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LARGE LANGUAGE MODELS (LLMS) ARE GENERATIVE 
ARTIFICIAL INTELLIGENCE (AI) MODELS that have 
been trained on massive corpuses of text data and 
can be prompted to generate new, plausible content. 
LLMs are seeing rapid advances, and they promise to 
improve productivity in many fields. OpenAI’s GPT-
41 and Google’s LaMDA2 are the underlying LLMs 
of services like ChatGPT 3, CoPilot4, and Bard5. These 
services can perform a range of tasks, including 
generating human-like text responses to questions, 
summarizing artifacts, and generating working code. 
These models and services are the focus of extensive 
research efforts across industry, government, and 
academia to improve their capabilities and relevance, 
and organizations in many domains are rigorously 
exploring their use to uncover potential applications.

The idea of harnessing LLMs to enhance the efficiency of 
software engineering and acquisition activities holds special 
allure for organizations with large software operations, such 
as the Department of Defense (DoD), as doing so offers the 
promise of substantial resource optimization. Potential use 
cases for LLMs are plentiful, but knowing how to assess the 
benefits and risks associated with their use is nontrivial. 
Notably, to gain access to the latest advances, organizations 
may need to share proprietary data (e.g., source code) with 
service providers. Understanding such implications is central 
to intentional and responsible use of LLMs, especially for 
organizations managing sensitive information. 

In this document, we examine how decision makers, such as 
technical leads and program managers, can assess the fitness 
of LLMs to address software engineering and acquisition 
needs [Ozkaya 2023]. We first introduce exemplar scenarios 
in software engineering and software acquisition and 
identify common archetypes. We describe common concerns 
involving the use of LLMs and enumerate tactics for mitigating 
those concerns. Using these common concerns and tactics, 
we demonstrate how decision makers can assess the fitness 
of LLMs for their own use cases through two examples.

Capabilities of LLMs, risks concerning their use, and our 
collective understanding of emerging services and models are 
evolving rapidly [Brundage et al. 2022]. While this document 
is not meant to be comprehensive in covering all software 
engineering and acquisition use cases, their concerns, and 
mitigation tactics, it demonstrates an approach that decision 
makers can use to think through their own LLM use cases as 
this space evolves. 

1 https://openai.com/research/gpt-4
2 https://blog.google/technology/ai/lamda/
3 https://chat.openai.com
4 https://github.com/features/copilot
5 https://bard.google.com

What Is an LLM?
An LLM is a deep neural network model trained on an extensive 
corpus of diverse documents (e.g., websites and books) to 
learn language patterns, grammar rules, facts and even some 
reasoning abilities [Wolfram 2023]. LLMs can generate responses 
to inputs (“prompts”) by iteratively determining the next word 
or phrase appearing after others based on the prompt and 
patterns and associations learned from their training corpus 
using probabilistic and randomized selection [White et al. 
2023]. This capability allows LLMs to generate human-like text 
that can be surprisingly coherent and contextually relevant, 
even if they may not always be semantically correct.

While LLMs can perform complex tasks using their trained 
knowledge, they lack true understanding. Rather, they are 
sophisticated pattern matching tools. Moreover, due to their 
probabilistic reasoning, they can generate inaccurate results 
(often referred to as “hallucinations”), such as citations to 
non-existent references or method calls to nonexistent 
application programming interfaces (APIs). While LLMs can 
perform analysis and inferencing on new data they have 
been prompted with, data on which LLMs have been trained 
can limit their accuracy. However, the technology is rapidly 
advancing with new models having increasing complexity 
and parameters, and benchmarks have already emerged for 
comparing their performance [Imsys 2023]. In addition, LLM 
service providers are working on ways to use more recent 
data [D’Cruze 2023]. Despite these limitations, there are 
productive uses of LLMs today.

Choosing an LLM
There are already dozens of LLMs and services built using 
LLMs, and more emerge every day. These models vary in 
many dimensions, from technical to contractual, and the 
details of these differences can be difficult to keep straight. 
The following distinctions are a good starting point when 
choosing an LLM for use.

Model or Service. ChatGPT is a chatbot built on OpenAI’s GPT 
family of LLMs [Open AI 2023]. The difference is important, 
as services built on LLMs can add additional capabilities (e.g., 
specialized chatbot features, specialized training beyond the 
core LLM, or non-LLM features that can improve results from 
an LLM). A service like ChatGPT is typically hosted by a service 
provider, meaning that it manages the computing resources 
(and associated costs) and that users are typically required 
to send their prompts (and potentially sensitive data) to the 
service provider to use the service. A model, like Meta’s Llama 
26, can be fine-tuned with domain- or organization-specific data 
to improve accuracy, but it typically lacks the added features 
and resources of a commercially supported service. 

6 https://ai.meta.com/llama/

https://openai.com/research/gpt-4
https://blog.google/technology/ai/lamda/
https://chat.openai.com
https://github.com/features/copilot
https://bard.google.com
https://ai.meta.com/llama/
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General or Specialized. LLMs are pre-trained on a corpus, and 
the composition of that corpus is a significant factor affecting an 
LLM’s performance. General LLMs are trained on text sources 
like Wikipedia that are available to the public. Specialized LLMs 
fine tune those models by adding training material from specific 
domains like healthcare and finance [Zhou et al. 2022; Wu et 
al. 2023]. LLMs like CodeGen7 have been specialized with large 
corpuses of source code for use in software engineering. 

Open Source or Proprietary. Open source LLMs provide a 
platform for researchers and developers to freely access, use, 
and even contribute to the model’s development. Proprietary 
LLMs are subject to varying restrictions on use, making them 
less open to experimentation or potential deployment. 
Some providers (e.g., Meta) use a license that is largely, but 
not completely, open [Hull 2023]. OpenAI offers a different 
compromise: While the GPT series of LLMs is not open 
source, OpenAI does permit fine tuning (for a fee) as a means 
of specialization and limited experimentation with their 
proprietary model.

The field of LLMs is a fast-moving space. Moreover, the 

ethics and regulations surrounding their use are also in 

a state of flux, as society grapples with the challenges 

and opportunities these powerful models present. 

Keeping apprised of these developments is crucial for 

taking advantage of the potential offered by LLMs.

7 https://github.com/salesforce/CodeGen

Use Cases
The ability of LLMs to generate plausible content for text and 
code applications has sparked the imaginations of many. 
A recent literature review examines 229 research papers 
written since 2017 on the application of LLMs to software 
engineering problems [Hou et al. 2023]. Application areas span 
requirements, design, development, testing, maintenance, and 
management activities, with development and testing being 
the most common. 

Our team, which works with government organizations 
daily, took a broader perspective and brainstormed several 
dozen ideas for using LLMs in common software engineering 
and acquisition activities (see Table 1 for examples). Two 
important observations quickly emerged from this activity. 
First, most use cases represent human-AI partnerships in 
which an LLM or LLM-based service could be used to help 
humans (as opposed to replace humans) complete tasks 
more quickly. Second, deciding which use cases would be 
most feasible, beneficial, or affordable is not a trivial decision 
for those just getting started with LLMs.

https://github.com/salesforce/CodeGen
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Archetypes
Commonalities among the use cases lend themselves to 
abstracting the set into a manageable number of archetypes. 
Two dimensions are helpful in this regard: the nature of 
the activity an LLM is performing and the nature of the data 
that the LLM is acting on. Taking the cross-product of these 
dimensions, these use cases fall into the archetypes depicted 
in Table 2. 

Table 2: Use Case Archetypes

ACTIVITY TYPE DATA TYPE

Text Code Model Images

Retrieve 
Information

retrieve- 
text

retrieve-
code

retrieve-
model

retrieve-
images

Generate 
Artifact

generate-
text

generate-
code

generate-
model

generate-
images

Modify  
Artifact

modify- 
text

modify- 
code

modify-
model

modify-
images

Analyze 
Artifact

analyze- 
text

analyze-
code

analyze-
model

analyze-
images

Table 1: Sample Acquisition and Software Engineering Use Cases

ACQUISITION USE CASES SOFTWARE ENGINEERING USE CASES

A1. A new acquisition specialist uses an LLM to generate an 
overview of relevant federal regulations for an upcoming request 
for proposal (RFP) review, expecting the summary to save time in 
background reading.

SE1. A developer uses an LLM to find vulnerabilities in existing 
code, hoping that the exercise will catch additional issues not 
already found by static analysis tools. 

A2. A chief engineer uses an LLM to generate a comparison of 
alternatives from multiple proposals, expecting it to use the 
budget and schedule formulas from previous similar proposal 
reviews and generate accurate itemized comparisons. 

SE2. A developer uses an LLM to generate code that parses 
structured input files and performs specified numerical analysis 
on its inputs, expecting it to generate code with the desired 
capabilities. 

A3. A contract specialist uses an LLM to generate ideas for a 
request for information (RFI) solicitation given a set of concerns 
and vague problem description, expecting it to generate a draft 
RFI that is at least 75% aligned with their needs. 

SE3. A tester uses an LLM to create functional test cases, 
expecting it to produce a set of text test cases from a provided 
requirements document. 

A4. A CTO uses an LLM to create a report summarizing all uses 
of digital engineering technologies in the organization based 
on internal documents, expecting it can quickly produce a clear 
summary that is at least 90% correct. 

SE4. A developer uses an LLM to generate software 
documentation from code to be maintained, expecting it to 
summarize its functionality and interface. 

A5. A program office lead uses an LLM to evaluate a contractor’s 
code delivery for compliance with required design patterns, 
expecting that it will identify any instances in which the code fails 
to use required patterns. 

SE5. A software engineer who is unfamiliar with SQL uses an  
LLM to generate an SQL query from a natural language 
description, expecting it to generate a correct query that can be 
tested immediately. 

A6. A program manager uses an LLM to summarize a set of 
historical artifacts from the past six months in preparation for 
a high-visibility program review and provides specific retrieval 
criteria (e.g., delivery tempo, status of open defects, and 
schedule), expecting it to generate an accurate summary of 
program status that complies with the retrieval criteria. 

SE6. A software architect uses an LLM to validate whether code 
that is ready for deployment is consistent with the system’s 
architecture, expecting that it will reliably catch deviations from 
the intended architecture. 

A7. A program manager uses an LLM to generate a revised draft 
of a statement of work, given a short starting description and 
a list of concerns (e.g., cybersecurity, software delivery tempo, 
and interoperability goals). The program manager expects it 
to generate a structure that can be quickly refined and that 
includes topics drawn from best practices they may not think  
to request explicitly.

SE7. A developer uses an LLM to translate several classes from 
C++ to Rust, expecting that the translated code will pass the same 
tests and be more secure and memory safe.

A8. A requirements engineer uses an LLM to generate draft 
requirements statements for a program upgrade based on past 
similar capabilities, expecting them to be a good starting point. 

SE8. A developer uses an LLM to generate synthetic test data 
for a new feature being developed, expecting that it will quickly 
generate syntactically correct and representative data. 

A9. A contract officer is seeking funding to conduct research on a 
high-priority topic they are not familiar with. The contract officer 
uses an LLM to create example project descriptions for their 
context, expecting it to produce reasonable descriptions. 

SE9. A developer provides an LLM with code that is failing in 
production and a description of the failures, expecting it to help 
the developer diagnose the root cause and propose a fix.
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Matching a specific use to an archetype helps identify 
common concerns among similar use cases and known 
solutions commonly applied for similar use cases. 
Archetypes can be a tool that organizations use to group 
successes, gaps, and lessons learned in a structured way.

Activity Type captures differences in associations that an 
LLM would need to make to support a use case, with some 
asking an LLM to do things that a language model was not 
designed to do:

• Retrieve Information asks an LLM to construct a response to 
a question (e.g., what’s the Observer pattern?) for which a 
known answer is likely found in the training corpus, directly 
or across related elements.

• Generate Artifact asks an LLM to create a new artifact (e.g., 
a summary of a topic or a Python script that performs a 
statistical analysis) that likely bears similarity with existing 
examples in the corpus.

• Modify Artifact asks an LLM to modify an existing artifact 
to improve it in some way (e.g., translate Python code to 
Java or remove a described bug) that resembles analogous 
improvements among artifacts in the training corpus.

• Analyze Artifact asks an LLM to draw a conclusion about 
provided information (e.g., what vulnerabilities are in this 
code or will this architecture scale adequately?) that likely 
requires semantic reasoning about data.

Data Type captures differences in the kind of data that an 
LLM operates on or generates, such as the differences in 
semantic rules that make data (e.g., code) well-formed: 

• Text inputs vary widely in formality and structure (e.g., 
informal chat versus structured text captured in templates). 

• Code is text with formal rules for structure and semantics, 
and a growing number of LLMs are being specialized to take 
advantage of this structure and semantics. 

• Models are abstractions (e.g., from software design or 
architecture) that often use simple terms (e.g., publisher) 
that imply deep semantics. 

• Images are used to communicate many software artifacts 
(e.g., class diagrams) and often employ visual conventions 
that, much like models, imply specific semantics. While LLMs 
operate on text, multimodal LLMs (e.g., GPT-4) are growing 
in their ability to ingest and generate image data.

Figure 1 shows an example of using the archetypes to 
generate ideas for LLM use cases in a particular domain.  
This example focuses on independent verification and 
validation (IV&V), a resource-intensive activity within the DoD 
that involves many different activities that might benefit 
from the use of LLMs. More complex use cases for IV&V 
could also be generated that involve integration of multiple 
archetypes into a larger workflow.

ACTIVITY TYPE DATA TYPE

Text Code Model Images

Retrieve Information retrieve-text retrieve-code retrieve-model retrieve-images

Generate Artifact generate-text   1    2 generate-code   4 generate-model generate-images   6

Modify Artifact modify-text modify-code modify-model modify-images

Analyze Artifact analyze-text   3 analyze-code   5 analyze-model analyze-images

 1
A tester uses an LLM to create integration 
test descriptions from a set of APIs and 
integration scenarios, expecting it to 
produce a set of test case descriptions that 
can be used to implement tests.

 3
An IV&V evaluator uses an LLM to analyze 
software design documents against a 
specific set of certification criteria and to 
generate a certification report, expecting it 
to describe certification violations that they 
will review to confirm.

 5
A developer uses an LLM to find 
vulnerabilities in existing code, hoping that 
the exercise will catch additional issues not 
already found by static analysis tools. 

 2
An IV&V evaluator uses an LLM to create 
a verification checklist from a set of 
certification regulations and a system 
description, expecting it to produce a 
context-sensitive checklist they can tailor.

 4
A new developer uses an LLM as a pair 
programmer to write code, expecting it to 
help create vulnerability-free code.

 6
A developer uses an LLM to create a 
network view for authorization to operate 
(ATO) certification from a description of 
the architecture, expecting it to produce a 
rough network diagram they can refine.

Figure 1: Using Archetypes to Help Brainstorm Potential Use Cases
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SE8

SE4

SE3

SE1

SE5

SE7

SE6

SE9 SE2

A9

A7

A2
A6

A1A5

A3
A8

A4
Mistakes are 
easy for users 
to find

Mistakes are
hard for users

to find

Mistakes have 
small consequences

Mistakes have 
large consequences

Figure 2: Two Ways to Look at Concerns with the Generation of Incorrect Results (A: Acquisition Use Cases, SE: Software Engineering Use Cases [Table 1])

Concerns and How to Address Them
Recognizing concerns around applications of LLMs to 
software engineering and acquisition, and deciding how to 
address each, will help decision makers make more informed 
choices. There are multiple perspectives one should consider 
before going forward with an LLM use case. An important 
reality is that the results generated by LLMs are in fact 
sometimes wrong. Figure 2 illustrates this perspective based 
on two questions:

• How significant would it be to act on an incorrect result in a 
given use case?

• How easy would it be for a user in the use case to recognize 
that a result from an LLM is incorrect?

This figure shows a notional placement of the use cases from 
Table 1 (actual placement would be reliant on refinement 
of these use cases). The green quadrant is ideal from this 
perspective: Mistakes are not particularly consequential and 
relatively easy to spot. Use cases in this quadrant can be a 
great place for organizations to start LLM experimentation. 
The red quadrant, on the other hand, represents the least 
favorable cases for LLM use: Mistakes create real problems 
and are hard for users to recognize. 

The consequences of mistakes and ease of spotting them is  
only one perspective of evaluation. Another perspective is 
the expected significance of improvements or efficiencies 
achievable with LLMs. Among many concerns, we discuss five 
categories in further detail in this document—correctness, 
disclosure, usability, performance, and trust—as they are 
relevant to all use cases. 

Correctness: The significance of correctness as a concern 
depends on factors such as how the results will be used, the 
safeguards used in workflows, and the expertise of users. 
Correctness refers to the overall accuracy and precision of 
output relative to some known truth or expectation. Accuracy 
hinges greatly on whether an LLM was trained or fine-tuned 
with data that is sufficiently representative to support the 
specific use case. Even with rich training corpuses, some 
inaccuracy can be expected [Ouyang et al. 2023]. For example, 
a recent study on code translation found GPT-4 to perform 
better than other LLMs, even though more than 80% of 
translations on a pair of open source projects contained some 
errors. Advances are likely to improve, but not eliminate, 
these numbers [Pan et al. 2023].



7

Disclosure: When users interact with LLMs, some use cases 
may require disclosing proprietary or sensitive information to 
a service provider to complete a task (e.g., sharing source code 
to help debug it). The disclosure concern is therefore related 
to the amount of proprietary information that must be exposed 
during use. If users share confidential data, trade secrets, or 
personal information, there is a risk that such data could be 
stored, misused, or accessed by unauthorized individuals. 
Moreover, it might become part of the training data corpus 
and disseminated without users having any means to track 
its origin. For example, GSA CIO IL-23-01 (the U.S. General 
Services Administration instructional letter Security Policy 
for Generative Artificial Intelligence [AI] Large Language Models 
[LLMs] ) bans disclosure of federal nonpublic information as 
inputs in prompts to third-party LLM endpoints [GSA 2023]. 

Usability: LLM users have vastly different backgrounds, 
expectations, and technical abilities. Usability captures 
the ability of LLM users with different expertise to complete 
tasks. Users may need expertise on both the input (crafting 
appropriate prompts) and output (judging the correctness 
of results) sides of LLM use [Zamfirescu-Pereira et al. 2023]. 
The significance of usability as a concern depends on the 
degree to which getting to acceptable results is sensitive to 
the expertise of users. A study completed with developers’ 
early experiences using CoPilot reflects that there is a shift 
from writing code to understanding code when using LLMs 
on coding tasks [Bird et al. 2023]. This observation hints at 
the need for different usability techniques for interaction 
mechanisms, as well as the need to account for expertise. 

Performance: While using an LLM requires much less 
computing power than training an LLM, responsiveness 
can still be a factor in LLM use, especially if sophisticated 
prompting approaches are incorporated into an LLM-
based service. For the purposes of concerns related to use 
cases, performance expresses the time required to arrive at 
an appropriate response. Model size, underlying compute 
power, and where the model runs and is accessed from are 
among the factors that influence responsiveness [Patterson 
et al. 2022]. Services built on LLMs may introduce additional 
performance overhead due to the way in which other 
capabilities are integrated with the LLM. 

Trust: To employ the technology with the requisite level 
of trust, users must grasp the limitations of LLMs. Trust 
reflects the user’s confidence in the output. Overreliance on 
an LLM without understanding its potential for error or 
bias can lead to undesirable consequences [Rastogi et al. 
2023]. As a result, several other concerns (e.g., explainability, 
bias, privacy, security, and ethics) are often considered in 
relationship to trust [Schwartz et al. 2023]. For example, the 
DoD published ethical AI principles to advance trustworthy 
AI systems [DoD 2020]. 

How significant these and other concerns are for each use 
case will vary by context and use. The questions provided 
in Table 3 can help organizations assess how relevant each 
concern is for a specific use case. A starting point could be to 
categorize the significance of each concern as High, Medium, 
or Low. This information can help organizations decide 
whether an LLM is fit for purpose and what concerns need to 
be mitigated to avoid unacceptable outcomes. 

Table 3: Example Questions to Help Determine the Significance of 
Common Concerns for a Specific Use Case

CONCERN SIGNIFICANCE QUESTIONS

Correctness • What is the risk or impact of using an incorrect 
result in the use case?

• How difficult is it for the expected user to 
determine whether a result is correct?

• Are there gaps in the data used to train the 
LLM that could adversely impact results (e.g., 
the data is not current with recent technology 
releases or contains little data for an esoteric 
programming language)?

Disclosure • Can an LLM be prompted without disclosing 
proprietary information (e.g., using generic 
questions or abstracting proprietary details)?  

• What is the risk or impact of a third party being 
able to observe your prompts?

• Are there existing data disclosure constraints 
that strictly need to be observed?

Usability • How adept are expected users at prompting  
an LLM? 

• How familiar are expected users with 
approaches for determining whether results  
are inaccurate?

• How familiar are expected users with 
approaches for determining whether results are 
incomplete?

Performance • How quickly must a user or machine be able to 
act on a result?  

• Are there significant computing resource 
limitations?

• Are there intermediate steps in the interaction 
with the LLM that may affect end-to-end 
performance?

Trust • Are your expected users predisposed to  
accept generated results (automation bias)  
or reject them? 

• Is the data the LLM was trained on free of bias 
and ethical concerns?

• Has the LLM been trained on data that is 
appropriate for use?
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These common concerns, and questions to determine 
their significance, enable identification of common tactics 
for addressing each concern. A tactic is a course of action 
that can be taken to reduce the occurrence or impact of a 
concern. Table 4 summarizes a collection of tactics that can 
help mitigate each concern, along with a rough estimate 
(High [H], Medium [M], or Low [L]) of the relative potential 
cost of using each tactic. Typically, the more resources 

(human and computation) a tactic requires, the higher the 
cost. For example, prompt engineering and model training 
both address correctness, but prompt engineering is typically 
much less expensive. Of note, some tactics (purple rows) 
focus on technical interventions, others (green rows) focus 
on human-centered actions, and the rest (gray rows) could 
employ technical or human-centered interventions.

Table 4: Tactics That Can Be Used to Address Common Concerns with LLM Use

CONCERN TACTIC DESCRIPTION COST

Correctness Prompt engineering Educate users on prompt engineering techniques and patterns to generate 
better results. 

L

Validate manually Dedicate time to allow users to carefully validate interim and final results. M

Adjust settings Change settings of exposed model parameters like temperature 
(randomness of the model’s output) and the maximum number of tokens.

L

Adopt newer model Use newer models that integrate technical advances or improved training 
corpuses that can produce better results.

M

Fine tune model Tailor a pretrained model using organization- or domain-specific data to 
improve results.

M

Train new model Use a custom training corpus or proprietary data to train a new model. H

Disclosure Open disclosure policy Establish a policy that allows users to share as much detail as needed to 
complete a task.

L

Self-redact sensitive 
information

Limit what information users can share by establishing guidelines and 
safeguards, such as using anonymization or limiting requests to generic 
topics.

M

Use a local LLM Deploy an LLM that runs on local hardware and does not share any 
information with a service provider, enabling disclosure in a trusted context.

H

Usability Prompt engineering Educate users on prompt engineering techniques and patterns to generate 
better results. 

L

Define evaluation criteria 
a priori 

Provide enforceable criteria for the model’s output to be checked against 
before the output is known.

M

Performance Use more efficient 
model

Select a model that generates comparable results more efficiently (e.g., 
perhaps based on new, more advanced algorithms).

L

Use less capable model Select a model that generates lower quality results more efficiently. L

Increase resources Increase compute resources or pay for a higher service tier. M

Trust Educate users Educate users on the limitations of LLMs and how to validate the output. M

Compare output with 
non-LLM sources

Validate LLM output against similar information from non-LLM sources, 
such as the original documents, the internet, or SMEs.

H

Compare output with 
other LLMs

Validate LLM output against other trusted LLMs. H

There is no uniform, context-free answer for addressing any of the concerns discussed above. Each tactic involves 

different strategies, some of which require changing user behavior, while others require changing the compute 

environment, data, or the model. Each tactic impacts costs in different ways. Moreover, a single tactic may sometimes 

help address multiple concerns. 

Just as the capabilities of LLMs will continue to evolve, the significance of different concerns for an organization’s  

use cases may also change. Assess these and other tactics in the context of your concerns and use cases, and choose 

wisely to meet your needs.  
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Deciding Whether LLMs Are a Fit
Analysis of how the concerns would be expected to apply 
across the use case archetypes (Table 2) helps identify higher- 
and lower-risk applications of LLMs in software engineering 
and acquisition. For example

• Concerns about disclosing sensitive information span all 
activity types but is least common (and more manageable) in 
Information Retrieval use cases.

• Correctness of LLM results is a significant concern across 
all activity types. However, it is most significant for activities 
that generate outputs that are difficult to validate, such as in 
Analyze Artifact use cases.

• Analyze Artifact use cases involving unstructured text are 
likely to pose greater challenges, given the variation in 
a training corpus (e.g., reviewing RFPs for completeness 
against criteria).

Such insights are helpful but limited. How does an 
organization gain greater insight into whether an LLM 
is a good fit for a particular use case? The concerns and 
tactics described in this document should be used in 
conjunction with existing system and software evaluation 
and risk mitigation practices to assess specific needs and 
options. Common sense applies, of course. The rigor 
with which an organization deliberates on the use of a 
new technology should be proportional with the cost of 
experiments. For example, if a developer wants to spend 
an afternoon experimenting with CoPilot, there’s no need 
for an extensive analysis of alternatives. As the investment 
goes up (e.g., basing a six-month effort on LLMs), so should 
the due diligence. The following steps suggest one possible 
way to approach assessing the suitability of LLMs for your 
intended use.

Clarify your use case. Once you have a use case to pursue, 
it’s important to get specific about the scope of the use case 
(e.g., what begins and ends it) and how LLMs will be used. 
Characterize what success looks like (e.g., target measures 
for improvement over existing workflows). Characterize the 
familiarity with LLMs and domain expertise of expected users. 

Identify your concerns. In addition, we defined five broad 
categories of concerns that often matter when using LLMs. 
How many are relevant to your use case? Which are more 
important than others? Consider a simple High/Medium/Low 
ranking for each concern (e.g., using the questions in Table 
3 as a starting point). Those concerns that matter most will 
drive your design and implementation decisions, such as 
which tactics to employ.

Design your workflow. A new workflow to realize your use 
case requires specifying what input is provided to LLMs, 
what output is expected, what role users will play throughout 
the process, and what tactics will be used to address your 
concerns. Tactics vary in effectiveness and cost, among other 
factors, and there is no single tactic that is the right answer 
for all use cases. Designing an appropriate workflow often 
requires use of multiple tactics and assessing their tradeoffs 
based on your available resources.

Assess suitability for your use case. Look at the 
combination of tactics that you plan to use and start with 
simple qualitative analysis. The following considerations are 
likely to be helpful.

• How effective are the selected tactics in addressing your most 
significant concerns?  Concerns that are more important 
than others for your use case often require more expensive 
mitigations or impose constraints on your solution.

• Are all the tactics necessary to address your concerns?  
For example, good practices, such as manually validating 
results, may be overkill for use cases like using LLMs to aid 
brainstorming.

• What is the estimated cost of all tactics and does the use 
case warrant that investment?  For example, highly effective 
tactics, such as training a new model on your own data, can 
also require a significant investment.

We illustrate the use of these steps to guide decisions 
for a software engineering use case in Table 5 and for an 
acquisition use case in Table 6. While both examples have a 
high Disclosure concern, they employ different tactics.
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Table 5: Illustration of Assessing the Use of LLMs for a Software 
Engineering Use Case

Idea 
A developer wants to use an LLM to write a new user 
interface (UI) for an application, using an unfamiliar 
framework (Angular) that other teams are using.

Clarify Use Case 
The developer knows the domain and application but is 
new to using LLMs. The developer expects to describe 
the needed features to an LLM and requests code to be 
generated that mostly gets the job done. The developer 
expects to review the code and manually fix anything 
that does not work correctly.

Identify Concerns 
Correctness and Trust are low-priority concerns, as the 
developer plans to test code in small increments as 
features are added to get rapid feedback. Disclosure 
is a high-priority concern, as the UI supports internal 
practices that the developer’s organization is not 
comfortable with sharing. Usability is a medium-priority 
concern as the developer is new to LLMs and unsure 
how to get the best results. Performance is a low-
priority concern as the use case falls well within the 
expected response time.

Design Workflow 
Disclosure is the driving concern as it was identified as 
high priority. The developer prefers to use an LLM-
based service like ChatGPT, but doing so requires 
embedding proprietary information in prompts. The 
developer considers a local LLM, but the work and 
resources involved to get started in an unfamiliar area is 
discouraging. The developer confers with management 
and agrees on a self-redacting strategy. The developer 
will limit prompts to generic questions (e.g., create a 
five-column table that users can sort based on any 
column) that avoid information that identifies the 
organization and meaning of data being displayed. The 
developer is aware that this approach means the LLM 
will only be able to generate the scaffolding for the UI 
and that manual effort will be required to tailor the 
scaffolding to the application’s data. 

Assess Suitability
Management is satisfied that the developer can 
use the self-redacting strategy to implement a more 
modest version of the original use case without 
disclosing sensitive information. The developer has 
been reviewing prompt engineering material to prepare, 
easing the usability concerns.

Table 6: Illustration of Assessing the Use of LLMs for an Acquisition  
Use Case

Idea 
A government program manager issued an RFI to 
collect technical challenges to a proposed change and 
wants to use an LLM to summarize the challenges 
found in the dozens of responses received.

Clarify Use Case 
The RFI responses did not follow a common structure, 
but they appear rich in information. The manager 
expects that if their team can provide the responses 
to an LLM, the LLM can generate useful summaries in 
a fraction of the time required to read and manually 
analyze all responses. The manager wants to see 
how well the LLM can do at summarizing individual 
responses and collecting trends across the responses. 
The manager is eager to see if the results are correct, 
as their team must regularly deal with large numbers of 
RFI responses and improving efficiency and correctness 
would have significant benefits. 

Identify Concerns 
Disclosure is a high-priority concern, as the responses 
cannot be provided to a third-party service. Correctness 
and Trust are high-priority concerns, as the manager 
wants to avoid summarizations that omit challenges and 
would like to quickly make reliable decisions. Usability 
and Performance are low-priority concerns for now, 
but they may need to be revisited if use of LLMs for RFI 
summarization becomes routine in the organization. 

Design Workflow 
An LLM-based service is available with appropriate 
approval, and the manager will use this instance. Using 
a service for which Disclosure is already approved 
mitigates the Disclosure concern. The manager is 
unsure of the best path to feed the data to the 
LLM-based service; fine tuning the model with the 
RFI responses is one path, but they could also try 
embedding the responses in prompts. The manager 
decides to test the less expensive option (prompting) 
with one example to get a better handle on the option. 

Assess Suitability
The manager is happy with the approved option. The 
results have gaps, though, likely because the LLM was 
not trained with similar material. The manager decides 
to pursue fine tuning to improve results in the next 
iteration. The internal data-science team is tasked with 
the fine tuning. 

The application of a growing body of knowledge, like the concerns and tactics described in this document, can help 

organizations quickly understand the implications of proposed LLM use. 

Note, however, that LLM technology is rapidly changing, and the answers to your questions today may not hold tomorrow. 

Practitioners and researchers will continue to innovate and discover new tactics. Model improvements may reduce the 

significance of some concerns. The cost of some tactics may dramatically decrease over time, such as fine tuning an LLM 

or hosting your own local LLM. Pay attention to such improvements and reassess your decisions as needed.
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Conclusions
LLMs have the potential to significantly improve broad 
collections of software engineering and acquisition practices, 
lowering costs, improving response times, and providing 
new insights. It’s important, however, to acknowledge that 
adoption of LLMs comes with risks, as described in this 
document. In some cases, these risks may lead to increased 
costs due to the tactics that must be employed to ensure 
acceptable outcomes in different use cases. Assessing 
applications of LLMs and understanding their implications 
is key to responsible use of this new technology and making 
good investment decisions.

This document covers only the most common tactics, and as 
experience with the use of LLMs grows more tactics are likely 
to emerge. Evaluating where your specific use cases fall within 
the intersection of your tolerance for potential errors, your 
ability to quickly identify those errors, your primary concerns, 
and the resources available for mitigating risks enables 
selecting the most appropriate tactics. This assessment serves 
as a foundational step in determining whether LLMs can 
deliver a return on investment within your unique context. 
The strategies and examples provided in this document are 
helpful starting points. 
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