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Abstract 

This paper presents modeling and analysis of two critical foundational processes of the cybersecurity 
vulnerability management ecosystem using a combination of system dynamics and agent-based mod-
eling techniques. The preliminary result from this analysis is that misapplication of either of these 
foundational processes could contribute to the fragility and risk associated with the many national in-
frastructures and organizational missions that rely on the Internet. We use data from the CERT Coor-
dination Center that characterizes coordinated vulnerability disclosure for our previous and continuing 
calibration and validation efforts. Our to-date analysis has identified additional areas for future work: 
new questions to consider, alternate social cost measures to investigate, and new avenues for valida-
tion. While the results of our initial efforts should be viewed as preliminary due to limited calibration 
and validation, we believe that the approaches used and the depth of modeling and simulation are suf-
ficient to begin to understand key implications of these processes and possible avenues for their im-
proved application in the future.   

Keywords: cybersecurity, system dynamics, agent-based modeling, vulnerability management, coor-
dinated vulnerability disclosure, multi-method modeling 

1  Introduction  

Vulnerability management (VM) is the common term used to describe tasks such as technical cyberse-
curity vulnerability12 scanning, patch testing, and deployment (NIST 2013, Caralli 2010). VM prac-
tices focus on the positive action of identifying specific systems affected by known (post-disclosure) 
vulnerabilities and reducing the risks they pose through the application of mitigations or remediation, 
such as patches or configuration changes (Householder 2017).  

VM practices nearly always deal with the output of a set of practices called Coordinated Vulnerability 
Disclosure (CVD). Because many modern products are, in fact, composed of software and hardware 

 
1  Published in the Proceedings of the 39th International Conference of the System Dynamics Society, July 2019. 

2 Henceforth, we refer to technical cybersecurity vulnerabilities simply as vulnerabilities. 
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components from multiple vendors, any of which may contain vulnerabilities, the CVD process in-
creasingly involves the cooperation of vendors with competing or misaligned priorities (Householder 
2017, Thomson 2018). The CVD process involves a number of phases that are generally sequential in 
time, although they can sometimes occur out of order. The phases are based on the ISO/IEC 3011 
Standard (ISO/IEC 2013), as expanded in The CERT Guide to Coordinated Vulnerability Disclosure 
(Householder 2017) and summarized below: 

 A vulnerability is found – An individual or group finds a vulnerability in an existing system. The 
individual or group is referred to as the finder. Many finders want the vendor to fix the problem, 
so they report it to the vendor. Not all finders report vulnerabilities though. 

 Vendor awareness – One or more vendors whose products are affected by the vulnerability may 
become aware of it, whether through their own testing, via reports from cooperative finders, or as 
a result of analyzing incidents or malware that exploits it.  

 Analysis and prioritization – The vendor confirms the report to ensure accuracy before action 
can be taken and prioritizes reports relative to other work, including other reports.   

 Remediation – A remediation plan (ideally a software patch, but it could also be other mecha-
nisms) is developed and tested.   

 Public awareness – The vulnerability and its remediation plan are disclosed to the public. Public 
awareness is often facilitated by the inclusion of information about the vulnerability in a vulnera-
bility database, such as the National Vulnerability Database operated by NIST (NIST 
Information Technology Laboratory 2019) . Vulnerability databases use identifiers, such as the 
Common Vulnerabilities and Exposures (CVE®) ID, to disambiguate distinct vulnerabilities. 
Such cataloging can happen regardless of the availability of remediation advice.  

 Deployment – The remediation is applied to deployed systems.   

This paper presents modeling and analysis of two critical foundational aspects of the cybersecurity 
vulnerability management ecosystem:  

1. the process of identifying and responding to vulnerabilities that most organizations rely on for 
their security defense (We refer to this as the vulnerability management [VM] process below.) 
Key question: “What effect does the existing tiered approach to vulnerability reporting have on 
the adequacy of vulnerability management overall?” 

2. the Multi-Party CVD (MPCVD) process for coordinating the development of software patches 
across a set of vendors whose products have an identified vulnerability 
Key question: “How does the length of the period that vendors are not permitted to divulge the 
existence of a vulnerability (the embargo period) affect keeping the costs associated with having 
vulnerable systems?” 

 
® The CVE and the CVE logos are registered trademarks of The MITRE Corporation. 



 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  3  
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited 

While our efforts are a work in progress, our preliminary analysis shows that the misapplication of ei-
ther of these foundational aspects could contribute to the fragility and risk associated with the many 
national infrastructures and organizational missions that rely on the Internet. 

1.1 Related Research 

VM occurs in the later stages of vulnerability response (VR), which is the collective term for vulnera-
bility discovery, disclosure, and remediation. Unfortunately, the larger Internet ecosystem continues to 
change, and adversaries continue to exploit vulnerabilities despite decades of VR effort. Recent re-
ports from RAND and Harvard’s Belfer Center have investigated rates of vulnerability rediscovery by 
independent researchers (Ablon 2017, Herr 2017). Industry experts have posed pointed questions 
about the value of directing security effort to aspects of VR at all if the supply of vulnerabilities turns 
out to be, for all practical purposes, unbounded (Schneier 2014, Geer 2014). 

To date, there has been very little work looking comprehensively at the VR ecosystem and the com-
plex multiparty interactions it entails. This gap makes it difficult for policy makers, developers, secu-
rity researchers, and network defenders to have well-reasoned discussions leading to informed deci-
sions about VR policy and practices. Recent work covers many parts of the problem, including 

 security researcher incentives in bug bounty programs (Maillart 2016) 

 product market share, network effects, and attacker attention (Arce 2016) 

 patching rights leading to suboptimal patch deployment (August 2016) 

Additionally, several security-related return-on-investment models have been proposed, including a 
return-on-secure software process (Heitzenrater 2016) and return-on-penetration testing (Böhme 
2010).  

Early system dynamics modeling of cybersecurity vulnerability-related processes focused on attacker-
defender dynamics (Wiik 2004) and the limits of effectiveness within incident response teams (Gonza-
lez 2005). More recently, system dynamics models of vulnerability discovery as a way to counteract 
attacker offensive capacity have been proposed (Moussouris 2015, Ellis 2017). In contrast, our model-
ing efforts focus on particular issues with regard to mechanisms that are used to catalog vulnerabilities 
and coordinate their disclosure to improve infrastructure resilience. A similar ecosystem modeling ef-
fort (Frei 2010) focused on the dynamics of vulnerability discovery to patch availability, but has been 
criticized for its sampling bias (Lindstrom 2009). 

1.2 Modeling and Simulation Approach 

We use a combination of system dynamics (using Vensim®) and agent-based modeling (using Ventity) 
techniques in this paper. Some may argue that you can conduct agent-based modeling and analysis di-
rectly in Vensim.  To some extent, this is true, but as agents become more and more heterogeneous in 
their behavior, Vensim models (and system dynamics models generally) become more awkward to 

 
® Vensim is a registered trademark of Ventana Systems, Inc. Ventity is also being developed by Ventana Systems. 
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specify, implement, and analyze. Ventity overcomes this problem by allowing the modeling and exe-
cution of fully heterogeneous agents, while also improving the ability of the modeler to build modular 
models constructed by disparate teams. Ultimately, we would like to have one unified, coherent, and 
comprehensive tool to enable full-capability modeling of agent-based and system dynamic aspects of a 
problem, as appropriate, without switching tools and the associated notations. Of course, other tools 
may provide some of this integrated function, but we had already been using Vensim when we discov-
ered the possibility of agent-based modeling in Ventity.  

Section 2 uses system dynamics modeling (and the Vensim toolset) to analyze core aspects of the vul-
nerability management process. Section 3 takes a deeper dive using agent-based modeling (and the 
Ventity toolset) to analyze the MPCVD process for vulnerability patching and disclosure.  The ap-
proaches used and the depth of the modeling and simulation are sufficient to understand the key impli-
cations of these processes and possible avenues for their improved application in the future.  Section 4 
summarizes the contributions of this research and directions for the future. 

2 System Dynamics Analysis of the Cybersecurity Vulnerability 
Management Process 

2.1 Model Description 

This section describes the system dynamics model as a series of incremental builds, the notation for 
which is outlined in Appendix A. Each build is displayed in a separate figure. Sometimes the figure 
builds on the previous figure. Other figures are components of the larger model, which is displayed in 
Appendix B for reference. Key parameters of the model, including their types and initial values, are 
described in Appendix C. 

Figure 1 shows a very basic vulnerability discovery and patch process. People discover vulnerabilities 
(i.e., the vulnerabilities become “known”) and initially decide to create patches for some fraction of 
them. We refer to the vulnerabilities that are not initially targeted for patching as dormant. After tak-
ing some time to generate and publish vulnerability patches, they are made available to the general 
public.  

 
Figure 1: Vulnerability Discovery and Patching Process 

This model can run in one of two modes: one that uses an average patch-generation time as constant in 
the model and one that uses a random vulnerability patch work multiplier of that average time. Based 
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on previous analysis of the vulnerability work factor, we choose the multiplier from an exponential 
distribution as shown in Figure 2. The graph shows the multiplier along the x axis (i.e., the y values) 
and the number of times each multiplier is generated during the simulation along the y axis. 

Some dormant vulnerabilities remain dormant only until they are used in an attack, in which case there 
becomes an urgent need for a patch by susceptible organizations. As shown in Figure 3, patches are 
generated in the same way as before, but there is an acceleration factor due to the urgency that multi-
plies the speed of patching. This factor is a parameter of the model since we do not yet have firm data 
on the increased speed of patching for urgent vulnerabilities. Some fraction of vulnerabilities will 
never be patched; we refer to these as public forever-day vulnerabilities. Zero-day vulnerabilities, by 
definition, become public the day they are exploited and remain “dormant” only as long as the time it 
takes to generate the urgent patch. 

 
Figure 2: Distribution of the Vulnerability Patch Work Multiplier 

 
Figure 3: Dormant Vulnerability Possibly Becoming Urgent 
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Switching gears a bit in Figure 4, we now turn to the lifecycle of vulnerabilities as they are processed 
in CVE.3 Vulnerabilities may be discovered after a patch has become available, but CVE generally 
targets those vulnerabilities discovered before patching and only once those vulnerabilities become 
publicly known. A five-tier framework is used to decide whether to report a discovered vulnerability 
(Ragan 2016).  Each tier is associated with a set of organizations―the vendors―whose product vul-
nerabilities are assigned to the tier. Each tier represents qualitatively whether vulnerabilities in that tier 
will be reported in CVE.  

 
Figure 4: CVE Vulnerability Processing Lifecycle 

The system dynamics model of this tier framework―specifically the array variable “fraction CVE 
vuls reported”―assigns probabilities associated with whether a vulnerability in the tier is processed as 
follows: 

 tier 1 (vulnerabilities must be reported) : p=1.0 

 tier 2 (vulnerabilities should be reported) : p=0.95 

 tier 3 (vulnerabilities may be reported) : p=0.60 

 tier 4 (vulnerabilities may not be reported) : p=0.3 

 tier 5 (vulnerabilities must not be reported) : p=0.0 

These probabilities are initial estimates only; they are based strictly on the qualitative wording. They 
can be updated as more information comes to light about how the CVE responders interpret the tiering 
requirements. Absent that, we can run Monte Carlo simulations in Vensim to determine the effect of 
probability variance on simulation behavior. Lastly, the simulation must determine what fraction of 

 
3  We use “CVE” here for convenience since CVE is the most well-known vulnerability identifier in use in the vulnerabil-

ity management space. However, the model is intended to apply to any process by which vulnerabilities are selected 
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vulnerabilities discovered falls into each tier. This fraction, which may change over time, is repre-
sented in the array variable “tier fractions over time” as an effect function of model simulation time on 
the tier percentages. Based on these variables and the inflow of discovered vulnerabilities, each con-
sidered vulnerability is processed and eventually published with a unique CVE ID. 

Figure 5 deals directly with staffing to respond to vulnerabilities. CVE staff can handle the workload 
demand created by CVE vulnerability processing at a rate calculated by their per-responder productiv-
ity and the number of responders. Ideally, CVE managers would hire more staff if the perceived ade-
quacy of CVE reporting is not keeping up with the desired adequacy.  Perceived adequacy is measured 
as the ratio of CVE vulnerabilities published to the total vulnerabilities considered in the CVE pro-
cess, ranging from 0 to 1: 

Perceived adequacy of vul reporting  
= CVE Vuls with Published IDs / Total Considered Vuls 

This hiring process creates a balancing feedback loop that (optimally) drives staff hiring to a level of 
desired adequacy, but funding levels and available capability may not permit hiring to the needed 
level. 

 
Figure 5: Expanding CVE Vulnerability Response Capacity Based on Perceived Demand 

While the perceived adequacy of CVE reporting is calculated out of the Total Considered Vuls, the 
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fraction of available patches will be ignored, which in subsequent refinements can create risk for the 
defender. The model is parameterized on the 

 number of infrastructure systems being defended (initially, 1,000 systems) 

 average number of patches per vulnerability required per system (initially, 1 patch/vul) 

 fraction of patches applied (initially, 0.9) 

 

 
Figure 6: Patching Systems Based on CVE Publishing 
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Figure 7: Adequacy of Vulnerability Management Perceived Operationally 
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risk created by ignoring patches 

= ignored patch risk factor 
                   *(Patches Ignored  
                       + (1-fraction patches applied)*total vuls without patches applied) 
         / total patches needed) 

The first term subtracts the risk created by ignoring patches from the perceived adequacy of vulnera-
bility management. This reflects that the actual adequacy is less than the perceived adequacy due to 
the potential for erroneously ignoring critical patches. But the situation is worse than that alone due to 
the fact that vulnerability reporting itself is not perfect. The second term of actual adequacy of vulner-
ability management subtracts from this amount, a fraction of the amount based on the inadequacy of 
vulnerability reporting. This adjustment is needed since the perceived adequacy of vulnerability man-
agement only accounts for those vulnerabilities reported to defenders through the CVE process, which 
itself only deals with a fraction of the total vulnerability population.  

2.2 Simulation Results 

We run the model described above with a rate of vulnerability discovery sufficient to generate the his-
torical rate of assigning CVE IDs, which are reported publicly. We had data on CVE ID assignment 
from the beginning of 1999 to the middle of 2017, which establishes the time period of the simulation. 
In Figure 8,  the behavior-over-time graph on the left shows the historical figures regarding CVE IDs 
assigned (simulation run #2) compared to that generated by the model (run #1). The graph on the right 
shows the total number of vulnerabilities discovered that were required to generate these CVE ID as-
signment numbers given the initial model setup. 

Figure 8: Vulnerability Discovery Level and Calibration with Historical CVE Reporting Levels 
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steadily over the period and is replaced with slightly increasing fractions in the other three tiers. The 
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second graph simply verifies that the model accurately reflects the level of reporting of CVE vulnera-
bilities (assigned IDs), as described previously in qualitative guidance for reporting. The fraction of 
CVE vulnerabilities ignored in each tier is simply one minus the fraction seen in this graph (i.e., vul-
nerabilities are either reported or ignored; there is no other option). Figure 10 splits out the quantity 
and timing of reported and ignored vulnerabilities based on these fractions. 

Figure 9: Vulnerabilities by Tier 

Figure 10: Considered Versus Ignored CVE Vulnerabilities over Time 

Figure 11 shows the fraction of total vulnerabilities ignored in the CVE process as it relates to the 
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identifier was assigned. 
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Figure 11: Correlation Between Cumulative System Patching and Fraction Vulnerabilities Ignored 

The results of model execution, as seen in the measures of perceived and actual vulnerability manage-
ment (shown in Figure 12), are striking. The behavior-over-time graph on the left shows that per-
ceived adequacy of vulnerability management drops, hovering around 0.8 in the time frame of the 
simulation. However, actual adequacy of vulnerability management drops significantly more, to less 
than 0.4 in the time frame of the simulation. The graph on the right shows that even if the perception 
of the adequacy of vulnerability management on the part of the defenders was near perfect (i.e., if the 
defender were able to immediately patch any vulnerabilities they were aware of or could become 
aware of), the actual adequacy of vulnerability management still hovers below 0.5. In this case, the 
actual adequacy of vulnerability management approaches the actual adequacy of CVE reporting. 

Figure 12: Adequacy of Vulnerability Management Over Time 
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3 Agent-Based Analysis of Multi-Party Coordinated 
Vulnerability Disclosure 

The agent-based model used to analyze MPCVDs was constructed using Ventity, a tool  that supports 
the modular construction of socio-technical models for scalable development by independent teams. 
Ventity enables the development of hybrid agent-based and system dynamics models. The basic CVD 
process is illustrated in Figure 13. The process becomes multi-party when more than one vendor is in-
volved in the CVD. Three primary agent types are specified in Ventity: Finders, Vendors, and Coordi-
nators. Finders and Reporters in the figure are combined as Finder agents in the model.  Deployers are 
not explicit agents in the model, though a vendor is categorized as large, medium, or small depending 
on how many deployers their product has. The optional relationships in the figure are not implemented 
in the model. 

 

Figure 13: CVD Process (Householder 2017) 

Figure 14 elaborates the behavior drivers for each of these agent types: 

 Finders: Finders are motivated by making money, by establishing their reputation, or a combina-
tion of these two. Bug bounties may serve as the financial incentive, while vulnerability publica-
tion may serve as the reputational incentive. 

 Vendors: Vendors are motivated ultimately by revenue generation and secondarily by generating 
and maintaining their customer base. Keeping quiet about vendor product vulnerabilities serves 
the vendor well before the patch is available; but after the patch is available, it may wish to report 
the availability of patches as soon as possible. 

 Coordinators: The coordinator is, of course, the manager of the coordinated vulnerability disclo-
sure who has the purpose of minimizing deployer exposure.  The general rule of good behavior 
and purpose for MPCVDs is to maintain secrecy during the term of the MPCVD, called the em-
bargo period. 
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Figure 14: Agent Goal Alignment 

The Ventity simulation runs many MPCVDs over two years to assess management strategies and poli-
cies for the coordinator to try out. Adjustable model parameters include the number of finders and 
vendors, size distribution of the MPCVDs and vendors, embargo duration, and the likelihood of acci-
dental and purposeful disclosure. The measure of social cost for deployers due to technical vulnerabil-
ities is elaborated in Appendix D and includes the likelihood of vulnerability exploitation, the maxi-
mum amount of damage, hacker vulnerability discovery time, attack rate per deployer, the 
amplification of the attack rate after disclosure, and user workaround costs over time.4 

3.1 Calibration 

The model was calibrated based on operational data collected by the CERT Coordination Center 
(CERT/CC) at Carnegie Mellon University’s Software Engineering Institute. During the entire period 
of study covering 24 years, 1,400 of 11,000 cases (12%) involved pre-disclosure coordination. In the 
five-year period between 2013 and 2018, the CERT/CC coordinated approximately 1,000 vulnerabil-
ity disclosure cases per year. Only a small fraction of these were large MPCVD cases (Householder 
2018). Interviews with the CERT/CC’s vulnerability coordination team helped us arrive at the model 
estimates for embargo failures and vendor participation rates.  

The current model under development has been calibrated along four dimensions: 

1. the quantity of MPCVDs per year (60-80 per year) 

 
4 adapted from (Cavusoglu 2007), equations 3 and 4 on page 175 
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2. the distribution of the size of the MPCVDs (fat-tailed, exponential) 

3. the ratio of MPCVDs in which the embargo held (percentages in the 1990s) 

4. the greater participation in MPCVDs of larger vendors than smaller ones 

Figure 15 shows the Ventity simulation results, as behavior-over-time graphs spanning 10 years (120 
months). 

Figure 15: Calibration Dimensions of the MPCVD Model 

3.2 Simulation Results 

One question we started our analysis with was how to improve the cooperation of vendors in terms of 
not divulging the existence of vulnerabilities within an MPCVD until the end of the embargo period. 
An embargo period of 45 days (or about 6.5 weeks in the simulation) is current common practice and 
was used for model calibration in the previous section.5 While faster patching is generally more ex-

 
5 The CERT/CC’s default embargo period is 45 days, with exceptions for active exploitation (shorter) or situations 

where extensive work by multiple parties is needed (longer) https://vuls.cert.org/confluence/pages/viewpage.ac-
tion?pageId=30638083 
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pensive for all vendors (in terms of pulling developers off planned development work), a small num-
ber of vendors choose to quickly develop patches and leak them to their users prior to the end of the 
embargo period.  In the simulation, this resulted in the under 10% of MPCVDs that did not hold, 
shown in Figure 15c. 

In Figure 16, the simulation also shows that shortening the embargo period (from 6.5 weeks to 4 
weeks) does, in fact, decrease MPCVD reneging rates (in this run down to 0); increasing the embargo 
period (from 6.5 weeks to 8 weeks) increases reneging rates. This is expected, since vendors will not 
be tempted to renege on MPCVD until after they’ve developed a patch. In addition, the longer an em-
bargo endures after patch development, the greater the chance of reneging. 

 

 

Figure 16:  Percentage of MPCVD Embargos that Hold by Length of Embargo Period 

While the short embargo ensures more MPCVDs hold through the embargo period, they are more 
costly to users than for the current embargo period, as seen in Figure 17. The current embargo period 
is a good middle ground to reduce cost to users. The sooner patches are distributed, the lower the so-
cial cost to deployers, whether the patch is distributed (and vulnerability disclosed) before or after the 
embargo. Increasing the embargo time leads to higher rates of reneging and corresponding higher rates 
of not having a patch available to deployers before the embargo period. This is the worst situation for 
the deployer and results in the highest social costs. We therefore conclude that adjusting the embargo 
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period to increase the likelihood that patches can be developed just in time appears to be a good strat-
egy for reducing cost. 

 

Figure 17:  Average Social Cost to Users by Length of Embargo Period 

4 Summary and Conclusions 

This paper presents multi-method modeling and analysis of two critical foundational processes of the 
cybersecurity vulnerability management ecosystem: 

1. the vulnerability management process for discovering, cataloging, and remediating vulnerabili-
ties 

2. the MPCVD process for coordinating the patching and disclosing of vulnerabilities among multi-
ple vendors 

Our work applied system dynamics analysis, using Vensim, to the vulnerability management process 
and agent-based model analysis using Ventity. Both tools are from Ventana Corporation. 

Preliminary results from our multi-method analyses show that the cybersecurity infrastructure can be-
come more vulnerable over time simply as a result of the vendor-based tiering of vulnerabilities used 
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in the CVE process. In addition, the goal of simply maintaining the secrecy of MPCVDs is not neces-
sarily the right criteria, in and of itself. If that were the criteria, you might decide to increase the length 
of the embargo period in order for organizations to develop the patches. It appears that adjusting the 
embargo period to increase the likelihood that patches can be developed by most vendors just in time 
is a good strategy for reducing cost. The larger conclusion from our multi-method analysis is that the 
misapplication of either of these foundational aspects could contribute to the fragility and risk associ-
ated with the many national infrastructures and organizational missions that rely on the Internet.  

We describe our analysis effort as a work in progress and our conclusions as preliminary due to the 
limited calibration and validation of our models. We are using data from the CERT Coordination Cen-
ter’s CVD function, as described, for our continuing calibration and validation efforts. In addition, our 
to-date analysis has identified additional areas to consider: 

 Additional questions to investigate include the following: Are there policies that can improve the 
cooperation of vendors in MPCVDs AND reduce social costs? OR is the best policy to shun non-
cooperators?  If so, when can you optimally bring them in? 

 Consider other measures of social cost due to cybersecurity vulnerabilities over that used in Effi-
ciency of Vulnerability Disclosure Mechanisms to Disseminate Vulnerability Knowledge (Cavuso-
glu 2007). This area of study has been relatively active and one we need to continue to review. 

 Continue to tune the model parameters to what we know or can easily find out. Where concrete 
data is not available, either direct future data collection efforts in this direction or, in the near 
term, focus on plausibility, based on subject matter expert opinion. 

 Consider additional review and refinement of model structure and logic: 

a. logic for the (purposeful) decision to disclose early based on the extent of the patch devel-
oped 

b. logic for accidental vs. purposeful disclosure in whether early disclosure occurs 

c. the impact that the size of the vendor has on its behavior (accidental vs. purposeful disclo-
sure) 

d. the impact of whether a vendor discloses early or not has on other vendors in the party or 
the community at large 

The last of these considerations has the potential to incorporate richer feedback dynamics that may be 
a central driver in the cybersecurity of national infrastructures. While the results of our initial efforts, 
described in this paper, should be viewed as preliminary, we believe that the approaches used and the 
depth of the modeling and simulation are sufficient to begin to understand key implications of the vul-
nerability management processes and possible avenues for their improved application in the future.   
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Appendix A: System Dynamics Modeling Overview 

System dynamics helps analysts model and analyze critical behavior as it evolves over time within 
complex socio-technical domains. Figure 18 summarizes the notation used in our system dynamics 
model. 

 
Figure 18: System Dynamics Notation 

The primary elements are variables of interest, stocks (which represent collections of resources, such 
as dissatisfied employees), and flows (which represent the transition of resources between stocks, such 
as satisfied employees becoming dissatisfied). Signed arrows represent causal relationships, where the 
sign indicates how the variable at the arrow’s source influences the variable at the arrow’s target. A 
positive (+) influence indicates that the values of the variables move in the same direction, and a nega-
tive () influence indicates that they move in opposite directions. A connected group of variables, 
stocks, and flows can create a path that is referred to as a feedback loop.  
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Appendix B: The Vulnerability Management Ecosystem System Dynamics Model 

 

Figure 19: Vulnerability Management Ecosystem System Dynamics Model 
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Appendix C: System Dynamics (Vensim) Model Parameters 

Model Variables Value in Baseline Units 

acceleration factor 2.00 range 1 to 10 

avg patches per vul per system 1.00 patches/vul/system 

baseline hiring rate 0.10 people//month 

criticality of ignored vuls 0.10 range 0 to 1 

desired adequacy of vul reporting 0.90 range 0 to 1 

eval period 12.00 months 

fraction CVE vuls reported[tier1] 1.00 range 0 to 1 

fraction CVE vuls reported[tier2] 0.95 range 0 to 1 

fraction CVE vuls reported[tier3] 0.60 range 0 to 1 

fraction CVE vuls reported[tier4] 0.30 range 0 to 1 

fraction discovered before patching 0.60 range 0 to 1 

fraction dormant patched 0.50 range 0 to 1 

fraction dormant perceived 0.20 range 0 to 1 

fraction patches applied 0.90 range 0 to 1 

fraction vuls initially patched 0.50 range 0 to 1 

init vul responders 3.00 people 

initial tier percentages[tier1] 0.60 range 0 to 1 

initial tier percentages[tier2] 0.20 range 0 to 1 

initial tier percentages[tier3] 0.15 range 0 to 1 

initial tier percentages[tier4] 0.05 range 0 to 1 

initial unapplied patches available 0.02 range 0 to 1 

initial vuls being classified fraction 0.00 range 0 to 1 

initial vuls being processed fraction 0.00 range 0 to 1 

initial vuls processed 5000.00 vuls 

max vpf 45.00 positive real 

min vpf 0.00 positive real 

nominal patch generation time 0.50 months 

nominal productivity 30.00 vuls/people/month 

number of infrastructure systems 1000.00 systems 

patch pub delay 3.00 months 

patching delay 3.00 months 

patching multiplier 10.00 positive real 
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Model Variables Value in Baseline Units 

shift vpf 1.00 positive real 

stretch pwf 10.00 positive real 

use random work multiplier 0.00 toggle 0/1 

vul com time 1.00 months 

vul dormancy 3.00 months 
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Appendix D: Agent-Based Model (Ventity) Parameters of the 
Social Cost Measure 

The social cost measure from Efficiency of Vulnerability Disclosure Mechanisms to Disseminate Vul-
nerability Knowledge6 appears below. The cost due to patch development is not included, to represent 
only the social cost to users (deployers). 

Social cost to users before embargo period over (p) = αNδDap2/4 
Social cost to users after embargo period over (p) = γNδDka(p-t0-T)/2 + Ns(p-t0-T) 
Social cost to users (p) 
  = IF p<=t0+T THEN Social cost to users before embargo period over (p)   
      ELSE Social cost to users before embargo period over (t0+T)   
                + Social cost to users after embargo period over (p) 
 

Equation  
Variables 

Description Value in Baseline Units 

t0  time MPCVD starts varies weeks 

δ  likelihood of vul exploitation 0.01 dmnl 

T  agreed disclosure time 
short (4 weeks), current 
(6.5 weeks), long (8 weeks) 

weeks 

p  time period vendor releases patch varies weeks 

γ  inefficiency measure for user 
workaround due to missing patch 

0.5 dmnl 

α  hacker vul discovery time 2 weeks 

a  attack rate per deployer prior to 
disclosure 

0.1 attacks/deployer/week 

k  amplification of attack rate after 
disclosure 

10 dmnl 

N 
number of deployers for the ven-
dor 

big (~1M), medium (~1K), 
small (~100) 

deployers 

D 
maximum amount of damage to 
deployer due to missing patch 

$50K dollars/attack 

 
  

 
6 See (Cavusoglu 2007), equations 3 and 4 on page 175. 
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