
Christopher Alberts
Michael Bandor
Charles M. Wallen
Carol Woody

October 2023

TECHNICAL NOTE
CMU/SEI-2023-TN-004
DOI: 10.1184/R1/24128475

CERT Division

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

https://www.sei.cmu.edu
Table of Contents

1 Introduction
1.1 The Evolving Role of Software and Suppliers
1.2 Audience
1.3 Report Structure

2 ASF Lineage
2.1 Software Engineering Management
2.2 Operational Risk and Resilience
2.3 Cybersecurity Engineering
2.4 ASF Development

3 ASF Overview
3.1 ASF Challenge Areas
3.2 ASF Structure
3.3 ASF Practice Area and Domain Summaries

4 Conclusion and Next Steps

Appendix A: ASF Domains, Goals, and Questions
- Program Management (PGM)
- Engineering Lifecycle (ENL)
- Supplier Dependency Management (SDM)
- Support (SPT)
- Assessment and Compliance (AC)
- Process Management (PCM)

Appendix B: Glossary

Bibliography
List of Figures

Figure 1: Cybersecurity Practices Available Across the Lifecycle to Address Security/Resilience Weaknesses 3
Figure 2: Research Lineage of the ASF 5
Figure 3: ASF Organization and Structure 10
Abstract

The Acquisition Security Framework (ASF) is a collection of leading practices for building and operating secure and resilient systems across the systems lifecycle. These practices enable programs to evaluate risks and gaps in their processes for acquiring, engineering, and deploying secure systems and to exercise more insight and control over their supply chains. The ASF provides a roadmap for building security/resilience into a system rather than “bolting them on” after deployment. ASF practices promote proactive dialogue across all program and supplier teams, helping to integrate communication channels and facilitate information sharing. The framework helps programs coordinate their management of engineering and supply chain risks across the many components of a system. These risks require ongoing monitoring and management across all phases of the systems lifecycle due to the dynamic nature of the threat environment and the rapid evolution of technologies. The ASF is consistent with cybersecurity engineering, supply chain management, and risk management guidance from the International Organization for Standardization (ISO), National Institute of Standards and Technology (NIST), and Department of Homeland Security (DHS). This report builds on a previous report, Acquisition Security Framework (ASF): Managing Systems Cybersecurity Risk, and includes a full set of ASF practices.
1 Introduction

The Acquisition Security Framework (ASF) is a collection of leading practices for building and operating secure and resilient systems. The ASF is designed to enable systems security and resilience engineering across the lifecycle and supply chain. It provides a roadmap for building security/resilience into a system rather than “bolting them on” after deployment. The ASF documents leading practices and provides a pathway for proactive process management. This dual focus on practices and processes produces an efficient and predictable acquisition development environment, which ultimately leads to reduced security/resilience risks in deployed systems.

Software is a growing component of modern business and mission-critical systems. As organizations become more dependent on software-driven technology, security/resilience risks to their missions also increase, largely due to increased complexity and external dependencies. Managing these risks is too often deferred until after deployment due to competing priorities, such as satisfying cost and schedule objectives. However, experience shows that failure to address these risks early in the systems lifecycle increases operational impact and mitigation costs, and severely limits mitigation options.

Today’s growing reliance on third-party suppliers to help achieve cost and schedule objectives introduces supply chain risks that the systems being put in place inherit. As a result, program leaders and engineering personnel must manage these inherited risks across the systems lifecycle. The ASF is structured to help programs manage inherited and other avoidable risks by identifying options to implement a proactive stance from the earliest point in the systems lifecycle. Effective management of supply chain risk requires integrating multiple processes that foster effective collaboration across the range of stakeholders responsible for acquiring, developing, deploying, and operating systems.

Many security/resilience solutions focus on a few aspects of engineering, such as security/resilience requirements specification, secure coding practices, or supply chain risk management. In contrast, the ASF leverages a proven set of integrated program management, engineering, and supplier management practices and processes that span the systems lifecycle. ASF practices promote proactive dialogue across all program and supplier teams, helping integrate communication channels and facilitate information sharing. As a result, the ASF enables programs to acquire, develop, and operate complex systems that function at a lower level of risk in an increasingly contested, challenging, and interconnected cyber environment.

Managing the evolving challenges resulting from dynamic threat and technology environments demands continuous vigilance by all teams involved with acquiring, developing, and operating a system. Resilience to attacks requires all teams to monitor and address new threats, changes in technology and emerging cyber tactics, and a variety of related risk challenges. To ensure that risks can be managed to acceptable risk tolerance levels, technical practices must adapt and, in some cases, be entirely reconsidered.
Today’s systems environments face multiple emerging threat and technology challenges that require attention, including

- expanded use of commercial cloud and other third-party services
- more sophisticated software
- use of software assembly techniques that utilize multiple sources/suppliers and content from shared code libraries
- adoption of artificial intelligence and machine learning
- exploring new tactics for managing the risk of embedded malware code

We designed the ASF principles and practices to help develop innovations for managing new and emerging cyber challenges.

1.1 The Evolving Role of Software and Suppliers

Software assurance is defined as a level of confidence that software will function as intended and will be free of vulnerabilities, either intentionally or unintentionally designed or inserted as part of the software, throughout the acquisition lifecycle [NIA 2010]. Software assurance was legislatively mandated for the Department of Defense (DoD) in the “National Defense Authorization Act for Fiscal Year 2013” [U.S. Code 2013]. The pursuit of software assurance is a worthy goal that must be translated into practical methods that acquirers, engineers, designers, developers, and operators can apply throughout the software/system lifecycle.

Software assurance is becoming increasingly important to organizations across all sectors because of software’s increasing influence in business- and mission-critical systems. For example, consider how the size of flight software has increased over the years. Between 1960 and 2000, the degree of functionality provided by software to the pilots of military aircraft has increased from 8 percent to 80 percent. At the same time, the size of software in military aircraft has grown from 1,000 lines of code in the F-4A to 1.7 million lines of code in the F-22. This trend is expected to continue over time [Dvorak 2009]. As software exerts more control over complex systems, like military aircraft, the potential risk posed by cybersecurity vulnerabilities will increase in kind.

Cost is another dimension of cybersecurity vulnerabilities that must be considered. Many cybersecurity vulnerabilities are software faults because their root causes can be traced to the software’s requirements, architecture, design, or code. Studies have shown that the cost of addressing a software fault increases significantly (up to 200 times) if it is corrected during operations as opposed to design [Mainstay 2010, Microsoft 2014, Soo Hoo 2001]. In addition, rework related to defects consumes more than 50 percent of the effort associated with a software project. Therefore, it is more cost effective to address software faults early in the acquisition lifecycle rather than to wait until operations. This principle applies to many operational security/resilience vulnerabilities as well. Figure 1 illustrates the concept of addressing security/resilience practices across the lifecycle.
Operational security/resilience vulnerabilities generally have three main causes: (1) design weaknesses, (2) implementation/coding errors, and (3) system configuration errors. Addressing design weaknesses as soon as possible is especially important because these weaknesses are not easy to correct after a system has been deployed. For example, software maintenance organizations normally cannot issue a patch to correct a fundamental security/resilience issue related to the software’s requirements, architecture, or design. Remediation of design weaknesses normally requires extensive changes to the system; these changes can be costly and often prove to be impractical for the implemented system. As a result, systems with design weaknesses often are allowed to operate under a higher degree of residual security/resilience risk, putting their associated operational missions in jeopardy.

At the Software Engineering Institute (SEI), our field experience indicates that few acquisition and development programs currently implement effective cybersecurity engineering practices. These programs have historically emphasized meeting performance, cost, and schedule objectives over meeting security/resilience objectives. In addition, the traditional focus on implementing operational controls to achieve compliance does not address the supplier’s increasingly important role in providing components, products, and services to acquisition programs.

In our previous cybersecurity engineering research and development, we focused on documenting systems and software security/resilience practices across the acquisition and development lifecycle [Alberts 2017a]. These practices are essential for reducing the potential success of cyber attacks. This focus on engineering practices addresses a key aspect of cyber risk management. A second important area to consider is third-party and supplier management. As programs increasingly become reliant on third-party products and services, the supply chain becomes a growing source of cyber risk for those programs. We have observed that few programs implement effective supplier oversight early in the acquisition lifecycle. Our ASF research-and-development work has expanded our engineering focus to include cyber risks introduced by suppliers and other program dependencies.
1.2 Audience

The ASF focuses on managing the cyber risks associated with systems, particularly systems designed to operate in large and complex environments. Ensuring that cyber risk is considered from the earliest aspects of the systems lifecycle makes ASF research uniquely valuable for program managers, acquisition and contracting personnel, project leads, engineering team members, and security/resilience personnel. Each of these groups is part of the main audience for the ASF and this report.

Operational security/resilience staff might also find information in this report to be useful. The ASF addresses several deployment and operational issues related to managing security/resilience during operations and sustainment. In addition, we have observed that a program’s focus on security/resilience does not end with deployment. The risk-based processes used to engineer and develop resilient systems should carry over into operations and sustainment to ensure that security/resilience endure. Operational staff need to have effective processes for updating and refining systems to meet the evolving threat landscape and the rapid pace of technology change.

Finally, ASF concepts and practices apply to federal government and private sector groups, such as technology, cybersecurity, the defense industrial base, aerospace, and service providers. The ASF is built around the notion that systems security/resilience require collaboration among many groups across multiple sectors. Personnel from these organizations will also find information in this report to be useful.

1.3 Report Structure

This report builds on a previous report, *Acquisition Security Framework (ASF): Managing Systems Cybersecurity Risk* [Alberts 2022]. We present the current research-and-development status of our work on the ASF as well as a full set of the practice areas that complete this body of work. The report comprises the following sections and appendices:

- **Section 1: Introduction** provides a brief introduction to the ASF and some of the motivation for its development.
- **Section 2: ASF Lineage** presents previous SEI research that we leveraged when developing the ASF.
- **Section 3: ASF Overview** describes the ASF’s structure and provides summaries of the six ASF practice areas.
- **Section 4: Conclusion and Next Steps** presents an overview of research and development activities that are underway for codifying and piloting the ASF and developing innovative cyber risk and resilience management solutions.
- **Appendix A: ASF Domains, Goals, and Questions** presents the domains, goals, and questions (i.e., practices) for the six ASF practice areas.
- **Appendix B: ASF Glossary** provides the definitions of terms related to the ASF and its use.

The main purpose of this report is to provide an overview of ASF concepts and present its organizing structure and practices. Before we examine the framework’s technical details, we first explore the ASF’s research and development lineage in the next section.
2 ASF Lineage

The ASF is built on SEI research in software engineering, cyber risk, and resilience from the past four decades. Many SEI solutions share a common theme—using technology to enable mission success. This theme has driven the development of several innovative SEI solutions, such as Capability Maturity Model Integration (CMMI®); Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE®); and CERT® Resiliency Management Model (CERT-RMM). These solutions resulted in highly influential bodies of knowledge that have informed the subsequent development of many methods, tools, and techniques, including the ASF. However, the ASF’s research influences are not limited to CMMI, OCTAVE, and CERT-RMM. As illustrated in Figure 2, the ASF has a rich research lineage.

![Figure 2: Research Lineage of the ASF](image)

Previous SEI research that influenced ASF development includes the following areas: software engineering management, operational risk and resilience, and cybersecurity engineering. We explore each of these areas briefly in the following sections.

2.1 Software Engineering Management

The research lineage of the ASF stretches back almost three decades to the development of the Capability Maturity Model (CMM). The CMM is a process maturity framework that was designed to help organizations improve their software development process [Paulk 1993]. This seminal work defined an approach for managing and improving organizational processes, which influenced many subsequent solutions. One of those solutions is the Software Acquisition Capability Maturity Model (SA-CMM), which was designed to improve the maturity of software acquisition.

CERT and OCTAVE are registered in the US Patent and Trademark Office by Carnegie Mellon University.
processes for government and industry organizations [Ferguson 1996]. CMMI was developed to unite the software and acquisition CMMs to create one unified model [Chrissis 2006].

As the CMM and CMMI were being developed, SEI researchers began developing an approach for managing risks during software development. Continuous Risk Management (CRM) describes the underlying principles, concepts, and functions of risk management and provides guidance about how to implement them as a continuous practice in projects and organizations [Dorofee 1996]. CRM provided the paradigm for many subsequent SEI risk management solutions.

2.2 Operational Risk and Resilience

One of the risk management solutions influenced by CRM is OCTAVE, a framework for identifying and managing information security/resilience risks [Alberts 2002]. OCTAVE defines a comprehensive evaluation method that allows an organization to identify the information assets that are important to the mission of the organization, the threats to those assets, and the vulnerabilities that may expose those assets to threats. By analyzing information assets, threats, and vulnerabilities, an organization can begin to understand which information assets are at risk. With this understanding, the organization can design and implement a protection strategy that reduces the overall risk exposure of its information assets.

OCTAVE and CMMI were major influences on the development of CERT-RMM, a process improvement model that documents leading practices from industry and government for managing operational resilience [Caralli 2010]. CERT-RMM integrates the following organizational areas: security management, business continuity management, and aspects of information technology (IT) and operations management. Based on CERT-RMM, the SEI developed the Cyber Resilience Review (CRR) to assess an organization’s cyber resilience [DHS 2014]. The CRR establishes a baseline of cybersecurity capabilities that helps an organization understand (1) its operational resilience and (2) its ability to manage cyber risks to critical services during normal operations as well as during times of operational stress and crisis.

Managing supplier-oriented risks was a key factor driving SEI research in operational risk and resilience. The growing complexity of threats required organizations to employ more systematic approaches to cyber risk management across their networks of suppliers. The interconnected nature of cybersecurity among internal and external stakeholders required a more collaborative and integrated management approach. The External Dependencies Management (EDM) Assessment was developed to provide organizations with a risk-based method for managing external dependencies and supply chain risks. The EDM Assessment leverages the CRR assessment platform and extends it to evaluate how an organization protects and sustains services and assets that depend on the actions of suppliers and other external organizations.

2.3 Cybersecurity Engineering

The SEI’s cybersecurity engineering research incorporates many of the concepts and principles from previous work in software engineering management and operational risk and resilience. In 2010, SEI researchers identified the need for improved cybersecurity engineering early in the lifecycle. At that time, software security/resilience solutions largely focused on operation and
sustainment. There was a growing need to develop solutions for building security/resilience into systems rather than waiting to address cyber risks during operations.

The Security Engineering Risk Analysis (SERA) Method defines a scenario-based approach for analyzing complex cybersecurity risks in systems and systems of systems across the lifecycle and supply chain [Alberts 2014]. SERA integrates CRM’s early lifecycle view on risk with OCTAVE’s operational view. SERA provides a platform for analyzing risk in systems that are being acquired and developed. While developing the SERA Method, SEI researchers identified a need within the cyber community to establish more effective security/resilience practices across the systems lifecycle.

The Software Assurance Framework (SAF) documents cybersecurity practices that programs can apply across the acquisition lifecycle and supply chain. The SAF can be used to assess an acquisition program’s current cybersecurity practices and chart a course for improvement, ultimately reducing the cybersecurity risk of deployed systems [Alberts 2017a]. The SAF was influenced by CMMI and CERT-RMM.

When developing the SAF, SEI researchers identified a need to assess programs against SAF practices, leading to the development of the Cybersecurity Engineering Review (CSER). The CSER assesses how well a program integrates cybersecurity into its software and systems engineering practices. The CSER provides a program with a roadmap for integrating security/resilience into its practices for acquiring and engineering highly complex systems. The CRR and EDM assessments influenced the structure and format of the CSER.

2.4 ASF Development

In 2016, SEI researchers collaborated to create an integrated, systems-oriented approach that considers the entire risk management lifecycle. This was the genesis of the ASF [Alberts 2017b]. ASF research-and-development activities include SEI researchers from multiple disciplines, including cybersecurity engineering, operational risk and resilience, and acquisition.

Managing supply chain cyber risk is especially challenging because it is broad and pervasive, and responsibility is spread widely across multiple organizations. Today’s complex threats and organizational structures call for a more systematic approach to managing multiple internal and external stakeholders. This challenge applies not only to daily operations, but also to the acquisition and development of complex systems. Acquisition and development personnel must consider the operational context and implement a plan for managing suppliers’ risks across the lifecycle. Operational personnel must establish processes that effectively integrate each supplier into an organization’s existing processes and practices.

From a third-party perspective, the ASF documents leading supplier and acquisition management practices. Here, the goal is to measure and improve an organization’s ability to manage third-party cyber risks across the systems lifecycle. The ASF provides a mechanism for increasing an organization’s confidence about the level of its suppliers’ performance, improving its understanding of potential gaps, and making improvements based on a suggested roadmap.

From a broader perspective, the ASF defines a process management approach for engineering technology and collaborating with suppliers to deliver and operate complex systems. Initial
development of the ASF in 2016 focused on defining key concepts and principles. Current ASF development was initiated in 2020. Our objective is to build on ASF foundational concepts and principles by developing and documenting leading practices for managing security/resilience across the systems lifecycle and supply chain.

The centerpiece of this work is a risk-based framework that enables programs to do the following:

- Manage program security/resilience risks collaboratively across the lifecycle and supply chain.
- Promote the integration of the essential functional elements, processes, and teams across the development and operations phases of the systems lifecycle.
- Incorporate security/resilience practices that scale to selected acquisition pathways and development approaches.
- Implement an appropriate level of process management and improvement (i.e., maturity) for security/resilience practices.

Acquisition and engineering practices continue to evolve. Emerging threats and increased system complexity have given rise to new process-based techniques that are designed to manage cyber risks from early requirements definition through operations. These new practices have brought improved methods and outcomes, including a lifecycle orientation shared by DevSecOps\(^1\) and the ASF. In the next section, we present the organizing structure of the ASF and provide summaries of the six ASF practice areas.

\(^1\) DevSecOps stands for development, security, and operations. It defines an approach for integrating security as a shared responsibility throughout the software lifecycle, from initial design through integration, testing, deployment, and software delivery. DevSecOps requires a change in culture, process, and tools across development, security, and operations teams, which makes security a shared responsibility across the organization. Automation is a critical component of DevSecOps because it enables process efficiency, allowing developers, infrastructure, and information security teams to focus on delivering value rather than applying manual, error-prone security practices.
3 ASF Overview

The ASF is a collection of leading security/resilience practices across the lifecycle and supply chain. It enables programs to evaluate risks and gaps in their processes for acquiring, engineering, deploying, and operating secure systems. It also provides programs more insight and control over their supply chains. The ASF is designed to help a program coordinate its management of engineering and supply chain risks across the many components of a system, including hardware, network interfaces, software interfaces, and mission capabilities. The SEI’s core objective for the ASF is to design a solution that enables programs to plan for and manage the challenges resulting from today’s inherently complex acquisition, engineering, and operational environments.

3.1 ASF Challenge Areas

We begin by highlighting three key challenges that the ASF is designed to address: (1) implementing integrated risk management processes, (2) integrating security/resilience practices, and (3) implementing process management and improvement.

The first challenge is implementing integrated risk management processes. Managing cyber resilience risks is a continuous process that is performed

- across the lifecycle
- by multiple teams or groups
- from multiple perspectives
- at multiple points in time
- often across multiple organizational boundaries

As a result, a program must integrate its cyber risk processes to facilitate collaboration among multiple stakeholder teams. We embedded practices for collaborative risk management across the ASF and leveraged the Program Management domain as a focal point for governing and coordinating system risk management activities.

The second challenge is integrating security/resilience practices into a program’s existing acquisition, engineering, and supplier management practices. Security/resilience management is not a standalone activity that is performed separate from other types of program practices. Programs need to implement security/resilience as a part of their daily technical and management responsibilities. In addition, to address rapidly evolving technologies and the dynamic threat environment, security/resilience practices need to be flexible and tailorable. These practices should scale to multiple acquisition pathways; support multiple cyber-focused standards, laws, and regulations; apply to new development approaches (e.g., DevSecOps); and adapt to emerging technologies. We developed the ASF with a focus on integration and flexibility, so that it can be customized to meet the unique needs of systems or specific cyber challenges.

The third challenge focuses on implementing process management and improvement. System qualities, such as security/resilience, are highly influenced by the quality of the processes used to develop and maintain them. Higher degrees of process management produce more stable
management environments, leading to more consistent results over time. Effectively managed processes also enable programs and systems to predictably achieve their missions. The challenge is to implement an appropriate level of process management across a program, helping to ensure that security/resilience risks are managed successfully across the program and its suppliers. The ASF’s risk-based, process management approach addresses this challenge.

The remainder of this section provides an overview of ASF content. First, we describe the ASF’s basic architecture and structure. We conclude this section by presenting the six ASF practice areas.

3.2 ASF Structure

Figure 3 shows how the ASF is structured as a multi-layered framework that comprises practice areas, domains, goals, and practices. At the top level, the ASF is organized into six primary practice areas. Each practice area has multiple domains that support it. A domain focuses on a given technical or management topic, such as program planning, risk management, or requirements. Each domain has multiple goals that support it. An ASF goal defines the outcome or objective toward which a program’s effort is directed. Finally, each ASF goal is supported by a group of practices. Practices describe discrete activities that must be performed to achieve a goal. In this report, ASF practices are phrased as questions.²

![Figure 3: ASF Organization and Structure](image)

² Assessments are a key aspect of security and resilience management. ASF practices are phrased as questions to facilitate the use of ASF content to assess a program’s security and resilience practices. The framework and questions are included in Appendix A.
The ASF is designed to foster collaboration across the range of stakeholders responsible for acquiring, developing, and deploying systems. As a result, some practices across ASF goals, domains, and practice areas are interrelated and intended to support each other. For example, the ASF documents risk management practices for program management, engineering, and supplier management. We included links among the various risk practices to emphasize the importance of implementing integrated risk management processes (one of the three ASF challenges). Linking practices in this way highlights the information sharing and communication that should routinely occur across all program teams and suppliers.

3.3 ASF Practice Area and Domain Summaries

In this section, we provide a short summary of each ASF practice area and highlight its associated domains. In the ASF, practice areas and domains establish the foundation for the ASF organizing structure. ASF practices are grouped into the following practice areas:

- Program Management (PGM)
- Engineering Lifecycle (ENL)
- Supplier Dependency Management (SDM)
- Support (SPT)
- Assessment and Compliance (AC)
- Process Management (PCM)

We include a complete set of the goals and practices in Appendix A.

3.3.1 Program Management (PGM)

A program is a group of related projects and functions that are managed in a coordinated manner to achieve a common mission. From a traditional perspective, program management focuses on controlling cost, schedule, and performance. In the ASF, the PGM practice area defines a set of practices for ensuring that security/resilience is addressed from the earliest stages of an acquisition and throughout the systems lifecycle.

Including security/resilience considerations during a program’s early planning and management activities provides a foundation for the coordinated and integrated management of security/resilience across all program teams. To accomplish this integration, the ASF leverages PGM to ensure that practices are coordinated and key information (e.g., risks, strategies, plan, issues) is communicated across all support teams. The PGM practice area also identifies security/resilience practices for requirements and risk management that are coordinated across the program and lifecycle.

The PGM practice area includes the following domains:

- Domain 1—Program Planning and Management integrates security/resilience into a program’s planning and management activities.
- Domain 2—Requirements and Risk manages security/resilience requirements and risks at the program level.

In Appendix A, the goals and questions for the PGM practice area are available starting on page 17.
3.3.2 Engineering Lifecycle (ENL)

The term *engineering lifecycle* describes the range of management and technical activities needed to build and operate a system, from initial concept through development, production, deployment, and support. In the ASF, the ENL practice area defines a set of practices for integrating security/resilience into a program’s systems engineering and software engineering activities.

In addition to addressing the technical aspects of security/resilience engineering, the ENL practice area also ensures that the program’s engineering activities are planned and managed, including those performed by third-party contractors. Finally, ENL practices ensure that engineering processes, software, and tools (i.e., the engineering infrastructure) are secure and resilient, reducing the risk of attackers being able to disrupt program, system information, and assets.

The ENL practice area includes the following domains:

- **Domain 1—Engineering Infrastructure** builds security/resilience into the engineering infrastructure and manages security/resilience risks to the engineering infrastructure over time.
- **Domain 2—Engineering Management** manages security/resilience requirements and risks across the engineering lifecycle.
- **Domain 3—Engineering Activities** integrates security/resilience into the program’s engineering practices and processes.

In Appendix A, the goals and questions for the ENL practice area are available starting on page 24.

3.3.3 Supplier Dependency Management (SDM)

Employing third-party/supplier support for systems development and operation has become a standard practice across the acquisition community. A broad network of contracted and non-contracted suppliers enables cost-effective program access to specialized skills, components, and infrastructure. At the same time, these supplier relationships create dependency risks that must be managed in the context of the program’s overall risk management strategy.

Suppliers of products and services that are governed by contractual agreements require careful management and monitoring. Some suppliers, such as infrastructure providers and government service providers, do not typically rely on contracts to codify relationships, leading to dependency risks that are frequently overlooked. While non-contracted suppliers are often less of a concern, programs must manage security/resilience risks resulting from these dependencies as well. In the ASF, the SDM practice area provides leading practices for managing dependencies that should be considered when building secure/resilient systems.

The SDM practice area includes the following domains:

- **Domain 1—Relationship Formation** includes security/resilience requirements and supplier risks in formal agreements with suppliers.
- **Domain 2—Relationship Management** manages the performance of suppliers and dependencies and ensures that security/resilience risks inherited from third-party relationships are managed.
- **Domain 3—Supplier Protection and Sustainment** includes third parties in the program’s protection and sustainment activities.
In Appendix A, the goals and questions for the SDM practice area are available starting on page 36.

3.3.4 Support (SPT)

As it works toward its acquisition and development mission, a program requires support from a variety of organizational departments, groups, and teams. Organizational support activities provide a broad range of services, including security management, situational awareness, facility management, access management, measurement and analysis, and training. The SPT practice area outlines leading practices that facilitate integrated support for acquiring, developing, and managing secure/resilient systems across their lifecycles.

The SPT practice area includes the following domains:

- **Domain 1—Program Support** ensures that security/resilience training, resources, and assistance are available to the program or system as needed.
- **Domain 2—Security/Resilience Support** provides oversight and management of the program’s security-related activities.

In Appendix A, the goals and questions for the SPT practice area are available starting on page 49.

3.3.5 Assessment and Compliance (AC)

The AC practice area defines activities for reviewing a program or system to determine if it

- meets security/resilience requirements, including customer, product, and product component requirements
- fulfills its intended use when placed in its target environment

This ASF practice area is broad and addresses several lifecycle activities, including operational test and evaluation (OT&E) and authorization to operate (ATO). It also includes reviews of specialty areas, such as safety and nuclear surety.

The AC practice area includes the following domains:

- **Domain 1—Assessment** ensures that entities evaluate various aspects of the environment and report the results from an independent, integrated risk perspective.
- **Domain 2—Compliance** ensures that the program or system conforms to applicable laws, regulations, policies, and standards.

In Appendix A, the goals and questions for the AC practice area are available starting on page 61.

3.3.6 Process Management (PCM)

The PCM practice area comprises practices that facilitate predictable and efficient delivery of activities, putting the program in a position to achieve its security/resilience objectives. PCM practices help clarify and align an organization’s strategies, policies, procedures, standards, and approach. A key premise of process management is that organizational outcomes are highly influenced by the quality of its processes. Higher degrees of process management translate to more stable environments that produce predictable results over time and help enable mission
success at lower risk. In addition, process management is based on the principle that change is continuous.

Managing change in a program or system environment requires continual management and improvement of processes, helping to ensure that those processes continue to meet strategic objectives. A key challenge to every acquisition program is implementing an appropriate level of process management that reflects its environment, mission, and objectives. The ASF leverages process management to help ensure that the “right amount of cyber” is implemented across the program and its suppliers. In the ASF, the PCM practice area defines activities for managing and improving the processes used to acquire, develop, and operate systems.

The PCM practice area includes the following domain:

- **Domain 1—Strategic Security/Resilience Management** ensures the predictable and efficient delivery of program activities with supporting activities.

In Appendix A, the goals and questions for the PCM practice area are available starting on page 66.
4 Conclusion and Next Steps

Organizations face heightened and rapidly evolving challenges as they manage the risks affecting their software-intensive architectures. These challenges emanate from the demands of today’s global marketplace, the dynamic nature of the threat environment, the rapid pace of technological change, and the complexities brought on by the array of participants that must collaborate to develop and operate a system. Virtually all products and services an organization acquires are supported by or integrate with information technology that includes third-party components (TPCs) and services. Practices critical to monitoring and managing supplier and cyber risks are scattered, resulting in inconsistencies and coordination gaps.

The ASF contains leading practices designed to support programs that build, acquire, or operate secure, resilient systems that are designed to manage risks across their lifecycle. Many security/resilience solutions focus on just a few aspects of engineering, such as security/resilience requirements specification, secure coding practices, or supply chain risk management. In contrast, the ASF leverages a proven set of integrated program management, engineering, and supplier management practices and processes that span the systems lifecycle.

An essential next step for the ASF development team is to communicate the value of the ASF and develop use cases for applying ASF practices in different environments. Beyond that, we plan to continue to develop the ASF and refine it as we receive information from user feedback and implementations. Fortunately, awareness that all sectors must find better ways to manage the development and operation of resilient systems is emerging as the paramount technology issue. Organizations that help set the course for public and private discourse about cybersecurity and resilience, such as NIST, ISO, the U.S. Office of Management and Budget (OMB), the Department of Homeland Security (DHS), and the SEI, have recognized the importance of actively facing security/resilience challenges and are exploring a path forward.

Our plans include using a variety of venues to communicate the value proposition of the ASF to leading organizations. We offer open access to ASF methods and materials as well as collaboration opportunities with the ASF development team. Some of the programs we believe can benefit the most from the ASF include organizations tasked with the following:

- providing an effective national defense
- addressing acquisition risks to systems
- managing risk to critical infrastructure
- ensuring reliable power and water
- providing critical government services
- supporting the monetary systems that are essential to promoting economic stability and growth

Lacking more resilient systems, organizations face increasing risk from manufactured and natural threats.

Building the ASF is clearly a challenge, but the larger concern is making sure that the ASF approach is usable by those who need it. To help users experience value quickly, we have been
building methods for deploying the ASF in organizations that support software-intensive systems. These deployment methods include exploring the use of the ASF as a baseline roadmap of practices for engineering and supplier management to improve current program considerations of cybersecurity and supply chain risk. We do this by comparing ASF practice areas and goals to program and vendor deliverables, such as statements of work, software assurance and cybersecurity checklists, and control plans. By mapping these program artifacts to the ASF, we can identify the practice areas that are already well addressed and those that are not. We also plan to make the ASF available to suppliers to help them strengthen their cyber risk management programs and meet the requirements of the organizations they support.

The ASF defines a comprehensive framework for building and operating secure and resilient systems. Many programs will not be prepared to adopt the entire ASF at one time. However, these programs can still benefit by focusing on a single practice area, domain, goal, or a key challenge. To accommodate this class of adopters, we are developing guidance for ASF practices. This guidance includes information about how to implement a practice, the competencies needed to implement it, and the methods and tools that support it. Our longer term objective is to conduct multiple pilots of the ASF, gather feedback, and update the ASF to ensure it is complete.

Today, organizations face cyber risk challenges stemming from the fast evolution of technology and the emergence of new threats. Government and regulators are also looking to drive the development of innovative technologies and increase the adoption of security/resilience solutions. Some of the more notable challenge areas include the following:

- commercial cloud
- software bill of materials (SBOM)
- zero trust
- artificial intelligence and machine learning
- data privacy

We recognize the importance of developing practice frameworks tailored to address some of these challenge areas. For example, we recently developed an SBOM framework that can be used to establish an SBOM program [Wallen 2023]. We compiled a set of practices focused on developing SBOMs (i.e., building and constructing SBOMs) and using them to manage known security vulnerabilities and associated risks (i.e., operational use of SBOMs). Our next step is to pilot the SBOM Framework and refine its content. Beyond our work with the ASF and SBOM Framework, we plan to explore developing a practice framework for zero trust.

Technology and systems have become essential to virtually every government and private organization. As the threat of successful cyber attacks grows, security/resilience must be a top priority, not just a byproduct of compliance. Since security/resilience efforts are widely shared across an organization and its suppliers, it becomes more challenging to effectively reduce risk. Cybersecurity vigilance is a shared global challenge that everyone involved in supporting a system throughout its lifecycle must collaborate on to build resilience. We designed the ASF to provide a roadmap to facilitate this needed collaboration.
Appendix A: ASF Domains, Goals, and Questions

This appendix presents the domains, goals, and questions (i.e., practices) for the following six ASF practice areas:

- Program Management (PGM)
- Engineering Lifecycle (ENL)
- Supplier Dependency Management (SDM)
- Support (SPT)
- Assessment and Compliance (AC)
- Process Management (PCM)

Program Management (PGM)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Goal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1—Program Planning and Management</td>
<td>Program Definition (PGM.1.1)</td>
</tr>
<tr>
<td>(PGM.1)</td>
<td>Program Planning (PGM.1.2)</td>
</tr>
<tr>
<td></td>
<td>Program Monitoring and Management (PGM.1.3)</td>
</tr>
<tr>
<td></td>
<td>Communication and Coordination (PGM.1.4)</td>
</tr>
<tr>
<td>Domain 2—Requirements and Risk (PGM.2)</td>
<td>Program Requirements (PGM.2.1)</td>
</tr>
<tr>
<td></td>
<td>Program Risk Management (PGM.2.2)</td>
</tr>
</tbody>
</table>
Domain 1—Program Planning and Management (PGM.1)

Program Definition (PGM.1.1)

Goal 1—Security/resilience is addressed in conjunction with program definition and is updated periodically.

The purpose of this goal is to ensure that security/resilience is considered during program definition activities.

1. Are the mission and objectives defined for the program?
2. Are relevant security/resilience policies, standards, and guidelines identified, communicated, and understood?
3. Are security/resilience policies, standards, and guidelines tailored to meet the program’s mission and objectives, including as circumstances change?
4. Are security/resilience processes established and maintained for the program?
5. Is a lifecycle approach for managing security/resilience risk established and maintained by the program?
6. Are standard terms and definitions for security/resilience established and maintained for the program?
Program Planning (PGM.1.2)

Goal 2—Security/resilience activities are integrated into the program plan.

The purpose of this goal is to ensure that security/resilience is included in the program plan.

1. Are security/resilience objectives for the program defined and documented?

2. Is there an established and communicated program plan that includes security/resilience activities, a schedule, and a budget?

3. Are security/resilience roles and responsibilities (including qualifications) defined and assigned?

4. Are adequate resources (e.g., people, tools, facilities) to implement planned security/resilience tasks provided?

5. Is a program compliance initiative for security/resilience defined and implemented?

6. Are stakeholders identified and made aware of their security/resilience roles?
Program Monitoring and Management (PGM.1.3)

Goal 3—Security/resilience activities are monitored and managed.

The purpose of this goal is to ensure that security/resilience activities are monitored and managed across all program teams.

1. Are security/resilience tasks allocated and managed across all program teams?
2. Is the progress of the program’s security/resilience tasks monitored and updated as needed?
3. Is the security/resilience budget tracked and updated?
4. Is program compliance with security/resilience policies, laws, and regulations monitored and managed?
5. Are security/resilience reviews of program tasks performed?
6. Are the results of security/resilience reviews prioritized and addressed?
7. Is program decision making supported by security/resilience measurement and metrics?
8. Are stakeholders’ inputs for security/resilience included when making program management decisions?
9. Is the delivery of security/resilience capabilities into the user environment managed and facilitated?
Communication and Coordination (PGM.1.4)

Goal 4—Security/resilience communication and coordination mechanisms and resources are defined and implemented.

The purpose of this goal is to ensure that mechanisms and resources are provided for communicating and coordinating security/reliance across all program teams.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Is a security/resilience communication plan established and maintained?</td>
</tr>
<tr>
<td>2.</td>
<td>Is the responsibility for security/resilience communication established and maintained?</td>
</tr>
<tr>
<td>3.</td>
<td>Is security/resilience communication reviewed for effectiveness?</td>
</tr>
<tr>
<td>4.</td>
<td>Are security/resilience activities, resources, and constraints communicated to all program teams and other appropriate stakeholders?</td>
</tr>
<tr>
<td>5.</td>
<td>Is security/resilience communication between the customer and its user representatives and the engineering teams facilitated?</td>
</tr>
<tr>
<td>6.</td>
<td>Is security/resilience communication coordinated across all program teams and other appropriate stakeholders?</td>
</tr>
<tr>
<td>7.</td>
<td>Are security/resilience lifecycle activities (e.g., identifying and managing requirements) coordinated and managed with all program teams and other appropriate stakeholders?</td>
</tr>
<tr>
<td>8.</td>
<td>Are security/resilience risks coordinated and managed with related programs and systems?</td>
</tr>
<tr>
<td>9.</td>
<td>Are security/resilience decisions, implementations, risks, and impacts sufficiently communicated and coordinated with related programs?</td>
</tr>
</tbody>
</table>
Domain 2—Requirements and Risk (PGM.2)

Program Requirements (PGM.2.1)

Goal 1—Program security/resilience requirements are identified and managed.

The purpose of this goal is to ensure that security/resilience is part of program requirements management.

1. Are program security/resilience requirements elicited, categorized, and prioritized?
2. Are inspections of program security/resilience requirements performed to ensure their completeness and sufficiency?
3. Are the ownership and status of program security/resilience requirements tracked across the lifecycle?
4. Are program security/resilience requirements structured to ensure that traceability is maintained?
5. Are quality criteria for program security/resilience requirements established?
6. Are reviews conducted periodically to determine if program security/resilience requirements meet the established quality criteria?
7. Are triggers in place and actively monitored to ensure program security/resilience requirements are reviewed as needed?
8. Are program security/resilience requirements updated periodically based on reviews?
Program Risk Management (PGM.2.2)

Goal 2—Program security/resilience risks are identified and managed.

The purpose of this goal is to ensure that security/resilience risks are coordinated and managed across all program teams.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Is a plan for managing program security/resilience risks established and agreed to by stakeholders?</td>
</tr>
<tr>
<td>2.</td>
<td>Are risk strategies that support the program’s mission and objectives developed and maintained?</td>
</tr>
<tr>
<td>3.</td>
<td>Is risk integrated across all program teams according to the governance and management structure?</td>
</tr>
<tr>
<td>4.</td>
<td>Are the criteria that define risks established for security/resilience capabilities and controls in the deployed system?</td>
</tr>
<tr>
<td>5.</td>
<td>Do system requirements reflect the current criteria for defining risks to security/resilience capabilities and controls?</td>
</tr>
<tr>
<td>6.</td>
<td>Are program security/resilience risks (e.g., program risks related to security/resilience resources and funding, risks escalated from other groups) identified and tracked?</td>
</tr>
<tr>
<td>7.</td>
<td>Are program security/resilience risks analyzed, prioritized, and addressed based on the program’s mission and objectives?</td>
</tr>
<tr>
<td>8.</td>
<td>Are criteria to guide security/resilience risk escalation established and communicated across all program teams?</td>
</tr>
<tr>
<td>9.</td>
<td>Are identified security/resilience risks escalated and dispositioned appropriately?</td>
</tr>
<tr>
<td>10.</td>
<td>Are program- or system-wide security/resilience risk analyses informed by threat intelligence and situational awareness?</td>
</tr>
<tr>
<td>11.</td>
<td>Are security/resilience risk analytics included in periodic updates to key stakeholders about risk management activities?</td>
</tr>
<tr>
<td>12.</td>
<td>Are security/resilience risks for the program’s information technology systems and networks identified, managed, and tracked?</td>
</tr>
<tr>
<td>13.</td>
<td>Are plans for dispositioning high-priority program security/resilience risks developed?</td>
</tr>
<tr>
<td>14.</td>
<td>Are plans for dispositioning high-priority program security/resilience risks documented and tracked?</td>
</tr>
</tbody>
</table>
Engineering Lifecycle (ENL)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Goal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1—Engineering Infrastructure (ENL.1)</td>
<td>Infrastructure Development (ENL.1.1)</td>
</tr>
<tr>
<td></td>
<td>Infrastructure Operation (ENL.1.2)</td>
</tr>
<tr>
<td>Domain 2—Engineering Management (ENL.2)</td>
<td>Technical Activity Management (ENL.2.1)</td>
</tr>
<tr>
<td></td>
<td>System Risk Management (ENL.2.2)</td>
</tr>
<tr>
<td>Domain 3—Engineering Activities (ENL.3)</td>
<td>System Requirements (ENL.3.1)</td>
</tr>
<tr>
<td></td>
<td>Architecture (ENL.3.2)</td>
</tr>
<tr>
<td></td>
<td>Third-Party Components (ENL.3.3)</td>
</tr>
<tr>
<td></td>
<td>Implementation (ENL.3.4)</td>
</tr>
<tr>
<td></td>
<td>Test and Evaluation (ENL.3.5)</td>
</tr>
<tr>
<td></td>
<td>Deployment (ENL.3.6)</td>
</tr>
<tr>
<td></td>
<td>Secure System Operation (ENL.3.7)</td>
</tr>
</tbody>
</table>
Domain 1—Engineering Infrastructure (ENL.1)

Infrastructure Development (ENL.1.1)

Goal 1—Security/resilience is built into the engineering infrastructure.

The purpose of this goal is to ensure that security/resilience risks (including those risks handled by third-party providers) are identified and managed when specifying and developing the engineering infrastructure.

1. Is the lifecycle model (e.g., waterfall, Agile, DevSecOps) selected for the program one that includes security/resilience engineering?
2. Is a tradeoff analysis of performance and quality attributes for the engineering infrastructure, including security/resilience, performed?
3. Are security/resilience requirements established for the engineering infrastructure?
4. Are security/resilience processes, software, and tools for the engineering infrastructure selected, implemented, and documented?
5. Is a baseline security/resilience configuration for the engineering infrastructure defined, implemented, and documented?
Infrastructure Operation (ENL.1.2)

Goal 2—Security/resilience risks in the engineering infrastructure are identified and mitigated.

The purpose of this goal is to ensure that security/resilience risks (including those risks handled by third-party providers) are managed in the engineering infrastructure.

<table>
<thead>
<tr>
<th></th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Are security/resilience risks in the engineering infrastructure’s systems and networks assessed and managed?</td>
</tr>
<tr>
<td>2.</td>
<td>Is user access to the engineering infrastructure’s systems, software, and tools managed?</td>
</tr>
<tr>
<td>3.</td>
<td>Are the engineering infrastructure’s systems and networks monitored for unusual activity?</td>
</tr>
<tr>
<td>4.</td>
<td>Are patches and updates to the engineering infrastructure’s systems and networks applied when needed?</td>
</tr>
<tr>
<td>5.</td>
<td>Are the engineering infrastructure’s data, software, and tools backed up periodically?</td>
</tr>
<tr>
<td>6.</td>
<td>Are incidents affecting the engineering infrastructure identified and managed?</td>
</tr>
<tr>
<td>7.</td>
<td>Is a service continuity plan defined and periodically tested for the engineering infrastructure?</td>
</tr>
</tbody>
</table>
Domain 2—Engineering Management (ENL.2)

Technical Activity Management (ENL.2.1)

Goal 1—Engineering activities are planned and managed.

The purpose of this goal is to ensure that the execution of engineering activities is overseen, including activities performed by third-party contractors.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Is a plan for conducting the engineering activities developed and implemented?</td>
</tr>
<tr>
<td>2.</td>
<td>Is progress against the plan tracked and reported?</td>
</tr>
<tr>
<td>3.</td>
<td>Are criteria (including those for security/resilience risk) established for reviewing and accepting acquisition and engineering work products?</td>
</tr>
<tr>
<td>4.</td>
<td>Are acquisition and engineering work products reviewed and accepted using the established criteria?</td>
</tr>
<tr>
<td>5.</td>
<td>Are issues and risks that can affect engineering activities identified and resolved?</td>
</tr>
<tr>
<td>6.</td>
<td>Are issues and risks that can affect engineering activities escalated to program management and other stakeholders as appropriate?</td>
</tr>
</tbody>
</table>
System Risk Management (ENL.2.2)

Goal 2—Security/resilience risks that can affect the system and its associated work products are identified, managed, and tracked across all lifecycle phases.

The purpose of this goal is to ensure that security/resilience risks in high-priority system components are analyzed, including analysis of threats, weaknesses, vulnerabilities, access points, and attack paths.

1. Are the system’s mission, operating environment, and compliance mandates understood with respect to risk by the engineering staff?

2. Are confidentiality, integrity, and availability requirements established for the data that the system will store, process, and transmit?

3. Is a first-pass (e.g., high-level) risk assessment of the system and its technology conducted to identify critical system components?

4. Are security/resilience risks that can affect high-priority system components identified?

5. Are security/resilience risks that can affect high-priority system components periodically analyzed and prioritized?

6. Are plans for dispositioning high-priority system security/resilience risks developed?

7. Are risk assessment results for the security/resilience system communicated to stakeholders?
Domain 3—Engineering Activities (ENL.3)

System Requirements (ENL.3.1)

Goal 1—Security/resilience requirements for systems and system components are specified, analyzed, and managed.

The purpose of this goal is to ensure that the security/resilience needs or capabilities that the system should provide are specified.

1. Are security/resilience requirements elicited, categorized, and prioritized?
2. Are inspections of security/resilience requirements performed to ensure completeness and sufficiency?
3. Are security/resilience requirements structured to ensure that traceability is maintained?
4. Are quality criteria for security/resilience requirements established?
5. Are reviews conducted periodically to determine if security/resilience requirements meet established quality criteria?
Architecture (ENL.3.2)

Goal 2—Security/resilience risks resulting from the architecture and design are identified and mitigated.

The purpose of this goal is to ensure that security/resilience risks resulting from the system’s architecture and detailed design are identified and mitigated.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Is a security/resilience risk analysis of the architecture and detailed design performed?</td>
</tr>
<tr>
<td>2</td>
<td>Are identified security/resilience risks from the architecture and detailed design managed and tracked?</td>
</tr>
<tr>
<td>3</td>
<td>Is an architecture tradeoff analysis of quality attributes, including security/resilience, performed?</td>
</tr>
<tr>
<td>4</td>
<td>Are security/resilience risks resulting from architecture tradeoffs communicated to stakeholders?</td>
</tr>
<tr>
<td>5</td>
<td>Is the architecture’s attack surface minimized?</td>
</tr>
<tr>
<td>6</td>
<td>Are cross checks of the architecture, design, and interfaces for the system, network, and software performed to resolve any gaps that affect security/resilience risks?</td>
</tr>
<tr>
<td>7</td>
<td>Are security/resilience requirements updated periodically to reflect security/resilience changes to the architecture and detailed design?</td>
</tr>
<tr>
<td>8</td>
<td>Are reviews conducted with stakeholders to ensure that security/resilience risks resulting from the architecture and detailed design are mitigated sufficiently?</td>
</tr>
</tbody>
</table>
Third-Party Components (ENL.3.3)

Goal 3—Security/resilience risks that can affect third-party components (TPCs) are identified and mitigated.

The purpose of this goal is to ensure that a bill of materials (BOM) is developed for the system and that operational security/resilience risks in third-party software, firmware, and hardware are managed over time.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Are engineering relationships with third parties based on standards, guidelines, and policies?</td>
<td></td>
</tr>
<tr>
<td>2. Is a scheme that uniquely identifies each third-party component (TPC) implemented?</td>
<td></td>
</tr>
<tr>
<td>3. Is a repository to track TPC use in systems (e.g., software, firmware, hardware) implemented and maintained?</td>
<td></td>
</tr>
<tr>
<td>4. Are TPCs used in systems identified and documented to create a bill of materials (BOM)?</td>
<td></td>
</tr>
<tr>
<td>5. Are suppliers evaluated and selected based on their secure/resilient development and risk management activities?</td>
<td></td>
</tr>
<tr>
<td>6. Is each TPC’s operational risk assessed and mitigated as appropriate to support the system’s risk posture?</td>
<td></td>
</tr>
<tr>
<td>7. Are TPCs monitored for vulnerabilities and available updates?</td>
<td></td>
</tr>
<tr>
<td>8. Are TPCs prioritized for patching based on operational risk?</td>
<td></td>
</tr>
</tbody>
</table>
Implementation (ENL.3.4)

Goal 4—Vulnerabilities in software code are identified, managed, and tracked.
The purpose of this goal is to ensure that vulnerabilities and security/resilience issues are identified and addressed in the code base.

1. Is an appropriate suite of security/resilience tools integrated into the software development environment?

2. Are secure coding standards applied to the software code?

3. Are code reviews (e.g., peer reviews) performed to identify weaknesses and vulnerabilities?

4. Is source code in critical components analyzed using white-box testing (e.g., static code analysis) during coding and unit testing to identify weaknesses and vulnerabilities?

5. Is software in critical components analyzed using black-box testing (e.g., dynamic code analysis, vulnerability scanning) during integration testing to identify weaknesses and vulnerabilities?

6. Are coding weaknesses and vulnerabilities remediated and tracked to resolution?
Test and Evaluation (ENL.3.5)

Goal 5—Security/resilience risks that can affect the integrated system are identified and remediated during test and evaluation.

The purpose of this goal is to ensure that the system’s security/resilience requirements are verified and that the security/resilience of the system is assessed under realistic operational conditions.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Is there a requirement to obtain authorization to assess security/resilience during test and evaluation?</td>
</tr>
<tr>
<td>2.</td>
<td>Are test plans and artifacts for security/resilience developed and updated?</td>
</tr>
<tr>
<td>3.</td>
<td>Are security/resilience test-and-evaluation activities performed in an operationally relevant environment?</td>
</tr>
<tr>
<td>4.</td>
<td>Are tests of the system and software security/resilience requirements performed?</td>
</tr>
<tr>
<td>5.</td>
<td>Are vulnerability evaluations of the system performed?</td>
</tr>
<tr>
<td>6.</td>
<td>Are adversarial assessments (e.g., red team exercises) of the system performed?</td>
</tr>
<tr>
<td>7.</td>
<td>Are security/resilience risks identified by analyzing weaknesses and vulnerabilities discovered during test and evaluation?</td>
</tr>
<tr>
<td>8.</td>
<td>Are security/resilience risks identified during test and evaluation prioritized and remediated or mitigated?</td>
</tr>
<tr>
<td>9.</td>
<td>Are security/resilience risks that were identified during test and evaluation but not yet remediated or mitigated communicated to stakeholders?</td>
</tr>
</tbody>
</table>
Deployment (ENL.3.6)

Goal 6—Security/resilience is addressed in transition and deployment activities.
The purpose of this goal is to ensure that security/resilience is considered during all transition and deployment activities, including planning, training development and delivery, document preparation, support tool development, and system/component transport and installation.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Is a plan for transitioning the system (or system components) into operations and sustainment developed and agreed to by relevant stakeholders?</td>
</tr>
<tr>
<td>2.</td>
<td>Is security/resilience information for system administrators and users (e.g., risk management, operations, user activities) compiled and documented?</td>
</tr>
<tr>
<td>3.</td>
<td>Are security/resilience management tools/methods for the system developed, procured, and supplied to the operational support organization, including assigning responsibilities for their use and training?</td>
</tr>
<tr>
<td>4.</td>
<td>Are security/resilience documentation and support tools/methods reviewed before they are released to the operational support organization and other system stakeholders?</td>
</tr>
<tr>
<td>5.</td>
<td>Is it mandatory to get the security group’s sign-off before a system and its components can be deployed into the operational environment?</td>
</tr>
<tr>
<td>6.</td>
<td>Is the responsibility for managing security/resilience risks after deployment transferred to the operational support organization?</td>
</tr>
<tr>
<td>7.</td>
<td>Are system components protected from tampering and modification during their transport and installation?</td>
</tr>
<tr>
<td>8.</td>
<td>Is the integrity of all deployed system components verified?</td>
</tr>
<tr>
<td>9.</td>
<td>Are confidentiality and integrity risks for sensitive data (e.g., passwords, tokens) mitigated adequately for software in operational environments?</td>
</tr>
</tbody>
</table>
Secure System Operation (ENL.3.7)

Goal 7—Security/resilience risks and issues are identified and resolved as the system is used and supported in the operational environment.

The purpose of this goal is to ensure that operational risks and issues are analyzed and that changes to the support package for the operational system are initiated.

1. Are periodic security/resilience risk assessments of the operational system performed?
2. Are periodic penetration testing and vulnerability scanning of the operational system performed to identify vulnerabilities and track them to closure?
3. Is the behavior of the operational system monitored to identify signs of attack?
4. Are security/resilience controls monitored during operations and sustainment?
5. Are confidentiality, integrity, and availability requirements for system data reassessed periodically during operations and sustainment?
6. Are vulnerabilities, threats, and risks to the system identified, prioritized, and tracked to closure?
7. Are protection strategies (e.g., program protection plan, security/resilience controls) for the operational system updated periodically or when the threat/risk profile changes?
8. Are changes to the operational system’s risk posture reported to the designated official in accordance with the monitoring strategy?
9. Are patches applied to the operational system when appropriate?
10. Are disruptions that affect the operational system managed?
11. Are suggested system changes or improvements related to security/resilience communicated to the engineering team?
12. Is a decommissioning strategy defined for addressing security/resilience concerns when the operational system is removed from service?
13. Is automation implemented where feasible to enable more effective security/resilience risk management during operations and sustainment?
Supplier Dependency Management (SDM)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Goal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1—Relationship Formation (SDM.1)</td>
<td>Supplier Relationship Planning (SDM.1.1)</td>
</tr>
<tr>
<td></td>
<td>Supplier Agreements (SDM.1.2)</td>
</tr>
<tr>
<td></td>
<td>Supplier Evaluation (SDM.1.3)</td>
</tr>
<tr>
<td>Domain 2—Relationship Management (SDM.2)</td>
<td>Supplier Prioritization (SDM.2.1)</td>
</tr>
<tr>
<td></td>
<td>Supplier Performance Management (SDM.2.2)</td>
</tr>
<tr>
<td></td>
<td>Supplier Risk Management (SDM.2.3)</td>
</tr>
<tr>
<td></td>
<td>Supplier Change and Capacity Management (SDM.2.4)</td>
</tr>
<tr>
<td></td>
<td>Supplier Access (SDM.2.5)</td>
</tr>
<tr>
<td></td>
<td>Infrastructure and Governmental Dependencies (SDM.2.6)</td>
</tr>
<tr>
<td></td>
<td>Supplier Transitions (SDM.2.7)</td>
</tr>
<tr>
<td>Domain 3—Supplier Protection and Sustainment (SDM.3)</td>
<td>Supplier Disruption Planning (SDM.3.1)</td>
</tr>
<tr>
<td></td>
<td>Supplier Planning and Controls (SDM.3.2)</td>
</tr>
</tbody>
</table>
Domain 1—Relationship Formation (SDM.1)

Supplier Relationship Planning (SDM.1.1)

Goal 1—Establishing supplier relationships is planned.
The purpose of this goal is to ensure that entering into relationships with suppliers is planned.

1.	Is entering into formal agreements with suppliers planned?
2.	Are baseline (i.e., boilerplate) requirements that apply to any supplier that supports the program or system identified and documented?
3.	Are security/resilience requirements identified and documented for any supplier (e.g., contracted suppliers, infrastructure providers, governmental services providers) that supports the program or system?
4.	Are security/resilience requirements considered before agreeing to relationships with suppliers?
Supplier Agreements (SDM.1.2)

Goal 2—Security/resilience requirements are included in formal agreements with suppliers.
The purpose of this goal is to ensure that supplier agreements include security/resilience requirements.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Are security/resilience requirements included in formal agreements?</td>
</tr>
<tr>
<td>2.</td>
<td>Are requirements for reporting incidents to the program office and/or system manager included in formal agreements?</td>
</tr>
<tr>
<td>3.</td>
<td>In formal agreements, are suppliers required to manage vulnerabilities that might affect the program or system?</td>
</tr>
<tr>
<td>4.</td>
<td>In formal agreements, are suppliers required to maintain disruption management plans?</td>
</tr>
<tr>
<td>5.</td>
<td>In formal agreements, are suppliers required to participate in disruption management planning and exercises?</td>
</tr>
<tr>
<td>6.</td>
<td>In formal agreements, are suppliers required to manage their own suppliers?</td>
</tr>
</tbody>
</table>
Supplier Evaluation (SDM.1.3)

Goal 3—Suppliers are evaluated before entering into formal relationships with them.
The purpose of this goal is to ensure that suppliers are evaluated to determine if they can meet the security/resilience requirements for the program or system before entering into relationships.

1. Are criteria developed and used to evaluate the supplier’s ability to meet security/resilience requirements?
2. Are security/resilience requirements included in written communications with prospective suppliers (e.g., in requests for proposals)?
3. Is the supplier’s ability to meet security/resilience requirements of the program or system considered before entering into a formal relationship with that supplier?
4. Are suppliers that require documented verification of their ability to meet the program or system security/resilience requirements identified?
5. Are the supplier’s own supplier risks reviewed and evaluated before entering into agreements with that supplier?
6. Are risks associated with suppliers periodically reviewed?
7. Are periodic discussions held with suppliers and stakeholders to review risks?
8. Are periodic reviews with suppliers conducted to verify that program- or system-related vulnerabilities are continuously managed?
Domain 2—Relationship Management (SDM.2)

Supplier Prioritization (SDM.2.1)

Goal 1—Supplier dependencies are identified and prioritized.
The purpose of this goal is to ensure that suppliers that the program or system depends on are identified and prioritized.

1. Are dependencies on suppliers that are critical to the program or system identified and reported to stakeholders?
2. Are supplier dependencies prioritized?
3. Is there a tracking approach that provides a current list of suppliers and prioritized dependencies?
Supplier Performance Management (SDM.2.2)

Goal 2—Supplier performance is governed and managed.
The purpose of this goal is to ensure that performance is considered when evaluating suppliers that support the security/resilience of the program or system.

1. Is the performance of suppliers monitored against the security/resilience requirements of the program or system?
2. Is the responsibility for monitoring and managing the supplier established and maintained?
3. Are supplier performance issues documented and reported to the appropriate stakeholders?
4. Are corrective actions taken to address issues with supplier performance?
5. Are corrective actions evaluated to ensure issues are remedied?
Supplier Risk Management (SDM.2.3)

Goal 3—Supplier risk management is continuous.
The purpose of this goal is to ensure that the risks of relying on suppliers to support the program or system are continuously managed across the systems lifecycle.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Are security/resilience requirements for suppliers periodically reviewed and updated?</td>
</tr>
<tr>
<td>2.</td>
<td>Is threat monitoring in place for all systems that are connected to a supplier?</td>
</tr>
<tr>
<td>3.</td>
<td>Is automated alert notification used for supplier threat monitoring?</td>
</tr>
<tr>
<td>4.</td>
<td>Does risk monitoring include security/resilience requirements not codified in supplier agreements?</td>
</tr>
<tr>
<td>5.</td>
<td>Are supplier performance issues and concerns included in risk monitoring?</td>
</tr>
<tr>
<td>6.</td>
<td>Are the risks of relying on suppliers to support the program or system identified and managed (e.g., accepted, avoided, transferred, mitigated)?</td>
</tr>
<tr>
<td>7.</td>
<td>Are risk criteria established and used to avoid or reject suppliers?</td>
</tr>
<tr>
<td>8.</td>
<td>Are the risks of a supplier being a single point of failure identified?</td>
</tr>
<tr>
<td>9.</td>
<td>Are suppliers that must be included in threat monitoring for the program or system identified?</td>
</tr>
<tr>
<td>10.</td>
<td>Is relevant information about threats to the program or system shared with suppliers?</td>
</tr>
</tbody>
</table>
Supplier Change and Capacity Management (SDM.2.4)

Goal 4—Suppliers are included in change and capacity management.
The purpose of this goal is to ensure that change and capacity management are coordinated with suppliers that support the program or system.

1. Are changes coordinated among the suppliers and the stakeholders of the program or system?

2. Is a review of disruption management plans triggered when there are changes at an external entity?

3. Are contract renegotiations, updates, addenda, and similar changes tracked to identify and manage impacts to the program or system?

4. Are changes impacting a supplier (e.g., buyouts or financial, political, criminal, or civil problems) monitored for risk to the program or system?

5. Is the capacity of services and assets cooperatively managed with suppliers?
Supplier Access (SDM.2.5)

Goal 5—Supplier access to program or system assets is managed.

The purpose of this goal is to ensure that the risks associated with supplier access to assets is managed. (These questions involve access granted to any supplier, not only those that support the program or system.)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Is access to assets that support the program or system granted to suppliers (locally or remotely) based on the assets’ protection requirements?</td>
</tr>
<tr>
<td>2.</td>
<td>Are changes to supplier access privileges managed when there are supplier personnel changes (e.g., terminations, promotions, job changes)?</td>
</tr>
<tr>
<td>3.</td>
<td>Is access that is granted to supplier personnel or systems periodically reviewed to identify inappropriate privileges?</td>
</tr>
<tr>
<td>4.</td>
<td>Are all identified issues with supplier access privileges addressed?</td>
</tr>
<tr>
<td>5.</td>
<td>Are inappropriate or unusual access attempts by supplier personnel or systems routinely identified and reported as risks?</td>
</tr>
<tr>
<td>6.</td>
<td>Are there appropriate controls that incorporate network segregation to protect network integrity when suppliers are involved?</td>
</tr>
</tbody>
</table>
Infrastructure and Governmental Dependencies (SDM.2.6)

Goal 6—Infrastructure and governmental dependencies are managed.
The purpose of this goal is to ensure that the risks of depending on infrastructure providers and/or government service providers are identified and managed.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Are security/resilience requirements for infrastructure and government providers that support the program or system periodically reviewed and updated?</td>
</tr>
<tr>
<td>2.</td>
<td>Is someone in the organization responsible for monitoring the performance of infrastructure providers and government service providers that support the program or system?</td>
</tr>
<tr>
<td>3.</td>
<td>Are issues involving infrastructure providers and government service providers communicated to stakeholders to enable them to manage the dependency?</td>
</tr>
<tr>
<td>4.</td>
<td>Are issues involving infrastructure providers and government service providers included in risk monitoring?</td>
</tr>
</tbody>
</table>
Supplier Transitions (SDM.2.7)

Goal 7—Supplier transitions are managed.

The purpose of this goal is to ensure that managing the transition of supplier relationships is based on business considerations (e.g., insolvency, nonperformance, new technology).

1. Are criteria or conditions that would cause the termination of formal agreements with suppliers identified?

2. Are there plans or actions for sustaining the program or system if any formal agreement with a supplier is terminated by either the acquirer or supplier?

3. Are lessons learned from supplier transitions used to refine the supplier management approach for the program or system?
Domain 3—Supplier Protection and Sustainment (SDM.3)
Supplier Disruption Planning (SDM.3.1)

Goal 1—Suppliers are included in disruption planning.
The purpose of this goal is to ensure that suppliers are included in incident management and service continuity for the program or system.

1. Is there an incident management plan established for protecting the program or system?
2. Are incident declaration criteria that support the program or system established and communicated to relevant suppliers?
3. Is the dependence on suppliers considered when forming program or system disruption plans?
4. Do relevant suppliers participate in disruption planning?
Supplier Planning and Controls (SDM.3.2)

Goal 2—Planning and controls are maintained.
The purpose of this goal is to ensure that program or system controls and plans related to suppliers are regularly tested and updated.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Are disruption management (e.g., incident, service continuity) plans tested cooperatively with relevant suppliers?</td>
</tr>
<tr>
<td>2.</td>
<td>Are controls at suppliers that support the program or system periodically validated or tested to ensure they meet control objectives?</td>
</tr>
<tr>
<td>3.</td>
<td>Are control gaps reported to the risk management team?</td>
</tr>
<tr>
<td>4.</td>
<td>Are mechanisms (e.g., load balancing, encryption, integrity checking) used to meet security/resilience requirements at suppliers verified under normal and adverse conditions?</td>
</tr>
<tr>
<td>5.</td>
<td>Are triggering events and changes (criteria) that require testing controls at suppliers that support the program or system defined and documented?</td>
</tr>
<tr>
<td>6.</td>
<td>Is communication to internal and external stakeholders (e.g., executive and management teams) included in program or system recovery activities?</td>
</tr>
</tbody>
</table>
Support (SPT)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Goal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1—Program Support (SPT.1)</td>
<td>Security/Resilience Training (SPT.1.1)</td>
</tr>
<tr>
<td></td>
<td>Measurement and Analysis (SPT.1.2)</td>
</tr>
<tr>
<td></td>
<td>Configuration and Change Management (SPT.1.3)</td>
</tr>
<tr>
<td></td>
<td>Resource Coordination and Management (SPT.1.4)</td>
</tr>
<tr>
<td>Domain 2—Security/Resilience Support (SPT.2)</td>
<td>Security/Resilience Administration (SPT.2.1)</td>
</tr>
<tr>
<td></td>
<td>Asset Management (SPT.2.2)</td>
</tr>
<tr>
<td></td>
<td>Information and Records Management (SPT.2.3)</td>
</tr>
<tr>
<td></td>
<td>Access Management (SPT.2.4)</td>
</tr>
<tr>
<td></td>
<td>Situational Awareness (SPT.2.5)</td>
</tr>
<tr>
<td></td>
<td>Facility Management (SPT.2.6)</td>
</tr>
<tr>
<td></td>
<td>Disruption Management (SPT.2.7)</td>
</tr>
</tbody>
</table>
Domain 1—Program Support (SPT.1)

Security/Resilience Training (SPT.1.1)

Goal 1—Security/resilience training is provided to personnel.

The purpose of this goal is to ensure that personnel have the security/resilience knowledge and skills required to perform their job functions adequately.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Are security/resilience training needs (both general security/resilience and role based) established and maintained?</td>
</tr>
<tr>
<td>2</td>
<td>Are plans for security/resilience training for personnel (including suppliers) established and maintained?</td>
</tr>
<tr>
<td>3</td>
<td>Is security/resilience training for personnel provided periodically?</td>
</tr>
<tr>
<td>4</td>
<td>Is role-based security/resilience training for technical personnel (including vendors, contractors, and outsourced workers) provided as required?</td>
</tr>
<tr>
<td>5</td>
<td>Are gaps in the role-based security/resilience skills of personnel identified and tracked?</td>
</tr>
<tr>
<td>6</td>
<td>Is the completion of security/resilience training activities (including the activities of suppliers) tracked?</td>
</tr>
<tr>
<td>7</td>
<td>Is the effectiveness of security/resilience training reviewed?</td>
</tr>
<tr>
<td>8</td>
<td>Is security/resilience training updated periodically based on effectiveness reviews?</td>
</tr>
<tr>
<td>9</td>
<td>Is data classification training (e.g., for labeling, handling, and protecting) provided to employees and contractors?</td>
</tr>
</tbody>
</table>
Measurement and Analysis (SPT.1.2)

Goal 2—Security/resilience measurement data is collected, analyzed, and used to support decisions.

The purpose of this goal is to ensure that support monitoring and effective decision making is based on security/resilience measurement.

1. Are security/resilience measurement objectives identified?
2. Are security/resilience measures that address measurement objectives identified?
3. Is there a plan for measuring and analyzing security/resilience activities?
4. Is data about security/resilience measurement collected and communicated to relevant stakeholders according to the plan?
5. Are measurement and analysis gaps in the plan identified?
6. Are measurement and analysis gaps in the plan communicated to relevant stakeholders?
7. Is data about security/resilience measurement managed according to the plan?
8. Is data about security/resilience measurement analyzed and interpreted to support risk decisions?
Configuration and Change Management (SPT.1.3)

Goal 3—Security/resilience configuration items (e.g., requirements specifications, architecture documentation, code, user documents, support tools), including third-party materials, are identified, managed, and tracked consistently.

The purpose of this goal is to ensure the consistency of security/resilience configuration and change-management activities across all program teams.

1. Is configuration management in place for all software and hardware components across the systems lifecycle and all suppliers?

2. Is change management in place for all software and hardware components across the systems lifecycle and all suppliers?

3. Are security/resilience configuration items identified?

4. Are baselines for security/resilience configuration items established, managed, and tracked?

5. Are change requests for security/resilience configuration items managed and tracked?

6. Are configuration audits performed throughout the system’s lifecycle to maintain the integrity of security/resilience configuration baselines?
Resource Coordination and Management (SPT.1.4)

Goal 4—Security/resilience resources are established, coordinated, and managed.

The purpose of this goal is to ensure that adequate security/resilience resources are available to support all program teams.

1. Is a repository established and maintained for security/resilience policies, standards, and guidelines?

2. Is a repository established and maintained for assets?

3. Is data about security/resilience risk (e.g., attacks, vulnerabilities, design weaknesses, abuse/misuse cases, threats) collected, protected, and maintained?

4. Are security/resilience risk registers established and maintained?

5. Are security/resilience experts made available to supplement team skills as needed?

6. Are periodic reviews of resource adequacy conducted?
Domain 2—Security/Resilience Support (SPT.2)

Security/Resilience Administration (SPT.2.1)

Goal 1—Program security/resilience activities are coordinated, tracked, and managed.

The purpose of this goal is to ensure that security-related oversight and documentation activities are performed and managed.

1. Are security/resilience policies and procedures for technology (e.g., hardware, software, networks) and devices established and maintained?
2. Is an acceptable-use policy established and maintained?
3. Are security/resilience testing results tracked and managed to ensure procedures are followed?
4. Are audits and assessments performed periodically?
5. Are independent security/resilience audits of internal and external activities conducted?
6. Do all personnel meet the security/resilience requirements of their jobs?
7. Are security-related activities monitored and managed by the program’s legal and contracting subject matter experts (SMEs)?
Asset Management (SPT.2.2)

Goal 2—Program assets are inventoried, managed, and tracked over their lifecycle.

The purpose of this goal is to ensure that assets are identified so that they can be managed and tracked throughout their lifecycle.

1. Are assets (i.e., people, information, technology, facilities) inventoried?
2. Are assets managed and tracked throughout their lifecycle?
3. Are asset inventories reviewed and updated periodically?
4. Are asset owners and custodians identified for each asset?
5. Do guidelines exist for properly disposing of program assets?
6. Are the locations of assets documented in the asset repository?
7. Are asset requirements documented in the asset repository?
8. Are confidentiality, integrity, and availability (CIA) requirements considered when selecting asset locations?
Information and Records Management (SPT.2.3)

Goal 3—Information assets and records are managed according to their requirements.

The purpose of this goal is to ensure that information assets and records are managed according to their requirements.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Do policies and procedures exist for the proper security/resilience category labeling and handling of information assets (e.g., public, private, classified, secret)?</td>
</tr>
<tr>
<td>2.</td>
<td>Are personnel who handle information assets (including those from outside the organization, such as contractors) trained to use information labeling categories?</td>
</tr>
<tr>
<td>3.</td>
<td>Are security/resilience requirements tracked in the asset-management database?</td>
</tr>
<tr>
<td>4.</td>
<td>Are requirements used to determine which personnel have the authority to modify information assets?</td>
</tr>
</tbody>
</table>
Access Management (SPT.2.4)

Goal 4—Access to assets is managed according to their security/resilience requirements.

The purpose of this goal is to ensure that access to assets is managed in a risk-informed manner throughout their lifecycle.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Is access (including identities and credentials) to assets granted based on their security/resilience requirements?</td>
</tr>
<tr>
<td>2.</td>
<td>Are access permissions managed according to the principle of least privilege?</td>
</tr>
<tr>
<td>3.</td>
<td>Are access permissions managed according to the principle of separation of duties?</td>
</tr>
<tr>
<td>4.</td>
<td>Are access privileges reviewed to identify excessive or inappropriate privileges?</td>
</tr>
<tr>
<td>5.</td>
<td>Are access privileges modified based on reviews?</td>
</tr>
<tr>
<td>6.</td>
<td>Are identities (e.g., user accounts) validated before they are bound to credentials that are asserted in interactions?</td>
</tr>
<tr>
<td>7.</td>
<td>Is remote access managed and monitored?</td>
</tr>
</tbody>
</table>
Situational Awareness (SPT.2.5)

Goal 5—Information is gathered, analyzed, and managed to establish a common operating picture.

The purpose of this goal is to ensure that information related to immediate operational stability and security/resilience is actively discovered and analyzed and that the information across the enterprise is coordinated to confirm that all program teams are performing under a common operating picture.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is intelligence data for security/resilience (e.g., attacks, vulnerabilities, design weaknesses, abuse/misuse cases, threats) collected and maintained?</td>
<td></td>
</tr>
<tr>
<td>2. Is data (e.g., vulnerabilities, threats, security/resilience requirements gaps) collected, analyzed, and communicated to provide adequate situational awareness of the operational system's threat environment?</td>
<td></td>
</tr>
<tr>
<td>3. Are threats that pose significant risk to the program or system identified for close monitoring?</td>
<td></td>
</tr>
<tr>
<td>4. Are sources of threat information monitored?</td>
<td></td>
</tr>
<tr>
<td>5. Is the program or system protected using threat monitoring, including how threats, events, and incidents are received and responded to?</td>
<td></td>
</tr>
<tr>
<td>6. Are industry consortia (e.g., InfraGard, Coordinating Councils, Council of Supply Chain Management) resources utilized when managing threats to the program, system, and key suppliers?</td>
<td></td>
</tr>
</tbody>
</table>
Facility Management (SPT.2.6)

Goal 6—Security/resilience of the program's physical workspaces and facilities is managed according to requirements.

The purpose of this goal is to ensure that facility-related risks and disruption impacts are effectively managed.

1. Are facilities prioritized according to their potential impact to identify those that should be the focus of protection and sustainment activities?
2. Is the accuracy of facility prioritization reviewed and validated?
3. Are protection and sustainment requirements considered when selecting facilities?
4. Are security/resilience policies and procedures for physical workspaces and facilities established and maintained?
5. Is access to restricted and protected areas by personnel managed?
Disruption Management (SPT.2.7)

Goal 7—Events, incidents, and disruptions are managed according to the disruption management plan.

The purpose of this goal is to ensure that events, incidents, and disruptions are managed in a risk-aware manner that limits impact to the organization’s ability to achieve its mission.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Is there a plan for managing disruptions throughout the lifecycle?</td>
</tr>
<tr>
<td>2.</td>
<td>Is the disruption management plan reviewed periodically and updated as needed?</td>
</tr>
<tr>
<td>3.</td>
<td>Are adequate resources allocated to support the roles and responsibilities outlined in the disruption management plan?</td>
</tr>
<tr>
<td>4.</td>
<td>Are events, incidents, and disruptions detected and reported, including cybersecurity events related to personnel activity, network activity, the physical environment, and information?</td>
</tr>
<tr>
<td>5.</td>
<td>Is information about disruptions communicated to internal and external stakeholders?</td>
</tr>
<tr>
<td>6.</td>
<td>Are disruptions managed according to the disruption management plan?</td>
</tr>
<tr>
<td>7.</td>
<td>Are disruptions, problems, and event-related activities tracked and managed?</td>
</tr>
<tr>
<td>8.</td>
<td>Are past events and incidents reviewed to identify whether they pose a material risk to the program or system?</td>
</tr>
</tbody>
</table>
Assessment and Compliance (AC)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Goal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1—Assessment (AC.1)</td>
<td>Independent Assessment (AC.1.1)</td>
</tr>
<tr>
<td></td>
<td>Integrated Risk Assessment (AC.1.2)</td>
</tr>
<tr>
<td>Domain 2—Compliance (AC.2)</td>
<td>Authorization to Operate (ATO) (AC.2.1)</td>
</tr>
<tr>
<td></td>
<td>Specialty Engineering Risk Analysis (AC.2.2)</td>
</tr>
</tbody>
</table>
Domain 1—Assessment (AC.1)

Independent Assessment (AC.1.1)

Goal 1—An independent assessment of the program or system is conducted.

The purpose of this goal is to ensure that an independent perspective of the risks and issues to the program or system is obtained.

1. Is the scope of the independent assessment established?
2. Does a plan (including a schedule) for conducting the independent assessment exist?
3. Are staff members who must be interviewed accessible by the assessment team?
4. Are the systems that must be examined accessible by the assessment team?
5. Are the program artifacts that must be examined (e.g., program schedules, contract deliverables, financial information, risk registers, reports) accessible by the assessment team?
6. Are security/resilience requirements that limit assessment activities (e.g., program data access restrictions, personal electronics restrictions) established and communicated to the assessment team?
7. Are assessment findings provided by the assessment team (e.g., in a report or presentation) and discussed with program stakeholders?
8. Are assessment findings reviewed and prioritized by stakeholders?
9. Are high-priority assessment findings assigned to program or supplier staff for implementation?
10. Is the implementation status of assessment findings tracked and reported?
Integrated Risk Assessment (AC.1.2)

Goal 2—A consolidated view of the risks to the program and system is developed.

The purpose of this goal is to ensure that multiple perspectives of the risks to the program and system are combined to produce a consolidated view.

1. Are clear objectives and requirements for conducting an integrated risk assessment provided by program or system stakeholders?
2. Is there a plan for conducting the integrated risk assessment?
3. Is the scope of the integrated risk assessment selected based on the experience and expertise of the team members performing the assessment?
4. Is the analysis approach and criteria structured for integrating risks from multiple sources?
5. Is risk data collected from multiple sources (e.g., acquisition staff, program personnel, systems engineering, software engineering, security/resilience experts, suppliers)?
6. Is additional risk data collected (e.g., through interviews, documents, reviews, studies/experiments) when needed?
7. Is a prescribed approach followed when analyzing risk data?
8. Are assessment results formally documented?
9. Are assessment results formally communicated to program and system stakeholders?
Domain 2—Compliance (AC.2)

Authorization to Operate (ATO) (AC.2.1)

Goal 1—The operation of the system is authorized by a designated official, and the residual risk to operations is explicitly accepted.

The purpose of this goal is to ensure that the designated official decides whether to allow the system to operate on the organization's networks based on an analysis of the system's security/resilience controls and risks.

1. Does a plan exist for assessing security/resilience controls and risks?
2. Is the architecture (including dataflows, interfaces, and hardware/software inventories) documented for the system being submitted for authorization?
3. Are security/resilience controls assessed according to the assessment plan?
4. Are remediation actions implemented to correct identified deficiencies in system controls?
5. Are security/resilience risks (including threats and vulnerabilities) assessed for the system?
6. Are plans developed for managing security/resilience risks?
7. Are assessment results formally documented (e.g., in a security assessment report [SAR])?
8. Are assessment results formally communicated to program or system stakeholders?
9. Is an authorization package developed and submitted for approval?
10. Is an authorization decision made based on an analysis of the system's security/resilience risks?
11. Is the authorization decision formally communicated to program or system stakeholders?
Specialty Engineering Risk Analysis (AC.2.2)

Goal 2—A specialty engineering risk analysis is performed by designated personnel.

The purpose of this goal is to ensure that the system’s risks are managed in accordance with applicable laws, regulations, and policies for a given engineering specialty (e.g., safety, assurance).

1. Is the scope of the risk analysis established?
2. Does a plan exist for conducting the risk analysis?
3. Is the risk analysis approach consistent with applicable laws, regulations, and policies?
4. Are relevant hazards, threats, and vulnerabilities identified?
5. Are the risks associated with each hazard, threat, and vulnerability analyzed?
6. Do criteria exist for determining which risks are managed?
7. Are mitigation priorities based on established criteria?
8. Do plans exist for dispositioning high-priority risks?
9. Are risks and plans communicated to program or system stakeholders?
10. Are risks and plans reviewed periodically and updated as needed?
Process Management (PCM)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Goal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1—Strategic Security/Resilience Management (PCM.1)</td>
<td>Practice Management (PCM.1.1)</td>
</tr>
<tr>
<td></td>
<td>Strategic Planning (PCM.1.2)</td>
</tr>
<tr>
<td></td>
<td>Strategy Management (PCM.1.3)</td>
</tr>
<tr>
<td></td>
<td>Strategy Measurement (PCM.1.4)</td>
</tr>
<tr>
<td></td>
<td>Strategy Optimization (PCM.1.5)</td>
</tr>
</tbody>
</table>
Domain 1—Strategic Security/Resilience Management (PCM.1)

Practice Management (PCM.1.1)

Goal 1—Security/resilience practices and priorities are managed.

The purpose of this goal is to ensure that basic security/resilience practices are completed.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Are practice objectives established?</td>
</tr>
<tr>
<td>2.</td>
<td>Are practice objectives prioritized?</td>
</tr>
<tr>
<td>3.</td>
<td>Is the inventory of practices managed and maintained?</td>
</tr>
<tr>
<td>4.</td>
<td>Are practices monitored to ensure they continue to meet objectives?</td>
</tr>
</tbody>
</table>
Strategic Planning (PCM.1.2)

Goal 2—Strategic plans are established for security/resilience.

The purpose of this goal is to ensure that a strategy is established for governing security/resilience activities.

1. Does a strategic plan exist for managing and performing security/resilience activities?
2. Do documented policies exist that govern the organization’s security/resilience activities?
3. Are stakeholders identified and made aware of their roles?
4. Are security/resilience standards and guidelines identified and implemented?
Strategy Management (PCM.1.3)

Goal 3—Security/resilience is managed in accordance with the strategy.

The purpose of this goal is to ensure that security/resilience activities are executed in accordance with the strategy.

1. Is the performance of security/resilience management activities overseen by management?
2. Are qualified staff members assigned to perform security/resilience activities as outlined in the strategy?
3. Is there adequate funding to perform security/resilience activities as outlined in the strategy?
4. Are risks related to the performance of planned security/resilience activities identified, analyzed, disposed of, monitored, and controlled?
Strategy Measurement (PCM.1.4)

Goal 4—Security/resilience is measured in accordance with the strategy.

The purpose of this goal is to ensure that security/resilience practices are monitored and measured for adherence to the strategy.

1. Are security/resilience activities periodically reviewed and measured to ensure they are effective and produce the intended results?

2. Are security/resilience activities periodically reviewed to ensure they adhere to the strategy?

3. Is higher level management aware of the issues related to the performance of security/resilience activities?
Strategy Optimization (PCM.1.5)

Goal 5—Security/resilience is optimized in accordance with the strategy.

The purpose of this goal is to ensure that security/resilience performance is strategically improved across all program teams and the lifecycle in accordance with the strategy.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Are common definitions and terminology used for security/resilience activities?</td>
</tr>
<tr>
<td>2.</td>
<td>Is flexibility provided to program teams that allows them to adjust practices and controls to fit their unique operating circumstances?</td>
</tr>
<tr>
<td>3.</td>
<td>Are improvements to security/resilience shared across program teams?</td>
</tr>
</tbody>
</table>
Appendix B: Glossary

A shared understanding of the meaning of words is essential to communication, measurement, and management. To that end, we have been developing a glossary for ASF terminology throughout the process of building the framework. While this glossary is a work in progress, we hope the following definitions contribute to a greater understanding of the ASF.

We used the following sources to build the ASF glossary:

- NIST Computer Security Resource Center Glossary [NIST 2023]
- CERT Resilience Management Model (CERT-RMM): *A Maturity Model for Managing Operational Resilience* [Caralli 2010]

Acquirer

An organization/program that depends on external entities (e.g., vendors, infrastructure providers, government, other business units) to fulfill its mission or business objectives (*Acquirer* refers to the assessed or subject organization.)

Acquirer Assets

Assets whose viability, productivity, and resilience are primarily the responsibility of the acquirer

Acquisition Lifecycle

The relationship between the acquisition phases and work efforts and key program events, such as decision points and reviews (It employs acquisition processes that match the characteristics of the capability being acquired.)

Adversarial Assessment

An independent assessment that measures the ability of an organization or system to carry out its mission adequately while withstanding cyber attacks

Architecture Tradeoff Analysis

(See *Tradeoff Analysis*.)

Assets

People, information, technology, and facilities that are used to provide the critical service being assessed (Several practices in the ASF refer to acquirer or external assets.)

Assurance

Grounds for justified confidence that a claim has been or will be achieved
Attack-Path Analysis
Analysis of the source or method used to commit a malicious action or interaction with the system or its environment that has the potential to result in a fault, an error (and thereby possibly a failure), or an adverse consequence

Authorization to Operate (ATO)
The official management decision given by a designated official to authorize operation of an information system and explicitly accept the risk to organizational operations (including mission, functions, image, or reputation), organizational assets, individuals, other organizations, and the nation based on the implementation of an agreed-upon set of security controls (This term is also known as Authority to Operate.)

Automated Alert Notification
A process or piece of equipment that informs an individual or group of an event under specified conditions and that functions without human intervention

Bill of Materials (BOM)
Formal hierarchical tabulation of the software, physical assemblies, subassemblies, and components needed to fabricate a product

Black-Box Testing
1. Testing that ignores the internal mechanism of a system or component and focuses solely on the outputs generated in response to selected inputs and execution conditions; 2. Testing conducted to evaluate the compliance of a system or component with specified functional requirements (This term is also known as Closed-Box Testing or Functional Testing.)

Business Continuity
A predetermined set of documented instructions or procedures that describe how an organization’s mission/business processes will be sustained during and after a significant disruption

Capacity Management
The process of managing the demand for technology assets over a range of operational needs

Change Management
A continuous process used to control changes to information or technology assets, their related infrastructure, or any aspect of their services, enabling approved changes to be implemented with minimum disruption (This term is also known as Change Control.)

Code Review
Event where software code is presented to project personnel, managers, users, customers, and/or other interested parties for comment or approval (a type of peer review)

Confidentiality, Integrity, and Availability (CIA)
Security principles, often called the security triad, that comprise three objectives

- Confidentiality—Only the authorized user, system, or resource can view, access, change, or otherwise use information or data.
• Integrity—The system is able to ensure that information or data is accurate and correct.
• Availability—Systems, information, and services are accessible and usable when needed.

Control
A manual or automated method, policy, or procedure that an organization adopts to ensure the safeguarding of assets, the accuracy and reliability of management information and financial records, administrative efficiency, and adherence to standards

Cooperative
Activities or processes that are jointly performed in a coordinated manner by a group of entities, individuals, or projects

Crisis
A critical state of affairs in which a decisive, probably undesirable, outcome is impending

Critical Services
Activities an organization/program completes in performing a duty or creating a product that is essential to its mission

Cybersecurity
Protecting/defending the use of cyberspace from cyber attacks

Decommission
Withdraw from service or use

Dependency
A condition in which the functioning, production, or requirements of one or more entities, products, or services relies on the actions or state of another entity, product, or service

Disruption Management
Management activities that mitigate the impact of events that may negatively affect a critical service (Disruption management usually involves activities such as incident management, problem management, service/business continuity, crisis planning, or crisis response.)

Disruption Planning
Planning activities that manage and mitigate the impact of events that may negatively affect a critical service (Disruption planning usually involves activities such as incident management, problem management, service/business continuity, or crisis planning.)

Domain
In the context of the ASF, a logical grouping of goals and practices that contribute to the cyber resilience and cybersecurity of an organization/program or system
Enterprise
An organization(s) with a defined mission/goal and a defined boundary using information systems to execute that mission and with responsibility for managing its own risks and performance (An enterprise may contain all or some of the following business aspects: acquisition, program management, financial management, human resources, security, information systems, information, and mission management.)

External Assets
Assets (i.e., people, information, technology, facilities) for which external entities are primarily responsible in terms of the assets’ viability, productivity, and resilience

External Dependency
A condition where the production and requirements of one or more products or services provided by the acquirer depend on the actions of an external entity (This dependency usually happens because the external entity is a supplier of goods or services to the acquirer; the external entity has access to, ownership of, control of, responsibility for, or some other defined obligation relating to an asset that is important to the critical service.)

External Entity
An organization that is separate from the acquirer or business unit (While external entities are frequently separate legal entities, they may also be separate business units, affiliates, or divisions within a large enterprise.)

Formal Agreement
A written agreement that creates obligations between the acquirer and an external entity (Formal agreements can clarify terms, requirements, and responsibilities. Examples of formal agreements include contracts, service level agreements, or operational level agreements. Formal agreements are not required for an external dependency or relationship between an acquirer and external entity.)

Functional Testing
Testing conducted to evaluate the compliance of a system or component with specified functional requirements (This term is also known as Black-Box Testing.)

Governance
The process of establishing and enforcing strategic goals and objectives, organizational policies, and performance parameters

Government Service Provider
A state, local, tribal, or federal entity providing a product or service

Governmental Service
A service provided to people, organizations, or other entities in a political subdivision (e.g., nation, state, locality) that is usually provided by a governmental department or agency (These services frequently involve security [e.g., fire, police]. Non-emergency examples of government services include the U.S. Postal Service and transportation management and support agencies [e.g., federal and state agencies, regional port authorities].)
Guidelines
Official recommendations or advice that specifies policies, standards, or procedures for how something should be accomplished

High-Value Service
(See Critical Service.)

Incident
An event or series of events that significantly affects (or has the potential to significantly affect) assets and services and requires the acquirer—and possibly external entities—to respond in some way to prevent or limit adverse impacts

Incident Declaration Criteria
Established requirements or characteristics that can be used to guide the determination of when an event or disruption should be declared to be an incident, typically requiring that a pre-established plan be invoked

Incident Management Plan
A predetermined set of documented instructions or procedures used to detect, respond to, and limit consequences of a disruption or cyber attack against an organization

Information and Communications Technology (ICT)
Technology that encompasses the capture, storage, retrieval, processing, display, representation, presentation, organization, management, security, transfer, and interchange of data and information

Information and Communications Technology (ICT) Supply Chain
A linked set of resources and processes shared among acquirers, integrators, and suppliers that begins with the design of ICT products and services and extends through developing, sourcing, manufacturing, handling, and delivering those products and services to the acquirer

Infrastructure Provider
A type of organization that supplies goods or services to a region, economy, infrastructure sector, or political subdivision and with which the acquirer normally has no commercially practical ability to negotiate the terms and conditions of agreements (Example infrastructure providers include natural gas, water, power, or transportation providers.)

Lifecycle
Processes, activities, and tasks involved in developing, operating, and maintaining a software product, spanning the life of the system from the definition of its requirements to the termination of its use (See also acquisition lifecycle, system lifecycle, software lifecycle.)

Maturity Indicator Level (MIL)
A measure of the level of process management and the corresponding description of the attributes that indicate that level of mature capability (Higher levels of institutionalization translate to more stable processes that produce consistent results over time and that are retained during times of operational stress.)
Measurement and Metrics
1. Act or process of assigning a number or category to an entity to describe an attribute of that entity;
2. Assignment of numbers to objects in a systematic way to represent properties of the object;
3. Assignment of a value (e.g., a number or category) from a scale to an attribute of an entity

Monitoring
Continual checking, supervising, critically observing, or determining the status to identify change from the performance level required or expected

Network Segregation
A process or approach that separates various critical and non-critical network elements (Typically, the goal of network segregation is to manage traffic flow between subnets based on established guidelines or policies.)

Operational Resilience
An organization’s ability to adapt to risks that affect its core operational capabilities (Operational resilience is the emergent property of an organization that enables it to continue to survive and carry out its mission after disruptions that do not exceed its operational limit.)

Operational Risk
The potential for an adverse outcome assessed as a function of threats, vulnerabilities, and consequences associated with an incident, event, or occurrence (Managing risk in the ASF focuses on operational risks involving technology failures, failed internal processes, the actions of people, and disruptive external events. Operational risk is distinct from, but related to, other enterprise risk areas, such as cost and schedule risk.)

Peer Review
Review of work products performed by others qualified to do the same work (This is often performed during development of the work products to identify defects for removal. The intent is to increase the quality of the work product as well as to reduce cost by fixing defects as soon as possible.)

Penetration Testing
A method of testing used to target individual binary components or the software as a whole to determine whether intra- or inter-component vulnerabilities can be exploited to compromise the software, its data, or its environmental resource

Performance
A measure of actual results achieved by following a practice or process

Plan
A detailed, written formulation of a program of action to satisfy or perform a practice or goal

Policy
A high-level, overall plan that embraces the general goals and acceptable procedures of an organization
Practice
In the context of the ASF, an activity performed to support an ASF domain goal

Problem Management
The act of addressing or managing a difficulty, uncertainty, or otherwise realized and undesirable event, set of events, condition, or situation that requires investigation and corrective action

Process
1. A series of actions that are needed to accomplish something or achieve a result; 2. Activities that can be recognized as implementations of practices in the framework (These activities can be mapped to one or more practices to allow the framework to be useful for process improvement.)

Program
1. A DoD acquisition program (noun); 2. To schedule funds to meet requirements and plans (verb); 3. A major, independent part of a software system (noun); 4. A combination of Program Elements (PEs) designed to express the accomplishment of a definite objective or plan (noun); 5. A group of related projects, subprograms, and program activities managed in a coordinated way to obtain benefits not available from managing them individually

Program Management
The development, procurement, integration, modification, operation and maintenance, and/or final disposition of a group of activities, projects, systems, or group of systems

Quality Attributes or Criteria
Characteristics, attributes, criteria, or requirements directed at establishing a codified view of quality

Regulations
Requirements imposed by a governmental body (These requirements can establish product, process, or service characteristics, including applicable administrative provisions that have government-mandated compliance.)

Relationship
A connection, association, or some level of external dependency

Request for Proposal
A collection of formal documents that includes a description of the desired form of response from a potential supplier, the relevant statement of work for the supplier, and required provisions in the supplier agreement
Requirement
1. Statement that translates or expresses a need and its associated constraints and conditions [ISO/IEC/IEEE 2018; ISO/IEC/IEEE 2011]; 2. Condition or capability that must be met or possessed by a system, system component, product, or service to satisfy an agreement, standard, specification, or other formally imposed documents [IEEE 2014]; 3. Provision that contains criteria to be fulfilled [ISO/IEC 2011]; 4. A condition or capability that must be present in a product, service, or result to satisfy a contract or other formally imposed specification [PMBOK 2013]

Requirements Management
Activities that ensure requirements are identified, documented, maintained, communicated, and traced throughout the lifecycle of a system, product, or service

Resilience
The ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions (Resilience includes the ability to withstand and recover from deliberate attacks, accidents, or naturally occurring threats or incidents.)

Resilience Requirement
A constraint that the acquirer places on internal or external assets to ensure they remain viable and sustainable when used in production to support a service (Resilience requirements are often expressed in terms of confidentiality, integrity, or availability. These requirements help ensure the protection of high-value assets and their continuity when an incident or disruption occurs.)

Risk
(See Operational Risk.)

Risk Analysis
The process of examining identified risk factors for their probability of occurrence, potential loss, and potential risk-handling strategies

Risk Management
An organized, analytic process to identify what might cause harm or loss (i.e., identify risks); assess and quantify the identified risks; and develop and, if needed, implement an appropriate approach to prevent or handle causes of risk that could result in significant harm or loss

Risk Posture
A perspective of the level of risk faced by an entity or organization that is based on a prioritized inventory of current and anticipated risk exposures

Secure Coding
Development of software in a manner that reduces the probability of security vulnerabilities, such as defects, bugs, logic flaws, and code anomalies

Security
Strategies that include defining, achieving, and maintaining confidentiality, integrity, availability, non-repudiation, accountability, authenticity, and reliability of a system
Security/Resilience
Possessing the characteristics associated with not only the fundamentals of cybersecurity management, such as confidentiality, integrity, and availability, but also the broader adaptive proactive processes required to manage the evolving global cyber risk landscape

Service
Activity that an entity or organization carries out in performing a duty or creating a product

Service Continuity Plan
A service-specific plan for sustaining services and associated assets under degraded conditions

Situational Awareness
Awareness of the environment and its events to enable (1) active discovery and analysis of information related to immediate operational stability and security and (2) coordination of that information across the enterprise

Software Lifecycle
1. “Project-specific sequence of activities that is created by mapping the activities of a standard onto a selected software life cycle model (SLCM)” [IEEE 2014]; 2. Software system or software product cycle initiated by a user need or a perceived customer need and terminated by discontinued use of the product or when the software is no longer available for use. (Also referred to as the Software Development Lifecycle – SDLC.)

Software-Reliant
A system whose behavior (e.g., functionality, performance, safety, security, interoperability) is dependent on software in a significant way

Stakeholder
A person or organization that has a vested interest in the activities of the organization/program

Standard
A document, established by consensus and approved by a recognized body, that provides (for common and repeated use) rules, guidelines, or characteristics for activities or their results and aims at achieving the optimum degree of order in a given context

Strategy
An organization’s overall plan of development, describing the effective use of resources in support of the organization in its future objectives

System Lifecycle
1. Course of developmental changes through which a system passes from its conception to the termination of its use [ISO/IEC 2015]; 2. Period that begins when a system is conceived and ends when the system is no longer available for use
Supplier
An organization or individual that the acquirer utilizes to supply a product or service (This organization or individual includes all suppliers in the supply chain, developers or manufacturers of systems, system components, government, infrastructure, and third-party partners. These suppliers may rely on contracts or be non-contracted.)

Supplier Agreement
A formal or informal understanding, typically in the form of a document that outlines a seller’s promise to supply materials or services that an entity desires over a period of time for an established cost or exchange of resources

Supplier Transition Management
The act of managing changes over the lifecycle of a supplier relationship, typically beginning with establishing requirements, followed by an agreement/contract, and (at some point) a dissolution of that relationship and potentially the move to a new supplier

Team
Staff members and/or contractors that are organized or assembled to achieve an objective or group of objectives (A team may be established as an organizational reporting unit or a group that is tasked with meeting a functional objective [e.g., operations, development, network operations, program management, risk management]. Team members typically share a common perspective on the scope of their aspect of the organizational mission and a common terminology.)

Third-Party Contractors
(See Supplier.)

Threat
The combination of a vulnerability, a threat actor, a motive (if the threat actor is a person or persons), and the potential to produce a harmful outcome for the acquirer

Threat Monitoring
The analysis, assessment, and review of audit trails and other information collected for the purpose of searching for events or exposures that may constitute risks to an entity

Tradeoff Analysis
Analytical evaluation of design options/alternatives against performance, design-to-cost objectives, and lifecycle quality factors

Triggering Criteria
Characteristics or requirements that cause an entity, system, or program to initiate (i.e., trigger) one or more functional processes (This term is also known as Triggering Events.)

Trusted Supplier (ICT)
A supplier that provides information and communications technology to the acquirer, which the acquirer has justifiable reason to believe meets appropriate standards for the intended use (A supplier can achieve this designation by demonstrating compliance with standards set forth by an acknowledged authority to ensure the integrity of the technology purchased.)
User Representatives
Individuals familiar with the requirements of a process or system who can offer input, guidance, and feedback in support of development, changes, or issue resolution

Validation
Confirmation (through the provision of strong, sound, objective evidence) that requirements for a specific intended use or application have been fulfilled

Vulnerability
A characteristic of design, location, security posture, operation, or any combination of these that renders an asset, system, network, or entity susceptible to disruption, destruction, or exploitation

White-Box Testing
A test methodology that assumes explicit and substantial knowledge of the internal structure and implementation detail of the assessment object (This term is also known as *Clear-Box Testing* or *Glass Box Testing.*)

Work Product
Artifact resulting from the execution of a process
Bibliography

URLs are valid as of the publication date of this report.

[Alberts 2002]

[Alberts 2014]

[Alberts 2017a]

[Alberts 2017b]

[Alberts 2022]

[Bergey 2009]

[Caralli 2010]

[ISO/IEC 2021]

[ISO/IEC 2022]

[ISO/IEC 2023]

[ISO/IEC/IEEE 2011]

[ISO/IEC/IEEE 2017]

[ISO/IEC/IEEE 2018]

[ISO/TC 2022]

[Mainstay 2010]

[Microsoft 2014]
[NIA 2010]

[NIST 2002]

[NIST 2011]

[NIST 2018]

[NIST 2023]

[Paulk 1993]

[PMBOK 2013]

[Soo Hoo 2001]

[U.S. Code 2013]
[Wallen 2023]
The Acquisition Security Framework (ASF) is a collection of leading practices for building and operating secure and resilient systems across the systems lifecycle. These practices enable programs to evaluate risks and gaps in their processes for acquiring, engineering, and deploying secure systems and to exercise more insight and control over their supply chains. The ASF provides a roadmap for building security/resilience into a system rather than “bolting them on” after deployment. ASF practices promote proactive dialogue across all program and supplier teams, helping to integrate communication channels and facilitate information sharing. The framework helps programs coordinate their management of engineering and supply chain risks across the many components of a system. These risks require ongoing monitoring and management across all phases of the systems lifecycle due to the dynamic nature of the threat environment and the rapid evolution of technologies. The ASF is consistent with cybersecurity engineering, supply chain management, and risk management guidance from the International Organization for Standardization (ISO), National Institute of Standards and Technology (NIST), and Department of Homeland Security (DHS). This report builds on a previous report, Acquisition Security Framework (ASF): Managing Systems Cybersecurity Risk, and includes a full set of ASF practices.