

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

MULTI-METHOD MODELING AND ANALYSIS OF
THE CYBERSECURITY VULNERABILITY
MANAGEMENT ECOSYSTEM
Andrew P. Moore (apm@sei.cmu.edu) & Allen D. Householder (adh@sei.cmu.edu)

July 2019

Abstract

This paper presents modeling and analysis of two critical foundational processes of the cybersecurity
vulnerability management ecosystem using a combination of system dynamics and agent-based mod-
eling techniques. The preliminary result from this analysis is that misapplication of either of these
foundational processes could contribute to the fragility and risk associated with the many national in-
frastructures and organizational missions that rely on the Internet. We use data from the CERT Coor-
dination Center that characterizes coordinated vulnerability disclosure for our previous and continuing
calibration and validation efforts. Our to-date analysis has identified additional areas for future work:
new questions to consider, alternate social cost measures to investigate, and new avenues for valida-
tion. While the results of our initial efforts should be viewed as preliminary due to limited calibration
and validation, we believe that the approaches used and the depth of modeling and simulation are suf-
ficient to begin to understand key implications of these processes and possible avenues for their im-
proved application in the future.

Keywords: cybersecurity, system dynamics, agent-based modeling, vulnerability management, coor-
dinated vulnerability disclosure, multi-method modeling

1 Introduction

Vulnerability management (VM) is the common term used to describe tasks such as technical cyberse-
curity vulnerability12 scanning, patch testing, and deployment (NIST 2013, Caralli 2010). VM prac-
tices focus on the positive action of identifying specific systems affected by known (post-disclosure)
vulnerabilities and reducing the risks they pose through the application of mitigations or remediation,
such as patches or configuration changes (Householder 2017).

VM practices nearly always deal with the output of a set of practices called Coordinated Vulnerability
Disclosure (CVD). Because many modern products are, in fact, composed of software and hardware

1 Published in the Proceedings of the 39th International Conference of the System Dynamics Society, July 2019.

2 Henceforth, we refer to technical cybersecurity vulnerabilities simply as vulnerabilities.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

components from multiple vendors, any of which may contain vulnerabilities, the CVD process in-
creasingly involves the cooperation of vendors with competing or misaligned priorities (Householder
2017, Thomson 2018). The CVD process involves a number of phases that are generally sequential in
time, although they can sometimes occur out of order. The phases are based on the ISO/IEC 3011
Standard (ISO/IEC 2013), as expanded in The CERT Guide to Coordinated Vulnerability Disclosure
(Householder 2017) and summarized below:

 A vulnerability is found – An individual or group finds a vulnerability in an existing system. The
individual or group is referred to as the finder. Many finders want the vendor to fix the problem,
so they report it to the vendor. Not all finders report vulnerabilities though.

 Vendor awareness – One or more vendors whose products are affected by the vulnerability may
become aware of it, whether through their own testing, via reports from cooperative finders, or as
a result of analyzing incidents or malware that exploits it. 

 Analysis and prioritization – The vendor confirms the report to ensure accuracy before action
can be taken and prioritizes reports relative to other work, including other reports.  

 Remediation – A remediation plan (ideally a software patch, but it could also be other mecha-
nisms) is developed and tested.  

 Public awareness – The vulnerability and its remediation plan are disclosed to the public. Public
awareness is often facilitated by the inclusion of information about the vulnerability in a vulnera-
bility database, such as the National Vulnerability Database operated by NIST (NIST
Information Technology Laboratory 2019) . Vulnerability databases use identifiers, such as the
Common Vulnerabilities and Exposures (CVE®) ID, to disambiguate distinct vulnerabilities.
Such cataloging can happen regardless of the availability of remediation advice. 

 Deployment – The remediation is applied to deployed systems.  

This paper presents modeling and analysis of two critical foundational aspects of the cybersecurity
vulnerability management ecosystem:

1. the process of identifying and responding to vulnerabilities that most organizations rely on for
their security defense (We refer to this as the vulnerability management [VM] process below.)
Key question: “What effect does the existing tiered approach to vulnerability reporting have on
the adequacy of vulnerability management overall?”

2. the Multi-Party CVD (MPCVD) process for coordinating the development of software patches
across a set of vendors whose products have an identified vulnerability
Key question: “How does the length of the period that vendors are not permitted to divulge the
existence of a vulnerability (the embargo period) affect keeping the costs associated with having
vulnerable systems?”

® The CVE and the CVE logos are registered trademarks of The MITRE Corporation.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

While our efforts are a work in progress, our preliminary analysis shows that the misapplication of ei-
ther of these foundational aspects could contribute to the fragility and risk associated with the many
national infrastructures and organizational missions that rely on the Internet.

1.1 Related Research

VM occurs in the later stages of vulnerability response (VR), which is the collective term for vulnera-
bility discovery, disclosure, and remediation. Unfortunately, the larger Internet ecosystem continues to
change, and adversaries continue to exploit vulnerabilities despite decades of VR effort. Recent re-
ports from RAND and Harvard’s Belfer Center have investigated rates of vulnerability rediscovery by
independent researchers (Ablon 2017, Herr 2017). Industry experts have posed pointed questions
about the value of directing security effort to aspects of VR at all if the supply of vulnerabilities turns
out to be, for all practical purposes, unbounded (Schneier 2014, Geer 2014).

To date, there has been very little work looking comprehensively at the VR ecosystem and the com-
plex multiparty interactions it entails. This gap makes it difficult for policy makers, developers, secu-
rity researchers, and network defenders to have well-reasoned discussions leading to informed deci-
sions about VR policy and practices. Recent work covers many parts of the problem, including

 security researcher incentives in bug bounty programs (Maillart 2016)

 product market share, network effects, and attacker attention (Arce 2016)

 patching rights leading to suboptimal patch deployment (August 2016)

Additionally, several security-related return-on-investment models have been proposed, including a
return-on-secure software process (Heitzenrater 2016) and return-on-penetration testing (Böhme
2010).

Early system dynamics modeling of cybersecurity vulnerability-related processes focused on attacker-
defender dynamics (Wiik 2004) and the limits of effectiveness within incident response teams (Gonza-
lez 2005). More recently, system dynamics models of vulnerability discovery as a way to counteract
attacker offensive capacity have been proposed (Moussouris 2015, Ellis 2017). In contrast, our model-
ing efforts focus on particular issues with regard to mechanisms that are used to catalog vulnerabilities
and coordinate their disclosure to improve infrastructure resilience. A similar ecosystem modeling ef-
fort (Frei 2010) focused on the dynamics of vulnerability discovery to patch availability, but has been
criticized for its sampling bias (Lindstrom 2009).

1.2 Modeling and Simulation Approach

We use a combination of system dynamics (using Vensim®) and agent-based modeling (using Ventity)
techniques in this paper. Some may argue that you can conduct agent-based modeling and analysis di-
rectly in Vensim. To some extent, this is true, but as agents become more and more heterogeneous in
their behavior, Vensim models (and system dynamics models generally) become more awkward to

® Vensim is a registered trademark of Ventana Systems, Inc. Ventity is also being developed by Ventana Systems.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

specify, implement, and analyze. Ventity overcomes this problem by allowing the modeling and exe-
cution of fully heterogeneous agents, while also improving the ability of the modeler to build modular
models constructed by disparate teams. Ultimately, we would like to have one unified, coherent, and
comprehensive tool to enable full-capability modeling of agent-based and system dynamic aspects of a
problem, as appropriate, without switching tools and the associated notations. Of course, other tools
may provide some of this integrated function, but we had already been using Vensim when we discov-
ered the possibility of agent-based modeling in Ventity.

Section 2 uses system dynamics modeling (and the Vensim toolset) to analyze core aspects of the vul-
nerability management process. Section 3 takes a deeper dive using agent-based modeling (and the
Ventity toolset) to analyze the MPCVD process for vulnerability patching and disclosure. The ap-
proaches used and the depth of the modeling and simulation are sufficient to understand the key impli-
cations of these processes and possible avenues for their improved application in the future. Section 4
summarizes the contributions of this research and directions for the future.

2 System Dynamics Analysis of the Cybersecurity Vulnerability
Management Process

2.1 Model Description

This section describes the system dynamics model as a series of incremental builds, the notation for
which is outlined in Appendix A. Each build is displayed in a separate figure. Sometimes the figure
builds on the previous figure. Other figures are components of the larger model, which is displayed in
Appendix B for reference. Key parameters of the model, including their types and initial values, are
described in Appendix C.

Figure 1 shows a very basic vulnerability discovery and patch process. People discover vulnerabilities
(i.e., the vulnerabilities become “known”) and initially decide to create patches for some fraction of
them. We refer to the vulnerabilities that are not initially targeted for patching as dormant. After tak-
ing some time to generate and publish vulnerability patches, they are made available to the general
public.

Figure 1: Vulnerability Discovery and Patching Process

This model can run in one of two modes: one that uses an average patch-generation time as constant in
the model and one that uses a random vulnerability patch work multiplier of that average time. Based

Known Vuls
being

Considered
discovering

vuls

Public Vuls
with Patches
Availablepublishing vuls

with patches

random vul
patch work
multiplier

-

use random
work multiplier

vul discovery
rate

+

Public but
Dormant Vuls

publishing vuls
without patches

Known Vuls with
Patch being
Developedstarting vul

patch creation

fraction vuls
initially patched

+

-
vul com

time

-

-

nominal
patch

generation
time

patch
generation

time

+

+

-

Discovering Vuls and
Developing Patches

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

on previous analysis of the vulnerability work factor, we choose the multiplier from an exponential
distribution as shown in Figure 2. The graph shows the multiplier along the x axis (i.e., the y values)
and the number of times each multiplier is generated during the simulation along the y axis.

Some dormant vulnerabilities remain dormant only until they are used in an attack, in which case there
becomes an urgent need for a patch by susceptible organizations. As shown in Figure 3, patches are
generated in the same way as before, but there is an acceleration factor due to the urgency that multi-
plies the speed of patching. This factor is a parameter of the model since we do not yet have firm data
on the increased speed of patching for urgent vulnerabilities. Some fraction of vulnerabilities will
never be patched; we refer to these as public forever-day vulnerabilities. Zero-day vulnerabilities, by
definition, become public the day they are exploited and remain “dormant” only as long as the time it
takes to generate the urgent patch.

Figure 2: Distribution of the Vulnerability Patch Work Multiplier

Figure 3: Dormant Vulnerability Possibly Becoming Urgent

Time Histogram

400

300

200

100

0
0-1 18-19 36-37 54-55 72-73 90-91

Y values

dm
nl

Time Histogram : Current

Known_Vuls
being

Considered
discovering

vuls

Public_Vuls
with_Patches

Availablepublishing_vuls
with_patches

random_vul
patch_work
multiplier

-

use_random
work_multiplier

vul_discovery
rate

+

Public_but
Dormant_Vuls

publishing_vuls
without_patches

Known_Vuls_with
Patch_being
Developedstarting_vul

patch_creation

fraction_vuls
initially_patched

+

-
vul_com

time

-

-

nominal
patch

generation
time

patch
generation

time

+

+

-

Discovering Vuls and
Developing Patches

becoming_forever
day_vuls

Public_Forever
Day_Vuls

Urgent_Vuls
with_Patches

Available
publishing

urgent_vuls
with_patches

-

Urgent_Vuls_with
Patch_being
Developedstarting

urgent_vulpatch

fraction_dormant
patched

vul_dormancy-

+

-

-

acceleration
factor

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Switching gears a bit in Figure 4, we now turn to the lifecycle of vulnerabilities as they are processed
in CVE.3 Vulnerabilities may be discovered after a patch has become available, but CVE generally
targets those vulnerabilities discovered before patching and only once those vulnerabilities become
publicly known. A five-tier framework is used to decide whether to report a discovered vulnerability
(Ragan 2016). Each tier is associated with a set of organizations―the vendors―whose product vul-
nerabilities are assigned to the tier. Each tier represents qualitatively whether vulnerabilities in that tier
will be reported in CVE.

Figure 4: CVE Vulnerability Processing Lifecycle

The system dynamics model of this tier framework―specifically the array variable “fraction CVE
vuls reported”―assigns probabilities associated with whether a vulnerability in the tier is processed as
follows:

 tier 1 (vulnerabilities must be reported) : p=1.0

 tier 2 (vulnerabilities should be reported) : p=0.95

 tier 3 (vulnerabilities may be reported) : p=0.60

 tier 4 (vulnerabilities may not be reported) : p=0.3

 tier 5 (vulnerabilities must not be reported) : p=0.0

These probabilities are initial estimates only; they are based strictly on the qualitative wording. They
can be updated as more information comes to light about how the CVE responders interpret the tiering
requirements. Absent that, we can run Monte Carlo simulations in Vensim to determine the effect of
probability variance on simulation behavior. Lastly, the simulation must determine what fraction of

3 We use “CVE” here for convenience since CVE is the most well-known vulnerability identifier in use in the vulnerabil-

ity management space. However, the model is intended to apply to any process by which vulnerabilities are selected
for inclusion into a list or database and subsequent remediation.

CVE_Vuls
with

Published_IDs

CVE_Vuls_being
Classifiedidentifying_possible

CVE_vuls
considering
CVE_vuls

fraction_CVE
vuls_reported

CVE_Ignored
Vuls

ignoring
CVE_vuls

CVE_Vuls
being_Processed

publishing
CVE_IDs

- +

Total
Considered

Vulsvul
consideration

+
tier_percentages

over_time

+ Identifying and
Processing CVE
Vulnerabilities

discovering
vuls publishing_vuls

with_patches

+

fraction_discovered
before_patching

+

+

<publishing_vuls
without_patches>

+

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

vulnerabilities discovered falls into each tier. This fraction, which may change over time, is repre-
sented in the array variable “tier fractions over time” as an effect function of model simulation time on
the tier percentages. Based on these variables and the inflow of discovered vulnerabilities, each con-
sidered vulnerability is processed and eventually published with a unique CVE ID.

Figure 5 deals directly with staffing to respond to vulnerabilities. CVE staff can handle the workload
demand created by CVE vulnerability processing at a rate calculated by their per-responder productiv-
ity and the number of responders. Ideally, CVE managers would hire more staff if the perceived ade-
quacy of CVE reporting is not keeping up with the desired adequacy. Perceived adequacy is measured
as the ratio of CVE vulnerabilities published to the total vulnerabilities considered in the CVE pro-
cess, ranging from 0 to 1:

Perceived adequacy of vul reporting
= CVE Vuls with Published IDs / Total Considered Vuls

This hiring process creates a balancing feedback loop that (optimally) drives staff hiring to a level of
desired adequacy, but funding levels and available capability may not permit hiring to the needed
level.

Figure 5: Expanding CVE Vulnerability Response Capacity Based on Perceived Demand

While the perceived adequacy of CVE reporting is calculated out of the Total Considered Vuls, the
actual adequacy of vul reporting is calculated out of the Total Vuls Discovered, which includes the
vulnerabilities ignored in CVE processing. Rather than treating ignored vulnerabilities as full weight,
we allow them to have diminished influence as determined by the fraction criticality of ignored vul-
nerabilities:

actual adequacy of vul reporting :
= CVE Vuls with Published IDs

 / ((1-fraction ignored vuls)*Total Vuls Discovered
 + (criticality of ignored vuls*fraction ignored vuls*Total Vuls Discovered))

The benefit associated with creating patches that address identified vulnerabilities comes as organiza-
tions apply relevant patches in defense of their systems and data. Figure 6 shows that although patches
are made available to defenders, as those patches are published for many organizations, it is the publi-
cation of the CVE ID that is critical to whether they decide to actually apply the patch or not. Some

CVE_Vuls
with

Published_IDsCVE_Ignored
Vuls

CVE_Vuls
being_Processed

publishing
CVE_IDs

Total_Vuls
Discoveredvul

discovery

actual_adequacy
of_CVE_reporting

Total
Considered_Vulsvul

consideration

perceived_adequacy
of_CVE_reporting

CVE_Vul
Respondershiring

CVE_staff

CVE_vul_response
productivity

+

+

+

-desired_adequacy
of_vul_reporting difficulty_keeping_up

with_vul_reporting
+

+

Hiring Staff to
Keep Up

baseline
hiring_rate

+
effect_of_demand

on_hiring

+
fraction

ignored_vuls

+
+

nominal
productivity

per_responder
productivity

+

++

-

+

discovering
vuls

-
criticality_of
ignored_vuls

-

+

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

fraction of available patches will be ignored, which in subsequent refinements can create risk for the
defender. The model is parameterized on the

 number of infrastructure systems being defended (initially, 1,000 systems)

 average number of patches per vulnerability required per system (initially, 1 patch/vul)

 fraction of patches applied (initially, 0.9)

Figure 6: Patching Systems Based on CVE Publishing

Just as we had a measure for the perceived adequacy of vulnerability reporting described above, we
have a measure of perceived adequacy of vulnerability management as shown in Figure 7. The meas-
ure is the ratio of the defender’s perception of the patches applied to the total patches needed, which
ranges from 0 to 1. For convenience in the model, we define this value equivalently as 1 minus the ra-
tio of the defender’s perception of patches not applied to the total patches needed. Both the numerator
and denominator of the ratio could be multiplied by the term fraction patches applied, but this term
cancels out to provide the following formulation:
perceived adequacy of vul management

= 1 – (perceived patches not applied / total patches needed)

CVE_Vuls_with
Published_IDs

CVE_Vuls_being
Processed

publishing
CVE_IDs

Unapplied
Patches

Available

making
patches

available

number_of
infrastructure

systems

+

Patches
Appliedapplying

patches
ignoring
patches

fraction_patches
applied

+-
Patches
Ignored

avg_patches
per_vul_per

system

patching_rate

+ + +

patching_rate
per_system

+

Patching
Infrastructure

SystemsPublic_Vuls
with_Patches

Availablepublishing_vuls
with_patches

+

+

+

Known_Vuls
with_Patch_being

Developed

Urgent_Vuls
with_Patches

Available
publishing

urgent_vuls
with_patches

+

+

Urgent_Vuls_with
Patch_being
Developed

patching
multiplier+

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Figure 7: Adequacy of Vulnerability Management Perceived Operationally

Both perceived patches not applied and total patches needed depend on patches currently made avail-
able to defenders as well as patches currently “in the works,” that is, patches that have yet to be devel-
oped. The primary difference between the two is that the perceived patches not applied includes only
the unapplied patches available out of the total patches available, and only a fraction—fraction
patches in works perceived (assumed to be 0.2 initially)—of the patching possible for public vulnera-
bilities in works:
perceived patches not applied

= Unapplied Patches Available
 + (patching possible for public vuls in works

 * fraction patches in works perceived)

total patches needed

= Total Patches Available
 + patching possible for public vuls in works

patching possible for public vuls in works

= number of infrastructure systems
 * avg patches per vul per system

 * (Public but Dormant Vuls
 + Known Vuls with Patch being Developed
 + Urgent Vuls with Patch being Developed)

The measure perceived adequacy of vul management described above admits that defenders probably
understand that their vulnerability and patch management is not perfect, at least to the extent that their
systems are susceptible to a vulnerability between the point of discovery and the point at which a
patch to that vulnerability is made available. Beyond that, we can measure the actual adequacy of vul-
nerability management that also measures the risk created by erroneously ignoring patches by the de-
fenders. The measure can be broken down into two components, as seen below.

actual adequacy of vul management
= (perceived adequacy of vul management - risk created by ignoring patches)

 - ((perceived adequacy of vul management - risk created by ignoring patches)
 * (1 - actual adequacy of vul reporting)

Unapplied
Patches

Considered

making
patches

available

ignoring
patches

fraction_patches
applied

-

Patches
Ignored

actual_adequacy
of_CVE_reporting

Total_Patches
Considered

patch
availability

rate
+

perceived_adequacy
of_vul_management

+
+

patching_rate

+

actual_adequacy_of
vul_management

+

+

+

Determining
Adequacy of
Vulnerability
Management

ignored_patch
risk_factor

total_patches
needed

perceived_patches
not_applied

-

+

-

fraction_patches_in
works_perceived

+

risk_created_by
ignoring_patches

+

-

+

patching_possible_for
public_vuls_in_works

+

+

-

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

risk created by ignoring patches

= ignored patch risk factor
 *(Patches Ignored
 + (1-fraction patches applied)*total vuls without patches applied)
 / total patches needed)

The first term subtracts the risk created by ignoring patches from the perceived adequacy of vulnera-
bility management. This reflects that the actual adequacy is less than the perceived adequacy due to
the potential for erroneously ignoring critical patches. But the situation is worse than that alone due to
the fact that vulnerability reporting itself is not perfect. The second term of actual adequacy of vulner-
ability management subtracts from this amount, a fraction of the amount based on the inadequacy of
vulnerability reporting. This adjustment is needed since the perceived adequacy of vulnerability man-
agement only accounts for those vulnerabilities reported to defenders through the CVE process, which
itself only deals with a fraction of the total vulnerability population.

2.2 Simulation Results

We run the model described above with a rate of vulnerability discovery sufficient to generate the his-
torical rate of assigning CVE IDs, which are reported publicly. We had data on CVE ID assignment
from the beginning of 1999 to the middle of 2017, which establishes the time period of the simulation.
In Figure 8, the behavior-over-time graph on the left shows the historical figures regarding CVE IDs
assigned (simulation run #2) compared to that generated by the model (run #1). The graph on the right
shows the total number of vulnerabilities discovered that were required to generate these CVE ID as-
signment numbers given the initial model setup.

Figure 8: Vulnerability Discovery Level and Calibration with Historical CVE Reporting Levels

The graphs in Figure 9 demonstrate the partitioning of CVE vulnerabilities into the four tiers de-
scribed previously. The graph on the left shows how the fraction of vulnerabilities in each tier changes
over time in the model. While we did not have hard data on these fractions, we believe that the dis-
played trend over the 18-year period is plausible. The fraction of vulnerabilities in tier 1 goes down
steadily over the period and is replaced with slightly increasing fractions in the other three tiers. The

Compare Model Handled Vuls with CVE History

200,000

150,000

100,000

50,000

0
2 2 2 2 2

2
2

2
2

2
2

2
2

2

1 1 1 1 1 1 1 1
1

1
1

1
1

1

1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

vu
ls

total VwIDs : Current 1 1 1 1 1 1 1 1 1 1 1 1

CVE IDs Assigned : Current 2 2 2 2 2 2 2 2 2 2

Total Vuls Discovered

300,000

225,000

150,000

75,000

0 1 1 1 1 1 1
1

1
1

1

1

1

1

1

1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

vu
ls

Total Vuls Discovered : Current 1 1 1 1 1 1 1 1 1 1

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

second graph simply verifies that the model accurately reflects the level of reporting of CVE vulnera-
bilities (assigned IDs), as described previously in qualitative guidance for reporting. The fraction of
CVE vulnerabilities ignored in each tier is simply one minus the fraction seen in this graph (i.e., vul-
nerabilities are either reported or ignored; there is no other option). Figure 10 splits out the quantity
and timing of reported and ignored vulnerabilities based on these fractions.

Figure 9: Vulnerabilities by Tier

Figure 10: Considered Versus Ignored CVE Vulnerabilities over Time

Figure 11 shows the fraction of total vulnerabilities ignored in the CVE process as it relates to the
level of cumulative system patching. The tiered approach described above combined with the general
decline in tier 1 vulnerabilities and the increase in lower tier vulnerabilities gives rise to a steady in-
crease in the fraction of ignored vulnerabilities. This increase results in the displayed decline in the
fraction of system patches applied by defenders since many of the vulnerabilities ignored in the CVE
process have critical patches available but are not on the radar screens of defenders since no CVE
identifier was assigned.

tier fractions over time

1

.75

.5

.25

0 4 4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

dm
nl

tier fractions over time[tier1] : Current 1 1 1 1 1 1

tier fractions over time[tier2] : Current 2 2 2 2 2 2

tier fractions over time[tier3] : Current 3 3 3 3 3 3

tier fractions over time[tier4] : Current 4 4 4 4 4 4

fraction CVE vuls reported

1

.75

.5

.25

0

4

3

2
1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

dm
nl

fraction CVE vuls reported[tier1] : Current 1 1 1 1 1

fraction CVE vuls reported[tier2] : Current 2 2 2 2 2

fraction CVE vuls reported[tier3] : Current 3 3 3 3 3 3

fraction CVE vuls reported[tier4] : Current 4 4 4 4 4 4

Total Considered Vuls

200,000

150,000

100,000

50,000

0
4 4 4 4 4 4 4 4 4 43 3 3 3 3 3 3 3 3 3

3

2 2 2 2 2 2 2
2

2
2

2

1 1 1 1 1
1

1
1

1

1

1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

vu
ls

Total Considered Vuls[tier1] : Current 1 1 1 1 1 1

Total Considered Vuls[tier2] : Current 2 2 2 2 2 2

Total Considered Vuls[tier3] : Current 3 3 3 3 3 3

Total Considered Vuls[tier4] : Current 4 4 4 4 4 4

CVE Ignored Vuls

30,000

22,500

15,000

7500

0 4 4 4 4 4 4
4

4

4

4

4

3 3 3 3 3
3

3
3

3

3

3

2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1
01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16

Date

vu
ls

CVE Ignored Vuls[tier1] : Current 1 1 1 1 1 1

CVE Ignored Vuls[tier2] : Current 2 2 2 2 2 2 2

CVE Ignored Vuls[tier3] : Current 3 3 3 3 3 3 3

CVE Ignored Vuls[tier4] : Current 4 4 4 4 4 4 4

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Figure 11: Correlation Between Cumulative System Patching and Fraction Vulnerabilities Ignored

The results of model execution, as seen in the measures of perceived and actual vulnerability manage-
ment (shown in Figure 12), are striking. The behavior-over-time graph on the left shows that per-
ceived adequacy of vulnerability management drops, hovering around 0.8 in the time frame of the
simulation. However, actual adequacy of vulnerability management drops significantly more, to less
than 0.4 in the time frame of the simulation. The graph on the right shows that even if the perception
of the adequacy of vulnerability management on the part of the defenders was near perfect (i.e., if the
defender were able to immediately patch any vulnerabilities they were aware of or could become
aware of), the actual adequacy of vulnerability management still hovers below 0.5. In this case, the
actual adequacy of vulnerability management approaches the actual adequacy of CVE reporting.

Figure 12: Adequacy of Vulnerability Management Over Time

system patching

1

.75

.5

.25

0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1
1

1 1 1 1 1 1 1 1 1 1 1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

fr
ac

ti
on

fraction system patches applied : Current 1 1 1 1 1 1 1 1

fraction ignored vuls : Current 2 2 2 2 2 2 2 2 2

adequacy of vul management

1

.75

.5

.25

0

3 3

3

3

3

3
3 3 3 3 3 3 3 3 3

2 2
2

2

2

2
2 2 2 2 2 2 2 2 2

1 1 1
1

1
1 1 1 1 1 1 1 1 1 1 1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

fr
ac

ti
on

perceived adequacy of vul management : Current 1 1 1 1 1 1

actual adequacy of vul management : Current 2 2 2 2 2 2 2

actual adequacy of CVE reporting : Current 3 3 3 3 3 3 3

adequacy of vul management

1

.75

.5

.25

0

3 3

3

3

3

3
3 3 3 3 3 3 3 3 3

2 2
2

2

2

2
2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

01/99 03/01 05/03 07/05 09/07 11/09 01/12 03/14 05/16
Date

fr
ac

ti
on

perceived adequacy of vul management : Current 1 1 1 1 1 1

actual adequacy of vul management : Current 2 2 2 2 2 2 2

actual adequacy of CVE reporting : Current 3 3 3 3 3 3 3

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

3 Agent-Based Analysis of Multi-Party Coordinated
Vulnerability Disclosure

The agent-based model used to analyze MPCVDs was constructed using Ventity, a tool that supports
the modular construction of socio-technical models for scalable development by independent teams.
Ventity enables the development of hybrid agent-based and system dynamics models. The basic CVD
process is illustrated in Figure 13. The process becomes multi-party when more than one vendor is in-
volved in the CVD. Three primary agent types are specified in Ventity: Finders, Vendors, and Coordi-
nators. Finders and Reporters in the figure are combined as Finder agents in the model. Deployers are
not explicit agents in the model, though a vendor is categorized as large, medium, or small depending
on how many deployers their product has. The optional relationships in the figure are not implemented
in the model.

Figure 13: CVD Process (Householder 2017)

Figure 14 elaborates the behavior drivers for each of these agent types:

 Finders: Finders are motivated by making money, by establishing their reputation, or a combina-
tion of these two. Bug bounties may serve as the financial incentive, while vulnerability publica-
tion may serve as the reputational incentive.

 Vendors: Vendors are motivated ultimately by revenue generation and secondarily by generating
and maintaining their customer base. Keeping quiet about vendor product vulnerabilities serves
the vendor well before the patch is available; but after the patch is available, it may wish to report
the availability of patches as soon as possible.

 Coordinators: The coordinator is, of course, the manager of the coordinated vulnerability disclo-
sure who has the purpose of minimizing deployer exposure. The general rule of good behavior
and purpose for MPCVDs is to maintain secrecy during the term of the MPCVD, called the em-
bargo period.

Legend

often same
individual /

organization

Finder

Reporter

Vendor Deployer

Coordinator

shares vul
info with

reports
vul to

reports
vul to

provides vul info
and/or patch to

provides
vul info to

provides
vul info to

relationship

optional
relationship

Role

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Figure 14: Agent Goal Alignment

The Ventity simulation runs many MPCVDs over two years to assess management strategies and poli-
cies for the coordinator to try out. Adjustable model parameters include the number of finders and
vendors, size distribution of the MPCVDs and vendors, embargo duration, and the likelihood of acci-
dental and purposeful disclosure. The measure of social cost for deployers due to technical vulnerabil-
ities is elaborated in Appendix D and includes the likelihood of vulnerability exploitation, the maxi-
mum amount of damage, hacker vulnerability discovery time, attack rate per deployer, the
amplification of the attack rate after disclosure, and user workaround costs over time.4

3.1 Calibration

The model was calibrated based on operational data collected by the CERT Coordination Center
(CERT/CC) at Carnegie Mellon University’s Software Engineering Institute. During the entire period
of study covering 24 years, 1,400 of 11,000 cases (12%) involved pre-disclosure coordination. In the
five-year period between 2013 and 2018, the CERT/CC coordinated approximately 1,000 vulnerabil-
ity disclosure cases per year. Only a small fraction of these were large MPCVD cases (Householder
2018). Interviews with the CERT/CC’s vulnerability coordination team helped us arrive at the model
estimates for embargo failures and vendor participation rates.

The current model under development has been calibrated along four dimensions:

1. the quantity of MPCVDs per year (60-80 per year)

4 adapted from (Cavusoglu 2007), equations 3 and 4 on page 175

Vendor
Performance

Generate and
Maintain

Customer Base

Generate
Revenue

Keep Vendor
Costs Low

Maintain Vendor
Reputation

Finder/Reporter
Performance

Establish
Reputation

Make
Money

Avoid
being Sued

Limit Vendor
Security
Exposure

Discover
Vulnerability

Publish Vulnerability
during Embargo

Offer Bug
Bounty

Report Vul
to Vendor

Fix Known
Vuls

Vendor
Finding Vuls

helps achieving

Key:

hinders achieving

Coordinator
Performance

Coordinate
Vulnerability
Disclosure

Minimize Deployer
Exposure

Keeping Quiet
about Vuls

during Embargo
before Patching

Keeping Quiet
about Vuls

during Embargo
after Patching

Clears Comms
& Respectful
Treatment

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

2. the distribution of the size of the MPCVDs (fat-tailed, exponential)

3. the ratio of MPCVDs in which the embargo held (percentages in the 1990s)

4. the greater participation in MPCVDs of larger vendors than smaller ones

Figure 15 shows the Ventity simulation results, as behavior-over-time graphs spanning 10 years (120
months).

Figure 15: Calibration Dimensions of the MPCVD Model

3.2 Simulation Results

One question we started our analysis with was how to improve the cooperation of vendors in terms of
not divulging the existence of vulnerabilities within an MPCVD until the end of the embargo period.
An embargo period of 45 days (or about 6.5 weeks in the simulation) is current common practice and
was used for model calibration in the previous section.5 While faster patching is generally more ex-

5 The CERT/CC’s default embargo period is 45 days, with exceptions for active exploitation (shorter) or situations

where extensive work by multiple parties is needed (longer) https://vuls.cert.org/confluence/pages/viewpage.ac-
tion?pageId=30638083

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

pensive for all vendors (in terms of pulling developers off planned development work), a small num-
ber of vendors choose to quickly develop patches and leak them to their users prior to the end of the
embargo period. In the simulation, this resulted in the under 10% of MPCVDs that did not hold,
shown in Figure 15c.

In Figure 16, the simulation also shows that shortening the embargo period (from 6.5 weeks to 4
weeks) does, in fact, decrease MPCVD reneging rates (in this run down to 0); increasing the embargo
period (from 6.5 weeks to 8 weeks) increases reneging rates. This is expected, since vendors will not
be tempted to renege on MPCVD until after they’ve developed a patch. In addition, the longer an em-
bargo endures after patch development, the greater the chance of reneging.

Figure 16: Percentage of MPCVD Embargos that Hold by Length of Embargo Period

While the short embargo ensures more MPCVDs hold through the embargo period, they are more
costly to users than for the current embargo period, as seen in Figure 17. The current embargo period
is a good middle ground to reduce cost to users. The sooner patches are distributed, the lower the so-
cial cost to deployers, whether the patch is distributed (and vulnerability disclosed) before or after the
embargo. Increasing the embargo time leads to higher rates of reneging and corresponding higher rates
of not having a patch available to deployers before the embargo period. This is the worst situation for
the deployer and results in the highest social costs. We therefore conclude that adjusting the embargo

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

period to increase the likelihood that patches can be developed just in time appears to be a good strat-
egy for reducing cost.

Figure 17: Average Social Cost to Users by Length of Embargo Period

4 Summary and Conclusions

This paper presents multi-method modeling and analysis of two critical foundational processes of the
cybersecurity vulnerability management ecosystem:

1. the vulnerability management process for discovering, cataloging, and remediating vulnerabili-
ties

2. the MPCVD process for coordinating the patching and disclosing of vulnerabilities among multi-
ple vendors

Our work applied system dynamics analysis, using Vensim, to the vulnerability management process
and agent-based model analysis using Ventity. Both tools are from Ventana Corporation.

Preliminary results from our multi-method analyses show that the cybersecurity infrastructure can be-
come more vulnerable over time simply as a result of the vendor-based tiering of vulnerabilities used

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

in the CVE process. In addition, the goal of simply maintaining the secrecy of MPCVDs is not neces-
sarily the right criteria, in and of itself. If that were the criteria, you might decide to increase the length
of the embargo period in order for organizations to develop the patches. It appears that adjusting the
embargo period to increase the likelihood that patches can be developed by most vendors just in time
is a good strategy for reducing cost. The larger conclusion from our multi-method analysis is that the
misapplication of either of these foundational aspects could contribute to the fragility and risk associ-
ated with the many national infrastructures and organizational missions that rely on the Internet.

We describe our analysis effort as a work in progress and our conclusions as preliminary due to the
limited calibration and validation of our models. We are using data from the CERT Coordination Cen-
ter’s CVD function, as described, for our continuing calibration and validation efforts. In addition, our
to-date analysis has identified additional areas to consider:

 Additional questions to investigate include the following: Are there policies that can improve the
cooperation of vendors in MPCVDs AND reduce social costs? OR is the best policy to shun non-
cooperators? If so, when can you optimally bring them in?

 Consider other measures of social cost due to cybersecurity vulnerabilities over that used in Effi-
ciency of Vulnerability Disclosure Mechanisms to Disseminate Vulnerability Knowledge (Cavuso-
glu 2007). This area of study has been relatively active and one we need to continue to review.

 Continue to tune the model parameters to what we know or can easily find out. Where concrete
data is not available, either direct future data collection efforts in this direction or, in the near
term, focus on plausibility, based on subject matter expert opinion.

 Consider additional review and refinement of model structure and logic:

a. logic for the (purposeful) decision to disclose early based on the extent of the patch devel-
oped

b. logic for accidental vs. purposeful disclosure in whether early disclosure occurs

c. the impact that the size of the vendor has on its behavior (accidental vs. purposeful disclo-
sure)

d. the impact of whether a vendor discloses early or not has on other vendors in the party or
the community at large

The last of these considerations has the potential to incorporate richer feedback dynamics that may be
a central driver in the cybersecurity of national infrastructures. While the results of our initial efforts,
described in this paper, should be viewed as preliminary, we believe that the approaches used and the
depth of the modeling and simulation are sufficient to begin to understand key implications of the vul-
nerability management processes and possible avenues for their improved application in the future.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

5 Acknowledgements

The authors thank SEI/CERT colleagues Soumyo Moitra, William Casey, Jeffrey Chrabaszcz, and Pe-
ter Chen for their insights and data analysis that helped ground this modeling effort. We appreciate the
capable review and technical edits by Sandy Shrum and Barbara White, as well as the very helpful
feedback for improving the paper from the reviewers for the Conference of the System Dynamics So-
ciety. Finally, many thanks to the developers at Ventana Systems, Inc. for helping to solve several
model formulation problems as we learned how to use Ventity.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

References

Ablon, L. and Bogart, T. 2017. Zero Days, Thousands of Nights: The Life and Times of Zero-Day

Vulnerabilities and Their Exploits. Santa Monica, CA: RAND Corporation.

Arce, D.G. 2016. “Malware and Market Share.” Workshop on the Economics of Information Security.

August, T., Dao, D., and Kim, K. 2016. “Market Segmentation and Software Security: Pricing Patching

Rights.” Workshop on the Economics of Information Security.

Böhme, R. and Félegyházi, M. 2010. “Optimal information security investment with penetration testing,” in

Decision and Game Theory for Security, ser. Lecture Notes in Computer Science (LNCS).

Springer Berlin Heidelberg, vol. 6442, pp. 21–37.

Caralli, R.A., J.H. Allen, and D.W. & White. 2010. CERT Resilience Management Model: A Maturity

Model for Managing Operational Resilience. Addison-Wesley Professional .

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=514489.

Cavusoglu, H. & Raghunathan, S. 2007. "Efficiency of Vulnerability Disclosure Mechanisms to

Disseminate Vulnerability Knowledge." IEEE Transactions on Software Engineering 171-185.

https://ieeexplore.ieee.org/document/4084135/.

Ellis, R., Huang, K., Siegel, M., Moussouris, K., & Houghton, J. 2017. Fixing a hole: The labor market for

bugs. New Solutions for Cybersecurity, 122-147.

Frei, S., et al. 2010. "Modeling the security ecosystem-the dynamics of (in) security." Economics of

Information Security and Privacy. Springer US. 79-106.

Geer, D. 6 August 2014. “Cybersecurity as Realpolitik.” Keynote at BlackHat.

Gonzalez, J. J., Kossakowski, K. P., and Wiik, J. 2005. Limits to Effectiveness in Computer Security

Incident Response Teams. In Boston, Massachusetts: Twenty Third International Conference of

the System Dynamics Society.

Heitzenrater, C., Böhme, R., and Simpson, A. 2016. “The Days Before Zero Day: Investment Models for

Secure Software Engineering.” Workshop on the Economics of Information Security.

Herr, T., Schneier B., and Morris, C. July 2017. “Taking Stock: Estimating Vulnerability Rediscovery.”

Paper, Cyber Security Project, Belfer Center.

Householder, A.D. 2018. "Analyzing 24 Years of CVD." FIRST Vendor TC. Atlanta, GA.

https://www.first.org/resources/papers/atlanta2018/20180227-Analyzing-24-Years-of-CVD-Allen-

Householder-FIRST-PSIRT-TC.pdf.

Householder, A.D., G. Wassermann, A. Manion, and C. & King. 2017. The CERT Guide to Coordinated

Vulnerability Disclosure. Pittsburgh, PA: Carnegie Mellon University.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=503330.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

ISO/IEC Technical Committee JTC 1/SC 27 IT Security Techniques. 2013. Information Technology -

Security Techniques - Vulnerability Handling Processes.

https://www.iso.org/standard/53231.html.

Lindstrom, P. 14 July 2009. “Modelling the Security Ecosystem – is exploit availability exceeding patch

availability?” Spire Security blog post.

Klinedinst, D. 2015. “CVSS and the Internet of Things”. https://inights.sei.cmu.edu/cert/2015/09/cvss-

andthe-internet-of-things.html

Maillart, T., et al. 2016. "Given Enough Eyeballs, All Bugs Are Shallow?" Workshop on the Economics of

Information Security.

Moussouris, Katie. 2015. "The Wolves Of Vuln Street - The First System Dynamics Model Of The 0Day

Market". RSA Conference (also HackerOne).

NIST Information Technology Laboratory. 2019. National Vulnerability Database. https://nvd.nist.gov.

NIST. n.d. NIST Special Publication 800-40 Revision 3: Guide to Enterprise Patch Management

Technologies. https://www.nist.gov/publications/guide-enterprise-patch-management-

technologies.

Ragan, Steve. 2016. "Over 6,000 Vulnerabilities Went Unassigned by MITRE's CVE Project in 2015."

CSO Online. https://www.csoonline.com/article/3122460/over-6000-vulnerabilities-went-

unassigned-by-mitres-cve-project-in-2015.html.

Schneier, B. 19 May 2014. “Should U.S. Hackers Fix Cybersecurity Holes or Exploit Them?” The Atlantic.

Thomson, I. 2018. "Revialed: El Reg blew lid off Meltdown CPU bug before Intel told US govt - and how

bitter tech rivals teamed up." The Register.

https://www.theregister.co.uk/2018/08/09/meltdown_spectre_cert_timing/.

Wiik, J., Gonzalez, J. J., Lipson, H. F., and Shimeall, T. J. July 2004. Dynamics of Vulnerability--Modeling

the Life Cycle of Software Vulnerabilities. In Proceedings of 22nd International System Dynamics

Conference.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Appendix A: System Dynamics Modeling Overview

System dynamics helps analysts model and analyze critical behavior as it evolves over time within
complex socio-technical domains. Figure 18 summarizes the notation used in our system dynamics
model.

Figure 18: System Dynamics Notation

The primary elements are variables of interest, stocks (which represent collections of resources, such
as dissatisfied employees), and flows (which represent the transition of resources between stocks, such
as satisfied employees becoming dissatisfied). Signed arrows represent causal relationships, where the
sign indicates how the variable at the arrow’s source influences the variable at the arrow’s target. A
positive (+) influence indicates that the values of the variables move in the same direction, and a nega-
tive () influence indicates that they move in opposite directions. A connected group of variables,
stocks, and flows can create a path that is referred to as a feedback loop.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Appendix B: The Vulnerability Management Ecosystem System Dynamics Model

Figure 19: Vulnerability Management Ecosystem System Dynamics Model

CVE_Vuls_with
Published_IDs

CVE_Vuls_being
Classifiedidentifying_possible

CVE_vuls
considering
CVE_vuls

fraction_CVE
vuls_reported

CVE_Ignored
Vuls

ignoring
CVE_vuls

CVE_Vuls_being
Processed

publishing
CVE_IDs

- +

Total_Vuls
Discoveredvul

discovery

Unapplied
Patches

Considered

making
patches

available

number_of
infrastructure

systems
+

Patches
Appliedapplying

patches
ignoring
patches

fraction_patches
applied

+-

Patches
Ignored

actual_adequacy
of_CVE_reporting

Total_Patches
Considered

patch
availability

rate

+

perceived_adequacy
of_vul_management

+
+

Total
Considered_Vulsvul

consideration

perceived_adequacy
of_CVE_reporting

CVE_Vul
Respondershiring

CVE_staff

CVE_vul_response
productivity

+

+

+

+

-desired_adequacy
of_vul_reporting difficulty_keeping_up

with_vul_reporting
+

+

Hiring Staff to
Keep Up

avg_patches_per
vul_per_system

patching_rate

+ + +

patching_rate
per_system

+

actual_adequacy_of
vul_management

+

+

baseline
hiring_rate

+
effect_of_demand

on_hiring

+
fraction

ignored_vuls

+
+

nominal
productivity

per_responder
productivity

+

+
+

-

+

+

Identifying and
Processing CVE
Vulnerabilities

Patching
Infrastructure

Systems

Determining
Adequacy of
Vulnerability
Management

Known_Vuls
being

Considered
discovering

vuls

Public_Vuls
with_Patches

Availablepublishing_vuls
with_patches

+

+

random_vul
patch_work
multiplier

-

use_random
work_multiplier

ignored_patch
risk_factor

+

vul_discovery
rate

+

+
Public_but

Dormant_Vuls

publishing_vuls
without_patches

Known_Vuls
with_Patch

being_Developedstarting_vul
patch_creation

fraction_vuls
initially_patched

+

-

vul_com
time

-

-

fraction_discovered
before_patching

+

+

nominal_patch
generation

time

patch
generation

time

+

+

-

Discovering Vuls and
Developing Patches

<publishing_vuls
without_patches>

-
criticality_of
ignored_vuls

-

+

+

becoming_forever
day_vuls

Public_Forever
Day_Vuls

Urgent_Vuls
with_Patches

Available
publishing

urgent_vuls
with_patches

+
total_patches

needed

perceived_patches
not_applied

-

+

-

-

+

Urgent_Vuls_with
Patch_being
Developedstarting_urgent

vul_patch

fraction_dormant
patched

vul_dormancy-

+

-

-

acceleration
factor

public_vuls
in_works

+

+

+

fraction_patches_in
works_perceived

+

patching
multiplier

+

risk_created_by
ignoring_patches

+

-

+

<risk_created_by
ignoring_patches>

-

fraction_system
patches_applied

<Total_Patches
Considered>

patching_possible_for
public_vuls_in_works

+

+

+

tier_fractions
over_time

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Appendix C: System Dynamics (Vensim) Model Parameters

Model Variables Value in Baseline Units

acceleration factor 2.00 range 1 to 10

avg patches per vul per system 1.00 patches/vul/system

baseline hiring rate 0.10 people//month

criticality of ignored vuls 0.10 range 0 to 1

desired adequacy of vul reporting 0.90 range 0 to 1

eval period 12.00 months

fraction CVE vuls reported[tier1] 1.00 range 0 to 1

fraction CVE vuls reported[tier2] 0.95 range 0 to 1

fraction CVE vuls reported[tier3] 0.60 range 0 to 1

fraction CVE vuls reported[tier4] 0.30 range 0 to 1

fraction discovered before patching 0.60 range 0 to 1

fraction dormant patched 0.50 range 0 to 1

fraction dormant perceived 0.20 range 0 to 1

fraction patches applied 0.90 range 0 to 1

fraction vuls initially patched 0.50 range 0 to 1

init vul responders 3.00 people

initial tier percentages[tier1] 0.60 range 0 to 1

initial tier percentages[tier2] 0.20 range 0 to 1

initial tier percentages[tier3] 0.15 range 0 to 1

initial tier percentages[tier4] 0.05 range 0 to 1

initial unapplied patches available 0.02 range 0 to 1

initial vuls being classified fraction 0.00 range 0 to 1

initial vuls being processed fraction 0.00 range 0 to 1

initial vuls processed 5000.00 vuls

max vpf 45.00 positive real

min vpf 0.00 positive real

nominal patch generation time 0.50 months

nominal productivity 30.00 vuls/people/month

number of infrastructure systems 1000.00 systems

patch pub delay 3.00 months

patching delay 3.00 months

patching multiplier 10.00 positive real

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Model Variables Value in Baseline Units

shift vpf 1.00 positive real

stretch pwf 10.00 positive real

use random work multiplier 0.00 toggle 0/1

vul com time 1.00 months

vul dormancy 3.00 months

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Appendix D: Agent-Based Model (Ventity) Parameters of the
Social Cost Measure

The social cost measure from Efficiency of Vulnerability Disclosure Mechanisms to Disseminate Vul-
nerability Knowledge6 appears below. The cost due to patch development is not included, to represent
only the social cost to users (deployers).

Social cost to users before embargo period over (p) = αNδDap2/4
Social cost to users after embargo period over (p) = γNδDka(p-t0-T)/2 + Ns(p-t0-T)
Social cost to users (p)
 = IF p<=t0+T THEN Social cost to users before embargo period over (p)
 ELSE Social cost to users before embargo period over (t0+T)
 + Social cost to users after embargo period over (p)

Equation
Variables

Description Value in Baseline Units

t0 time MPCVD starts varies weeks

δ likelihood of vul exploitation 0.01 dmnl

T agreed disclosure time
short (4 weeks), current
(6.5 weeks), long (8 weeks)

weeks

p time period vendor releases patch varies weeks

γ inefficiency measure for user
workaround due to missing patch

0.5 dmnl

α hacker vul discovery time 2 weeks

a attack rate per deployer prior to
disclosure

0.1 attacks/deployer/week

k amplification of attack rate after
disclosure

10 dmnl

N
number of deployers for the ven-
dor

big (~1M), medium (~1K),
small (~100)

deployers

D
maximum amount of damage to
deployer due to missing patch

$50K dollars/attack

6 See (Cavusoglu 2007), equations 3 and 4 on page 175.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a feder-
ally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

CERT® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-0192

	Multi-Method Modeling and Analysis of the Cybersecurity Vulnerability Management Ecosystem
	Abstract
	1 Introduction
	2 System Dynamics Analysis of the Cybersecurity VulnerabilityManagement Process
	3 Agent-Based Analysis of Multi-Party CoordinatedVulnerability Disclosure
	4 Summary and Conclusions
	5 Acknowledgements
	References
	Appendix A: System Dynamics Modeling Overview
	Appendix B: The Vulnerability Management Ecosystem System Dynamics Model
	Appendix C: System Dynamics (Vensim) Model Parameters
	Appendix D: Agent-Based Model (Ventity) Parameters of theSocial Cost Measure

