
Assessing
Opportunities
for LLMs
in Software
Engineering and
Acquisition

Authors

Stephany Bellomo

Shen Zhang

James Ivers

Julie Cohen

Ipek Ozkaya

NOVEMBER 2023

2

LARGE LANGUAGE MODELS (LLMS) ARE GENERATIVE
ARTIFICIAL INTELLIGENCE (AI) MODELS that have
been trained on massive corpuses of text data and
can be prompted to generate new, plausible content.
LLMs are seeing rapid advances, and they promise to
improve productivity in many fields. OpenAI’s GPT-
41 and Google’s LaMDA2 are the underlying LLMs
of services like ChatGPT 3, CoPilot4, and Bard5. These
services can perform a range of tasks, including
generating human-like text responses to questions,
summarizing artifacts, and generating working code.
These models and services are the focus of extensive
research efforts across industry, government, and
academia to improve their capabilities and relevance,
and organizations in many domains are rigorously
exploring their use to uncover potential applications.

The idea of harnessing LLMs to enhance the efficiency of
software engineering and acquisition activities holds special
allure for organizations with large software operations, such
as the Department of Defense (DoD), as doing so offers the
promise of substantial resource optimization. Potential use
cases for LLMs are plentiful, but knowing how to assess the
benefits and risks associated with their use is nontrivial.
Notably, to gain access to the latest advances, organizations
may need to share proprietary data (e.g., source code) with
service providers. Understanding such implications is central
to intentional and responsible use of LLMs, especially for
organizations managing sensitive information.

In this document, we examine how decision makers, such as
technical leads and program managers, can assess the fitness
of LLMs to address software engineering and acquisition
needs [Ozkaya 2023]. We first introduce exemplar scenarios
in software engineering and software acquisition and
identify common archetypes. We describe common concerns
involving the use of LLMs and enumerate tactics for mitigating
those concerns. Using these common concerns and tactics,
we demonstrate how decision makers can assess the fitness
of LLMs for their own use cases through two examples.

Capabilities of LLMs, risks concerning their use, and our
collective understanding of emerging services and models are
evolving rapidly [Brundage et al. 2022]. While this document
is not meant to be comprehensive in covering all software
engineering and acquisition use cases, their concerns, and
mitigation tactics, it demonstrates an approach that decision
makers can use to think through their own LLM use cases as
this space evolves.

1 https://openai.com/research/gpt-4
2 https://blog.google/technology/ai/lamda/
3 https://chat.openai.com
4 https://github.com/features/copilot
5 https://bard.google.com

What Is an LLM?
An LLM is a deep neural network model trained on an extensive
corpus of diverse documents (e.g., websites and books) to
learn language patterns, grammar rules, facts and even some
reasoning abilities [Wolfram 2023]. LLMs can generate responses
to inputs (“prompts”) by iteratively determining the next word
or phrase appearing after others based on the prompt and
patterns and associations learned from their training corpus
using probabilistic and randomized selection [White et al.
2023]. This capability allows LLMs to generate human-like text
that can be surprisingly coherent and contextually relevant,
even if they may not always be semantically correct.

While LLMs can perform complex tasks using their trained
knowledge, they lack true understanding. Rather, they are
sophisticated pattern matching tools. Moreover, due to their
probabilistic reasoning, they can generate inaccurate results
(often referred to as “hallucinations”), such as citations to
non-existent references or method calls to nonexistent
application programming interfaces (APIs). While LLMs can
perform analysis and inferencing on new data they have
been prompted with, data on which LLMs have been trained
can limit their accuracy. However, the technology is rapidly
advancing with new models having increasing complexity
and parameters, and benchmarks have already emerged for
comparing their performance [Imsys 2023]. In addition, LLM
service providers are working on ways to use more recent
data [D’Cruze 2023]. Despite these limitations, there are
productive uses of LLMs today.

Choosing an LLM
There are already dozens of LLMs and services built using
LLMs, and more emerge every day. These models vary in
many dimensions, from technical to contractual, and the
details of these differences can be difficult to keep straight.
The following distinctions are a good starting point when
choosing an LLM for use.

Model or Service. ChatGPT is a chatbot built on OpenAI’s GPT
family of LLMs [Open AI 2023]. The difference is important,
as services built on LLMs can add additional capabilities (e.g.,
specialized chatbot features, specialized training beyond the
core LLM, or non-LLM features that can improve results from
an LLM). A service like ChatGPT is typically hosted by a service
provider, meaning that it manages the computing resources
(and associated costs) and that users are typically required
to send their prompts (and potentially sensitive data) to the
service provider to use the service. A model, like Meta’s Llama
26, can be fine-tuned with domain- or organization-specific data
to improve accuracy, but it typically lacks the added features
and resources of a commercially supported service.

6 https://ai.meta.com/llama/

https://openai.com/research/gpt-4
https://blog.google/technology/ai/lamda/
https://chat.openai.com
https://github.com/features/copilot
https://bard.google.com
https://ai.meta.com/llama/

3

General or Specialized. LLMs are pre-trained on a corpus, and
the composition of that corpus is a significant factor affecting an
LLM’s performance. General LLMs are trained on text sources
like Wikipedia that are available to the public. Specialized LLMs
fine tune those models by adding training material from specific
domains like healthcare and finance [Zhou et al. 2022; Wu et
al. 2023]. LLMs like CodeGen7 have been specialized with large
corpuses of source code for use in software engineering.

Open Source or Proprietary. Open source LLMs provide a
platform for researchers and developers to freely access, use,
and even contribute to the model’s development. Proprietary
LLMs are subject to varying restrictions on use, making them
less open to experimentation or potential deployment.
Some providers (e.g., Meta) use a license that is largely, but
not completely, open [Hull 2023]. OpenAI offers a different
compromise: While the GPT series of LLMs is not open
source, OpenAI does permit fine tuning (for a fee) as a means
of specialization and limited experimentation with their
proprietary model.

The field of LLMs is a fast-moving space. Moreover, the

ethics and regulations surrounding their use are also in

a state of flux, as society grapples with the challenges

and opportunities these powerful models present.

Keeping apprised of these developments is crucial for

taking advantage of the potential offered by LLMs.

7 https://github.com/salesforce/CodeGen

Use Cases
The ability of LLMs to generate plausible content for text and
code applications has sparked the imaginations of many.
A recent literature review examines 229 research papers
written since 2017 on the application of LLMs to software
engineering problems [Hou et al. 2023]. Application areas span
requirements, design, development, testing, maintenance, and
management activities, with development and testing being
the most common.

Our team, which works with government organizations
daily, took a broader perspective and brainstormed several
dozen ideas for using LLMs in common software engineering
and acquisition activities (see Table 1 for examples). Two
important observations quickly emerged from this activity.
First, most use cases represent human-AI partnerships in
which an LLM or LLM-based service could be used to help
humans (as opposed to replace humans) complete tasks
more quickly. Second, deciding which use cases would be
most feasible, beneficial, or affordable is not a trivial decision
for those just getting started with LLMs.

https://github.com/salesforce/CodeGen

4

Archetypes
Commonalities among the use cases lend themselves to
abstracting the set into a manageable number of archetypes.
Two dimensions are helpful in this regard: the nature of
the activity an LLM is performing and the nature of the data
that the LLM is acting on. Taking the cross-product of these
dimensions, these use cases fall into the archetypes depicted
in Table 2.

Table 2: Use Case Archetypes

ACTIVITY TYPE DATA TYPE

Text Code Model Images

Retrieve
Information

retrieve-
text

retrieve-
code

retrieve-
model

retrieve-
images

Generate
Artifact

generate-
text

generate-
code

generate-
model

generate-
images

Modify
Artifact

modify-
text

modify-
code

modify-
model

modify-
images

Analyze
Artifact

analyze-
text

analyze-
code

analyze-
model

analyze-
images

Table 1: Sample Acquisition and Software Engineering Use Cases

ACQUISITION USE CASES SOFTWARE ENGINEERING USE CASES

A1. A new acquisition specialist uses an LLM to generate an
overview of relevant federal regulations for an upcoming request
for proposal (RFP) review, expecting the summary to save time in
background reading.

SE1. A developer uses an LLM to find vulnerabilities in existing
code, hoping that the exercise will catch additional issues not
already found by static analysis tools.

A2. A chief engineer uses an LLM to generate a comparison of
alternatives from multiple proposals, expecting it to use the
budget and schedule formulas from previous similar proposal
reviews and generate accurate itemized comparisons.

SE2. A developer uses an LLM to generate code that parses
structured input files and performs specified numerical analysis
on its inputs, expecting it to generate code with the desired
capabilities.

A3. A contract specialist uses an LLM to generate ideas for a
request for information (RFI) solicitation given a set of concerns
and vague problem description, expecting it to generate a draft
RFI that is at least 75% aligned with their needs.

SE3. A tester uses an LLM to create functional test cases,
expecting it to produce a set of text test cases from a provided
requirements document.

A4. A CTO uses an LLM to create a report summarizing all uses
of digital engineering technologies in the organization based
on internal documents, expecting it can quickly produce a clear
summary that is at least 90% correct.

SE4. A developer uses an LLM to generate software
documentation from code to be maintained, expecting it to
summarize its functionality and interface.

A5. A program office lead uses an LLM to evaluate a contractor’s
code delivery for compliance with required design patterns,
expecting that it will identify any instances in which the code fails
to use required patterns.

SE5. A software engineer who is unfamiliar with SQL uses an
LLM to generate an SQL query from a natural language
description, expecting it to generate a correct query that can be
tested immediately.

A6. A program manager uses an LLM to summarize a set of
historical artifacts from the past six months in preparation for
a high-visibility program review and provides specific retrieval
criteria (e.g., delivery tempo, status of open defects, and
schedule), expecting it to generate an accurate summary of
program status that complies with the retrieval criteria.

SE6. A software architect uses an LLM to validate whether code
that is ready for deployment is consistent with the system’s
architecture, expecting that it will reliably catch deviations from
the intended architecture.

A7. A program manager uses an LLM to generate a revised draft
of a statement of work, given a short starting description and
a list of concerns (e.g., cybersecurity, software delivery tempo,
and interoperability goals). The program manager expects it
to generate a structure that can be quickly refined and that
includes topics drawn from best practices they may not think
to request explicitly.

SE7. A developer uses an LLM to translate several classes from
C++ to Rust, expecting that the translated code will pass the same
tests and be more secure and memory safe.

A8. A requirements engineer uses an LLM to generate draft
requirements statements for a program upgrade based on past
similar capabilities, expecting them to be a good starting point.

SE8. A developer uses an LLM to generate synthetic test data
for a new feature being developed, expecting that it will quickly
generate syntactically correct and representative data.

A9. A contract officer is seeking funding to conduct research on a
high-priority topic they are not familiar with. The contract officer
uses an LLM to create example project descriptions for their
context, expecting it to produce reasonable descriptions.

SE9. A developer provides an LLM with code that is failing in
production and a description of the failures, expecting it to help
the developer diagnose the root cause and propose a fix.

5

Matching a specific use to an archetype helps identify
common concerns among similar use cases and known
solutions commonly applied for similar use cases.
Archetypes can be a tool that organizations use to group
successes, gaps, and lessons learned in a structured way.

Activity Type captures differences in associations that an
LLM would need to make to support a use case, with some
asking an LLM to do things that a language model was not
designed to do:

• Retrieve Information asks an LLM to construct a response to
a question (e.g., what’s the Observer pattern?) for which a
known answer is likely found in the training corpus, directly
or across related elements.

• Generate Artifact asks an LLM to create a new artifact (e.g.,
a summary of a topic or a Python script that performs a
statistical analysis) that likely bears similarity with existing
examples in the corpus.

• Modify Artifact asks an LLM to modify an existing artifact
to improve it in some way (e.g., translate Python code to
Java or remove a described bug) that resembles analogous
improvements among artifacts in the training corpus.

• Analyze Artifact asks an LLM to draw a conclusion about
provided information (e.g., what vulnerabilities are in this
code or will this architecture scale adequately?) that likely
requires semantic reasoning about data.

Data Type captures differences in the kind of data that an
LLM operates on or generates, such as the differences in
semantic rules that make data (e.g., code) well-formed:

• Text inputs vary widely in formality and structure (e.g.,
informal chat versus structured text captured in templates).

• Code is text with formal rules for structure and semantics,
and a growing number of LLMs are being specialized to take
advantage of this structure and semantics.

• Models are abstractions (e.g., from software design or
architecture) that often use simple terms (e.g., publisher)
that imply deep semantics.

• Images are used to communicate many software artifacts
(e.g., class diagrams) and often employ visual conventions
that, much like models, imply specific semantics. While LLMs
operate on text, multimodal LLMs (e.g., GPT-4) are growing
in their ability to ingest and generate image data.

Figure 1 shows an example of using the archetypes to
generate ideas for LLM use cases in a particular domain.
This example focuses on independent verification and
validation (IV&V), a resource-intensive activity within the DoD
that involves many different activities that might benefit
from the use of LLMs. More complex use cases for IV&V
could also be generated that involve integration of multiple
archetypes into a larger workflow.

ACTIVITY TYPE DATA TYPE

Text Code Model Images

Retrieve Information retrieve-text retrieve-code retrieve-model retrieve-images

Generate Artifact generate-text  1  2 generate-code  4 generate-model generate-images  6

Modify Artifact modify-text modify-code modify-model modify-images

Analyze Artifact analyze-text  3 analyze-code  5 analyze-model analyze-images

 1
A tester uses an LLM to create integration
test descriptions from a set of APIs and
integration scenarios, expecting it to
produce a set of test case descriptions that
can be used to implement tests.

 3
An IV&V evaluator uses an LLM to analyze
software design documents against a
specific set of certification criteria and to
generate a certification report, expecting it
to describe certification violations that they
will review to confirm.

 5
A developer uses an LLM to find
vulnerabilities in existing code, hoping that
the exercise will catch additional issues not
already found by static analysis tools.

 2
An IV&V evaluator uses an LLM to create
a verification checklist from a set of
certification regulations and a system
description, expecting it to produce a
context-sensitive checklist they can tailor.

 4
A new developer uses an LLM as a pair
programmer to write code, expecting it to
help create vulnerability-free code.

 6
A developer uses an LLM to create a
network view for authorization to operate
(ATO) certification from a description of
the architecture, expecting it to produce a
rough network diagram they can refine.

Figure 1: Using Archetypes to Help Brainstorm Potential Use Cases

6

SE8

SE4

SE3

SE1

SE5

SE7

SE6

SE9 SE2

A9

A7

A2
A6

A1A5

A3
A8

A4
Mistakes are
easy for users
to find

Mistakes are
hard for users

to find

Mistakes have
small consequences

Mistakes have
large consequences

Figure 2: Two Ways to Look at Concerns with the Generation of Incorrect Results (A: Acquisition Use Cases, SE: Software Engineering Use Cases [Table 1])

Concerns and How to Address Them
Recognizing concerns around applications of LLMs to
software engineering and acquisition, and deciding how to
address each, will help decision makers make more informed
choices. There are multiple perspectives one should consider
before going forward with an LLM use case. An important
reality is that the results generated by LLMs are in fact
sometimes wrong. Figure 2 illustrates this perspective based
on two questions:

• How significant would it be to act on an incorrect result in a
given use case?

• How easy would it be for a user in the use case to recognize
that a result from an LLM is incorrect?

This figure shows a notional placement of the use cases from
Table 1 (actual placement would be reliant on refinement
of these use cases). The green quadrant is ideal from this
perspective: Mistakes are not particularly consequential and
relatively easy to spot. Use cases in this quadrant can be a
great place for organizations to start LLM experimentation.
The red quadrant, on the other hand, represents the least
favorable cases for LLM use: Mistakes create real problems
and are hard for users to recognize.

The consequences of mistakes and ease of spotting them is
only one perspective of evaluation. Another perspective is
the expected significance of improvements or efficiencies
achievable with LLMs. Among many concerns, we discuss five
categories in further detail in this document—correctness,
disclosure, usability, performance, and trust—as they are
relevant to all use cases.

Correctness: The significance of correctness as a concern
depends on factors such as how the results will be used, the
safeguards used in workflows, and the expertise of users.
Correctness refers to the overall accuracy and precision of
output relative to some known truth or expectation. Accuracy
hinges greatly on whether an LLM was trained or fine-tuned
with data that is sufficiently representative to support the
specific use case. Even with rich training corpuses, some
inaccuracy can be expected [Ouyang et al. 2023]. For example,
a recent study on code translation found GPT-4 to perform
better than other LLMs, even though more than 80% of
translations on a pair of open source projects contained some
errors. Advances are likely to improve, but not eliminate,
these numbers [Pan et al. 2023].

7

Disclosure: When users interact with LLMs, some use cases
may require disclosing proprietary or sensitive information to
a service provider to complete a task (e.g., sharing source code
to help debug it). The disclosure concern is therefore related
to the amount of proprietary information that must be exposed
during use. If users share confidential data, trade secrets, or
personal information, there is a risk that such data could be
stored, misused, or accessed by unauthorized individuals.
Moreover, it might become part of the training data corpus
and disseminated without users having any means to track
its origin. For example, GSA CIO IL-23-01 (the U.S. General
Services Administration instructional letter Security Policy
for Generative Artificial Intelligence [AI] Large Language Models
[LLMs]) bans disclosure of federal nonpublic information as
inputs in prompts to third-party LLM endpoints [GSA 2023].

Usability: LLM users have vastly different backgrounds,
expectations, and technical abilities. Usability captures
the ability of LLM users with different expertise to complete
tasks. Users may need expertise on both the input (crafting
appropriate prompts) and output (judging the correctness
of results) sides of LLM use [Zamfirescu-Pereira et al. 2023].
The significance of usability as a concern depends on the
degree to which getting to acceptable results is sensitive to
the expertise of users. A study completed with developers’
early experiences using CoPilot reflects that there is a shift
from writing code to understanding code when using LLMs
on coding tasks [Bird et al. 2023]. This observation hints at
the need for different usability techniques for interaction
mechanisms, as well as the need to account for expertise.

Performance: While using an LLM requires much less
computing power than training an LLM, responsiveness
can still be a factor in LLM use, especially if sophisticated
prompting approaches are incorporated into an LLM-
based service. For the purposes of concerns related to use
cases, performance expresses the time required to arrive at
an appropriate response. Model size, underlying compute
power, and where the model runs and is accessed from are
among the factors that influence responsiveness [Patterson
et al. 2022]. Services built on LLMs may introduce additional
performance overhead due to the way in which other
capabilities are integrated with the LLM.

Trust: To employ the technology with the requisite level
of trust, users must grasp the limitations of LLMs. Trust
reflects the user’s confidence in the output. Overreliance on
an LLM without understanding its potential for error or
bias can lead to undesirable consequences [Rastogi et al.
2023]. As a result, several other concerns (e.g., explainability,
bias, privacy, security, and ethics) are often considered in
relationship to trust [Schwartz et al. 2023]. For example, the
DoD published ethical AI principles to advance trustworthy
AI systems [DoD 2020].

How significant these and other concerns are for each use
case will vary by context and use. The questions provided
in Table 3 can help organizations assess how relevant each
concern is for a specific use case. A starting point could be to
categorize the significance of each concern as High, Medium,
or Low. This information can help organizations decide
whether an LLM is fit for purpose and what concerns need to
be mitigated to avoid unacceptable outcomes.

Table 3: Example Questions to Help Determine the Significance of
Common Concerns for a Specific Use Case

CONCERN SIGNIFICANCE QUESTIONS

Correctness • What is the risk or impact of using an incorrect
result in the use case?

• How difficult is it for the expected user to
determine whether a result is correct?

• Are there gaps in the data used to train the
LLM that could adversely impact results (e.g.,
the data is not current with recent technology
releases or contains little data for an esoteric
programming language)?

Disclosure • Can an LLM be prompted without disclosing
proprietary information (e.g., using generic
questions or abstracting proprietary details)?

• What is the risk or impact of a third party being
able to observe your prompts?

• Are there existing data disclosure constraints
that strictly need to be observed?

Usability • How adept are expected users at prompting
an LLM?

• How familiar are expected users with
approaches for determining whether results
are inaccurate?

• How familiar are expected users with
approaches for determining whether results are
incomplete?

Performance • How quickly must a user or machine be able to
act on a result?

• Are there significant computing resource
limitations?

• Are there intermediate steps in the interaction
with the LLM that may affect end-to-end
performance?

Trust • Are your expected users predisposed to
accept generated results (automation bias)
or reject them?

• Is the data the LLM was trained on free of bias
and ethical concerns?

• Has the LLM been trained on data that is
appropriate for use?

8

These common concerns, and questions to determine
their significance, enable identification of common tactics
for addressing each concern. A tactic is a course of action
that can be taken to reduce the occurrence or impact of a
concern. Table 4 summarizes a collection of tactics that can
help mitigate each concern, along with a rough estimate
(High [H], Medium [M], or Low [L]) of the relative potential
cost of using each tactic. Typically, the more resources

(human and computation) a tactic requires, the higher the
cost. For example, prompt engineering and model training
both address correctness, but prompt engineering is typically
much less expensive. Of note, some tactics (purple rows)
focus on technical interventions, others (green rows) focus
on human-centered actions, and the rest (gray rows) could
employ technical or human-centered interventions.

Table 4: Tactics That Can Be Used to Address Common Concerns with LLM Use

CONCERN TACTIC DESCRIPTION COST

Correctness Prompt engineering Educate users on prompt engineering techniques and patterns to generate
better results.

L

Validate manually Dedicate time to allow users to carefully validate interim and final results. M

Adjust settings Change settings of exposed model parameters like temperature
(randomness of the model’s output) and the maximum number of tokens.

L

Adopt newer model Use newer models that integrate technical advances or improved training
corpuses that can produce better results.

M

Fine tune model Tailor a pretrained model using organization- or domain-specific data to
improve results.

M

Train new model Use a custom training corpus or proprietary data to train a new model. H

Disclosure Open disclosure policy Establish a policy that allows users to share as much detail as needed to
complete a task.

L

Self-redact sensitive
information

Limit what information users can share by establishing guidelines and
safeguards, such as using anonymization or limiting requests to generic
topics.

M

Use a local LLM Deploy an LLM that runs on local hardware and does not share any
information with a service provider, enabling disclosure in a trusted context.

H

Usability Prompt engineering Educate users on prompt engineering techniques and patterns to generate
better results.

L

Define evaluation criteria
a priori

Provide enforceable criteria for the model’s output to be checked against
before the output is known.

M

Performance Use more efficient
model

Select a model that generates comparable results more efficiently (e.g.,
perhaps based on new, more advanced algorithms).

L

Use less capable model Select a model that generates lower quality results more efficiently. L

Increase resources Increase compute resources or pay for a higher service tier. M

Trust Educate users Educate users on the limitations of LLMs and how to validate the output. M

Compare output with
non-LLM sources

Validate LLM output against similar information from non-LLM sources,
such as the original documents, the internet, or SMEs.

H

Compare output with
other LLMs

Validate LLM output against other trusted LLMs. H

There is no uniform, context-free answer for addressing any of the concerns discussed above. Each tactic involves

different strategies, some of which require changing user behavior, while others require changing the compute

environment, data, or the model. Each tactic impacts costs in different ways. Moreover, a single tactic may sometimes

help address multiple concerns.

Just as the capabilities of LLMs will continue to evolve, the significance of different concerns for an organization’s

use cases may also change. Assess these and other tactics in the context of your concerns and use cases, and choose

wisely to meet your needs.

9

Deciding Whether LLMs Are a Fit
Analysis of how the concerns would be expected to apply
across the use case archetypes (Table 2) helps identify higher-
and lower-risk applications of LLMs in software engineering
and acquisition. For example

• Concerns about disclosing sensitive information span all
activity types but is least common (and more manageable) in
Information Retrieval use cases.

• Correctness of LLM results is a significant concern across
all activity types. However, it is most significant for activities
that generate outputs that are difficult to validate, such as in
Analyze Artifact use cases.

• Analyze Artifact use cases involving unstructured text are
likely to pose greater challenges, given the variation in
a training corpus (e.g., reviewing RFPs for completeness
against criteria).

Such insights are helpful but limited. How does an
organization gain greater insight into whether an LLM
is a good fit for a particular use case? The concerns and
tactics described in this document should be used in
conjunction with existing system and software evaluation
and risk mitigation practices to assess specific needs and
options. Common sense applies, of course. The rigor
with which an organization deliberates on the use of a
new technology should be proportional with the cost of
experiments. For example, if a developer wants to spend
an afternoon experimenting with CoPilot, there’s no need
for an extensive analysis of alternatives. As the investment
goes up (e.g., basing a six-month effort on LLMs), so should
the due diligence. The following steps suggest one possible
way to approach assessing the suitability of LLMs for your
intended use.

Clarify your use case. Once you have a use case to pursue,
it’s important to get specific about the scope of the use case
(e.g., what begins and ends it) and how LLMs will be used.
Characterize what success looks like (e.g., target measures
for improvement over existing workflows). Characterize the
familiarity with LLMs and domain expertise of expected users.

Identify your concerns. In addition, we defined five broad
categories of concerns that often matter when using LLMs.
How many are relevant to your use case? Which are more
important than others? Consider a simple High/Medium/Low
ranking for each concern (e.g., using the questions in Table
3 as a starting point). Those concerns that matter most will
drive your design and implementation decisions, such as
which tactics to employ.

Design your workflow. A new workflow to realize your use
case requires specifying what input is provided to LLMs,
what output is expected, what role users will play throughout
the process, and what tactics will be used to address your
concerns. Tactics vary in effectiveness and cost, among other
factors, and there is no single tactic that is the right answer
for all use cases. Designing an appropriate workflow often
requires use of multiple tactics and assessing their tradeoffs
based on your available resources.

Assess suitability for your use case. Look at the
combination of tactics that you plan to use and start with
simple qualitative analysis. The following considerations are
likely to be helpful.

• How effective are the selected tactics in addressing your most
significant concerns? Concerns that are more important
than others for your use case often require more expensive
mitigations or impose constraints on your solution.

• Are all the tactics necessary to address your concerns?
For example, good practices, such as manually validating
results, may be overkill for use cases like using LLMs to aid
brainstorming.

• What is the estimated cost of all tactics and does the use
case warrant that investment? For example, highly effective
tactics, such as training a new model on your own data, can
also require a significant investment.

We illustrate the use of these steps to guide decisions
for a software engineering use case in Table 5 and for an
acquisition use case in Table 6. While both examples have a
high Disclosure concern, they employ different tactics.

10

Table 5: Illustration of Assessing the Use of LLMs for a Software
Engineering Use Case

Idea
A developer wants to use an LLM to write a new user
interface (UI) for an application, using an unfamiliar
framework (Angular) that other teams are using.

Clarify Use Case
The developer knows the domain and application but is
new to using LLMs. The developer expects to describe
the needed features to an LLM and requests code to be
generated that mostly gets the job done. The developer
expects to review the code and manually fix anything
that does not work correctly.

Identify Concerns
Correctness and Trust are low-priority concerns, as the
developer plans to test code in small increments as
features are added to get rapid feedback. Disclosure
is a high-priority concern, as the UI supports internal
practices that the developer’s organization is not
comfortable with sharing. Usability is a medium-priority
concern as the developer is new to LLMs and unsure
how to get the best results. Performance is a low-
priority concern as the use case falls well within the
expected response time.

Design Workflow
Disclosure is the driving concern as it was identified as
high priority. The developer prefers to use an LLM-
based service like ChatGPT, but doing so requires
embedding proprietary information in prompts. The
developer considers a local LLM, but the work and
resources involved to get started in an unfamiliar area is
discouraging. The developer confers with management
and agrees on a self-redacting strategy. The developer
will limit prompts to generic questions (e.g., create a
five-column table that users can sort based on any
column) that avoid information that identifies the
organization and meaning of data being displayed. The
developer is aware that this approach means the LLM
will only be able to generate the scaffolding for the UI
and that manual effort will be required to tailor the
scaffolding to the application’s data.

Assess Suitability
Management is satisfied that the developer can
use the self-redacting strategy to implement a more
modest version of the original use case without
disclosing sensitive information. The developer has
been reviewing prompt engineering material to prepare,
easing the usability concerns.

Table 6: Illustration of Assessing the Use of LLMs for an Acquisition
Use Case

Idea
A government program manager issued an RFI to
collect technical challenges to a proposed change and
wants to use an LLM to summarize the challenges
found in the dozens of responses received.

Clarify Use Case
The RFI responses did not follow a common structure,
but they appear rich in information. The manager
expects that if their team can provide the responses
to an LLM, the LLM can generate useful summaries in
a fraction of the time required to read and manually
analyze all responses. The manager wants to see
how well the LLM can do at summarizing individual
responses and collecting trends across the responses.
The manager is eager to see if the results are correct,
as their team must regularly deal with large numbers of
RFI responses and improving efficiency and correctness
would have significant benefits.

Identify Concerns
Disclosure is a high-priority concern, as the responses
cannot be provided to a third-party service. Correctness
and Trust are high-priority concerns, as the manager
wants to avoid summarizations that omit challenges and
would like to quickly make reliable decisions. Usability
and Performance are low-priority concerns for now,
but they may need to be revisited if use of LLMs for RFI
summarization becomes routine in the organization.

Design Workflow
An LLM-based service is available with appropriate
approval, and the manager will use this instance. Using
a service for which Disclosure is already approved
mitigates the Disclosure concern. The manager is
unsure of the best path to feed the data to the
LLM-based service; fine tuning the model with the
RFI responses is one path, but they could also try
embedding the responses in prompts. The manager
decides to test the less expensive option (prompting)
with one example to get a better handle on the option.

Assess Suitability
The manager is happy with the approved option. The
results have gaps, though, likely because the LLM was
not trained with similar material. The manager decides
to pursue fine tuning to improve results in the next
iteration. The internal data-science team is tasked with
the fine tuning.

The application of a growing body of knowledge, like the concerns and tactics described in this document, can help

organizations quickly understand the implications of proposed LLM use.

Note, however, that LLM technology is rapidly changing, and the answers to your questions today may not hold tomorrow.

Practitioners and researchers will continue to innovate and discover new tactics. Model improvements may reduce the

significance of some concerns. The cost of some tactics may dramatically decrease over time, such as fine tuning an LLM

or hosting your own local LLM. Pay attention to such improvements and reassess your decisions as needed.

11

Conclusions
LLMs have the potential to significantly improve broad
collections of software engineering and acquisition practices,
lowering costs, improving response times, and providing
new insights. It’s important, however, to acknowledge that
adoption of LLMs comes with risks, as described in this
document. In some cases, these risks may lead to increased
costs due to the tactics that must be employed to ensure
acceptable outcomes in different use cases. Assessing
applications of LLMs and understanding their implications
is key to responsible use of this new technology and making
good investment decisions.

This document covers only the most common tactics, and as
experience with the use of LLMs grows more tactics are likely
to emerge. Evaluating where your specific use cases fall within
the intersection of your tolerance for potential errors, your
ability to quickly identify those errors, your primary concerns,
and the resources available for mitigating risks enables
selecting the most appropriate tactics. This assessment serves
as a foundational step in determining whether LLMs can
deliver a return on investment within your unique context.
The strategies and examples provided in this document are
helpful starting points.

References
[Bird et al. 2023]
Bird, Christian; Ford, Denae; Zimmermann, Thomas; Forsgren, Nicole;
Kalliamvakou, Eirini; Lowdermilk, Travis; and Gazit, Idan. Taking Flight with
Copilot. Communications of the ACM. Volume 66. Number 6. June 2023.
Pages 56–62. https://cacm.acm.org/magazines/2023/6/273221-taking-
flight-with-copilot/abstract

[Brundage et al. 2022]
Brundage, M.; Mayer, K.; Eloundou, T.; Agarwal, S.; Adler, S.; Krueger, G.;
Leike, J.; & Mishkin, P. Lessons Learned on Language Model Safety and
Misuse. OpenAI. March 2, 2022.
https://openai.com/research/language-model-safety-and-misuse

[D’Cruze 2023]
D’Cruze, Danny. ChatGPT gets big update! OpenAI’s chatbot will now be
able to access real-time data on internet; check how to use it. Business
Today. September 28, 2023. https://www.businesstoday.in/technology/
news/story/chatgpt-gets-big-update-openais-chatbot-will-now-
be-able-to-access-real-time-data-on-internet-check-how-to-use-
it-399981-2023-09-28

[DoD 2020]
U.S. Department of Defense. DOD Adopts Ethical Principles for Artificial
Intelligence. U.S. Department of Defense. Feb. 24, 2020.
https://www.defense.gov/News/Releases/Release/Article/2091996/
dod-adopts-ethical-principles-for-artificial-intelligence/

[GSA 2023]
General Services Administration. Security Policy for Generative Artificial
Intelligence (AI) Large Language Models (LLMs). U.S. General Services
Administration. June 9, 2023.
https://www.gsa.gov/directives-library/security-policy-for-generative-
artificial-intelligence-ai-large-language-models-llms

[Hou et al. 2023]
Hou, X.; Zhao, Y.; Liu Y.; Yang, Z; Wang, K.; Li, L.; Luo, X.; Lo, D.;
Grundy, J.; & Wang, H. Large Language Models for Software Engineering:
A Systematic Literature Review. arXiv. September 12, 2023.
https://arxiv.org/pdf/2308.10620.pdf

[Hull 2023]
Hull, Charlie. Is Llama 2 open source? No—and perhaps we need a new
definition of open…. OpenSource Connections. July 19, 2023.
https://opensourceconnections.com/blog/2023/07/19/is-llama-2-open-
source-no-and-perhaps-we-need-a-new-definition-of-open/

[Imsys 2023]
lmsys. Leaderboard (chatbot-arena-leaderboard). Huggingface.
October 3, 2023 [accessed].
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

[Open AI 2023]
OpenAI. GPT-4 Technical Report. arXiv (arXiv:2303.08774). March 27, 2023.
https://arxiv.org/pdf/2303.08774.pdf

[Ouyang et al. 2023]
Ouyang, S.; Zhang, J.M.; Harman, M.; & Wang, M. LLM is Like a Box of
Chocolates: the Non-determinism of ChatGPT in Code Generation. arXiv.
August 5, 2023. https://arxiv.org/abs/2308.02828

[Ozkaya 2023]
Ozkaya, I. Application of Large Language Models to Software Engineering
Tasks: Opportunities, Risks, and Implications. IEEE Software. Volume 40.
Number 3. May-June 2023. Pages 4–8.
https://ieeexplore.ieee.org/document/10109345

[Pan et al. 2023]
Pan R.; Ibrahimzada, A.R.; Krishna, R.; Sankar, D.; Wassi, L.P.; Merler, M.;
Sobolev, B.; Pavuliri, R.; Sinha, S.; & Jabbarvand, R. Understanding the
Effectiveness of Large Language Models in Code Translation. arXiv.
August 6, 2023. https://arxiv.org/pdf/2308.03109.pdf

[Patterson et al. 2022]
Patterson, D.A.; Gonzalez, J.; Holzle, U.; Le, Q.; Liang, C.; Munguía, L.;
Rothchild, D.; So, D.R.; Texier, M.; & Dean, J. The Carbon Footprint of
Machine Learning Training Will Plateau, Then Shrink. Computer. Volume 55.
Number 7. July 2022. Pages 18–28.
https://ieeexplore.ieee.org/document/9810097

[Rastogi et al. 2023]
Charvi Rastogi, C.; Túlio Ribeiro, M.; King, N.; Nori, H.; & Amershi, S.
Supporting Human-AI Collaboration in Auditing LLMs with LLMs. Pages
913–926. In Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and
Society. Montreal, Quebec. August 2023.
https://dl.acm.org/doi/10.1145/3600211.3604712

[Schwartz et al. 2023]
Schwartz, S.; Yaeli, A.; & Shlo, S. Enhancing Trust in LLM-Based AI
Automation Agents: New Considerations and Future Challenges. arXiv.
August 10, 2023. https://arxiv.org/abs/2308.05391

[White et al. 2023]
White, Jules; Fu, Quchen; Hays, Sam; Sandborn, Michael; Olea, Carlos;
Gilbert, Henry; Elnashar, Ashraf; Spencer-Smith, Jesse; and Schmidt,
Douglas C. A prompt pattern catalog to enhance prompt engineering with
chatgpt. arXiv (arXiv:2302.11382). February 21, 2023.
https://arxiv.org/pdf/2302.11382.pdf

[Wolfram 2023]
Wolfram, Stephen. What Is ChatGPT Doing… and Why Does It Work? Stephen
Wolfram|Writings. February 24, 2023. https://writings.stephenwolfram.
com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

[Wu et al. 2023]
Wu, S.; Irsoy, O.; Lu, S.; Dabravolski, V.; Dredze, M.; Gehrmann, S.; Kambadur,
P.; Rosenberg D.; & Mann, G. BloombergGPT: A Large Language Model for
Finance. arXiv. May 9, 2023. https://arxiv.org/pdf/2303.17564.pdf

[Zamfirescu-Pereira et al. 2023]
Zamfirescu-Pereira, J.D.; Wong, Richmond Y.; Hartmann, Bjoern; & Yang, Qian.
Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design LLM
Prompts. Article 437. Pages 1–21. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (CHI ‘23). Hamburg, Germany. April 2023.
https://dl.acm.org/doi/abs/10.1145/3544548.3581388

[Zhou et al. 2022]
Zhou, S.; Wang, N.; Wang, L.; Liu, H.; & Zhang, R. CancerBERT: a cancer
domain-specific language model for extracting breast cancer phenotypes
from electronic health records. Journal of the American Medical Informatics
Association. Volume 29. Number 7. June 14, 2022. Pages 1208–1216.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196678/

https://cacm.acm.org/magazines/2023/6/273221-taking-flight-with-copilot/abstract
https://cacm.acm.org/magazines/2023/6/273221-taking-flight-with-copilot/abstract
https://openai.com/research/language-model-safety-and-misuse
https://www.businesstoday.in/technology/news/story/chatgpt-gets-big-update-openais-chatbot-will-now-be-able-to-access-real-time-data-on-internet-check-how-to-use-it-399981-2023-09-28
https://www.businesstoday.in/technology/news/story/chatgpt-gets-big-update-openais-chatbot-will-now-be-able-to-access-real-time-data-on-internet-check-how-to-use-it-399981-2023-09-28
https://www.businesstoday.in/technology/news/story/chatgpt-gets-big-update-openais-chatbot-will-now-be-able-to-access-real-time-data-on-internet-check-how-to-use-it-399981-2023-09-28
https://www.businesstoday.in/technology/news/story/chatgpt-gets-big-update-openais-chatbot-will-now-be-able-to-access-real-time-data-on-internet-check-how-to-use-it-399981-2023-09-28
https://www.defense.gov/News/Releases/Release/Article/2091996/dod-adopts-ethical-principles-for-artificial-intelligence/
https://www.defense.gov/News/Releases/Release/Article/2091996/dod-adopts-ethical-principles-for-artificial-intelligence/
https://www.gsa.gov/directives-library/security-policy-for-generative-artificial-intelligence-ai-large-language-models-llms
https://www.gsa.gov/directives-library/security-policy-for-generative-artificial-intelligence-ai-large-language-models-llms
https://arxiv.org/pdf/2308.10620.pdf
https://opensourceconnections.com/blog/2023/07/19/is-llama-2-open-source-no-and-perhaps-we-need-a-new-definition-of-open/
https://opensourceconnections.com/blog/2023/07/19/is-llama-2-open-source-no-and-perhaps-we-need-a-new-definition-of-open/
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/abs/2308.02828
https://ieeexplore.ieee.org/document/10109345
https://arxiv.org/pdf/2308.03109.pdf
https://ieeexplore.ieee.org/document/9810097
https://dl.acm.org/doi/10.1145/3600211.3604712
https://arxiv.org/abs/2308.05391
https://arxiv.org/pdf/2302.11382.pdf
https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/
https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/
https://arxiv.org/pdf/2303.17564.pdf
https://dl.acm.org/doi/abs/10.1145/3544548.3581388
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196678/

About the SEI
Always focused on the future, the Software Engineering Institute (SEI) advances software
as a strategic advantage for national security. We lead research and direct transition
of software engineering, cybersecurity, and artificial intelligence technologies at the
intersection of academia, industry, and government. We serve the nation as a federally
funded research and development center (FFRDC) sponsored by the U.S. Department of
Defense (DoD) and are based at Carnegie Mellon University, a global research university
annually rated among the best for its programs in computer science and engineering.

Contact Us
CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE; PITTSBURGH, PA 15213-2612

sei.cmu.edu
412.268.5800 | 888.201.4479
info@sei.cmu.edu

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded research and development
center.

The view, opinions, and/or findings contained in this material are those of the author(s)
and should not be construed as an official Government position, policy, or decision,
unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name,
trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by Carnegie Mellon University or its Software
Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License. Requests for permission for non-licensed uses should be directed
to the Software Engineering Institute at permission@sei.cmu.edu.

DM23-2008

DOI: 10.58012/m3hj-6w28

©2023 Carnegie Mellon University | 6153 | C 09.15.2023 | S. 10.26.2023

Acknowledgements
We would like to thank Bjorn Andersson, Luiz Antunes,
Nanette Brown, Anita Carleton, Douglas Schmidt,
and John Robert for their suggestions and feedback.

We would like to also thank Ed Desautels and
Mike Duda for editorial and design support.

http://sei.cmu.edu
mailto:info%40sei.cmu.edu?subject=

