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Introduction 

The ASERT (Assurance Evidence for Continuously-Evolving Real-Time Systems) workgroup 
(ASERTW) has been investigating alternative technologies and techniques to automate certification. 
ASERTW’s first step was captured in a report that identifies the state of the practice and future chal-
lenges, especially the need to speed up the pace of updates to cyber-physical systems (CPSs) 
[ASERTW 2022].  

The second step is what we call Experiment Zero (E0). The goal of this experiment is to test tech-
nique(s) to verify if the automation of certification arguments can help us to explain potential de-
sign/development flaws related to real-world reported problems. To conduct this experiment, we used 
a recent flight incident report published by the Taiwan Transportation Safety Board [TTSB 2021]. 
Based on this report, we developed some theories of potential design shortcomings that could explain 
the sequence of events in this incident. Given the limited information obtained from the incident re-
port, it is important to note that this paper does not claim that such shortcomings necessarily existed. 
Instead, we view this incident as a way to evaluate if and how formalizing and automating arguments 
can validate designs and find shortcomings if they exist. 

Argument-Driven Development 

A key principle of extreme programing, which is part of the Agile development movement, is test-
driven development (TDD). The main goal of TDD is to improve the quality of software by transform-
ing software requirements into test cases; this is also called test-first programming. We believe that 
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TDD is a powerful principle but, as we will see in this report, code is insufficient to evaluate the re-
quirements of a CPS. In particular, code by itself lacks information to evaluate critical properties of a 
CPS.  

For example, consider evaluating the completion time of the execution of a function to inflate the air-
bag of a car. This evaluation requires determining how long it would take the software to execute, but 
such information is not explicitly defined in the code. Instead, this information is the combination of 
many factors, such as the instructions the processor needs to execute, the speed of the processor, the 
other tasks running on the same processor, and the scheduler(s) used. Similarly, calculating the proba-
bility of failure of a function includes the probability of failure of the processor it runs in, the depend-
ency with other functions, power supply dependencies, etc.  

Code is actually not necessary to validate early design decisions that can be catastrophic and costly if 
these decisions are incorrect. A number of design analysis methods can be applied to early design 
models even before we have code. These methods allow us to identify design flaws, find assumption 
conflicts, perform early tradeoff analysis, etc. Moreover, these methods can be an integral part of the 
strategies to certify CPSs. Specifically, these methods can be included in verification plans to verify 
certification claims that are presented to a certifier. If the plan meets the certifier’s criteria, it is ap-
proved, and the developer (or independent verification organization) proceeds to execute the plan by 
applying the verification methods (and other verification procedures) to obtain evidence to prove the 
claims.  

Since certification claims can be complex and may need different verification procedures to prove 
them, they can be decomposed into a number of subclaims. This decomposition can be done with dif-
ferent degrees of formality. For example, they can be described in plain English discussing how a 
claim can be decomposed into subclaims or described in a more structured format using assurance 
cases. Assurance cases use arguments to decompose claims into subclaims and connect them to evi-
dence to prove subclaims. 

In assurance cases, argumentation is designed for human execution and hence can suffer from scala-
bility issues and multiple interpretations of the same claims by different people. This paper avoids 
these human-centered problems by exploring a technique to formalize assurance arguments and using 
formal verification tools to automate their processing. This technique both removes human interpreta-
tion and increases processing scalability through automation. 

Inspired by the test-driven development—but targeting the certification of CPS—we propose the use 
of an argument-driven development where a certification plan is created to determine the key claims 
that must be satisfied by the final CPS. These claims then can be captured into executable arguments 
and decomposed into subclaims that are subsequently evaluated using automated analysis methods ap-
plied to the design models that drive the development. Next, these models can be refined, leading all 
the way down to implementation code, ensuring that early verification is not invalidated and that the 
assumptions between different methods do not contradict each other. 

We believe the full automation of certification arguments can make systems safer and enable faster 
assured updates as modifications can be evaluated against modifications to argumentation early on, 
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and only the parts of the arguments that are modified require recertification. Moreover, it is possible to 
identify flaws in our arguments in systems already deployed. The lessons learned from such events 
can then be incorporated into machine-processable arguments that can be reused in further certifica-
tions so that these lessons are not forgotten. 

State of the Art 

This paper shares some objectives with [Shankar 2022]. In particular, they promote the concept of as-
surance-based developement that is similar to the concepts we present here. However, their focus is on 
the final system; hence, they focus on the application of verification tools to the final system. In con-
trast, we focus on a more comprehensive approach that encompasses early designs and higher levels 
of abstractions where arguments can be developed and verified much earlier. Moreover, the low-level 
focus closer to the code forces abstractions that remove aspects from other analysis domains (e.g., tim-
ing, fault tolerance) thereby creating blind spots for conflicts in analysis assumptions from these do-
mains. 

The techniques we use are presented in [de Niz 2023], which is based on analysis contracts that de-
scribe what an analysis tries to prove, what assumptions it makes, and how it connects to a full argu-
ment developed to prove verification claims. Analysis contracts rely on assume/guarantee reasoning 
based on Hoare triples [Hoare 1969], which evolved into more abstract domains with the development 
of contract algebras [Benveniste 2018]. Contracts have also been used in assume/guarantee reasoning 
over components in the Architecture Analysis and Design Language (AADL) [SAE 2009, Cofer 
2012]. However, component contracts reason about properties of the values that AADL components 
communicate through their ports to other components and the computation that occurs inside a com-
ponent that transforms input values into output values. This approach is a more traditional way of 
thinking about contracts that is easier to map to a Hoare triple. In contrast, analysis contracts reason 
about properties of analysis algorithms applied to models (e.g., AADL models), not the computations 
inside the components of the model. Our goal is to reason about how multiple analyses work together 
to prove top-level assurance claims instead of how properties on values generated by model compo-
nents discharge properties of top-level components. From this point of view, therefore, an analysis that 
uses component contracts to verify value transformation properties is just another analysis that we in-
tegrate and that would have its own analysis contract. 

Previous work in analyses contract started with [Nam 2011], where contracts were defined for re-
source allocation models. These contracts were defined in Alloy [Jackson 2019], and the analyses al-
gorithms were implemented in Mathematica and included in the AADL models. Analyses contracts 
were later extended [Ruchkin 2014] to remove the bounded verification limitations of Alloy, imple-
menting the contracts specification with a mixture of satisfiability modulo theories (SMT) and linear-
time temporal logic (LTL) [Kesten 1998] with a verification in Z3 and SPIN [Holzmann 1997]. This 
work also extended the analyses beyond resource allocation to other domains, such as thermal dissipa-
tion and security. Later, the authors in [Brau 2018] created an implementation of analysis contracts 
with a special emphasis on lower level analysis assumptions within the same domain. 
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In [Wang 2022], the authors present a contract model close to analysis contracts with a synthesis ap-
proach to combine multiple contracts that restrict the design space out of pre-crafted parts. Their ap-
proach works at a more abstract level closer to [Benveniste 2018]. It is applied at the assurance case 
level and reuse of assurance case patterns but provides no connection to domain-specific analysis al-
gorithms. 

Given the focus on using tools for analysis, it is natural to ask whether to trust that the output of the 
analysis was computed correctly. The recently coined term explainable verification focuses on ad-
dressing this issue [ERSA 2022, ERSA 2023]. This effort focuses on the approach that an analysis not 
only needs to compute an output but also an explanation of why it produced this output. This explana-
tion must then be easy to consume by a person without requiring deep expertise in the analysis do-
main. 

A Flight Incident Case 
As stated in [TTSB 2021],  

On June 14, 2020, China Airlines scheduled passenger flight CI202, an Airbus A330-302 air-
craft, registration B-18302, took off from Shanghai Pudong International Airport for Taipei 
Songshan Airport with 2 flight crew members, 9 cabin crew members, and 87 passengers, for a 
total 98 persons onboard. The aircraft landed on runway 10 of Songshan Airport at 17:46 Taipei 
local time. At touchdown, the aircraft experienced the quasi-simultaneous failure of the 3 flight 
control primary computers (FCPC or PRIM), thus ground spoilers, thrust reversers, and au-
tobrake were lost. The flight crew was aware of the autobrake and reversers failure to activate, 
and applied full manual brake rapidly to safely stop the aircraft about 30 feet before the end of 
runway 10 without any damage to the aircraft nor injuries to the passengers onboard. 

A partial view of the A330 architecture is depicted in Figure 1, extracted from [TTSB 2021]. 

 
Figure 1: Airbus A330 Flight Control Architecture 
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More specifically, each PRIM computer is composed of a main command processor (COM) (part of a 
sequence of processors or channels as known in aviation) and a monitor processor (MON). Both cal-
culate the same actuation value according to the pilot input (depicted by a pedal in the figure). Then 
COM receives the computed value from MON and compares it to its own value. If the difference is 
within a threshold, it uses its output. In contrast, if it exceeds the threshold, it fails-over to the next 
PRIM computer arranged in the same fashion. The next PRIM computer performs the same compari-
son and has the same failover strategy. If PRIM3 also fails, backup computers are activated. 

It is important to note that these computers execute different functions when the aircraft is in air mode 
versus when it is in ground mode. This is because in air mode, control surfaces are actuated; in ground 
mode, the landing gear wheels are actuated. 

Key Sequence of Events 

In the incident report, the following sequence of events was identified as significant: 

1. Gear touchdown → Aircraft switch to ground mode 
2. Gear in the Air →Aircraft switch to air mode 
3. Gear touchdown →Aircraft switch to ground mode 
4. PRIM1 Failed-over 
5. PRIM2 Failed-over 
6. PRIM3 Failed-over 

The report also identified that the cause of the failure stemmed from the disagreement between the 
COM and the MON over the actuation in [TTSB 2021, p. 68]. This disagreement was traced back to 
the computation of different functions (controls laws) by COM and MON due to the switching be-
tween air mode and ground mode. More specifically, one of the channels1 used the “lateral flight con-
trol law” to calculate the rudder command (based on the pilot pedal input), while the other used the 
“lateral ground law,” exceeding the threshold that was designed to compare differences for the same 
law [TTSB 2021, p. 6]. This disagreement was called channel asynchronism. 

Channel Asynchronism Timeline 

Based on the information presented above we created a sample timeline that could explain the triple 
failure, which is shown in Figure 2.  

____________ 

1  In Avionics, an end-to-end computation f rom sensor to actuator that is replicated is typically referred to as a channel. 
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Figure 2: Channel Asynchronism Timeline 

Figure 2 shows one specific time sequence that, according to the report, can occur in the system and 
would explain the triple failure. Specifically, the figure shows all COM processors (from the three 
PRIM computers) reading the landing gear (and pedal) position at the same time at time 𝑡𝑡1. This oc-
currence is then followed by the reading of the gear and pedal position by all MON processors at time 
𝑡𝑡2. Given that the plane is in ground mode at time 𝑡𝑡1, all COM processors use the “lateral ground 
law” (identified as 𝑓𝑓𝐺𝐺(𝑃𝑃1) in the figure) to calculate the rudder command. On the other hand, all 
MON processors then use the “lateral flight law” (identified as 𝐹𝐹𝐴𝐴(𝑃𝑃1) in the figure) to calculate the 
rudder command. The MON command is then communicated back to the COM processor, and it cal-
culates the difference and compares it to the threshold (|𝑓𝑓𝐺𝐺(𝑃𝑃1)− 𝑓𝑓𝐴𝐴(𝑃𝑃1)| > 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑑𝑑𝐺𝐺).  

Clearly, while MON and COM use the same pedal input (𝑃𝑃1) they use different functions to calculate 
the output, violating the implicit assumption of the comparison (i.e., they compare results of the com-
putation from the same control law). The difference exceeded the threshold and PRIM1 fails-over to 
PRIM2. However, since PRIM2 and PRIM3 suffer from exactly the same flaw, they both fail as well. 
The end result is that all three MON processors from the three PRIM computers evaluated that they 
exceeded the tolerance threshold, and all three executed a failover that led to the switching to the sec-
ondary computers. 

Gear

Pedal

COM

MON

COM

MON

COM

MON

Time

Ground

Air

P1

𝒇𝑮(𝑷𝟏)

𝒇𝑨(𝑷𝟏)

|𝒇𝑮 𝑷𝟏 − 𝒇𝑨 𝑷𝟏 | > 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝑮

𝒇𝑮(𝑷𝟏)

𝒇𝑨(𝑷𝟏)

𝒇𝑮(𝑷𝟏)

𝒇𝑨(𝑷𝟏)

t1 t2

P2

PR
IM

1
PR

IM
2

PR
IM

3



SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7 
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 

It is worth noting that Figure 2 shows only one possible sequence of events that could lead to this inci-
dent. In reality, any sequence that leads COM and MON to execute different control laws will lead to 
the same incident.  

Automatic Certification Argumentation 
At the core of E0 is the need to verify if we can use automatic argumentation methods that automate 
the verification procedures attached to certification arguments. This section presents the techniques 
from our current work that we use to implement this automation and identify possible design flaws 
connected to the CI202 incident report. 

Symbolic Assurance Refinement Framework 

To enable the automatic argumentation, we used the Symbolic Assurance Refinement (SAR) frame-
work and tool [de Niz 2023]. This framework allowed us to integrate analyses defined for different 
properties, such as timing, fault tolerance, control, security, etc. into an argumentation structure that 
validates their assumptions and their interconnections with other analyses. More specifically, an anal-
ysis can make assumptions (e.g., tasks are scheduled with fixed-priority scheduling with rate-mono-
tonic priorities) that must be true for the result of an analysis (e.g., rate-monotonic schedulability 
bound) guarantee (all threads always meet their deadlines) to be valid. Checking these assumptions 
can involve more complex analysis that would also need to have its assumptions checked for the anal-
ysis’ guarantee to hold. This argumentation is depicted in Figure 3.  

 
Figure 3: Contract Argumentation 
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SAR specifies the analysis contracts in a domain-specific language hosted as a language annex in the 
AADL tool (OSATE2). This template is presented in Listing 1. 

annex contract {** 
    contract <name> { 
    queries 
        <model var> = <query to obtain model data> 
    domains 
        <domain reference> 
    input assumptions 
        <Bool func to check data consistency>(<model vars>) 
    assumptions 
        <Bool func>(<model vars>)  
        -> <symbolic assertion> 
    analysis 
        <Bool func>(<model vars>)  
        -> <symbolic guarantee> 
    } 
**}; 

Listing 1: Analysis Contract Template 

Analysis contracts have three main parts: (1) a guarantee that is encoded symbolically (in SMT in the 
current implementation), (2) assumptions that are assertions also specified symbolically, and (3) an 
analysis that takes the form of a Boolean proposition that can be implemented as an imperative func-
tion that takes model data (model variables) and verifies specific conditions that would make the guar-
antee true. For instance, checking if a taskset is schedulable using the rate-monotonic harmonic taskset 
bound implies only checking if the sum of the utilization of all the tasks running in a single processor 
is below 100 percent (i.e., a simple test like ∑ 𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑖𝑖
≤ 1)𝑖𝑖∈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . However, here the main challenge 

is checking all the assumptions of the analysis, specifically  
1. All tasks are periodic. In the model (e.g., AADL model) this can be a flag but would need to be 

checked in the implementation. 

2. Periods of the tasks are harmonic (i.e., are multiples of each other). ∀ 𝑖𝑖 , 𝑗𝑗 ∈ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∶
�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑖𝑖 > 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑗𝑗� → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑖𝑖  𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑗𝑗 = 0 

3. Priorities are rate monotonic. ∀ 𝑖𝑖, 𝑗𝑗 ∈ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∶ �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑖𝑖 < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑗𝑗� → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑖𝑖 > 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑗𝑗 
(A larger priority number implies a higher priority.) 

4. Periods are equal to their deadlines. 

5. Tasks are scheduled with a fixed-priority scheduler. 

6. Tasks do not use mutually exclusive resources. This can be a more complex search in the model 
for shared resources and the protocols used to access them. This can be an independent contract 
whose implementation can have further assumptions. 

____________ 

2  OSATE stands for Open source AADL Tool Environment. 
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Contracts have three additional sections that complement the main ones: 
• queries (similar to SQL queries) that collect data from the architectural model for use by the 

analysis (Queries are, in fact, expressed in a domain-specific model query language [MQL].)  

• domains that are basically the names of a separate contract module that defines symbolic varia-
bles to be used in the assumptions and guarantee statements (Some of these variables can mirror 
model variables, but others will be used to encode a property even if they never appear in the 
model. For instance, the rate-monotonic harmonic bound test guarantees that the worst-case re-
sponse time of no task will exceed its deadline under any circumstance. For this, we define a 
worst-case response time even if it is not in the model and is never calculated in the scheduling 
test but is in the proofs of the paper that demonstrated the correctness of this analysis.) 

• input assumptions that validate the data obtained in the queries to check if there is enough data to 
run the analysis (These are different from the other assumptions [we call analysis assumptions] in 
that if we do not have enough data [i.e., input], then we cannot run the analysis function. How-
ever, if the analysis assumptions are not met, then the result would be invalid even if we have 
enough data.) 

Proof Obligations and Refinement 

SAR enables two forms of analysis assumption verification. First, SAR verifies the existence of model 
data that will make the assumption false. For instance, if the model already has priorities and periods 
assigned to tasks, then we can check if the assumption can be violated with this data. If we do not 
have data that contradicts the assumption, then we can assume that it is correct. This assumption is im-
plemented by the SMT engine that determines if there are symbolic variable values that can satisfy all 
our assumptions. This determination is useful for the verification of partial models when we do not 
have everything specified yet. However, assumptions verified this way are considered proof obliga-
tions, which are basically deferred obligations to verify assumptions. 

Second, SAR verifies that the data we have or do not have would not enable an assignment that would 
contradict the assumption. For instance, if the model has no information about priorities, we will ver-
ify if we can find values for the symbolic variable that would make some assumption false. This veri-
fication assumes that we now must have all the information to validate all the claims and assumptions. 
Hence, if this verification fails, it means that we still have proof obligations to fulfill, and we need to 
refine the model to verify the pending assumptions/claims. This type of verification is formally known 
as ensuring that a formula is valid (for all assignments).  

The first type of verification allows us to verify partial models. This, in turn, allows us to keep refin-
ing the model and verifying each refinement step. Finally, once we believe we have a complete model, 
we can then use the second type of verification to validate whether we are truly done. 
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Assurance Argumentation 

The contract argumentation starts at the top from a verification plan to capture verification claims and 
the analysis contracts that can discharge them. These contracts follow the argumentation structure pre-
sented in Figure 3. The verification plan structure is presented in Listing 2 along with an example con-
tract for end-to-end timing analysis. 

annex contract {** 
 verification plan verifyEndtoEndTiming { 
  component 
   s: EndToEndTimingExample::mysystem.i; 
  domains 
   schedulability; 
  claims 
               `And([E2EResponses[i] <= E2ELatencies[i] 
                    for i in range(len(E2EResponses))` ; 
  contracts 
   EndToEndDelayedCommunicationContract; 
 }  
 
 contract EndToEndDelayedCommunicationContract { 
  domains 
   schedulability; 
  queries 
  input assumptions 
   '''areEndToEndLatenciesInputDataComplete( 
                        ${periods$}, ${wcets$}, ${deadlines$}, ${names$})'''; 
  assumptions 
   contract areConnectionsDelayedContract; 
   argument schedulabilityArgument; 
  guarantee 
   <=> `And([E2EResponses[i] <= E2ELatencies[i]  
                         for i in range(len(E2EResponses))])`; 
  analysis 
   '''meetEndToEndLatencies(${synchronization::flowComponents$}, 
                         error0)'''; 
 } 
 
 argument schedulabilityArgument { 
  domains 
   schedulability; 
  guarantee 
   <=> `And([Deadlines[i] >= Responses[i]  
                        for i in range(len(Deadlines))])`; 
  argument 
   or( 
    contract RMAHarmonicBoundContract 
    contract RMANonHarmonicBoundContract 
    contract fpResponseTimeContract 
   ); 
 } 
**}; 

Listing 2: Verification Plan 

Listing 2 shows the verifyEndToEndTiming verification plan that includes the contracts (only 
the EndToEndDelayedCommunicationContract in this case) that are used to verify all aspect 
of the claims presented in the verification plan. (This is an SMT encoding of the claims.) 
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In the description of the EndToEndDelayedCommunicationContract in Listing 2, we see 
that its assumptions are verified with another contract (areConnectionsDelayedContract) 
and an argument (schedulabilityArgument). The schedulabilityArgument argument 
enables the selection of different forms of verification of assumptions (different scheduling analysis) 
that enables the selection of different forms of verification of this assumption (different scheduling 
analysis).  

The details of the schedulabilityArgument are also presented in the listing and show how it is 
possible to combine multiple contracts into a Boolean formula, or, in this case, to use any of the con-
tracts that are possible to use. In this particular case, it will use the RMAHarmonicBoundCon-
tract if it can verify its assumptions, which includes both that the priority assignment is rate mono-
tonic and that the periods of the task are harmonic to each other. If it cannot verify the period 
harmonicity, the OR encoding then allows us to try to use the RMANonHarmonicBoundContract 
contract that does not require period harmonicity. Finally, if neither of the two assumptions are met, it 
is then possible to use the fpResponseTimeContract contract that does not require either of the 
two but requires other assumptions (e.g., the deadline is shorter or equal to the period). 

Assurance Argumentation for the A330 
While we lack the specific claims of the original certification of the A330 aircraft and the role of the 
replication patterns (with the PRIM computers and their COM/MON processors), we first explore a 
generic form of the replication to identify potential claims, verification procedures, and assumptions to 
develop an assurance argumentation. 

Replication Patterns 

The A330 architecture has two forms of replication that, to our understanding, address different prop-
erties. In particular, one type of replication addresses reducing the possibility of calculating the wrong 
value or preserving the value integrity (or just Integrity for short). The other goes after preserving the 
availability of the computation even if faults occur; this is known as Availability.  

Integrity Replication 

From the incident report, we believe the A330 is implementing integrity replication with the combina-
tion of the COMMAND module (COM) and the MONITOR module (MON) that calculate the same 
output from the input commands, and the COM uses the MON data to check its own computation. 
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Assumptions 

The integrity replication has at least two assumptions: 
1. Development diversity requires that two different teams develop two (or more) modules inde-

pendently. The rationale behind this approach is that if we develop two different implementations 
that can fail differently, we would be able to detect the failure of the pair based on the difference 
in the output values. This diversity assumption can be checked with the proper execution of a de-
velopment process that enforces it, but the incident report does not point to a failure related to 
this assumption. 

2. Module pair should use the same input, which means that both COM and MON should receive 
the same input to create the proper comparison between the two. More importantly, in the spe-
cific case covered by this paper, while it is possible to get some small variation in the input from 
the pedal sensor, a difference in the air/ground mode is catastrophic given that it selects different 
control laws for the same module. This behavior is exactly what the incident report describes as a 
key violation. 

Availability Replication 

Availability replication is used to tolerate hardware failures and preserve a module to continue run-
ning. Availability claims aim to satisfy measures of tolerance to failures in the form of either some in-
formal argument on failure independence or a more formal probability of the absence of service due to 
the failure of all the replicas.  

Assumptions 

Key to the availability replication is the assumption that the modules must fail independently. More 
specifically, this assumption means that the hardware where  the modules run must fail independently. 
For this paper, we focus only on this assumption given that we believe it informs the design of the avi-
onics system and interacts with the integrity replication scheme. 

Replication Modeling 

We first formalize the availability claim (probability of absence of service) connected to a specific 
verification procedure: probabilistic fault-tree analysis (FTA). In this case, we create the replicated 
end-to-end flow architecture (that captures the channel construct) that reads from the sensors, com-
putes the actuation in the PRIM (COM/MON) computers, and sends it to the actuator as shown in Fig-
ure 4. This figure depicts with each box an independent thread (including the sensors and actuator 
boxes), representing the last thread that interacts with the appropriate device (i.e., reads from the 
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sensor registers or writes to the actuator registers) that runs in its own processor. For simplicity, we 
assume that all processors fail independently.3 

 
Figure 4: All Independent Channel Threads 

Fault-Tree Analysis (FTA) 

FTA is a top-down approach that defines the faults of interest under which a tree of events is created 
that lead to such a fault [Rausand 2014]. The tree is constructed by first connecting abstract events to 
the top-level failure by either an AND or an OR connector to represent that for the fault to occur, ei-
ther all the next level abstract events need to occur or only one of such events needs to occur respec-
tively. The decomposition of the next level events continues in the same fashion until basic events are 
identified. This construct can also be translated into what is known as a reliability block diagram, 
where OR compositions are represented as blocks connected in series while AND are those connected 
in parallel. These patterns are shown in Figure 5. 

 
Figure 5: Fault-Tree and Reliability Block Diagrams 

Fault trees allow two types of analysis: a qualitative analysis and a quantitative analysis. The qualita-
tive analysis allows us to evaluate the set of basic events that, if they occur simultaneously, makes the 
top fault occur. These are known as the cut set. A cut set is minimal if it cannot be reduced without 
losing its status as a cut set.  

In addition, a fault tree also allows us to identify common causes that break a failure-independence 
expectation. For instance, the minimal cut sets of the systems in Figure 5 are {1},{2},{3} for system 
A, {1,2,3} for system B and {1}, {2,3} for system C. These sets allow us, for instance, to identify 

____________ 

3 Further verif ication is required for the f inal implementation e.g., power supplies, cooling systems, etc. 
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single points of failures as cut sets with a single element. In our example, both system A and C have 
them, but system B does not. 

The quantitative analysis, on the other hand, allows us to calculate the probability of failure by assign-
ing probabilities of occurrence to each basic event and deriving the probability of occurrence of the 
top event from them. This probability is calculated with 

𝑄𝑄𝑜𝑜(𝑡𝑡) = 1− � (1−  𝑄𝑄�𝑗𝑗(𝑡𝑡))
1≤𝑗𝑗≤𝑘𝑘

 

Equation 1 

with 𝑄𝑄�𝑗𝑗(𝑡𝑡) as the failure probability of cut set 𝐶𝐶𝑗𝑗 calculated as 

𝑄𝑄�𝑗𝑗 = �𝑞𝑞𝑖𝑖(𝑡𝑡)
𝑖𝑖∈𝐶𝐶𝑗𝑗

 

Equation 2 

where 𝑞𝑞𝑖𝑖(𝑡𝑡) can be calculated as a single event occurring at time 𝑡𝑡 (after some time of service) that is 
not repairable or is repairable and needs to be calculated over time. For the objective of this analysis, 
we assume that it is not repairable and that 𝑞𝑞𝑖𝑖(𝑡𝑡) is given; we apply it in the A330 architecture to eval-
uate potential claims and their assumptions. 

AADL Model 

To capture the replication characteristics to perform the FTA, we created an AADL ) model [SAE 
2009] following the architecture in Figure 44  where each component is a thread. We next created a 
hardware architecture where each thread has its own processor assigned to it. We then identify the in-
ternal control/data flows (identified as f<number>) that cross each component from input to output 
ports, the connections from output to input ports (identified as c<number>), and the flow source 
(identified as s<number>) and flow sinks (identified as k<number>). This architecture is shown in 
Figure 6.  

____________ 

4  Not shown for brevity. 
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Figure 6: Channel Composition 

We now discuss two more details added to the AADL model that we could not include in the figure:  
1. All ports in this model are Data ports, which means that when the thread activates, it reads what-

ever is in the port buffer and continues its execution. 
2. All connections are Delayed connections, which means that whatever the thread in the output 

port of the connection sends, it arrives at the next periodic activation of the receiving thread.  

This combination allows us to (1) abstract away the network communication delays and assume that 
the communication will happen within the execution of the previous periodic activation and (2) as-
sume that when the receiving thread activates, it already has the most recent data in its input ports.5 
Given all this information, we can define two end-to-end flows, as presented in Listing 3. 

pedalToActuationCOMPRIM1: end to end flow Sensor1.s1-> 
Sensor1.f1->c2->COM.f5->c6->Actuator1.k1; 

pedalToActuationMONPRIM1: end to end flow Sensor2.s3-> 
Sensor2.f3->c4->MON.f6->c5->COM.f5->c6->Actuator1.k1; 

Listing 3: End-to-End Flows Replica 1 

Listing 3 only lists one flow in each component because all the flows are equivalent given that their 
data is available at the time of the thread activation. Moreover, the end-to-end flow pedalToActu-
ationMONPRIM1 captures the dependency between COM and MON that is not present in the end-
to-end flow pedalToActuationCOMPRIM1. These characteristics of Listing 3 allow us to focus 
only on the MON end-to-end flows when describing the replication pattern. 

____________ 

5  Clearly, both assumptions need and can be verif ied with a more detailed model, but this discussion is not included in 
this paper. 
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To describe the replication pattern, we define that the main flows within each of the PRIM computers 
must be replicas of each other. In Listing 4, we capture only the pedalToActuationMONPRIMx 
given that it captures the internal dependencies between the MON and COM processors. 

ReplicationProperties::Replicating =>(reference 
(pedalToActuationMONPRIM2), reference 
(pedalToActuationMONPRIM3)) applies to pedalToActuatorMONPRIM1; 

Listing 4: Replication Specification 

In addition, we specify the probability of failure of each processor and the target reliability (or availa-
bility) of the replicated flow as presented in Listing 5. (Note that this probability is notional and does 
not represent the typical requirement of a commercial aircraft.) 

ReplicationProperties::ReliabilityTarget => 0.85 applies to 
pedalToActuationMONPRIM1; 

ReplicationProperties::FailureProbability => 0.01 applies to 
Sensor1.processor; 

Listing 5: Reliability Specs 

We developed a probabilistic FTA analysis that uses Equation 1 and Equation 2. In this analysis, we 
transform the graph created with the end-to-end flows into a reliability block diagram based on the 
processor each thread runs in and their dependencies. Two observations are in order. First, COM de-
pends on MON given that it uses its output to evaluate output value differences; therefore, there is no 
advantage to running them in separate processors since if one stops working (e.g., is not available), the 
other will not be able to verify its output and will fail as well. Second, for the COM comparison with 
MON, it needs to read the pedal and landing gear at exactly the same time since it is not possible to 
know exactly when the mode switch will happen. This new requirement is captured in Listing 6, 
which shows only the PRIM1 part. 

ReplicationProperties::IntegrityReplicas =>(reference 
pedalToActuationCOMPRIM1) applies to pedalToActuationMONPRIM1; 

ReplicationProperties::ReplicasStartJitterTolerance => 0 ms 
applies to pedalToActuationCOMPRIM1; 

Period 100 ms applies to Sensor1.thread; 

Period 100 ms applies to Sensor2.thread; 

Listing 6: Simultaneous Activation 
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Listing 6 captures a new type of replica that we call IntegrityReplica; it identifies the replicas used to 
evaluate if two functions implemented to compute the same value really do so. As discussed above, to 
work properly, these replicas require the same input values (within a tight tolerance). We also added 
the periods for the sensor threads so that we can calculate the worst-case jitter of their respective 
threads (i.e., the worst-case possible difference between the starting of the execution and, hence, sen-
sor reading) of the thread that starts the flow. (We left this equal to zero.)  

We were able to satisfy the Reliability target with our FTA analysis, but we also discovered that the 
COM and MON threads do not benefit from running on independent processors given that if either 
COM or MON fails to produce the correct value, both fail together. For the jitter analysis, however, 
we realized that we cannot have two different sensing threads for COM and MON if our jitter target is 
zero. Hence, we modified the architecture as presented in Figure 7 with both MON and COM using a 
single thread to read the sensor values at the same time. 

 
Figure 7: Channel 1 With Single Sensing Thread 

Finally, we evaluated the end-to-end latency of the flows to verify that they meet the proper require-
ment by adding all the schedulability parameters for each of the threads, specifically 
• periods 
• deadlines 
• priorities 
• worst-case execution time 
• assignment of threads to processors (where they will run and already used for the reliability repli-

cation) 
• scheduling policy 

In Listing 7, we introduce the properties for only one thread given that the assignment to the other 
threads follows the same pattern. 
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Period 100 ms applies to Sensor1.thread; 
Deadline 100 ms applies to Sensor1.thread; 
Priority 1 applies to Sensor1.thread; 
Compute_Execution_Time 10 ms applies to Sensor1.thread; 
Actual_Processor_Binding =>(reference (rep1.com.proc))  
   applies to Sensor1.thread; 
Preemptive_Scheduler => True applies to rep1.com.proc; 

Listing 7: Scheduling Properties 

Automatic Certification Argumentation 

Using the SAR framework described in the Symbolic Assurance Refinement Framework section on 
page 7, we developed the verification plan for the CI202 incident presented in Listing 8. This listing 
starts with the verification plan specification module at the top and presents three contracts used in the 
plan to verify the claims and assumptions for integrity (SamplingSynchronizationCon-
tract), availability (ReliabilityContract), and end-to-end timing (EndToEndDe-
layedCommunicationContract). In the claims section of the verification plan, we also have 
three SMT claims about the three claims that we verify.  

annex contract {** 
 verification plan verifySynchronization { 
  component 
   s: EndToEndTimingExample::mysystem.i; 
  domains 
   synchronization; 
   reliability; 
  claims 
   `And([E2ESamplingJitter[i] <= E2ESamplingJitterTolerance[i]  
                    for i in range(len(E2ESamplingJitter))])`; 
   `And([Reliability[i]>=ReliabilityTarget[i]  
                    for i in range(len(Reliability))])`; 
               `And([E2EResponses[i] <= E2ELatencies[i] 
                    for i in range(len(E2EResponses))` ; 
  contracts 
   SamplingSynchronizationContract; 
   EndToEndDelayedCommunicationContract; 
   ReliabilityContract; 
 }  
 
 contract SamplingSynchronizationContract { 
  domains 
   synchronization; 
  guarantee 
   <=> `And([E2ESamplingJitter[i] <= E2ESamplingJitterTolerance[i]  
                         for i in range(len(E2ESamplingJitter))])`; 
  analysis 
   '''areFlowsInSync1(${synchronization::flowComponents$},error0)'''; 
 } 
 
  contract ReliabilityContract { 
       domains 
               reliability ; 
  assumptions 
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             '''areReplicasOnIndependentProcessors( 
                      ${synchronization::flowComponents$},error0)'''; 
       guarantee 
               `And([Reliability[i] >= ReliabilityTarget[i] 
                      for i in range(len(Reliability))` ; 
       analysis 
            ’’’isE2EFlowProbabilityOfFailureMet(${replicatede2es$},error0)` ; 
  } 
 
 contract EndToEndDelayedCommunicationContract { 
  domains 
   schedulability; 
  queries 
  input assumptions 
   '''areEndToEndLatenciesInputDataComplete( 
                        ${periods$}, ${wcets$}, ${deadlines$}, ${names$})'''; 
  assumptions 
   contract areConnectionsDelayedContract; 
   '''areAllThreadsPeriodic( 
                          ${threads$}, ${protocols$}, ${names$},error0)'''  
    => `And([Periodics[i] for i in range(len(Periodics))])`; 
   '''areAllDeadlinesConstrained( 
                        ${threads$},${periods$},  
                        ${deadlines$}, ${names$},error0)'''  
    => `And([Deadlines[i] <= Periods[i]  
                               for i in range(len(Deadlines))])`; 
   argument schedulabilityArgument; 
  guarantee 
   <=> `And([E2EResponses[i] <= E2ELatencies[i]  
                         for i in range(len(E2EResponses))])`; 
  analysis 
   '''meetEndToEndLatencies(${synchronization::flowComponents$}, 
                         error0)'''; 
 } 
 
 argument schedulabilityArgument { 
  domains 
   schedulability; 
  guarantee 
   <=> `And([Deadlines[i] >= Responses[i]  
                        for i in range(len(Deadlines))])`; 
  argument 
   or( 
    contract RMAHarmonicBoundContract 
    contract RMANonHarmonicBoundContract 
    contract fpResponseTimeContract 
   ); 
 } 
**}; 

Listing 8: Verification Plan 

The details of the SamplingSynchronizationContract contract are also included in Listing 
8. The guarantee is expressed in SMT and is checked with the Python function areFlows-
InSync1() in the analysis section to verify the ReplicaStartJitterTolerance presented 
in Listing 6. 

Similar to the SamplingSynchronizationContract, the ReliabilityContract pre-
sented in Listing 8 includes the verification of the independence assumption that is verified with the 
Python function areReplicasOnIndependentProcessors(). This function returns True if 
it is able to evaluate that the functions in the end-to-end flows that model the different PRIM comput-
ers run on independent processors and False otherwise. (This end-to-end flows data is obtained from 
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queries in MQL that obtain the data from the AADL model; they are not shown for brevity.) Then, in 
section analysis, an invocation to the Python function isE2EFlowProbabilityOfFailureMet 
verifies whether or not the reliability requirement presented in Listing 5 is met.  

The last contract presented in Listing 8 is the EndToEndDelayedCommunicationContract. 
The details presented in the listing follow a similar pattern to the other two contracts with the follow-
ing exceptions. First, it adds an input assumptions section with a Python call to evaluate whether we 
have enough data to run this contract. Second, it adds the contract areConnec-
tionsDelayedContract as one of the assumptions to verify, which is one of the complex as-
sumptions that uses another contract to verify it. Finally, it adds the argument schedulabil-
ityArgument that enables the selection of different forms of verification of this assumption 
(different scheduling analysis), as discussed in the Assurance Argumentation section on page 10.  

Concluding Remarks 
The objective of E0 was to validate if the automation of certification arguments can indeed identify 
problems that occur in real systems. Key to this validation exercise was the following: 
1. The connection of the arguments to certifiers and designer rationale is typical of certification rea-

soning. 
2. The arguments can be expressed at a high enough level of abstraction to enable humans to evalu-

ate whether the arguments are properly captured or not. 
3. The verification of the arguments and the verification procedures of the claims in such arguments 

can be automatically processed by a computer. 
4. The lower level assumptions of the verification procedures (i.e., analysis) can be captured and 

verified at lower levels of detail, incrementally increasing the details getting all the way down to 
implementation but in a way that each level can be reasoned incrementally.  

E0 allowed us to validate all these aspects. However, limits to the incremental validation did not ena-
ble us to produce a full implementation given the lack of information in our example. At the same 
time, we understand that more work is required to validate if this approach can be extended to the 
scale of full certification claims and incremental recertification. Subsequent experiments will explore 
this issue in more detail. 

We learned the following lessons from conducting the research presented in this paper: 
• From a methodological point of view, E0 allowed us to demonstrate how multiple abstractions 

used by different verification domains (real-time scheduling, availability, and integrity) can be 
assembled and cross validated in an automatic, formal way. Importantly, these abstractions are 
connected to architectural models that are reasonably easy to understand by engineers and certifi-
ers. These abstractions can also be connected to the results from the specific analysis (even if all 
of the details are not fully understood).  
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• E0 allowed us to exercise the reuse of arguments (e.g., for end-to-end timing verification) that 
encapsulated multiple checks at lower levels of abstractions to which the modeler reusing the ar-
gument was not exposed. At the same time, new analyses were added (availability and integrity) 
along with their assumptions and assumption checking analyses; this allowed us to automatically 
identify failures to meet these assumptions in the fictitious design variations that we explored.  

In summary, this modeling and automatic verification experiment showed a robust process that al-
lowed us to encode lessons learned in an executable format. This encoding can then be reused as we 
develop new arguments and verification procedures that can be used in new system developments. 
More importantly, the encoding enables the automatic integration of development activities to the pro-
duction of certification evidence. 
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