI-98-SR-006 9

ed
r-

cribed
In MetaH, if processes, macros, and modes are components in the same mode, then each pro-
cess and macro is included in every sibling mode component. The MetaH processes and mac-
ros are translated into ACME component types, as usual, but instances of these types get
replicated in every sibling mode. This simplifies things because then sibling modes would be
self-contained. This is in the spirit of MetaH, where

Modes and macros/processes together form a kind of hierarchical state machine
sublanguage. There are submodes and (eventually) a kind of parallel mode
composition, the toolset flattens such hierarchical specifications into a final
mode transition diagram [Vestal 98].

2.2.8 Applications

The highest level of MetaH specification is an application ([MetaH 98], Section 5.1.3.2.4).

A MetaH application is translated into an ACME component type (a mode, macro, or process)
plus an ACME system. The ACME system consists of a single component declaration, an
instance of the component type obtained from the MetaH application.

2.2.9 Error Models

An error model declares a set of fault events, a set of error states, and a set of paths that define
transitions between error states in response to fault events. Each path declared in an error
model is a finite state machine, where the states are error states and the transitions occur in
response to fault events. An attribute that can be defined for every source and hardware object
is the error model path used to model the response of that object to fault events ([MetaH 98],
Section 5.1.3.2.5]).

MetaH error model interfaces are translated into ACME component types extending a pre-
defined ACME type “MH_error_model.” MetaH error model implementations are translat
into ACME component types extending the ACME type derived from the error model inte
face.

Error model events and states are translated into instances of predefined ACME types
“MH_event” and “MH_error_state,” respectively.

Error paths are translated into ACME properties (a sequence of state transitions) as des
in Section 2.4.4.2.
10 CMU/SEI-98-SR-006

taH
. Thus
ener-
e they

ection

etaH

 con-

fied as
dels)
 98],
2.3 Component Declarations
Each interface and implementation specification can contain zero or more component declara-
tions ([MetaH 98], Section 5.1.4).

Consider the MetaH example in Figure 2-4 (a). This example presents a problem if we handle
the interface and the implementation as the usual separate component type declarations and
extensions. Not only can we not “extend” an ACME representation, but in addition, in Me
every object in an interface is also considered to be a component of the implementation
we must wait until we have the MetaH implementation to complete the translation and g
ate the ACME representation. Note that we must tag the various pieces so we know wher
came from in case we want to translate back to MetaH, as shown in Figure 2-4 (b).

2.3.1 Component Classes, Types, and Subclasses

Event, port, and type objects may appear as components of an interface ([MetaH 98], S
5.1.4.1).

Types are treated as instances of ACME type MH_port_type, as shown in Figure 2-2. M
event and port declarations are translated into instances of predefined ACME types
“MH_event” or “MH_port” respectively. All additional information (e.g., port direction) is
translated into ACME properties as illustrated in Figure 2-5.

2.3.1.1 Port Type and Subclass Declaration

A port must be classified as either an in or out port. Ports are typed and directional, and
nections can only be specified between ports whose types and directions are compatible
([MetaH 98], Section 5.1.4.1.1).

The port directions are captured as ACME property “MH_port_subclass” with values
{“MH_in,” “MH_out”} defined in MetaH_Family.

2.3.1.2 Event Subclass Declaration

MetaH event components (other than those specified in error models) must be subclassi
either in or out events. MetaH event components (other than those specified in error mo
may optionally be subclassified as either nudge, signal, interrupt, or mode events ([MetaH
Section 5.1.4.1.2).
CMU/SEI-98-SR-006 11

Figure 2-4: MetaH Interface and Implementation with Components and Translation
into ACME

process FOO is
RESULT: out port PTYPES.INT;
Q: monitor QUEUE.BOUNDED;

end FOO;

process implementation FOO.BAR is
COMP: subprogram CONTROLLER.PID;

end FOO.BAR;

(a) MetaH Interface and Implementation with Components

component type FOO
extends MH_process
with

{port RESULT: MH_port =
{property MH_port_type = “PTYPES.INT”;
property MH_port_subclass = MH_out;};

};

component type FOO_BAR extends FOO with
{representation

{system MH_some_name =
component Q =

new QUEUE_BOUNDED
extended with

(property MH_origin = MH_interface;};
component COMP =

new CONTROLLER_PID
extended with

(property MH_origin = MH_implementation;};
};

};
};

(b) ACME Translation
12 CMU/SEI-98-SR-006

ith

 at a
by an
ted to

” with

l
entu-
Figure 2-5: MetaH Port Declaration and Translation into ACME

The event subclass is captured as the value of ACME property “MH_event_subclass” w
values {“MH_nudge,” “MH_signal,” “MH_interrupt,” “MH_mode”} defined in
MetaH_Family. The event direction is captured as the value of ACME property
“MH_port_subclass” with values {“MH_in,” “MH_out”} defined in MetaH_Family.

2.3.1.3 Process Subclass Declaration

Processes are classified as either periodic or aperiodic. A periodic process is dispatched
fixed frequency specified using the Period attribute. An aperiodic process is dispatched
event arrival, where the events that can dispatch an aperiodic process are those connec
that process ([MetaH 98], Section 5.1.4.1.3).

The process subclass is captured as the value of ACME property “MH_process_subclass
values {“MH_periodic,” “MH_aperiodic”} defined in MetaH_Family.

The subclassification can appear in either the process implementation or in the individua
component. That is, the property could be bound in either place but it must be bound ev
ally. Event connections to aperiodic processes are described in Section 2.4.2.

m_out: out port PORT_TYPES.ANY_TYPE;

(a) MetaH Port Declaration

port m_out: MH_port =
{property MH_port_type = “any_type”;
property MH_port_subclass = MH_out;};

(b) ACME Port Declaration
CMU/SEI-98-SR-006 13

ith

ly one

 val-

ns
ng
ly a
2.3.1.4 Mode Subclass Declaration

In any specification that has mode components, exactly one of the modes must be classified as
the initial mode, even if there is only one mode component. Event connections can be used to
change modes at runtime ([MetaH 98], Section 5.1.4.1.4).

The mode subclass is captured as the value of ACME property “MH_mode_subclass” w
values {“MH_initial,” “MH_other”} defined in MetaH_Family. Event connections to mode
are described in Section 2.4.2

2.3.1.5 State Subclass Declaration

Exactly one state in an error model must classified as the initial state, even if there is on
state declared in the error model ([MetaH 98], Section 5.1.4.1.5).

The state subclass is captured as the value of ACME property “MH_state_subclass” with
ues {“MH_initial,” “MH_other”} defined in MetaH_Family.

2.3.2 Component Visibility and Naming

See the MetaH Programmer’s Manual, Section 5.1.5 [MetaH 98].

We assume that we are translating a correct MetaH description and that all syntactic and
semantic checks have been performed.

2.4 Connection Declarations
Connections in MetaH serve two purposes. They are used to declare connections between the
interface elements of the various components in an implementation; they are also used to
equivalence (sharing of) objects. For instance, a monitor of one process may be equivalenced
to a monitor of another, indicating that the two processes share the same monitor ([MetaH 98],
Section 5.1.6).

Connectors are not first class citizens in MetaH. In ACME we make them explicit by declaring
them explicitly as instances of connector type “MH_connector.” Port and event connectio
are mapped to ACME attachments or bindings depending on which components are bei
connected. In any event, the “citizenship status” of MetaH connectors seems to be most
syntactic issue:
14 CMU/SEI-98-SR-006

es
the

of the

rop-

etaH
Internally, the MetaH tools create a connection object. MetaH connections are

not first-class objects as with other ADLs in that the user cannot declare con-
nector implementations with all the power available for declaring, say, process
implementations. However, connections are objects in the sense that they can
have attributes defined. We expect to add support for a limited form of user-
declared connector implementation by allowing a connector to have an associ-
ated software component, e.g. a subprogram to do representation or type con-
version. The proposed syntax starts to get close to first-class connector objects,
e.g. con_name: port A.In_P <- user_defined (B.Out_P, C.Out_P); The exact
implementation for “user_defined” is to be inferred from the types of the ports,
vaguely like overload resolution. This does not exist yet, it is merely a
preliminary proposed extension, but might possibly be of interest to think about
[Vestal 98].

2.4.1 Port Connections

Ports may only be connected to other ports ([MetaH 98], Section 5.1.6.1).

For every MetaH port connection between components of an implementation we declare an
ACME connector (an instance of component “MH_port_connector,” with preassigned rol
“MH_source” and “MH_sink”) and an ACME attachment section connecting the ports to
roles of the connector, as illustrated in Figure 2-6.

For every MetaH port connection between a component of an implementation and a port

corresponding interface we declare an ACME binding between the two ports.1

A MetaH port connection can have an optional identifier. If so, it is saved as an ACME p
erty “MH_identifier” of the ACME connector.

2.4.2 Event Connections

An event may be connected to an aperiodic process, to a mode, or to another event ([M
98], Section 5.1.6.2).

1. Since ACME attachments are declared inside a system and ACME bindings are declared at the same level as the system
within a representation, attachments and bindings can not be mixed. Any binding declarations must be postponed until we
are done with the attachments and the system declaration, and we are back at the representation level.
CMU/SEI-98-SR-006 15

vent

on
tation
) and
ry
ent of

 will be

).
vent)
Figure 2-6: MetaH Port Connection and Translation into ACME

2.4.2.1 Event to Event Connections

Event connections within an object implementation vector events to out events and from in
events declared in that object’s interface. Event connections have no attributes and an e
connection label serves only for documentation ([MetaH 98], Section 5.1.6.2.1).

Event-to-event connections are treated the same way as port-to-port connections (Secti
2.4.1). For every MetaH event-to-event connection between components of an implemen
we declare an ACME connector (an instance of component type “MH_event_connector”
an ACME attachment section connecting the ports to the roles of the connector. For eve
MetaH event-to-event connection between a component of an implementation and an ev
the corresponding interface we declare an ACME binding between the two ports.

2.4.2.2 Event to Process Connections

An aperiodic process may be connected to an event. When the event occurs the process
dispatched ([MetaH 98], Section 5.1.6.2.2).

Every process comes with a pre-declared port, “MH_event_port” (declared in “MH_port”
This allows event-to-process connections to be handled just as port-to-port (or event-to-e
connections (Section 2.4.1).

<<C>> P2.feedback <- P1.update;

(a) MetaH Port Connection

Connector MH_connector_1 =
new MH_port_connector
extended with {property MH_identifier = “C”};

Attachments
{p2.feedback to MH_connector_1.MH_sink;
p1.update to MH_connector_1.MH_source;};

(b) ACME Connector and Attachment Declarations
16 CMU/SEI-98-SR-006

t allow

d mode

.
ection

s, pack-
equiva-
d by

a-
lare
 bind-

ative
ty to
 side is
 previ-

lemen-
h the
com-
 and
Multiple events may ultimately dispatch the same aperiodic process, and the same out event
raised by a process, monitor, package, or subprogram may ultimately dispatch multiple aperi-
odic processes. The same out event may ultimately both dispatch one or more aperiodic pro-
cesses. These are many-to-many connections. Do we need to declare “event” ports tha
unlimited fan-in, fan-out roles?

2.4.2.3 Event to Mode Connections

A mode may be connected to an event. When the event occurs a change to the connecte
will occur ([MetaH 98], Section 5.1.6.2.3).

Every mode comes with a pre-declared port, “MH_event_port” (declared in “MH_mode”)
This allows event-to-mode connections to be handled just as port-to-port connections (S
2.4.1).

2.4.3 Equivalence Connections

Equivalence connections can be used to declare that a pair of monitor component name
age component names, or subprogram component names refer to the same object. An
lent connection is often used to specify that a subprogram, package, or monitor is share
multiple processes. ([MetaH 98], Section 5.1.6.3).

Equivalence or sharing of components is not the same as ACME bindings. MetaH Equiv
lences declare that two component names refer to the same object. ACME bindings dec
that two ports are one and the same. We could translate MetaH equivalences into ACME
ings but this would be violating the semantics of the ACME construct. The leading altern
is to not map equivalences into anything and simply add a “MetaH_equivalence” proper
the members of an equivalence class so that other tools can tell who they are. The down
that this might prevent “one-pass” translation since we might have to go back and patch
ously processed components with the new property before generating the ACME code.

2.4.4 Path Declarations

Paths define sequencing behaviors of objects ([MetaH 98], Section 5.1.7).

2.4.4.1 Execution Paths

Execution paths may be defined inside process, monitor, package, and subprogram imp
tation specifications. These are used to describe possible execution control paths throug
components of an implementation. Execution paths are typically used in declarations of
pute time attributes for processes and their components, and in the computation of stack
heap sizes for a process ([MetaH 98], Section 5.1.7.1).
CMU/SEI-98-SR-006 17

e are
ts. An
s a
n when
 Sec-

r

ssign-
ct

ged

te to
ric
is
Execution paths are captured as the value of ACME property “MH_execution_path.” The
value of this property is a sequence of component names.

2.4.4.2 Error Paths

Error paths may only be defined inside error model implementation specifications. Thes
used to describe how the error states of an object may change in response to fault even
error path takes the form of a list of error state transitions, where each transition identifie
state, an event, and another state. The meaning is that if an object is in the first state, the
the named fault event occurs the object will transition into the second state ([MetaH 98],
tion 5.1.7.2).

Error paths are captured as the value of ACME property “MH_error_path” defined in
MetaH_Family. The value of this property is a nested sequence of sequences. The inne
sequences consist of the three names (state/event/state) in the error state transitions.

2.4.5 Attribute Assignments

The attributes part of an implementation specification contains a sequence of attribute a
ments. Each attribute assignment specifies a value for some attribute of a particular obje
used in an implementation ([MetaH 98], Section 5.1.8).

MetaH attributes are translated into ACME properties. Each attribute name would be tag
with “MH_” to avoid conflicts with predefined names in ACME.

This is the most straightforward translation; alternatively, instead of mapping each attribu
a different ACME property, all MetaH attributes could be captured as the value of a gene
ACME property “MH_attribute” with a value of the form <name, value> where the name
the MetaH attribute name.
18 CMU/SEI-98-SR-006

3 A Complete MetaH Example

--
-- Code generated by the ArchEd code generator.
-- Configuration: default
-- Date: 23 September 1994
-- Time: 3:13:33 pm
--
type package PORT_TYPES is
 ANOTHER_TYPE: type;
 ANY_TYPE: type;
end PORT_TYPES;
type package implementation PORT_TYPES.I80960MC is
attributes
 ANY_TYPE’SourceDataSize := 16 B;
 ANY_TYPE'SourceFile := “port_types.a”;
 ANOTHER_TYPE'SourceDataSize := 32 B;
 ANOTHER_TYPE'SourceFile := “port_types.a”;
end PORT_TYPES.I80960MC;
with type package PORT_TYPES;
macro M is
 m_out: out port PORT_TYPES.ANY_TYPE;
 m_in: in port PORT_TYPES.ANY_TYPE;
end M;
with type package PORT_TYPES;
process P1 is
 p1_input: in port PORT_TYPES.ANY_TYPE;
 update: out port PORT_TYPES.ANOTHER_TYPE;
 feedback: in port PORT_TYPES.ANOTHER_TYPE;
end P1;
process implementation P1.EXAMPLE is
attributes
 self'Period := 25 ms;
 self'SourceFile := “p1_ports.a”, “p1.a”;
 self'SourceTime := 2 ms;
end P1.EXAMPLE;
with type package PORT_TYPES;
process P2 is
 p2_result: out port PORT_TYPES.ANY_TYPE;
 update: out port PORT_TYPES.ANOTHER_TYPE;
 feedback: in port PORT_TYPES.ANOTHER_TYPE;
end P2;
process implementation P2.EXAMPLE is
CMU/SEI-98-SR-006 19

attributes
 self’Period := 50 ms;
 self'SourceFile := “p2_ports.a”, “p2.a”;
 self'SourceTime := 5 ms;
end P2.EXAMPLE;
macro implementation M.EXAMPLE is
 P2: periodic process P2.EXAMPLE;
 P1: periodic process P1.EXAMPLE;
connections
 P2.feedback <- P1.update;
 P1.feedback <- P2.update;
 m_out <- P2.p2_result;
 P1.p1_input <- m_in;
end M.EXAMPLE;
20 CMU/SEI-98-SR-006

4 The MetaH Example Translated into
ACME

Family MetaH_Family () =
{/* BEGIN STANDARD METAH DECLARATIONS */
.............. (see Figure 2-1)
/* BEGIN EXAMPLE SPECIFIC DECLARATIONS */

type package any_type
extends MH_port_type
with

{property MH_Interface_name = “port_types”;
property MH_Implementation_name = “I80960MC”;
property MH_SourceDataSize = 16;
property MH_SourceFile = “port_types.a”;};

type package another_type
extends MH_port_type
with

{property MH_Interface_name = “port_types”;
property MH_Implementation_name = “I80960MC”;
property MH_SourceDataSize = 32;
property MH_SourceFile = “port_types.a”;};

component type M
extends MH_macro
with
{port m_out : MH_port

= {property MH_port_type = “any_type”;
property MH_port_subclass = MH_out;};

port m_in : MH_port
= {property MH_port_type = “any_type”;

property MH_port_subclass = MH_in;};
};

component type p1
extends MH_process
with

{port p1_input : MH_port
= {property MH_port_type = “any_type”;

property MH_port_subclass = MH_in;};
port update : MH_port
CMU/SEI-98-SR-006 21

= {property MH_port_type = “another_type”;
property MH_port_subclass = MH_out;};

port feedback : MH_port
= {property MH_port_type = “another_type”;

property MH_port_subclass = MH_in;};
};

component type p1_example
extends p1
with

{property MH_Period = 25;
property MH_SourceFiles = <“p1_ports.a”, “p1.a”>;
property MH_SourceTime = 2;};

component type p2
extends MH_process
with
{port p2_result : MH_port

= {property MH_port_type = “any_type”;
property MH_port_subclass = MH_out;};

port update : MH_port
= {property MH_port_type = “another_type”;

property MH_port_subclass = MH_out;};
port feedback : MH_port

= {property MH_port_type = “another_type”;
property MH_port_subclass = MH_in;};

};
component type p2_example

extends p2
with

{property MH_Period = 50;
property MH_SourceFiles = <“p2_ports.a”, “p2.a”>;
property MH_SourceTime = 5;};

Component type M_example
extends M
with
{Representation

{system MH_little_system =
{component p2 =

new p2_example
extended with

{property MH_process_subclass = MH_periodic;};
component p1 =

new p1_example
extended with

{property MH_process_subclass = MH_periodic;};
Connector MH_connector_1 =
22 CMU/SEI-98-SR-006

new MH_connector
extended with {};

Attachments
{p2.feedback to MH_connector_1.MH_sink;
p1.update to MH_connector_1.MH_source;};

Connector MH_connector_2 =
new MH_connector
extended with {};

Attachments
{p1.feedback to MH_connector_2.MH_sink;
p2.update to MH_connector_2.MH_source;};

}; /* System */
Bindings =

{m_out to p2.p2_result;
p1.p1_input to m_in;};

}; /* Representation */
}; /* Type M_Example */

}; /* family */

system MH_system : MetaH_Family =
 {component MH_component = new M_example;};
CMU/SEI-98-SR-006 23

24 CMU/SEI-98-SR-006

aH
ious

w-

te
5 Generating Rapide
Behavioral Specifications from
MetaH Descriptions

MetaH does not include a behavioral specification language as such. A MetaH description
implies behavior from the specification of component timing, sequence of operations (execu-
tion paths), and state transitions (error paths). If we want to take advantage of available ADLs
simulation or verification capabilities, one of the premises of this work and a motivation for
ACME, we have essentially three alternatives:

1. Do nothing and translate the MetaH limited behavioral specification into fragments of
Rapide specifications. This is not very satisfactory because the behavioral information can
be missing or incomplete. A better alternative might be to assign the generation of Rapide
specifications to the MetaH timing tool. It performs schedulability analysis and has a bet-
ter understanding of the behavior of the system.

2. Invent a MetaH behavioral specification language and annotate the relevant components
with a new attribute, “behavior,” whose value is a string in the new language. This
requires writing a translator from this language to Rapide.

3. Adopt the behavioral specification language from an existing ADL and annotate Met
components with the attribute “behavior” written as a string in that language. The obv
candidate ADL to borrow from is Rapide because it obviates writing a translator. Ho
ever, if there is already a translator to Rapide from a different ADL (e.g., Wright) we
could use it instead.

This aspect of the translation from MetaH to ACME (and then to Rapide) is still incomple
and other alternatives might be considered as the effort progresses.
CMU/SEI-98-SR-006 25

26 CMU/SEI-98-SR-006

References

[ACME 97] Monroe, Robert; Garlan, David; & While, Dave. ACME Straw-
Manual, Version 0.1.1 [online]. School of Computer Science,
Carnegie Mellon University. Available WWW:
<URL: http://www.cs.cmu.edu/~acme/> (November 5, 1997).

[MetaH 98] Vestal, Steve. MetaH Programmer’s Manual, Version 1.22. Hon-
eywell Technology Center. Additional material available WWW:
<URL: http://www.htc.honeywell.com/projects/dssa/
dssa_tools.html> (June 1, 1998).

[Rapide 97] Rapide Design Team. Guide to the Rapide 1.0 Language Refer-
ence Manuals [online]. Computer Systems Laboratory, Stanford
University. Available WWW:
<URL: http://poset.Stanford.EDU/rapide/> (July 17, 1997).

[Vestal 98] Vestal, Steve. Re: MetaH to ACME translation [email to M.R.
Barbacci]. Available email: mrb@sei.cmu.edu, April 6, 1998.
CMU/SEI-98-SR-006 27

28 CMU/SEI-98-SR-006

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

July 1998

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Mapping MetaH into ACME

5. FUNDING NUMBERS

C — F19628-95-C-0003

6. AUTHOR(S)

Mario R. Barbacci and Charles B. Weinstock
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-98-SR-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This report explores the translation of MetaH into ACME as a first step into the translation of MetaH to other
architecture description languages (e.g., Rapide) to take advantage of any toolsets developed for the target
language. We start by comparing the meta-models of ACME and MetaH, we establish mapping rules for
each MetaH construct, and we present a full MetaH example taken from the MetaH Library at Honeywell.
The report concludes with a brief description of possible alternative paths to obtain (limited) Rapide
behavioral specifications from MetaH timing and sequencing of operations.

14. SUBJECT TERMS

architecture description language, behavioral specifications, components,
connectors, structural specifications

15. NUMBER OF PAGES

28
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

	Table of Contents
	List of Figures
	Abstract
	1 Introduction to MetaH and ACME
	2 Software Architecture Specification
	2.1 The ACME “MetaH_Family”
	2.2 Interface and Implementation Classes
	2.3 Component Declarations
	2.4 Connection Declarations

	3 A Complete MetaH Example
	4 The MetaH Example Translated into ACME
	5 Generating Rapide Behavioral Specifications from MetaH Descriptions
	References

