
Design: REV-03.18.2016.0 | Template: 01.04.2023

Report to the Congressional Defense
Committees on National Defense
Authorization Act (NDAA) for
Fiscal Year 2022 Section 835
Independent Study on Technical
Debt in Software-Intensive Systems
Ipek Ozkaya
Forrest Shull
Julie Cohen
Brigid O’Hearn

November 2023

TECHNICAL REPORT
CMU/SEI-2023-TR-003
DOI: 10.1184/R1/24043392

Software Solutions Division

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution.

https://www.sei.cmu.edu

https://www.sei.cmu.edu/

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-
strued as an official Government position, policy, or decision, unless designated by other documentation.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA
01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu-
tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for in-
ternal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM23-1063

mailto:permission@sei.cmu.edu

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table of Contents

Abstract iii

1 Background 1

2 Study Methodology 3

3 Data Sources 4

4 Findings and Examples 6
4.1 Findings from Literature Review 6
4.2 Findings from Interviews 7
4.3 Findings from Deep Dives on Program Data 11

5 Recommendations 12

Appendix A: Findings Against FY22 NDAA Section 835(b) Study Elements 21

Appendix B: Technical Debt Item Examples 26

Appendix C: Literature Reviews of Technical Debt Management Practices 35

Abbreviations and Acronyms 38

References/Bibliography 40

List of Tables

Table 1: Summary of the Technical Debt Interviews 5

Table 2. Recommendations Against FY22 NDAA Section 835(b) Study Elements 19

Table 3: Example of Recognizing Technical Debt with Static Code Analysis 28

Table 4: Example of Recognizing Technical Debt from Observable Symptoms 29

Table 5: Example of Recognizing Technical Debt Requiring Architecture Rework to Enhance Security 31

Table 6: Example of Recognizing Technical Debt in the Test Infrastructure 33

Table 7: Example of Recognizing Technical Debt Within Infrastructure Misalignment 34

Table 8: Literature Review 35

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Abstract

A team from Carnegie Mellon University’s Software Engineering Institute (SEI) conducted an in-
dependent study to satisfy the requirements of the Fiscal Year 2022 National Defense Authoriza-
tion Act (NDAA) Section 835, Independent Study on Technical Debt in Software-Intensive Sys-
tems.

This report describes the conduct of the study, summarizes the technical trends observed, and pre-
sents the resulting recommendations. The study methodology includes a literature review, a re-
view of SEI reports developed for program stakeholders, deep dives on program data from SEI
engagements with Department of Defense (DoD) programs, and interviews conducted using the
10 study elements specified in Section 835(b).

The study concludes that programs are aware of the importance of managing technical debt. Fur-
thermore, a number of DoD programs have established practices to actively manage technical
debt. During this study, the DoD published several guidance documents that begin to include
technical debt and technical debt management as an essential practice for successful software de-
velopment. Study recommendations include that the DoD must continue to update policy/guid-
ance and empower programs to incorporate technical debt practices as part of their software de-
velopment activities while enabling research in improved tool support and data collection.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

1 Background

The Fiscal Year 2022 National Defense Authorization Act (NDAA) Section 835, Independent
Study on Technical Debt in Software-Intensive Systems requires the secretary of defense to “enter
into an agreement with a federally funded research and development center to study technical debt
in software-intensive systems” [NDAA 2021]. Satisfying this requirement, Carnegie Mellon Uni-
versity’s Software Engineering Institute (SEI), a recognized leader in the practice of managing
technical debt, was asked to lead this work with a start date of May 1, 2022.

Per the Section 835(b) study elements [NDAA 2021], this study is designed to
include analyses and recommendations, including actionable and specific guidance and any
recommendations for statutory or regulatory modifications, on the following:
(1) Qualitative and quantitative measures which can be used to identify a desired future state
for software-intensive systems.
(2) Qualitative and quantitative measures that can be used to assess technical debt.
(3) Policies for data access to identify and assess technical debt and best practices for soft-
ware-intensive systems to make such data appropriately available for use.
(4) Forms of technical debt which are suitable for objective or subjective analysis.
(5) Current practices of Department of Defense software-intensive systems to track and use
data related to technical debt.
(6) Appropriate individuals or organizations that should be responsible for the identification
and assessment of technical debt, including the organization responsible for independent
assessments.
(7) Scenarios, frequency, or program phases during which technical debt should be
assessed.
(8) Best practices to identify, assess, and monitor the accumulating costs technical debt.
(9) Criteria to support decisions by appropriate officials on whether to incur, carry, or
reduce technical debt.
(10) Practices for the Department of Defense to incrementally adopt to initiate practices for
managing or reducing technical debt.

Section 835(d) requires the Secretary to “submit to the congressional defense committees a report
on the study required […] along with any additional information and views as desired in publicly
releasable and unclassified forms” [NDAA 2021].

This report serves as the required independent study due no later than 18 months after entering
into the agreement. The following sections briefly describe how we conducted the study, summa-
rize the technical trends observed, and present the resulting recommendations. Appendix A fur-
ther summarizes the specific technical content applicable to each of the 10 study elements speci-
fied in Section 835(b).

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Definition of Technical Debt. While software professionals sometimes define technical debt dif-
ferently, we scoped this work according to the definition in NDAA Section 835, which is “an ele-
ment of design or implementation that is expedient in the short term, but that would result in a
technical context that can make a future change costlier or impossible” [NDAA 2021].
• This definition conforms to the one used by the SEI based on a substantial body of work with

both industry and the Department of Defense (DoD) [Avgeriou 2016, Kruchten 2019, Ozkaya
2022]. In addition, this definition is broadly accepted as also noted by a recent study on the
future of software engineering emphasizing that successful software delivery must include
technical debt management [Avgeriou 2023].

• This definition also conforms to the definition in Department of Defense Instruction (DoDI)
5000.87, Operation of the Software Acquisition Pathway, “Consists of design or implementa-
tion constructs that are expedient in the short term but that set up a technical context that can
make a future change costlier or impossible. Technical debt may result from having code is-
sues related to architecture, structure, duplication, test coverage, comments and documenta-
tion, potential bugs, complexity, coding practices, and style which may accrue at the level of
overall system design or system architecture, even in systems with great code quality” [DoD
2020b]. A similar definition is also provided in the DoD’s recently published Software Engi-
neering for Continuous Delivery of Warfighting Capability [DoD 2023c]. These definitions
further conform to the notion that delayed upgrades, technology refresh, and sustainment
items also become technical debt.

Related to technical debt, this report also refers to technical debt items. A technical debt item is a
single issue that connects affected development artifacts with consequences for the quality, value,
and cost of the system triggered by one or more causes related to business, change in context, de-
velopment process, and people and teams [Kruchten 2019].

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2 Study Methodology

The analyses and recommendations for this technical debt study draw from a series of activities
led by the SEI and executed according to a roadmap agreed to with the Office of the Under Secre-
tary of Defense for Acquisition & Sustainment (OUSD(A&S)):
• Literature review. The study team completed a literature review that summarizes the state of

the practice. A particular focus area is the gap between automation (i.e., static analysis tools)
and its ability to alert users to comprehensive symptoms of technical debt and the tools
needed to guide developers and decision makers in the tradeoff analysis needed to decide
whether to resolve or continue to keep the technical debt. (See Appendix C.)

• Interviews. Within the scope of this study, the SEI led 16 engagements, which included inter-
viewing stakeholders from the U.S. Federal Government and industry, to gain a broad view of
the state of the practice. The study elements specified in Section 835(b) were covered in the
interviews. Most interviews were held with one to five stakeholders representing various
roles. Of the interviews,
− Eleven were held with DoD organizations.
− Four were held with industry.
− One was held with a program under another U.S. Federal Government agency, the National

Aeronautics and Space Administration Jet Propulsion Laboratory (NASA JPL).
• Deep dives on program data. SEI subject matter experts engaged with DoD programs out-

side of this study to examine their practices, data, and decision making related to technical
debt in more depth. This work helped program teams move beyond buzzwords and develop a
more fine-grained understanding of actual practices and how programs treat different types of
issues.

• Report for program stakeholders. The SEI’s ongoing work with a large, safety-critical pro-
gram provided further detailed insights and informed the recommendations in this report. The
SEI developed a report describing the state of the practice, issues to be aware of at the pro-
gram level, and examples of technical debt’s cybersecurity impact, which was delivered to the
program. The report formed the basis for a discussion with the program that elicited feedback
about the feasibility and importance of these issues in the program context. The goal of the
report was to highlight, using examples, the various ways technical debt can manifest itself
and be detected. An excerpt of this program’s report is included in Appendix B, which is in-
tended to provide examples of technical debt and how it can be recorded. These examples can
be used as guidance for technical debt identification techniques and serve as templates for re-
cording similar kinds of technical debt as technical debt items.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3 Data Sources

The data and experiences we used to draw observations, distill findings, and formulate recommen-
dations come from several sources. We chose these sources to
• provide coverage across the DoD by including Army, Navy, Air Force, and Joint programs
• cover important domains of interest for the DoD, including software in embedded weapons

systems, command and control (C2) software, and defense business systems (DBS)
• provide points of comparison for DoD practice against other federal agencies and industry1

The SEI organized the interview data into three categories based on the maturity of managing
technical debt that the interviewees described as the practices they used:
• Interviews categorized into the aware stage reflected those with an awareness of technical

debt in the systems and the need to manage it but did not have active technical debt manage-
ment practices.

• Interviews categorized into the establishing practices stage reflected those who had created
technical debt management practices and had some small-scale experiences with technical
debt.

• Interviews categorized into the actively managing stage were those where technical debt ex-
plicitly appeared in the artifacts and software development practices, while evidence of the
entire program or organization following technical debt management may not have been pre-
sent.

This data does not represent a DoD-wide assessment of the state of technical debt management
practices, but it does represent an assessment of the different stages of adopting technical debt
management practices. Of the organizations we interviewed, five were explicitly following an Ag-
ile process as described in the Scaled Agile Framework (SAFe®), and seven were explicitly fol-
lowing Agile software development processes following Scrums, backlog management, and ex-
pressing requirements as functional and enabler stories (i.e., supporting the activities needed to
provide future functionality). The remaining four had aspects of Agile software development and
followed gates driven by in-house processes. We did not find any correlation between the organi-
zation’s current technical debt management stage and the software development process that it
followed.

1 We chose NASA JPL as an additional federal agency due to its familiarity with embedded systems. We drew

industry experiences f rom both the traditional defense industrial base (DIB) and leading-edge sof tware compa-
nies in Silicon Valley who develop ultra-large-scale sof tware codebases. NASA JPL and industry interviews in-
cluded safety-critical systems and business enterprise systems, which allowed for comparison to DoD’s embed-
ded weapon systems, C2 systems, and DBS.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table 1 summarizes the 16 interviews based on the service or agency, the type of system, and the
stage of managing technical debt that they represent.

Table 1: Summary of the Technical Debt Interviews

ID Service/Agency Type of System Stage of Managing Technical Debt

1 AF Defense Business System Establishing Practices

2 AF Defense Business System Establishing Practices

3 AF Defense Business System Establishing Practices

4 NASA JPL Embedded Safety-Critical System Aware

5 Army Embedded Weapon System Aware

6 AF Embedded Weapon System Actively Managing

7 Navy Command and Control System Actively Managing

8 Navy Command and Control System Aware

9 Joint Command and Control System Actively Managing

10 AF Defense Business System Aware

11 Joint Embedded Weapon System Actively Managing

12 AF Embedded Weapon System Aware

13 Industry Business Enterprise System Actively Managing

14 Industry Business Enterprise System Actively Managing

15 Industry Embedded Safety-Critical System Actively Managing

16 Industry Embedded Safety-Critical System Actively Managing

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

4 Findings and Examples

We organized this section to align findings with the study methodology. Data gathering and anal-
ysis has focused on the study elements specified in Section 835(b) but are presented in the aggre-
gate in this section for clarity. Table 2 (page 19) and Appendix A (page 21) further organize the
findings to align with the study elements.

It is important to note that technical debt is distinct from (although related to) other software engi-
neering concepts, such as vulnerabilities and defects. Managing technical debt is more nuanced
than managing vulnerabilities and defects. For example, delayed maintenance and technology up-
grades often result in costly technical debt due to accumulating system-wide changes that are
postponed. While technical debt does have associated negative effects, intentionally incurring and
actively managing some technical debt can enable beneficial tradeoffs, such as being able to field
a critical capability more quickly.

Technical debt is context specific. While teams or programs can learn from technical debt exam-
ples from other organizations, each instance of technical debt and its management will not simi-
larly manifest itself for each program. Characteristics of each program and project significantly
influence tradeoffs and consequently whether an issue may be considered as technical debt or not.
However, examples are still useful since they can help teams and organizations take steps to un-
derstand their own technical debt in different ways.

4.1 Findings from Literature Review

The purpose of the literature review was to identify practices and techniques of managing tech-
nical debt and identifying open challenges and gaps in practice. The literature review highlighted
different practices and aspects of managing technical debt, including the following:
• having developers record technical debt in issue trackers
• connecting technical debt identified in code comments to tasks in issue trackers
• using machine learning (ML) algorithms to crawl code comments and identify the ones that

are relevant to technical debt (i.e., self-admitted technical debt)
• managing technical debt during Agile software development
• dealing with different aspects of technical debt, ranging from requirements to quality to secu-

rity to design

Although not represented clearly in the academic literature, tool developers and industry strongly
advocate incorporating code analysis tools into existing software development and DevSecOps
processes. This practice avoids accumulating defects and implementation mistakes, which might
otherwise give the false impression of technical debt. Technical debt management is not an activ-
ity that can be solely managed as part of test activities. The variety of practices covered in the aca-
demic literature to manage technical debt and the consensus that tools alone cannot detect tech-
nical debt items provide further evidence that technical debt management needs to be treated as a
set of practices, not as a single task.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

4.2 Findings from Interviews

We organized the findings from interviews based on the following common themes we observed.
1. DoD programs are aware of technical debt as a concept and its presence in their sys-

tems. The DoD programs we interviewed were familiar with the term technical debt and
used it appropriately. Some programs managed and/or tracked technical debt separately from
other issues.
a. Three DoD programs we interviewed managed technical debt as part of their Agile ena-

bler stories. These enabler stories accurately captured the cost-benefit tradeoffs in-
volved in deciding when to carry and when to resolve technical debt issues.

b. All programs we interviewed were aware of technical debt’s impacts, even if they were
not actively managing it currently. All programs recognized the value in managing
technical debt but did not always feel that their processes were mature enough to do that
yet.

c. There was clear evidence that even if a program was paused (i.e., not actively sustain-
ing or adding new capabilities), technical debt continued to accumulate. This technical
debt occurs because of changes in the environment, such as falling behind on versions
of commercial off-the-shelf (COTS) tools or security patches, and mission space that
the software must adapt to.

In addition to awareness, all the programs we interviewed welcomed the practice of manag-
ing technical debt if it fit seamlessly into their existing processes rather than creating out-of-
cycle independent reviews that required additional time and resources.

2. DoD programs do not employ consistent technical debt management practices. Today
there are wide disparities in the ways that DoD programs manage technical debt, including
good practices that should be captured for other programs. Although our study did not use a
comprehensive sample, and that sample did not intend to represent the DoD as a whole, we
characterized a few different levels of adoption within the 12 U.S. Federal Government pro-
grams we interviewed:
a. Three programs are actively managing their technical debt with dedicated, explicit tech-

nical debt practices.
b. One program is managing its technical debt as part of its ongoing practices for dealing

with software defects and vulnerabilities (i.e., technical debt is not called out sepa-
rately).

c. Three programs are in the process of establishing technical debt practices.
d. Five programs are aware of technical debt and have preliminary efforts, but not at the

program level.
The two defense industrial base (DIB) organizations and two industry teams we interviewed
all have practices for managing technical debt. As large organizations, they have teams with
dedicated technical debt practices as well as teams that are managing technical debt as part
of their ongoing practices. One is investigating approaches to scale technical debt manage-
ment practices organization wide. All of the DIB and industry interviewees emphasized that

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

their experience may not reflect organization-wide practices, also hinting at variations in
how technical debt is managed.

3. Managing technical debt is often deprioritized. In the absence of the continuous manage-
ment of technical debt, other program priorities may take over, even when not paying down
technical debt will adversely impact the technical baseline and overall program schedule and
budget.
a. All interviewed programs mentioned experiencing some degree of pressure to prioritize

new capabilities over paying down technical debt. Paying down technical debt can
speed delivery of future capabilities, but in the short run, users and other stakeholders
may not notice it.

b. Programs have experienced negative impacts from too much technical debt as a result
of deprioritization. Excessive technical debt can slow the release of future capabilities.
In one case, a program had to pause the delivery of new capabilities to deal with exces-
sive technical debt. This pause had a severe impact on the program’s ability to deliver
capabilities since what was intended as a short pause stretched to multiple years where
no new capabilities were delivered.

c. Continuous prioritization and reprioritization of technical debt is natural, given other
program demands. One DoD program we interviewed has succeeded in getting ahead of
technical debt prioritization challenges. It created an explicit technical debt manage-
ment entry in its overall release planning and allocated 20 percent of each release cycle
to technical debt reduction before delivery. This strategy of using a planning goal to al-
locate effort to technical debt in an ongoing way was useful for ensuring that technical
debt did not accumulate in ways that would harm the program’s ability to deliver capa-
bilities regularly. This approach should be considered by other programs looking to in-
stitute technical debt management.

4. Use of metrics and reporting technical debt is not common practice. Use of metrics and
reporting can help demonstrate that a program is taking technical debt seriously. Metrics and
reporting practices should enable iterative changes, which can be accomplished by incorpo-
rating technical debt reporting into Agile software development practices, often using scaling
frameworks such as SAFe®. Programs should not report detailed metrics that can be taken
out of context and that do not provide insight; instead, they should provide process metrics
that demonstrate that they are taking metrics and reporting seriously. Candidate high-level
metrics include (1) reporting the percentage of time spent on some recurring cycle that is
planned to be spent paying down technical debt, (2) reporting the time actually spent, (3) re-
porting the growth in technical debt items on the backlog, and (4) reporting deployment fre-
quency with a mapping to technical debt items that hinder delivery. While some interviewees
acknowledged reporting the percentage of time on recurring cycles, time spent on growth,
and debt items, none of them mapped deployment frequency to technical debt items. Some
programs reported tracking technical debt based on effort spent on technical debt resolution
or the percentage of time spent per iteration.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

5. Programs use tools to help prevent unintentional quality issues from turning into tech-
nical debt. Some programs use modern software development and analysis tools effectively
to catch symptoms early and prevent technical debt from being introduced. They also use
procedures to help them address technical debt over time despite other pressures. The inter-
viewed programs all appreciated the importance of recording technical debt, although some
had challenges in creating development environments that could support managing technical
debt using modern software engineering tools. Three programs used existing recording prac-
tices and related enabler stories to manage technical debt. Two categories of tools were com-
monly utilized by our interviewees:
a. static code analysis tools for catching programming mistakes and defects
b. iteration planning and issue tracking tools for managing tasks, stories, and (where ap-

plicable) related technical debt items

6. Categories of funding can hamper appropriate management of technical debt. Programs
sometimes delay or defer technical debt changes based on their access to and perceptions
about the different DoD appropriation categories for the funding (i.e., “colors of money”)
needed versus the funding available. The technical work requires technical debt to be ad-
dressed on an ongoing basis as part of the software development lifecycle. There also needs
to be awareness of the technical debt that is being handed over to sustainment organizations.

For example, if addressing technical debt is perceived as an operations and maintenance
(O&M) function and a program has only research, development, test, and evaluation
(RDT&E) funding, the program may be told not to regularly prioritize technical debt despite
the fact that this approach allows technical debt to accumulate. Our interviewees shared ex-
amples representing both successful and unsuccessful practices.
a. One of the programs interviewed was successful in creating a continuous technical debt

management practice by addressing technical debt during their Agile iterations, discuss-
ing it at each release planning activity, and explicitly communicating that it was not an
O&M-only concern. This spread awareness that technical debt should be managed
across all “colors of money.”

b. One of the interviewed programs raised challenges around addressing the skewed per-
ception that resolving technical debt items sometimes appears as if taxpayers need to
pay for the implementation twice (i.e., work and rework). For example, in embedded
systems with decades of life expectancy, a technical debt item may be partially resolved
and accepted through standard processes. However, the complete resolution of a tech-
nical debt item that was previously deemed to be “good enough” may require additional
updates to refactor or improve efficiency in a later iteration. Understanding whether the
investment in fixing this technical debt item requires the experience of the team can en-
able the team to judge whether any recurring problems and delays caused by the item
are worth the cost of repairing.

In this study, we have also seen that access to appropriate development environments, soft-
ware issue management, and analysis tooling are important success factors for technical debt
management. If concerns over “colors of money” prevent programs from procuring tools and
a shared infrastructure where these tools can be run frequently/continuously, it can also

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

hamper or prevent good technical debt practices. Programs must have modern software engi-
neering tools and infrastructures as one strategy against accumulating unintentional technical
debt and to properly manage it. If DoD policy and guidance calls out managing and resolv-
ing technical debt as critical and explicitly includes recommendations around how to utilize
different “colors of money” to fund it flexibly, then challenges around ownership (e.g., de-
velopment versus sustainment) and double dipping (i.e., work and rework) can be reduced.

7. The Software Acquisition Pathway (SWP) explicitly highlights technical debt manage-
ment, which creates a seamless entry point for DoD programs already on the SWP to
start technical debt management practices. The SWP policy today requires that “programs
[…] actively manage technical debt” during the execution phase [DoD 2020b, 3.3.b(2)].
a. This policy statement may make more programs aware of the issue and the need to

manage it. Currently, more than 55 programs have adopted the SWP and can be ex-
pected to be familiar with this requirement.

b. Not all acquisition programs with software have explicitly adopted the SWP. However,
the DoD has been using the SWP as an incubator for modern software practices (i.e.,
programs on other pathways look to the SWP as a source of good technical practices)
[GAO 2022].

c. Of the programs we interviewed, two that were already actively managing their tech-
nical debt were also on the SWP.

8. The emergence of AI-augmented software development tools and their relationship to
technical debt is still not fully understood. After we started this study, AI-augmented tools
evolved rapidly with increasing adoption. These tools have both (1) risks due to inconsisten-
cies in their recommendations and (2) risk of introducing unknown security issues. However,
they also have the potential, when used intentionally, to control the risks. None of the DoD
programs we interviewed mentioned the role of such emerging tools, but industry interview-
ees did. Since AI-generated code may contain subtle issues while able to generate large
amounts of code very quickly, respondents at a recent technical workshop raised the issue
that the rush to deploy such tools today may be creating a growing wave of future technical
debt for industry [Shull 2023].

9. Industry has established best practices in understanding and managing technical debt,
which can inspire the DoD. One best practice observed from industry that large DoD pro-
grams can consider adopting is regularly surveying developers to identify common technical
debt accumulation areas. Google2 is one such industry organization. Google has taken an
empirical approach to understanding how technical debt manifests itself in its teams and has
been publishing an engineering satisfaction survey since 2018 to understand how unneces-
sary complexity and technical debt may have hindered engineers [Jaspan 2023]. The survey
results have helped teams focused on developer productivity at Google understand the some-
what common areas of technical debt, which include dead and abandoned code, code quality
issues, code degradation, unnecessary dependencies, and delayed migration [Jaspan 2023].

2 Google’s parent company is Alphabet.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

While not reflecting the empirical rigor of a multiyear survey conducted and analyzed with
regular cadence, similar categories of examples emerged from our study as well:
• Some programs had to pay additional funds to a COTS product supplier to maintain se-

curity updates after a project was at its end of life. This happens most often with operat-
ing systems, such as Windows XP.

• Some programs struggled with issues resulting from the undisciplined use of open
source software (OSS). Sometimes this was a situation where the OSS version used by
the program was not up to date, and making the update would require potentially signif-
icant amounts of rework to the rest of the code. Other times, there were instances where
out-of-date OSS created security issues. In one example, the program identified the use
of OSS during active software development that had not been updated for 84 months,
which caused it to be 44 versions behind, resulting in additional complexity and design
issues.

4.3 Findings from Deep Dives on Program Data

The deep dives with subject matter experts on DoD program data outside of this study provided
relevant takeaways worth including in this study since they reveal nuances in managing technical
debt:
• Educating stakeholders is key. A safety-critical program is exploring ways to incorporate

technical debt management practices into its software development practices. The goal is to
reinforce the importance of eliminating quality issues as they occur while making informed
decisions about the technical debt that it takes on and its cost of resolution. In addition to edu-
cating contractors appropriately, program priorities include asking for the right analysis and
relevant artifacts from them. Providing education in general concepts while using program-
specific technical examples also enables increasing the competence of stakeholders in their
ability to identify their context-specific technical debt.

• Analyzing data collected by tools allows for identifying technical debt correctly. A busi-
ness enterprise system program analyzes the outputs of static analysis tools on its codebases
to identify trends and develop strategies for eliminating systemic issues and fine-tuning the
analysis tools to eliminate noise. This practice is invaluable for improving the return on in-
vestment from using static analysis tools and ensuring that the identified issues are neither
overblown as technical debt nor neglected when symptoms start accumulating. Getting the
balance right requires some work.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

5 Recommendations

The following recommendations apply to the findings from Section 4 and Appendix A of this
study.

A. The DoD needs to share best practices to empower programs to incorporate technical
debt management into software development lifecycle activities as one of the core
software engineering practices.

The effective management of technical debt is critical for modern software practice, especially
with respect to sustaining an appropriate cadence for deploying capabilities. In both our inter-
views and the substantial evidence found in the related literature, we confirmed that technical debt
management is an explicit focus for developers in industry and a normal part of day-to-day soft-
ware engineering work.

As our interviews and literature search revealed, there is no one-size-fits-all set of metrics or
measurement approach. Programs with different scopes and scales have different needs. However,
regardless of the program context, a key aspect of technical debt management is bringing visibil-
ity to instances of technical debt and making tradeoffs explicit for the long-term mitigation of it.
Therefore, the DoD should look for opportunities to make it easy for programs to incorporate
technical debt management practices into the software development process. Even if these prac-
tices do not span the entire lifecycle of a system, they would still provide benefit. Resource chal-
lenges are not easy to resolve, and mandating more practices and metrics to report are not likely to
result in positive change. The DoD can embrace a phased approach by relying on practices that
are already in place in programs.

Recommended practices, which could be documented in a DoD Technical Debt Guidebook, can
be rolled out in the three stages described below.

Stage 1: Bring visibility to existing technical debt. Some programs are aware that the concept
of technical debt exists and are experiencing the effects of their own technical debt. However,
they have not started to adopt the practices required to address technical debt. These programs
need a starting point for tackling these challenges that will not overwhelm them. While it may be
relatively easy to put tools in place that will scan software code, that may result in so many tech-
nical debt issues that a team may become overwhelmed and find it impossible to get started. In
contrast, the following techniques can help bring visibility to existing technical debt more gradu-
ally:
• Configure existing issue tracking and management tools to include a technical debt category

so that these instances can be tracked and handled separately.
• During design and architecture reviews, explicitly capture technical debt, including remedia-

tion strategies. These reviews typically surface issues that are not clear-cut defects or vulnera-
bilities, but would require substantial rework to improve the code.

• During development, empower developers to manually document as technical debt any issues
that are difficult to resolve and that require further tradeoff and root cause analysis.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

• As part of regular release reviews, capture technical debt items, including remediation strate-
gies. These technical debt items may include overarching concerns (e.g., end-of-life of soft-
ware, hardware, operating systems) that will require substantial rework.

Recurring examples of technical debt that surface through applying these practices will be related
to overall technical risks, and they can be paired with risk management practices to ensure appro-
priate priorities are assigned and resources are secured.

Stage 2: Establish goals. The three DoD programs that were actively managing their technical
debt were successful because they clearly identified and related their technical debt items to Agile
enabler stories, reviewed technical debt enabler stories regularly during sprints and other reviews,
and prioritized these stories alongside other capability priorities.

This approach allowed the teams to apply measures, such as
• percentage of resources allocated to be spent on managing quality and technical debt per de-

livery increment (e.g., sprint, iteration, gate, release)
• percentage of technical debt items in the backlog, which enables the program to visualize the

technical debt that is carried

It is essential to allocate time (e.g., in Agile capacity planning) to address technical debt during
each delivery increment.

Stage 3: Establish tooling and measurement environments. Once an understanding of the level
of existing technical debt starts to emerge, programs can assess their existing tooling to manage
technical debt and incorporate other tools as needed. Broadly, good practice should encompass the
following:
• use of automation and tool support through modern software engineering tools (e.g., configu-

ration management, continuous integration, code analyzers, development tools, issue trackers)
to ensure quality and prevent unintentional technical debt from creeping in

• the expectation that software developers are encouraged to manually record instances of tech-
nical debt items as they occur so that they can be paid down in the future

• the establishment of heuristics at the program level, such as establishing an overall threshold
for the percentage of open technical debt items in the backlog (For example, technical debt
items should make up no more than 10-15 percent of overall backlog items. If the program
exceeds the technical debt threshold, a technical debt reduction sprint should be planned.)

• the use of tools and procedures that allow both tool-discovered design issues and developer-
reported technical debt instances to be tracked, prioritized against other work, and regularly
addressed alongside new capability development

As tooling decisions are made, special attention should be given to assess where these emerging
tools may fit. Improved capabilities in code completion and code review tools can effectively pre-
vent developers from introducing unintentional coding errors. These coding errors, when accumu-
lated in magnitudes, can create brittle codebases and result in technical debt. When tools are used
to generate multiple lines of code or portions of codebases, it is important to ensure that experts

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

are also in the loop assessing conformance against the cross-cutting runtime and sustainment
goals using architecture and quality assurance practices.

This stage is also when system-specific quantifiable metrics can be more effectively addressed.
These metrics must be considered along with both (1) other program metrics (e.g., backlog items,
defect rates) and (2) system metrics (e.g., metrics for software quality, system complexity, vulner-
ability, and security assessment).

Candidate programmatic metrics include reporting
• the planned time spent paying down technical debt
• the actual time spent addressing technical debt
• the total number of technical debt items in the backlog (noting increases/decreases)
• deployment frequency with a mapping to technical debt instances that hinder delivery

System metrics should not be expressed in terms of technical debt; they should be expressed in
terms of system concerns. Recurring areas of concern can create technical debt. One example of a
technical debt strategy to combat recurring areas of concern might be to scan the system quarterly
for dead code and allocate time for its removal. Other system concerns can vary based on the do-
main of the system, the organization, and other context-specific characteristics.

As already mentioned, these best practices could be compiled into a DoD Technical Debt Guide-
book, which might include excerpts of this report along with examples from DoD programs that
have successfully implemented technical debt management practices. The Guidebook should in-
corporate references to other DoD resources advocating modern software engineering practices. A
recently published reference example is the DoD Risk, Issue, and Opportunity (RIO) Management
Guide for Defense Acquisition Programs. It emphasizes, similar to this report, the iterative nature
of technical debt management and its inclusion in sprint planning [DoD 2023b]. Envisioned DoD
Technical Debt Guidebook references should make it clear that technical debt management is an
iterative and continuous process and that programmatic metrics should
• allow establishing baselines, continuous evaluation, prioritization, and triaging
• allow establishing control over the existing technical debt
• be utilized effectively for intentional trade-off decisions and value creation

B. The DoD should continue to update existing policy and guidance to include technical
debt management practices.

A useful first step toward technical debt management in the DoD is the SWP, which requires that
SWP programs manage technical debt [DoD 2020b]. It would be helpful to update the pol-
icy/guidance to provide important information about how technical debt management can be in-
stantiated in DoD programs. The policy/guidance update should be based on lessons learned from
real programs with mature practices, including some from this study, to demonstrate that these
practices fit well within the DoD context.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

At a minimum, the policy/guidance update should include the following:
• Programs should employ both automated (e.g., static code analysis scans) and manual (e.g.,

opportunities for developers to add technical debt items to the backlog and tag them as tech-
nical debt when intentionally taking on debt or identify technical debt in design reviews)
mechanisms for identifying technical debt.

• Programs should track technical debt items on the backlog separate from other types of items,
such as vulnerabilities and defects.

• Programs should allocate appropriate effort during iteration capacity planning for resolving
technical debt items, and they must ensure that this effort is protected from the pressure to fo-
cus on new capabilities.

• Program roadmaps should include the effort for managing technical debt to ensure that it is
planned and that effort is allocated to it over time.

• Software should at least pass a code quality scan as well as unit tests before allowing check-
ins when in a continuous integration and continuous delivery/continuous deployment (CI/CD)
environment to avoid having unintentional quality issues creep in that may result in technical
debt.

In addition to describing practices, the policy/guidance update should also include common areas
where DoD programs are most likely to accumulate technical debt. Our interviews highlighted ex-
amples of these common areas, including management of open source software versions, evolu-
tion of missed security patching, technology obsolesce, and postponed large-scale refactoring.

We understand that the SWP is an incubator for good software practices in the DoD, and the pol-
icy and guidance demonstrate expectations about mature practices that should be used for soft-
ware. However, A&S should update each acquisition pathway’s policy to recommend using SWP
practices, which would ensure technical debt management practices for software are required on
other pathways and ensure that the lessons learned as part of following the guidance are dissemi-
nated at scale. One such policy that should be updated by OUSD Research and Engineering
(R&E) is DoDI 5000.88, Engineering of Defense Systems and its associated guidebook, which
provide guidance for adaptive acquisition pathways [DoD 2020a]. The Software Engineering sec-
tion of that policy should be expanded to include technical debt. Additionally, the Engineering of
Defense System Guidebook, which very briefly mentions technical debt, should be expanded to
include the bullets listed above [DoD 2022].

It should be noted that the DoD published several guidance documents during this study that
begin to include technical debt and technical debt management as an essential practice for suc-
cessful software development [DoD 2023a, 2023b, 2023c]. An additional positive step is that the
Systems Engineering Plan (SEP) Outline Version 4.1 now includes a requirement to address tech-
nical debt management in the Software Engineering section [DoD 2023d]. The common thread in
of all these documents is increasing the competence of the DoD in its execution of modern soft-
ware engineering practices. All of these guidance documents make it clear that continuous tech-
nical debt management is an essential part of successful delivery. Future revisions to these guid-
ance documents should incorporate or reference the DoD Technical Debt Guidebook, if the DoD
pursues it as proposed in Recommendation A, to provide more concrete guidance.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

C. The DoD should make available and encourage appropriate training to help programs
understand technical debt management.

Training can help institutionalize important technical debt practices by making the issue visible to
more stakeholders and ensuring that these stakeholders are armed with the practices and strategies
needed to manage technical debt effectively. The goal should be to ensure that these practices are
part of the commonly expected baseline of software management in the DoD.

The Defense Acquisition University (DAU) may be able to develop role-based technical debt
training for various roles (e.g., executives, program managers, chief of software, acquisition pro-
fessionals, development teams). Providing targeted training for these roles will enable them to use
consistent vocabulary, concepts, and practices. Some of this training can also be made available to
contractors to ensure that everyone involved in a program uses the same vocabulary.

Depending on the targeted role, training content should include, but not be limited to
• explaining what technical debt is and reviewing representative examples
• differentiating between (1) causes of technical debt and (2) actual technical debt that needs to

be monitored within systems
• the relationship between technical debt items and enablers, vulnerabilities, defects, and new

capabilities
• selecting best-fit tools and customizing their detection and reporting capabilities to a pro-

gram’s needs
• understanding the role of qualitative (e.g., developers’ perception of existing technical debt)

and quantitative (e.g., mean time to resolution) measures
• establishing data analysis pipelines from issue trackers and scan results
• recognizing technical debt during design reviews
• conducting tradeoff analysis, which feeds into prioritizing which debt to resolve and which to

carry

Additionally, the DAU should review existing software courses to ensure that technical debt and
technical debt management are properly included. Some of the courses to update might include
• LOG 270 Introduction to DoD Software Life Cycle [DAU 2023a]
• ACQ 1700 Agile for DoD Acquisition Team Members [DAU 2023b]

With recent DoD training initiatives to increase the competencies of the digital workforce, such as
Digital University and new DAU credentialing in areas like DevSecOps, perhaps there are other
training opportunities that might provide viable ways to increase workforce knowledge in tech-
nical debt and technical debt management. While this recommendation has areas that focus on the
DAU, other training organizations outside of the DAU should also be considered based on a Ser-
vice’s or program’s needs and priorities. Excerpts from this report could also be compiled into a
roadshow briefing that could be given to numerous groups across the DoD to provide high-level
awareness on technical debt.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

D. OUSD(A&S) should require continuous collection of technical-debt-related data and
metrics.

The interviewed programs that are successfully managing technical debt use metrics that are simi-
lar to those used for defect and vulnerability management, such as mean time to resolution, dura-
tion open, rate of recurrence, and density. Using metrics like these, successful programs map tech-
nical debt items discovered to the number of issues identified, prioritized, and addressed over a
given delivery tempo. Also, each technical debt item is sized according to its scope and allocated
to a sprint or iteration based on its scope and system context.

This approach mirrors experiences from industry, as indicated by both our interviews and litera-
ture review. For example, Google explored 117 metrics, including technical-system-quality-re-
lated metrics, as indicators of common areas of technical debt identified in its quarterly surveys
(e.g., dependencies, code quality, migration, code degradation). Google’s analysis showed that no
single metric predicts reported categories of technical debt. Additional evidence from our industry
interviews and other research align with the conclusion that no single generalizable metric can be
used to understand leading indicators of technical debt.

Teams must select specific metrics for their specific context. Our study results also show that the
design implications of technical debt are different in different contexts. For example, coupling and
cohesion are two widely used system-modularity-related design metrics, where loosely coupled
software is expected to be easier to modify. However, in systems where high performance is de-
sired, compromises from modularity have to be made. Robust technical debt management prac-
tices that do not solely rely on metrics will allow these tradeoffs and their implications to be ex-
pressed clearly as well. Given these observations, we recommend that programs use
programmatic metrics for quantifying technical debt while using technical metrics to provide in-
sights for system-level quality and design issues by contextualizing them based on program
tempo, high-priority architectural concerns, areas of change, and refactoring costs. Other data,
such as existing design concerns, rework and refactoring costs, and data about technical debt
items, should also be collected and regularly analyzed.

E. The Office of the Under Secretary of Defense (Comptroller) should update the
Financial Management Regulation (FMR) DoD 7000.14 to clarify that both RDT&E
and O&M funds can be used to resolve technical debt issues.

Our interviews and published research make it clear that technical debt management must be an
ongoing process that is supported by both qualitative and quantitative practices as outlined in this
report. This implies that the responsibility for addressing technical debt cannot be exclusively de-
ferred to O&M teams. Dedicating only O&M funds to technical debt management delays the reso-
lution of issues, which likely increases risk and introduces additional challenges due to handoffs
between development and O&M teams.

The Office of the Under Secretary of Defense (Comptroller) should update the applicable soft-
ware, software maintenance, and software support sections within the FMR. Those applicable sec-
tions might include Volume 2A, Chapter 1: General Information and Volume 4, Chapter 27: Inter-
nal Use Software. Some specific areas of focus might be within Volume 2A, Chapter 1, Section
010212: Budgeting for Information Technology and Automated Information Systems with

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

additions on technical debt and technical debt management in the RDT&E appropriations and
O&M appropriations subsections.

F. OUSD (R&E) should ensure that more programs have access to modern development,
analysis, and CI/CD tools and practices.

Several programs we interviewed had already embraced DevSecOps approaches to incorporating
code quality and security analysis tools (e.g., CheckMarx, Fortify, SonarQube, CAST) into their
environments. These tools and others that assist with development activities (e.g., integrated de-
velopment, automated code review, automated unit and integration testing) are essential to ensure
timely quality development and avoid unintentional technical debt. They also enable the timely
detection of implementation errors. However, these tools must be configured to ensure that false
positives are minimized, and high-priority issues are, in fact, detected appropriately.

OUSD (R&E) should make these tools and practices available to expand these technical debt
management best practices to more programs. This recommendation aligns with GAO-23-105867,
which recommends “The Secretary of Defense should ensure that the Under Secretary of De-
fense for Research and Engineering, with the input of the military departments, establishes
an overarching plan—which identifies associated resources—to enable the adoption of
modern engineering tools, across all programs. This should include (1) mission engineer-
ing, (2) systems engineering, and (3) software engineering. (Recommendation 3).” GAO fur-
ther states that “these officials explained that it is difficult for program offices to justify invest-
ing in and adopting these tools because of the high potential costs and uncertainty of benefits”
[GAO 2023].

G. OUSD(R&E) should invest in / utilize technical debt research areas.
Based on the literature review and interviews, we recommend research investments in the follow-
ing areas of technical debt. Some advances may come from the larger software engineering re-
search community and commercial companies, and others may require DoD Science and Technol-
ogy (S&T) investments to close the gap and adapt approaches for the defense domain. Either way,
advances in these areas should be encouraged and tracked to help advance the state of the prac-
tice. These recommended research focus areas also align with a future software engineering study
focused on better incorporating technical debt management as a focus area [Avgeriou 2023].
• Improved tooling: Tooling to support developers is evolving fast, especially with tools pow-

ered by artificial intelligence (AI), ML, and foundation models that assisting with program-
ming tasks getting increasing attention. The software engineering community does not yet
know the implications of these emerging tools, and research can empower their targeted de-
velopment to help avoid unintentional technical debt and to better track intentional technical
debt.

• Infrastructure: Understanding trends and systems’ existing context is critical for improved
technical debt management. Research into establishing infrastructures for collecting and as-
sessing data without overloading developers would have significant benefits on both improv-
ing the management of technical debt as well as improving system quality in the long run
with an empirical basis. Such automated data collection throughout software development

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

processes can also help with software acquisition decisions (e.g., cost of ownership, prioriti-
zation, portfolio management).

• Technical debt as a value-creation activity: Technical debt is a positive and value-creation-
focused design concept. Research into when technical debt can be taken on; how it can be
communicated; how it accelerates and improves development; and how it can be resolved
without burdening the overall cost of ownership, system quality, and business goals is essen-
tial and significantly lagging. The DoD, as the owner of many legacy systems, can exemplify
continuous system evolution and sustainment by enabling research in technical debt as a
value-creation activity.

• Technical debt workforce competency: Technical debt management is a design tradeoff and
incentive management activity. Research into how to increase maturity in the technical debt
competency of the workforce while simplifying technical debt management through incentive
management can serve both program managers as well as technical stakeholders.

• System-level technical debt metrics: There is no single quantitative, system-level technical
debt metric. Programs need to baseline their technical debt based on their context and track it
using programmatic measures similar to those used for defects and vulnerabilities. Research
in proposing how to use system-level metrics, or recommending the use of existing ones, in
relationship to technical debt would be a valuable contribution.

Table 2 specifically aligns the recommendations with the study elements from Section 835(b)
posed by Congress. Additional findings on the study elements are included in Appendix A.

Table 2. Recommendations Against FY22 NDAA Section 835(b) Study Elements

FY22 NDAA Section 835(b)
Questions [NDAA 2021]

Recommendations

A

(Best
Prac-
tices)

B
(Policy &
Guidance)

C
(Training)

D
(Role of
Metrics)

E
(FMR)

F
(Tools)

G
(Research)

(1) Qualitative and quantitative
measures which can be used to
identify a desired future state for
software-intensive systems

   

(2) Qualitative and quantitative
measures that can be used to
assess technical debt

   

(3) Policies for data access to
identify and assess technical
debt and best practices for soft-
ware-intensive systems to make
such data appropriately available
for use

   

(4) Forms of technical debt which
are suitable for objective or sub-
jective analysis

   

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

FY22 NDAA Section 835(b)
Questions [NDAA 2021]

Recommendations

A

(Best
Prac-
tices)

B
(Policy &
Guidance)

C
(Training)

D
(Role of
Metrics)

E
(FMR)

F
(Tools)

G
(Research)

(5) Current practices of Depart-
ment of Defense software-inten-
sive systems to track and use
data related to technical debt

   

(6) Appropriate individuals or
organizations that should be
responsible for the identification
and assessment of technical
debt, including the organization
responsible for independent
assessments

   

(7) Scenarios, frequency, or
program phases during which
technical debt should be
assessed

   

(8) Best practices to identify, as-
sess, and monitor the accumulat-
ing costs technical debt

  

(9) Criteria to support decisions
by appropriate officials on
whether to incur, carry, or reduce
technical debt

   

(10) Practices for the Department
of Defense to incrementally
adopt to initiate practices for
managing or reducing technical
debt

  

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Appendix A: Findings Against FY22 NDAA Section 835(b)
Study Elements

In this appendix, we summarize the findings and specific analysis topics requested by the study
elements from Section 835(b) [NDAA 2021]. The findings and specific analysis from the inter-
views, which also covered the study elements, are provided in Section 4.2. We provide the recom-
mendations in Section 5 along with a mapping of the recommendations to Section 835(b) ques-
tions in Table 2.

(1) Qualitative and quantitative measures which can be used to identify a desired future
state for software-intensive systems.
− The best indicator of the desired future state is related to successful deployment fre-

quency with demonstrated capability against the plan.
− Programs do not pay down technical debt for its own sake; they do so to ensure that sys-

tems stay adaptable and able to effectively field new capabilities as needed.
− Technical debt instances need to be prioritized/aligned with a regular cadence to ensure

that technical debt that is taken on to accelerate program priorities is recognized and paid
down in a timely way.

(2) Qualitative and quantitative measures that can be used to assess technical debt.
− Since technical debt is always accumulating, it is important to set a goal to allocate a

regular percentage of effort to paying down technical debt and fencing other priorities as
part of the overall program budget, and not tying it to O&M spending.

− Understanding whether the number of technical debt instances on the backlog is increas-
ing or decreasing is necessary to know whether that percentage needs to be ratcheted up
or down.

− In terms of qualitative measures, categorizing the type of technical debt seen in the pro-
gram can help the program identify areas of concern that require more attention. These
categories are best identified based on recurring empirical analysis across programs,
similar to those reported in a 2023 article by Ciera Jaspan and Collin Green [Jaspan
2023].

− There is no single quantitative system-level technical debt metric. Programs need to
baseline their technical debt based on their context and track it using programmatic
measures similar to those used for defects and vulnerabilities.

(3) Policies for data access to identify and assess technical debt and best practices for
software-intensive systems to make such data appropriately available for use.
− Programs reported using technical-debt-related data internally (e.g., enabler stories, tech-

nical debt in sprint management percentages) to good effect but not reporting it to senior
stakeholders—either because the senior stakeholders did not care (i.e., were not sure

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

what to do with the information) or because they would take it out of context. This study
information suggests that communicating technical debt with an empirical basis through
recommended practices needs to be encouraged.

− The DoD needs to empower reporting when technical debt instances are accumulating
(i.e., not being addressed quickly enough). This empowerment needs to be done before
addressing technical debt begins to interfere with a program’s ability to deliver capabil-
ity updates, when programs can prioritize technical debt appropriately.

(4) Forms of technical debt which are suitable for objective or subjective analysis.
Technical debt can be identified from various software development artifacts such as code,
architecture, and issue trackers. Regardless of where they have been identified, all forms of
technical debt are suitable for objective or subjective analysis.
− It is important for programs to have processes in place for logging and tracking both

tool-discovered and developer-reported technical debt instances.
− Training or other assistance should be provided to help establish good practices in pro-

grams, in particular related to the appropriate use of tools. Some programs we inter-
viewed reported that they use software development tools out of the box without cali-
brating them; hence, in many cases, they get noisy data.

− Each program needs to understand that they should set priorities and the critical context.
− Some programs stressed that architectural forms of technical debt were important,

perhaps more so than code-level issues, which is also consistent with industry best
practices.

− Some programs found technical debt critical to manage due to its mapping to cyber-
security risks as well as technology enablers.

It is important to note that in this report, we focus on technical debt following the definition
provided in NDAA Section 835, which focuses on implementation artifacts. Literature has
identified many taxonomies, such as requirements debt, social debt, and documentation
debt. While the spirit of applying the concept of debt to different tasks is understandable,
those tasks are not within the scope of technical debt.

(5) Current practices of Department of Defense software-intensive systems to track and
use data related to technical debt.
Best practices include the following:
− Use the same tracking system (e.g., Jira) for technical debt as for other elements in the

backlog so that the whole set of issues can be periodically reviewed, reprioritized, and
planned to be addressed on some timeline.

− Do not allow code to be checked back into the repository without passing a clean scan
and relevant test so that unchecked technical debt is not allowed to accumulate. (How-
ever, note that this approach may not be feasible for legacy systems that have years of
accumulated technical debt to pay down.)

− Make technical debt an explicit part of software development planning rather than post-
poning it to sustainment.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

− Make sure to focus on both programmatics (e.g., tracking in project management) and
engineering (e.g., architecture reviews, design tradeoff analyses) to ensure that program-
matic and engineering aspects of technical debt analysis/reduction are addressed.

− Make sure that program-specific metrics and reporting practices enable iterative
changes. This can be accomplished by incorporating technical debt reporting into Agile
software development practices, often using scaling frameworks such as SAFe®. Pro-
grams should not report detailed metrics that can be taken out of context and that will
not provide insight. However, they could provide process metrics that show they are tak-
ing metrics and reporting seriously. Candidate high-level metrics include (1) reporting
the percentage of time spent on some recurring cycle that is planned to be spent paying
down technical debt, (2) reporting the time actually spent, (3) reporting the growth in
technical debt items on the backlog, and (4) reporting deployment frequency with a map-
ping to technical debt instances that hinder delivery.

(6) Appropriate individuals or organizations that should be responsible for the
identification and assessment of technical debt, including the organization responsible
for independent assessments.
− Assessing technical debt should be a regular process step (e.g., ensuring that developers

check code back in only after it passes a clean scan). The organization responsible for
technical debt management is both the team that sets up the software infrastructure/soft-
ware factory and the development team. Individuals with infrastructure/software factory
expertise should be responsible for ensuring that the appropriate tools, analysis automa-
tion, and data collection analysis capabilities are integrated into the development and de-
ployment pipelines. The development team should be responsible for ensuring technical
debt discussions occur and that the detection, documentation, prioritization, and resolu-
tion of technical debt items are common practices.

− We did not hear much support for assessments by independent/outside teams. Part of the
issue was the concern that different organizations have different definitions of what con-
stitutes technical debt, which may not be appropriate in context. However, one program
did conduct an independent assessment that resulted in their active technical debt man-
agement.

− Roles and responsibilities should be assigned to developers, architects, project managers,
and program managers.

(7) Scenarios, frequency, or program phases during which technical debt should be
assessed.
− Technical debt must be managed continuously as part of the RDT&E cycle. Similarly,

any technical debt carried over to sustainment must be factored into O&M resources.
− Scenarios of technical debt management that we identified through our interviews in-

clude the following:
− a program organically managing its own technical debt aligned with its iteration and

release tempo

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

− a program that sets expectations with contractors for reporting technical debt and
guides its management through prioritization

− a program that leaves all technical debt management to the contractor (not recom-
mended)

− a program that initiates a retrospective assessment (independent or in house) of tech-
nical debt and initiates technical debt management as a consequence

(8) Best practices to identify, assess, and monitor the accumulating costs technical debt.
− Empower a culture change to have developers disclose and prioritize technical debt.
− Monitor the delivery cadence.
− Record technical debt items.
− Map technical debt to rework costs, and use this data for prioritization.
− Make technical debt management part of the overall software development process.
− Map technical debt to technology enablers.
− Review technical debt as part of both iteration planning and risk management.
− Incorporate scanning tools into DevSecOps pipelines to avoid unintentional code quality

issues that result in or partially contribute to technical debt.
− Conduct architecture reviews to identify high-cost technical debt and technical debt re-

duction sprints.
− Consider the approach that one program took when it mapped its technical debt to differ-

ent categories. This approach enabled more concrete resolution discussions. The catego-
ries are
− problem reports
− static code analysis findings
− vulnerability findings
− regression test automation
− out-of-date test procedures
− design-related issues
− memory/throughput challenges
− safety assurance process
− pipeline tool improvements

− Identify design flaws, their rework cost, and the consequences of not resolving them as
technical debt items.

− Recognize that it will never be possible to address 100 percent of technical debt; there-
fore, establish a prioritization schema.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

(9) Criteria to support decisions by appropriate officials on whether to incur, carry, or
reduce technical debt.
Factors that effectively inform this decision can include the following:
− how taking on or reducing technical debt hinders or accelerates technology enablers
− how taking on or reducing technical debt hinders or accelerates new capability
− program lifecycle phase
− risks and system structure and behavior (quality attribute) priorities hindered or enabled

by technical debt
− cost of addressing technical debt
− cost of retaining technical debt

(10) Practices for the Department of Defense to incrementally adopt to initiate practices for
managing or reducing technical debt.
− Empower technical debt to be a budget item in program planning.
− Make training available to avoid misconceptions and to encourage standardization and

the adoption of known best practices.
− Make the use and availability of modern software engineering tools with technical debt

management capabilities nonnegotiable.
− Transition a phased approach for establishing technical debt practices as described in

Recommendation A on page 12 of this report.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Appendix B: Technical Debt Item Examples

The SEI’s ongoing work with a large, safety-critical program provided further detailed insights
and informed the recommendations in this report. The SEI developed and delivered to the pro-
gram a report describing the state of the practice, issues to be aware of at the program level, and
examples of technical debt’s cybersecurity impact., The report formed the basis for a discussion
with the program that elicited feedback about the feasibility and importance of these issues in the
program context. The goal of the report was to highlight, using examples, the various ways tech-
nical debt can manifest and be detected.

This appendix provides an excerpt from the program’s report, including examples of technical
debt and how it can be recorded. These examples can serve as valuable guidelines for identifying
technical debt and can be used as templates for documenting similar technical debt items.

An organization needs to actively monitor four categories of technical debt to ensure that existing
DevSecOps, software quality, and security management practices are well aligned to also support
technical debt management. We organize these categories based on the artifact they are detected
from.
1. Detect technical debt from code, where code-level conformance and structural analysis indi-

cate maintainability and concerns related to the structure of the system and the codebase.
2. Detect technical debt from symptoms that signal architecture issues.
3. Detect technical debt from architecture during design reviews and analysis of decisions.
4. Detect technical debt from development and deployment infrastructure, which are not typi-

cally part of the delivered system but may impact its delivery, security, and quality.

To reason about technical debt, estimate its magnitude, and offer information on which to base de-
cisions, you must anchor technical debt to explicit technical debt items that identify parts of the
system: code, design, test cases, or other artifacts. A technical debt item is a single issue that con-
nects affected development artifacts with consequences for the quality, value, and cost of the sys-
tem triggered by one or more causes related to business, change in context, development process,
and people and teams.

We next demonstrate each of the four categories of technical debt detection with examples. These
examples of criteria, techniques, and technical debt item descriptions are from actual systems and
developer discussions, drawing on the concepts of secure design [Arce 2014], and abstracted for a
general audience. In order to exemplify the relationship between technical debt and cybersecurity
in some of the examples, we refer to the Common Weakness Enumeration (CWE™). CWE is a
categorized, publicly accessible list of software and hardware weakness types
(https://cwe.mitre.org). The CWE was recently expanded to include quality characteristics such as
maintainability that impact security [CISQ 2019].

™ CWE is a trademark of The MITRE Corporation.

https://cwe.mitre.org/
https://cwe.mitre.org

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

B.1 Detect Technical Debt from Code

Technical debt takes different forms in different types of development artifacts. The source code
embodies many design and programming decisions. The code can be subjected to review, inspec-
tion, and analysis with static checkers to find issues of finer granularity: while such analysis can
detect some types of technical debt such as code clones and unnecessary complexity, almost all
other violations detected will be symptoms that require further analysis [CISQ 2021, OMG 2018].

Static analysis checkers that are part of DevSecOps tool chains assist with detecting growing
complexity, business logic nonconformances, and some basic classes of design issues such as very
large classes and single points of failure. When not actively managed, all of these issues start ac-
cumulating unintended future rework, resulting in technical debt. Furthermore, typical examples
of technical debt, such as greater complexity, increase opportunities for vulnerabilities.

Static analysis is not the only approach to examine code for technical debt and its symptoms. Ex-
amining the code at a high level with a focus on architecture is another approach to surface code
conformance issues that results in technical debt. To understand the impact of change driven by
technical debt, developers need to identify the modules of a system that are the focus of a change
and follow the dependencies to the modules that will be affected by the change. Relevant charac-
teristics for analyzing individual elements and their dependencies include complexity of individ-
ual software elements, interfaces of software elements, interrelationships among the software ele-
ments, system-wide properties, and interrelationships between software elements and stakeholder
concerns.

Here is an example of a technical debt item that signals accumulating system complexity and un-
covers needed design analysis and rearchitecting using static code analysis, which alerts for
CWEs. In this example shown in Table 3, the static code analysis that the team regularly runs re-
veals many small, avoidable coding issues related to reliability, security, performance efficiency,
and maintainability that were never addressed due to schedule pressure and lack of coding guide-
lines. Together they have caused the modifiability of the codebase to degrade.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table 3: Example of Recognizing Technical Debt with Static Code Analysis

Name Accumulated CWEs f rom violating maintainability quality rules resulted in technical debt.

Summary Automated static source code analysis revealed an increasing number of issues with the
following weaknesses and security implications of maintenance and evolution: CWE-561
Dead Code, CWE-1047 Modules with Circular Dependencies (120 issues), CWE-1074
Class with Excessively Deep Inheritance (37 issues). Due to the severe number of these
issues, system modif iability has degraded signif icantly.

Consequences We have already received two vulnerability reports in the dead code area; more are
likely to emerge. There are increasing numbers of defects at the area of the codebase
with the deep inheritance hierarchy. Modules with circular dependencies also take longer
to incorporate new capabilities, increasing maintenance and evolution costs. In general,
these areas of the codebase are dif f icult to maintain, which af fects security by making it
more dif f icult or time-consuming to f ind and f ix vulnerabilities.

Remediation approach Dead code: Remove the dead code.
• Address during local refactoring within an iteration.

Circular dependencies and excessive inheritance: These will require rearchitecting.
• Designers need to understand how the architecture and evolution of the sof tware

inf luence security considerations under many circumstances. Address this in the
next architecture review. The addition of continuous integration processes creates
a requirement for architecture modularity and f lexibility to support security, as
changes to systems are pushed automatically and at ever shorter periodicity.

• Understanding and restructuring module dependencies to eliminate circular de-
pendencies and excessive inheritance will require planning across iteration bound-
aries.

Reporter / assignee The dead code and inheritance hierarchy issues were automatically reported as a result
of the static code analysis scan: As the sof tware development lead, I am reporting this
as a composite technical debt item. I have also created two related issues in the backlog
and linked to this issue:

1. Remove dead code (assigned to the developer team for the next iteration).
2. Remove circular dependencies and deep inheritance (assigned to the architect to

resolve as part of the architecture refactoring ef fort).

It is important to recognize that there is no one-size-fits-all tool that automatically uncovers single
instances of such technical debt items. Running a static analysis tool for the first time can yield
thousands of issues. Recording all individual issues that tools identify as separate technical debt
items or composing them as one major technical debt item is unwieldy and an incorrect approach.
Furthermore, such an approach often leads to these issues lingering in the backlog as they are per-
ceived as false positive noise, and developers might disable the rules for detecting them during
future checks. Following the process to understand system quality goals provides a focus for the
development team to create a manageable number of issues. They record the relevant results as
technical debt items so they can start managing them. As this example highlights, identification of
such violations will point to areas of further analysis to look at clusters of technical debt. Areas
where large clusters of technical debt issues accumulate are good candidates for rework and archi-
tectural changes.

Going forward, the organization can address how to ensure that the team does not inject new debt
into the source code so no one has to deal with these many issues again. The causes can be identi-
fied, and process improvement practices put in place to address them. Creating coding guidelines
and providing training for developers improves their savviness at recognizing when they

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

potentially inject technical debt in the code. Running static analysis in a continuous integration
environment promotes clean code where developers get immediate feedback on the issues during
a commit and are required to fix them before acceptance.

B.2 Detect Technical Debt from Symptoms

Technical debt symptoms are not always simple to recognize. Automated tools, such as tools that
check for code quality or secure coding violations, can uncover some symptoms that signal tech-
nical debt. As seen in the previous section, one step in the right direction is to use agreed-upon
CWEs associated with maintainability checks as a basis for identifying technical debt related to
security issues [CISQ 2019]. This approach also helps with concrete quantification.

Other symptoms such as major faults or delivery delays in the system can also signal technical
debt. Establishing continuous monitoring for such symptoms and reacting promptly will prevent
technical debt from accumulating in the first place. For example, symptoms of technical debt can
be exposed using metrics that indicate recurring defects and vulnerabilities, increasing number of
defects and vulnerabilities in one particular area of the system, or defects that have not been possi-
ble to resolve, reducing delivery tempo. These should stimulate further analysis.

Repeated security breaches traced to security-related bugs, such as a crash or exploit enabled by
an out-of-bounds number, are additional examples of technical debt items that can be detected by
their symptoms. Table 4 summarizes such an example of a technical debt issue that increases vul-
nerabilities.

Table 4: Example of Recognizing Technical Debt from Observable Symptoms

Name Screen spacing creates numerous unexpected crashes across the codebase due to
API incompatibility.

Summary The source code uses a very large negative letter-spacing in an attempt to move the
text of fscreen. The system handles up to -186 em f ine, but crashes on anything larger.
A similar issue was f ixed with a patch, but there were several other similar reports.
Time permitting, I’m inclined to want to know the root cause of this. My sense is that if
we patch it here, it will pop up somewhere else later.

Consequences We already had 28 reports f rom seven clients. And it def initely leaves the sof tware vul-
nerable. Finding the root cause can be time-consuming given that existing patches did
not resolve the issue.

Remediation ap-
proach

We already patched this twice. The responsible thing to do is to f irst f ind the root
cause and create a f ix at the source. My previous experience tells me that the external
Web client and our sof tware again has an API incompatibility, but further analysis is
needed.
The course of action is to verify where the root of this is and see if we can f ix it on our
side. If the external Web client team needs to f ix it, we would need to negotiate.

Reporter / assignee DevSecOpsTeam / External WebClientTeam

While patches provide immediate relief, tracing interconnections in the design revealed a depend-
ency on an external library maintained by another group, as the developer suspected. The depend-
encies to external software elements were not analyzed and designed for security issues, which
resulted in multiple crashes across the system with the same root cause. Repeated crashes are

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

symptoms pointing to the technical debt in this example. They should trigger further architecture
analysis and identification of the external dependency which, if not fixed, will widen the system’s
security risk exposure. The additional rework is caused here by creating multiple patches, which
increased system complexity without resolving the security issue.

A tendency sometimes exists to immediately categorize all such symptomatic defects and vulnera-
bilities as technical debt. This approach results in an artificial increase in the number of issues
while hindering the opportunity to do deep analysis and find the root cause. In a highly dynamic
DevSecOps environment where organizations are under attack, the symptoms of vulnerabilities
associated with an attacker’s behavior need to be communicated between operations and develop-
ment teams to trace operational weaknesses to root cause vulnerabilities in the source code. This
further refines the goal of using a static analysis tool to address the vulnerability associated with
attackers’ behavior, rather than executing static analysis tools out of context and trying to deal
with the myriad results [Izurieta 2019]. The same mindset needs to be embraced when using such
tools to detect symptoms to identify and mitigate technical debt.

B.3 Detect Technical Debt from Architecture

The key difference between detecting technical debt using code analysis and detecting it at the ar-
chitecture level is that the code is more concrete, tangible, and visible. Code can be explored us-
ing software tools, but that provides information at a lower level of granularity, sometimes giving
the impression that fixing local issues will eliminate technical debt. Code analysis does not reveal
systematic architecture issues which may point to broader types of technical debt. Architecture
analysis can reveal such technical debt that is more encompassing and pervasive. It involves
choices about the structure or the architecture of the system: choice of platform, middleware,
technologies for communication, user interface, or data persistency. It is typically more difficult
to detect and assess architectural decisions resulting in debt with tools, and the cost associated
with repaying the debt is larger and intertwined in a complex network of structural dependencies.

Architecture analysis allows a team to assess whether design decisions will meet the quality at-
tribute requirements early in development. Malicious external attacks that expose the vulnerabili-
ties of a system at runtime are lagging indicators of the failure to meet a security quality attribute
requirement. As operations staff employ countermeasures, development staff trace the cause to
the source code vulnerability to aid in patching the system in a first response. Tracing further to
the root cause when there is a design or architecture issue and remediating the technical debt can
prevent the issue or related issues from resurfacing and benefit the business/program by position-
ing the system to make it easier to analyze, maintain, and evolve over its life span.

Lightweight architecture analysis techniques surface risks in design decisions that can lead to
technical debt. A number of analysis techniques have proven useful for examining the architecture
as it is being designed and used throughout the software development life cycle including thought
experiments, reflective questions, checklists, scenario-based analysis and walkthroughs, analytics
models, prototypes, and simulations. Developers often use existing frameworks and components
to provide some of the structure and behavior of the system. The choices made to use these frame-
works and components are design decisions that affect the quality and security of the system. In

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

the example shown in Table 5, a design decision made early in the development effort has re-
sulted in a security breach.

Table 5: Example of Recognizing Technical Debt Requiring Architecture Rework to Enhance Security

Name Missing Authentication for Critical Function (CWE: 306) requires signif icant architec-
tural rework.

Summary The authentication for functionality for user identity management had been assumed
out of scope in the f irst release. This resulted in the recent security breach and com-
promised the data in the system. No critical information was compromised; however,
we cannot continue to operate before adding authentication.

Consequences Given the number of features that depend on this, we are looking at signif icant rear-
chitecting. The consequences will depend on the associated functionality, but we will
have to reassess read/write accesses to our sensitive data and recreate administra-
tive and other privileged functionality.

Remediation approach Divide the sof tware into anonymous, normal, privileged, and administrative areas.
Identify which of these areas require a proven user identity and use a centralized au-
thentication capability.
Identify all potential communication channels, or other means of interaction with the
sof tware, to ensure that all channels are appropriately protected. Our developers
sometimes perform authentication at the primary channel but open up a secondary
channel that is assumed to be private. For example, a login mechanism may be listen-
ing on one network port, but af ter successful authentication, it may open up a second
port where it waits for the connection but avoids authentication because it assumes
that only the authenticated party will connect to the port.
In general, if the sof tware or protocol allows a single session or user state to persist
across multiple connections or channels, authentication and appropriate credential
management need to be used throughout.

Reporter / assignee Reported by a Dev engineer during system integration test. Remediation assigned to
multiple team members including the DevSecOps team and lead architect.

CWE-306, Missing Authentication for Critical Functionality, is a vulnerability that enables attack-
ers to gain the privilege level of the exposed functionality. The technical impact of the weakness
can be used to determine the cost to the development team of carrying the technical debt and the
risk exposure to the business. Manual analysis is needed to understand the underlying design issue
and the cost of remediating the debt by improving the design.

Trade-offs made among system qualities to meet the organization’s mission or business goals may
lead to such technical debt. For example, since authentication consumes system resources and re-
sults in timing lags that can degrade performance, the decision may be made to omit reauthentica-
tion given the context (e.g., authentication occurs in the control panel software, but not in the ve-
hicle it is operating). As hardware performance improves over time and software changes enlarge
the attack surface, this decision should be revisited. Whether it is easy or difficult to reinsert au-
thentication depends on whether architecture decisions made early on will support this kind of
evolution. Recording this as a technical debt issue proactively gives the team an opportunity to
revisit the decision as hardware and software assumptions evolve and resolve it in a timely fash-
ion. Even better, if the technical debt item is acknowledged and recorded at the time the decision
is made—that is, when the decision to skip authentication was agreed upon—architects and de-
signers could consider other choices that would simplify reintroducing authentication at a later
time.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

B.4 Detect Technical Debt from Development and Deployment
Infrastructure

Technical debt also occurs in the development and deployment infrastructure. This section de-
scribes two examples of technical debt, one related to the suboptimal design and coding of test in-
frastructure (Table 6) and another to misalignment between the infrastructure and the code itself
(Table 7).

Infrastructure has become a key software development artifact. Analyzing for technical debt in the
infrastructure that serves the completed code to a running system in operation encompasses issues
in build, test, and deployment code. Current DevSecOps trends are increasing automation capabil-
ities and tool support, and these trends have exposed deficiencies in the production process used
by development organizations. Infrastructure-related technical debt impedes a team’s ability to
evolve a system or fix known issues. These problems often influence an organization’s ability to
achieve business goals, particularly if they slow velocity or hinder the ability to release in small,
rapid increments. Analysis techniques for code and design can be applied to build scripts, test
suites, and deployment scripts to detect the presence of technical debt.

Consider the following first example of test suites. Test suites are, in effect, code. Suboptimal de-
sign and coding of tests also leads to the same weaknesses as with the product code that have se-
curity implications related to maintenance and evolution. In this example the development team
would like to reuse new Test Helper modules for a legacy test framework. The development team
is migrating integration tests to the new test framework. There are two parallel sets of Test Helper
modules to maintain during migration. Duplication is a source of technical debt and requires
changes in two places. Often, changes are not synced, resulting in unintended drift between
frameworks. The remediation approach allows the legacy test framework to reuse the new test
framework’s Test Helper modules, which are cleaner (better documentation, linted, obvious errors
fixed). The technical debt item exemplified in Table 6 shows the team’s analysis to get insight
into the maintainability of the test framework.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table 6: Example of Recognizing Technical Debt in the Test Infrastructure

Name Maintaining two parallel Test Helper modules results in inconsistencies.

Summary While the DevTeam has been migrating its integration tests to the new test f ramework,
there have been two parallel Test Helper modules to maintain, one for the new f rame-
work and another for the legacy f ramework. The redundancy is resulting in inconsisten-
cies and unneeded work.

Consequences This test code is a source of technical debt and requires team members to make
changes in two places. Of ten, they forget, which leads to unintended drif t between the
two f rameworks. Scaling this inf rastructure to dozens of teams will magnify the chal-
lenges as we roll out the testing f ramework.

Remediation ap-
proach

Reuse the new test f ramework's Test Helper modules. The goal isn't 100% code reuse
between the old and new test f ramework, but 80–90%.
The test methods f rom the legacy module that remain are here for three reasons:

• When ported to the new test f ramework, the test methods were refactored into dif -
ferent modules and will require updating legacy tests to load new modules.

• Navigating the page in the old test f ramework is hacky and has been cleaned up
in the new test f ramework so they won't ever share implementations.

• Subtle refactoring changes make the new implementation fail certain tests. This
test failure should be followed up by using the old implementation and then refac-
toring once all tests have been migrated.

Reporter / assignee DevTeam / QATeam

The misalignment of the build, test, deployment, and delivery strategies and accompanying tools
is another area where technical debt appears in the development and deployment infrastructure.
Technical debt can appear in the misalignment between the infrastructure and the code in the fol-
lowing ways:
• Testing. As software evolves rapidly, new tests may be missing, may test an older interpreta-

tion of the requirements, or may interact with other tests in unknown ways.
• Infrastructure of the operational system. Deferred binding generates a responsibility for the

development team to make architecture decisions to accommodate the change during deploy-
ment, delivery, and runtime and a responsibility for the staff of the operational system to
make the change.

In the second example in Table 7, the security implications of a change request impact not only
the code, but also its alignment with test, deployment, and delivery. These issues are documented
as a technical debt description and included in the backlog.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table 7: Example of Recognizing Technical Debt Within Infrastructure Misalignment

Name Database misalignment with continuous delivery pipeline impacts security during up-
grade.

Summary A database engine upgrade reveals that the security implications of the upgrade are not
well understood and controlled. Secondary and tertiary dependencies are not well docu-
mented or understood. These dependencies are presently precluding us f rom complet-
ing the upgrade because we are constantly running into issues.

Consequences Designers need to understand how change inf luences security considerations under
these secondary and tertiary dependencies. The need for security considerations will
appear during continuous delivery in

• testing, since all possible variations of states will need to be verif ied to guarantee
that they uphold the security posture of the system (among, of course, other
tested behavior)

• deployment, when permissions, access control, and other security-related activi-
ties and decisions need to take place

• delivery and runtime, in the form of conf iguration changes, enabling and disabling
of features, and sometimes dynamic loading of objects

The addition of continuous integration processes creates a requirement for security f lexi-
bility, as changes to systems are pushed automatically and at ever shorter periodicity.

Remediation ap-
proach

Analyze for the database and inf rastructure dependencies and rework the design for se-
cure updates.

Reporter / assignee Reported by the Ops engineer doing the upgrade. Remediation assigned to multiple
team members including the DevSecOps team and lead architect.

The organization needs a deliberate strategy for managing technical debt not only for develop-
ment, but also for testing and production. An agile or flexible architecture complements continu-
ous integration processes and allows the team to explore technical options rapidly with minimal
ripple effect. The architecture can be understood in terms of design decisions that influence the
time and cost to implement, test, and deploy changes and operate the software without introducing
bugs and vulnerabilities.

When there are distributed teams, coordination issues can create misaligned assumptions about
design decisions which can cause technical debt. Distributed teams face coordination challenges
as the architecture is apportioned to them for implementation, and then again when they hand off
their implementations to an integrated testing environment. Tests and infrastructure should be de-
signed and aligned for their purpose, implemented following sound coding practices, and exe-
cuted in alignment with the functionality and attributes they are meant to support.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Appendix C: Literature Reviews of Technical Debt
Management Practices

Technical debt is a mature research field, which is evidenced by the increasing number of publica-
tions and systematic literature reviews since the first research paper was published in 2010
[Brown 2010]. A recent tertiary study reviewing secondary studies in managing technical debt re-
ported 532 unique research studies [Junior 2022]. For example, consistent with the findings of this
study, Besker and Martini [Besker 2018] found 42 other research papers and concluded that there
is agreement in the reviewed literature that architecture technical debt is of primary importance
and is related to the challenge of complexity, maintenance, and evolvability.

Other studies have similar findings [Lenarduzzi 2020]; they also emphasize that there is lack of
empirical evidence on how to assess the repayment of technical debt and how to validate a set of
tools to do so.

Table 8 summarizes recent systematic literature reviews and the outcomes they report.3 The find-
ings of these studies are consistent with our observations and recommendations based on our in-
terviews. Studies focusing on tool reviews also have findings consistent with our study. For exam-
ple, in the recent study by Lefever and colleagues, On the Lack of Consensus Among Technical
Debt Detection Tools, the authors discuss several commonly used industry tools and conclude that
the tools report very different results for even simple measures such as size, complexity, file cy-
cles, and package cycles. Furthermore, most tools give little new insight other than “big files are
bad,” which further validates that consistent tooling and automation is a significant gap [Lefever
2021].

Table 8: Literature Review

Paper Title Number of Studies
Reviewed

Key Observation

Consolidating a Common Perspective
on Technical Debt and its Management
Through a Tertiary Study [Junior 2022]

19 (tertiary) While some confusion around understanding
what technical debt may constitute still exists,
most identify technical debt as tradeof fs be-
tween design decisions. The f indings of the
paper, which focused on 19 secondary studies
covering 532 papers, are consistent with the
f indings of our interviews.

3 For a more detailed analysis of literature and historical analysis of technical debt, refer to Technical Debt Man-

agement: The Road Ahead for Successful Software Delivery [Avgeriou 2023].

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Paper Title Number of Studies
Reviewed

Key Observation

A Systematic Literature Review on
Technical Debt Prioritization: Strategies,
Processes, Factors, and Tools [Lenar-
duzzi 2020]

38 Research has found that most investigated
technical debt is identif ied in code and archi-
tectural artifacts. Despite the research in priori-
tizing technical debt, the attributes considered
are limited. The f indings of this study are also
consistent with our interview results, which
found that more data-driven research is
needed to take advantage of existing sof tware
cost-benef it-analysis-based techniques for
technical debt prioritization for its resolution.

A Tertiary Study on Technical Debt:
Types, Management Strategies, Re-
search Trends, and Base Information
for Practitioners [Rios 2018]

13 (tertiary) Similar to other studies, this study also identi-
f ied technical debt in code, architecture, and
design artifacts to be critical. Its f indings also
include that while a number of indicators of the
presence of technical debt are known, little is
known about how to guide the use of these in-
dicators to achieve greater ef fectiveness/ef f i-
ciency in technical debt item identif ication and
resolution activities. This, hints at research
with a more data-driven and empirical basis,
just as our recommendations included.

Managing Architectural Technical Debt:
A Unif ied Model and Systematic Litera-
ture Review [Besker 2018]

42 This study emphasizes that there is a side
agreement in the reviewed literature that archi-
tecture technical debt is of primary importance.

Analyzing the Concept of Technical
Debt in the Context of Agile Sof tware
Development: A Systematic Literature
Review [Behutive 2017]

38 In this study, most of the literature reviewed
discussed technical debt in the context of Agile
sof tware development. It reports that conse-
quences of poor sof tware development results
in technical debt. The studied literature com-
monly lists the following as the causes and
consequences of the most costly debt:
- Causes: push quick delivery, lack of atten-

tion to architecture and design, lack of un-
derstanding of technology, inadequate test
coverage

- Consequences: reduced productivity, qual-
ity degradation, increased maintenance
costs

- Refactoring is the most popular practice
used to repay technical debt.

Identif ication and Analysis of the Ele-
ments Required to Manage Technical
Debt by Means of a Systematic Map-
ping Study [Fernández-Sánchez 2017]

63 This study found the following:
- Technical debt is context dependent: It in-

cludes issues such as the history of product
development, prospects, or time to market.

- Time-to-market push is the most referenced
cause of technical debt.

- Establishing communication among stake-
holders can help signif icantly in ef fectively
managing technical debt.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Paper Title Number of Studies
Reviewed

Key Observation

Identif ication and Management of Tech-
nical Debt: A Systematic Mapping Study
[Alves 2016]

100 The study reported that the empirical evalua-
tion of the indicators of technical debt is lag-
ging and does not provide strong correlation.
Similar results were reported in 2023 based on
data reported by Google engineers [Jaspan
2023].

A Systematic Mapping Study on Tech-
nical Debt and its Management [Li
2015]

94 As one of the earlier reviews on the subject,
this study reported the need for more empirical
evidence on management process, while also
reiterating the negative ef fects of technical
debt on maintainability.

The Financial Aspect of Managing
Technical Debt: A Systematic Literature
Review [Ampatzoglou 2015]

69 The confusion around the “color of money”
that we observed is also ref lected in this study,
which concludes that there is a lack of a clear
mapping between f inancial and sof tware engi-
neering concepts. This is an important area of
open research.

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Abbreviations and Acronyms

A&S
Acquisition and Sustainment

AF
Air Force

AI
Artificial Intelligence

API
Application Programming Interface

C2
Command and Control

CI/CD
Continuous Integration and Continuous Delivery/Continuous Deployment

COTS
Commercial off-the-Shelf

CWETM
Common Weakness Enumeration

DAU
Defense Acquisition University

DBS
Defense Business Systems

DevSecOps
Development, Security, and Operations

DIB
Defense Industrial Base

DoD
Department of Defense

DoDI
Department of Defense Instruction

FFRDC
Federally Funded Research and Development Center

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

FMR
Federal Management Regulation

GAO
Government Accountability Office

JPL
Jet Propulsion Laboratory

ML
Machine Learning

NASA
National Aeronautics and Space Administration

NDAA
National Defense Authorization Act

O&M
Operations and Maintenance

OSS
Open Source Software

OUSD
Office of the Under Secretary of Defense

R&E
Research and Engineering

RDT&E
Research, Development, Test, and Evaluation

RIO
Risk, Issue, and Opportunity

S&T
Science and Technology

SAFe®
Scaled Agile Framework

SEI
Software Engineering Institute

SWP
Software Acquisition Pathway

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

References/Bibliography

URLs are valid as of the publication date of this report.

[Alves 2016]
Alves, Nicolli S. R.; Mendes, Thiago S.; de Mendonça, Manoel G.; Spínola, Rodrigo O.; Shull,
Forrest; & Seaman, Carolyn. Identification and Management of Technical Debt: A Systematic
Mapping Study. Information and Software Technology. Volume 70. Pages 100-121. 2016.
https://doi.org/10.1016/j.infsof.2015.10.008

[Ampatzoglou 2015]
Ampatzoglou, Areti; Ampatzoglou, Apostolos; Chatzigeorgiou, Alexander; & Avgeriou, Paris.
The Financial Aspect of Managing Technical Debt: A Systematic Literature Review. Information
and Software Technology. Volume 64. Pages 52-73. 2015.
https://doi.org/10.1016/j.infsof.2015.04.001

[Arce 2014]
Arce, Iván; Clark-Fisher, Kathleen; Daswani, Neil; DelGrosso, Jim; Dhillon, Danny; Kern, Chris-
toph; Kohno, Tadayoshi; Landwehr, Carl; McGraw, Gary; Schoenfield, Brook; Seltzer, Margo;
Spinellis, Diomidis; Tarandach, Izar; & West, Jacob. Be Flexible When Considering Future
Changes to Objects and Actors. In Avoiding the Top 10 Software Security Design Flaws. IEEE
Center for Secure Design. September 2014.

[Avgeriou 2016]
Avgeriou, Paris; Kruchten, Philippe; Ozkaya, Ipek; & Seaman, Carolyn. Managing Technical
Debt in Software Engineering. In 2016 Dagstuhl Reports. April 2016. https://drops.dag-
stuhl.de/opus/volltexte/2016/6693/pdf/dagrep_v006_i004_p110_s16162.pdf

[Avgeriou 2023]
Avgeriou, Paris; Ozkaya, Ipek; Chatzigeorgiou, Alexander; Ciolkowski, Marcus; Ernst, Neil;
Koontz, Ronald J.; Poort, Eltjo; & Shull, Forrest. Technical Debt Management: The Road Ahead
for Successful Software Delivery. In 2023 IEEE/ACM International Conference on Software En-
gineering: Future of Software Engineering (ICSE-FoSE). 2023.

[Behutive 2017]
Behutiye, Woubshet; Rodríguez, Pilar; Oivo, Markku; & Tosun, Ayse. Analyzing the Concept of
Technical Debt in the Context of Agile Software Development: A Systematic Literature Review.
Information and Software Technology. Volume 82. Pages 139-158. 2017.
http://dx.doi.org/10.1016/j.infsof.2016.10.004

[Besker 2018]
Besker, Terese; Martini, Antonio; & Bosch, Jan. Managing Architectural Technical Debt: A Uni-
fied Model and Systematic Literature Review. Journal of Systems and Software. Volume 135.
Pages 1-16. 2018. https://doi.org/10.1016/j.jss.2017.09.025

https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1016/j.infsof.2015.04.001
https://drops.dagstuhl.de/opus/volltexte/2016/6693/pdf/dagrep_v006_i004_p110_s16162.pdf
https://drops.dagstuhl.de/opus/volltexte/2016/6693/pdf/dagrep_v006_i004_p110_s16162.pdf
http://dx.doi.org/10.1016/j.infsof.2016.10.004
https://doi.org/10.1016/j.jss.2017.09.025
https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1016/j.infsof.2015.04.001
http://dx.doi.org/10.1016/j.infsof.2016.10.004
https://doi.org/10.1016/j.jss.2017.09.025

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

[Brown 2010]
Brown, Nanette; Nord, Robert; Ozkaya, Ipek; Kazman, Rick; & Kruchten, Philippe. Managing
Technical Debt in Software-Reliant Systems. Pages 47-52. In FoSER ’10: Proceedings of the
FSE/SDP Workshop on the Future of Software Engineering Research. 2010.
https://dl.acm.org/doi/10.1145/1882362.1882373

[CISQ 2019]
Consortium for Information & Software Quality (CISQ). List of Weaknesses Included in the CISQ
Automated Source Code Quality Measures. June 2019. https://www.it-cisq.org/pdf/cisq-weak-
nesses-in-ascqm.pdf

[CISQ 2021]
Consortium for Information & Software Quality (CISQ). Software Quality Standards—ISO/IEC
5055. Automated Source Code Quality Measures. March 2021. https://www.it-cisq.org/stand-
ards/code-quality-standards/

[DAU 2023a]
Defense Acquisition University (DAU). LOG 0270 Introduction to DoD Software Lifecycle Man-
agement. DAU website. July 31, 2023. https://icatalog.dau.edu/mo-
bile/CourseDetails.aspx?id=12675

[DAU 2023b]
Defense Acquisition University (DAU). ACQ 1700 Agile for DoD Acquisition Team Members.
DAU website. July 11, 2023. https://icatalog.dau.edu/mobile/CourseDetails.aspx?id=12313
https://icatalog.dau.edu/mobile/CourseDetails.aspx?id=12675

[DoD 2020a]
Department of Defense (DoD). DoDI 5000.88. Engineering of Defense Systems. November 2020.
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500088p.PDF

[DoD 2020b]
Department of Defense (DoD). DoDI 5000.87 Operation of the Software Acquisition Pathway.
October 22, 2020. https://www.esd.whs.mil/Portals/54/Docu-
ments/DD/issuances/dodi/500087p.PDF

[DoD 2022]
Department of Defense (DoD). Engineering of Defense Systems Guidebook. February 2022.
https://ac.cto.mil/wp-content/uploads/2022/02/Eng-Defense-Systems_Feb2022-Cleared-slp.pdf

https://dl.acm.org/doi/10.1145/1882362.1882373
https://www.it-cisq.org/pdf/cisq-weaknesses-in-ascqm.pdf
https://www.it-cisq.org/pdf/cisq-weaknesses-in-ascqm.pdf
https://www.it-cisq.org/standards/code-quality-standards/
https://www.it-cisq.org/standards/code-quality-standards/
https://icatalog.dau.edu/mobile/CourseDetails.aspx?id=12675
https://icatalog.dau.edu/mobile/CourseDetails.aspx?id=12675
https://icatalog.dau.edu/mobile/CourseDetails.aspx?id=12313
https://icatalog.dau.edu/mobile/CourseDetails.aspx?id=12675
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500088p.PDF
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF
https://ac.cto.mil/wp-content/uploads/2022/02/Eng-Defense-Systems_Feb2022-Cleared-slp.pdf
https://dl.acm.org/doi/10.1145/1882362.1882373
https://icatalog.dau.edu/mobile/CourseDetails.aspx?id=12313
https://icatalog.dau.edu/mobile/CourseDetails.aspx?id=12675
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500088p.PDF
https://ac.cto.mil/wp-content/uploads/2022/02/Eng-Defense-Systems_Feb2022-Cleared-slp.pdf

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

[DoD 2023a]
Department of Defense (DoD). Defense Technical Risk Assessment Methodology (DTRAM) Crite-
ria Volume 6.4. May 2023. https://www.cto.mil/wp-content/uploads/2023/05/DTRAM-6-4-
May2023.pdf

[DoD 2023b]
Department of Defense (DoD). Risk, Issue, and Opportunity Guide. September 2023.
https://www.cto.mil/wp-content/uploads/2023/09/RIO-2023.pdf

[DoD 2023c]
Department of Defense (DoD). Software Engineering for Continuous Delivery of Warfighting Ca-
pability. April 2023. https://www.cto.mil/wp-content/uploads/2023/06/SWE-Guide-April2023.pdf

[DoD 2023d]
Department of Defense (DoD). Systems Engineering Plan (SEP) Outline Version 4.1. May 2023.
https://ac.cto.mil/wp-content/uploads/2023/05/SEP-Outline-4.1.pdf

[Fernández-Sánchez 2017]
Fernández-Sánchez, Carlos; Garbajosa, Juan; Yagüe, Agustín, Yagüe; & Perez, Jennifer. Identifi-
cation and Analysis of the Elements Required to Manage Technical Debt by Means of a System-
atic Mapping Study. Journal of Systems and Software. Volume 124. Pages 22-38. 2017.
https://www.sciencedirect.com/science/article/pii/S0164121216302138

[GAO 2022]
United States Government Accountability Office (GAO). Leading Practices: Agency Acquisition
Policies Could Better Implement Key Product Development Principles. March 2022.
https://www.gao.gov/products/gao-22-104513

[GAO 2023]
Government Accountability Office (GAO). Defense Software Acquisitions Changes to Require-
ments, Oversight, and Tools Needed for Weapon Programs. GAO-23-105867. July 2023.
https://www.gao.gov/assets/gao-23-105867.pdf

[Izurieta 2019]
Izurieta, Clemente & Prouty, Mary. Leveraging SecDevOps to Tackle the Technical Debt Associ-
ated with Cybersecurity Attack Tactics. Pages 33-37. In TechDebt ’19: Proceedings of the Second
International Conference on Technical Debt. May 2019.
https://doi.org/10.1109/TechDebt.2019.00012

[Jaspan 2023]
Jaspan, Ciera & Green, Collin. Defining, Measuring, and Managing Technical Debt. IEEE Soft-
ware. Volume 40. Number 3. 2023. Pages 15-19. https://doi.org/10.1109/TechDebt.2019.00012

[Junior 2022]
Junior, Helvio Jeronimo & Travassos, Guilherme Horta. Consolidating a Common Perspective on
Technical Debt and its Management Through a Tertiary Study. Information and Software Tech-
nology. Volume 149. Number 6. 2022. http://dx.doi.org/10.1016/j.infsof.2022.106964

https://www.cto.mil/wp-content/uploads/2023/05/DTRAM-6-4-May2023.pdf
https://www.cto.mil/wp-content/uploads/2023/05/DTRAM-6-4-May2023.pdf
https://www.cto.mil/wp-content/uploads/2023/09/RIO-2023.pdf
https://www.cto.mil/wp-content/uploads/2023/06/SWE-Guide-April2023.pdf
https://ac.cto.mil/wp-content/uploads/2023/05/SEP-Outline-4.1.pdf
https://www.sciencedirect.com/science/article/pii/S0164121216302138
https://www.gao.gov/products/gao-22-104513
https://www.gao.gov/assets/gao-23-105867.pdf
https://doi.org/10.1109/TechDebt.2019.00012
https://doi.org/10.1109/TechDebt.2019.00012
http://dx.doi.org/10.1016/j.infsof.2022.106964
https://www.cto.mil/wp-content/uploads/2023/09/RIO-2023.pdf
https://ac.cto.mil/wp-content/uploads/2023/05/SEP-Outline-4.1.pdf
https://www.sciencedirect.com/science/article/pii/S0164121216302138
https://www.gao.gov/products/gao-22-104513
https://www.gao.gov/assets/gao-23-105867.pdf
https://doi.org/10.1109/TechDebt.2019.00012
https://doi.org/10.1109/TechDebt.2019.00012
http://dx.doi.org/10.1016/j.infsof.2022.106964

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

[Kruchten 2019]
Kruchten, Philippe; Nord, Robert; & Ozkaya, Ipek. Managing Technical Debt. Addison-Wesley
Professional. 2019.

[Lefever 2021]
Lefever, Jason; Cai, Yuanfang; Cervantes, Humberto; Kazman, Rick; & Fang, Hongzhou. On the
Lack of Consensus Among Technical Debt Detection Tools. In 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering: Software Engineering in Practice (ICSE SEIP).May
2021. https://arxiv.org/abs/2103.04506

[Lenarduzzi 2020]
Lenarduzzi, Valentina; Besker, Terese; Taibi, Davide; Martini, Antonio; & Fontana, Francesca
Arcelli. A Systematic Literature Review on Technical Debt Prioritization: Strategies, Processes,
Factors, and Tools. Journal of Systems and Software. Volume 171. 2020.
https://doi.org/10.1016/j.jss.2020.110827

[Li 2015]
Li, Zengyang; Avgeriou, Paris; & Liang, Peng. A Systematic Mapping Study on Technical Debt
and its Management. Journal of Systems and Software. Volume 101. Number 3. Pages 193-220.
2015.

[NDAA 2021]
117th Congress. National Defense Authorization Act for Fiscal Year 2022. December 2021.
https://www.congress.gov/bill/117th-congress/senate-bill/1605/text

[OMG 2018]
Object Management Group (OMG). Automated Technical Debt Measure. September 2018.
https://www.omg.org/spec/ATDM/1.0/PDF

[OUSD(C) 2021]
Under Secretary of Defense (Comptroller). Volume 11A: “Reimbursable Operations Policy.” In
Department of Defense Financial Management Regulation (DoD FMR). DoD 7000.14 - R. May
2021. https://comptroller.defense.gov/fmr/

[Ozkaya 2022]
Ozkaya, Ipek & Nord, Robert. 10 Years of Research in Technical Debt and an Agenda for the Fu-
ture [blog post]. SEI Blog. August 22, 2022. https://insights.sei.cmu.edu/blog/10-years-of-re-
search-in-technical-debt-and-an-agenda-for-the-future/

[Rios 2018]
Rios, Nicolli; de Mendonça, Neto; Manoel. Gomes; & Spínola, Rodrigo Oliveira. A Tertiary
Study on Technical Debt: Types, Management Strategies, Research Trends, and Base Information
for Practitioners. Information and Software Technology. Volume 102. Pages 117-145. 2018.
https://doi.org/10.1016/j.infsof.2018.05.010

https://arxiv.org/abs/2103.04506
https://doi.org/10.1016/j.jss.2020.110827
https://www.congress.gov/bill/117th-congress/senate-bill/1605/text
https://www.omg.org/spec/ATDM/1.0/PDF
https://comptroller.defense.gov/fmr/
https://insights.sei.cmu.edu/blog/10-years-of-research-in-technical-debt-and-an-agenda-for-the-future/
https://insights.sei.cmu.edu/blog/10-years-of-research-in-technical-debt-and-an-agenda-for-the-future/
https://doi.org/10.1016/j.infsof.2018.05.010
https://arxiv.org/abs/2103.04506
https://doi.org/10.1016/j.jss.2020.110827
https://www.congress.gov/bill/117th-congress/senate-bill/1605/text
https://www.omg.org/spec/ATDM/1.0/PDF
https://comptroller.defense.gov/fmr/
https://doi.org/10.1016/j.infsof.2018.05.010

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

[Shull 2023]
Shull, Forrest. U. S. Leadership in Software Engineering & AI Engineering: Critical Needs & Pri-
orities Workshop – Executive Summary. October 2023. https://insights.sei.cmu.edu/library/us-
leadership-in-software-engineering-ai-engineering-critical-needs-priorities-workshop-executive-
summary/

https://insights.sei.cmu.edu/library/us-leadership-in-software-engineering-ai-engineering-critical-needs-priorities-workshop-executive-summary/
https://insights.sei.cmu.edu/library/us-leadership-in-software-engineering-ai-engineering-critical-needs-priorities-workshop-executive-summary/
https://insights.sei.cmu.edu/library/us-leadership-in-software-engineering-ai-engineering-critical-needs-priorities-workshop-executive-summary/

CMU/SEI-2023-TR-003 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY
(Leave Blank)

2. REPORT DATE
November 2023

3. REPORT TYPE AND DATES
COVERED
Final

4. TITLE AND SUBTITLE
Report to the Congressional Defense Committees on National Defense Authorization Act
(NDAA) for Fiscal Year 2022 Section 835 Independent Study on Technical Debt in Software-
Intensive Systems

5. FUNDING NUMBERS
FA8702-15-D-0002

6. AUTHOR(S)
Ipek Ozkaya, Forrest Shull, Julie Cohen, & Brigid O’Hearn

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2023-TR-003

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
SEI Administrative Agent
AFLCMC/AZS
5 Eglin Street
Hanscom AFB, MA 01731-2100

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
n/a

11. SUPPLEMENTARY NOTES
Funded by OUSD (A&S) per FY22 NDAA Section 835

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DOPSR, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
A team from Carnegie Mellon University’s Software Engineering Institute (SEI) conducted an independent study to satisfy the require-
ments of the Fiscal Year 2022 National Defense Authorization Act (NDAA) Section 835, Independent Study on Technical Debt in Soft-
ware-Intensive Systems.

This report describes the conduct of the study, summarizes the technical trends observed, and presents the resulting recommendations.
The study methodology includes a literature review, a review of SEI reports developed for program stakeholders, deep dives on program
data from SEI engagements with Department of Defense (DoD) programs, and interviews conducted using the 10 study elements speci-
fied in Section 835(b).

The study concludes that programs are aware of the importance of managing technical debt. Furthermore, a number of DoD programs
have established practices to actively manage technical debt. During this study, the DoD published several guidance documents that
begin to include technical debt and technical debt management as an essential practice for successful software development. Study
recommendations include that the DoD must continue to update policy/guidance and empower programs to incorporate technical debt
practices as part of their software development activities while enabling research in improved tool support and data collection.

14. SUBJECT TERMS
technical debt, FY22 National Defense Authorization Act Section 835

15. NUMBER OF PAGES
49

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280- 5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Report to the Congressional Defense Committees on National Defense Authorization Act (NDAA) for Fiscal Year 2022 Section 835 Independent Study on Technical Debt in Software-Intensive Systems
	Table of Contents
	List of Tables
	Abstract
	1 Background
	2 Study Methodology
	3 Data Sources
	4 Findings and Examples
	4.1 Findings from Literature Review
	4.2 Findings from Interviews
	4.3 Findings from Deep Dives on Program Data

	5 Recommendations
	Appendix A: Findings Against FY22 NDAA Section 835(b) Study Elements
	Appendix B: Technical Debt Item Examples
	B.1 Detect Technical Debt from Code
	B.2 Detect Technical Debt from Symptoms
	B.3 Detect Technical Debt from Architecture
	B.4 Detect Technical Debt from Development and Deployment Infrastructure

	Appendix C: Literature Reviews of Technical Debt Management Practices
	Abbreviations and Acronyms
	References/Bibliography

