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by Peter H. Feiler and Jorgen Hansson

Introduction

Embedded systems are safety-critical and mission-critical systems that have become increasingly
software-intensive - with millions of lines of code executing on a distributed networked set of
processors. Developing such systems has indeed shown to be increasingly challenging as embedded
software subsystems compete for computer system resources and face unpredictable interaction
behavior due to the time-sensitive nature of the application. Several studies [1,2,3] have shown that
70% of faults are introduced early in the life cycle, while 80% of them are not caught until integration
test or later with a repair cost of 16x or higher. The diagram illustrated in Figure 1 shows percentages
for fault introduction, discovery, and cost factors. The cost of developing the software for an aircraft
has become unaffordable — reaching $10B or more. If we can discover a reasonable percentage of
these late system-level faults earlier in the development process we can expect considerable cost
savings.
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Figure 1: Fault Introduction, Discovery and Cost Factors

There are many cases of systems failing due to a software error despite the fact that the best design
techniques and fault-tolerance techniques are being used. [7] examines some of them and the root
causes due to mismatched assumptions. A well-publicized example of a system failure due to software
is the explosion of the Ariane 5 rocket during her maiden flight. The destruction was triggered by the
overflow of a 16-bit signed integer variable due to Ariane 5°s greater acceleration in a reused Ariane 4
software component to perform a function that was “not required for Ariane 5”. This fault was not
caught because the handler was disabled due to efficiency considerations and cascaded into a total
system failure [8]. Even simple systems such as the ITunes music program failed when it was
migrated to a dual-core processor system. Two tasks were involved in ripping CDs. When executing
on a single processor first one task and then the other task was performed. Once on a dual-core
processor, the two tasks executed at the same time and got in each other’s way updating the music
catalog [9]. Finally, with regard to the Mars Pathfinder after a successful landing, not long after it
started gathering meteorological data the spacecraft began experiencing system resets. The press
reported these failures in terms such as "software glitches" and “the computer was trying to do too
many things at once”. An analysis on the ground identified the problem as priority inversion due to a
low priority task blocking a high priority task on a lock to a shared data area. Once recognized the
engineers could remotely enable the use of a priority ceiling protocol that overcomes the inversion
problem and the mission completed successfully [10].

Quantitative architectural modeling, verification and validation of software and system behaviors have
shown significant promise in addressing defects related to requirements and design shortcomings for
embedded software.

Side bar 1:

A number of recent studies confirm that a paradigm shift towards analysis and formal validation at the
architecture level must occur to meet the challenges of these time-sensitive software-reliant systems
with high safety and reliability demands:

GAO Space-based SW Study [11] highlighting the reality of more testing than planned (exhausting vs.
exhaustive testing) due to the increasingly complex interactions between system components;

NASA Software Complexity Study [12] on flight software growth & complexity, and the need for
integration of fault prevention, detection, and containment with nominal system operation;

Leveson System Safety Engineering Study [13] on accident model based systems theory focusing on
accident factors (understanding of root causes);

National Research Council Study [14] by the committee for certifiably dependable software systems
addressing the issue of sufficient evidence for software for dependable systems through analysis and
formal validation.

The Promise of Model-based Engineering

Model-based engineering (MBE) involves the creation of models of the system with focus on a certain
aspect of the system such as functionality, performance, or reliability. Modeling, analysis and
simulation has been practiced by engineers for a number of years. Traditionally, this has led to the
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creation of different models of the same system to represent the interests of different stakeholders.
For example, computer hardware models have been created in Very High Speed Integrated Circuits
Hardware Description Language (VHDL) [15] and validated through model checking [16]. Control
engineers have used modeling languages such as Simulink for years to represent the physical
characteristics of the system to be controlled and the behavior of the control system. Characteristics of
physical system components, such as thermal properties, fluid dynamics, and mechanics, have been
modeled and simulated. Dependability engineering resulted in the creation of fault trees for fault
analysis and Markov models for reliability analysis. Resource utilization analysis is based on resource
demands and resource capacities. Scheduling analysis is based on a timing model of the application
tasks. Security analysis involves the creation of a model in terms of security levels and domains
applied to subjects and objects.

Despite these modeling efforts system-level problems remain late into the development life cycle.
These different models are created at different times by different stake holder teams interpreting
architecture & design documents to gain their understanding of the system. These independently
created models may not be consistent with each other and with the actual system as it evolves.
Changes to the system do not always communicated to the various modeling teams and the various
models become out of date. The result is a multiple truth problem that industry has experienced with
model-based engineering. The analysis results have limited value as they reflect inconsistent and out
of date models.

This traditional use of model-based development is understandable, given the lack of a common,
precise architecture description language to represent the system architecture. To illustrate the need
for an architecture model, consider the complexities of just one quality attribute — security. A system
designer faces several challenges when specifying security for distributed computing environments or
migrating systems to a new execution platform. Business stakeholders impose constraints due to cost,
time-to-market requirements, productivity impact, customer satisfaction concerns, and the like. A
system designer needs to understand requirements for the confidentiality and integrity of protected
resources (e.g., data) and identify how the application software executing on a distributed computer
system and interfacing with physical systems and human operators meets those requirements. In
addition they have to predict the effect that security measures will have on other runtime quality
attributes such as resource consumption, availability, and real-time performance. However, despite
these considerations, security is often studied only in isolation and late in the process. The
unanticipated effects of separated design approaches or changes are discovered only late in the life
cycle, when they are much more expensive to resolve.

Only in the best case do the independent models created in the traditional approach reflect the same
system architecture. Any change to the architecture during its lifetime requires each model to be
updated and verified. As challenging as that is, the need to consistently proliferate changes in one
analysis to others adds difficulty (e.g., reflect the impact of choosing a different security encryption
scheme on intrusion resistance as well as on schedulability and end-to-end latency). Consequently, it
has become important to move from the traditional approach toward the integration of the different
analysis dimensions into a single, precisely specified architecture model. Creating a single
architecture model of the system that is annotated with analysis-specific information can drive model-
based development. It allows analysis-specific models to be generated from the annotated model and
the regeneration with little effort of those models to reflect changes to the architecture. This new
approach also allows the impact of changes across multiple analysis dimensions to be readily
analyzed, giving the system designer more insight and the system integrator warning of costly side
effects. Even after the development phases have been completed, the model (and its associated
analysis models) can be used to evaluate effects of reconfiguration and system revisions.

Modeling the Embedded System Architecture with AADL

To precisely specify architecture, allow non-ambiguous interpretation, support quantitative analysis,
and model embedded software-intensive systems, we need a common, standard language with strong
semantics that can capture both the structure and dynamics of embedded systems. The requirements
of such specification include: support for analyzable system properties to evaluate critical quality
attributes; incremental modeling to support all life-cycle phases from early abstraction to final
implementation; and evolution compositional representation to support hierarchical and abstract
layering, allowing multiple levels of integration with suppliers and providing integrators with component
integration extensibility to allow new representations of system behaviors as analysis approaches
differ and grow.

As the importance of architecture has been recognized, industrial standards for architecture modeling
have emerged: OMG SysML [6] for system engineering and SAE Architecture Analysis and Design
Language (AADL) [4-5] for embedded software systems. SysML is a graphical modeling language in
the form of an extensible Unified Modeling Language (UML) profile used early in system development
to represent the requirements, component structure, discrete state behavior, and parametrics (i.e.,
physical behavior as equations) of a system. AADL is an international industry standard extensible
architecture modeling language for embedded software systems with graphical and textual
representations, well-defined execution semantics, and an XML interchange format.

The focus of AADL is to model the software system architecture in terms of an application system
bound to an execution platform. Most of the modeling effort is directed to the application-specific
software, incorporating sufficient operating system specifics to ensure that the model is adequate
(precise, complete, and realistic) to support evaluation of a system architecture and verification. Many
operating system characteristics are already embedded in AADL semantics to support architectural
modeling (communication mechanisms, thread behavior, etc.). It is designed to support an
architectural MBE development life cycle, including system specification, quantitative analysis, system
tuning, efficient integration, and upgrade, and the integration of multiple forms of analyses and
extensibility for additional analysis approaches.

AADL supports component-based modeling of the architecture. Components have a type and one or
more implementations. Software components include data (to represent data types and shared data
areas), subprogram, thread (to represent concurrently executing tasks), and process (to represent
protected address spaces). The hardware components include processor, virtual processor (to
represent schedulers and partitions), memory, bus, virtual bus (to represent virtual channels and
protocols), and device (to represent physical system components). The system component is used to
describe hierarchical grouping of components, encapsulating software components, hardware
components and lower level system components within their implementations.

Interfaces to components and component interactions are completely defined. The AADL supports
data and event flow, synchronous call/return and shared access. In addition it supports end-to-end
flow specifications that can be used to trace data or control flow through components.




The core language supports modeling in several architectural views and addresses quality attribute
analyses through explicit modeling of the application system and binding to execution platform
components. Real-time analyses are supported through well-defined timing semantics for concurrent
execution and interaction between the components, which are expressed through a hybrid automata
specification in the standard document.

The AADL supports real-time task scheduling using different scheduling protocols. Properties to
support General Rate Monotonic Analysis and Earliest Deadline First and other scheduling protocols
are provided in the core standard. Execution semantics are defined for each category of component
and specified in the standard with a hybrid automata notation.

Modal and configurable systems are supported by the AADL. Modes specify runtime transitions
between statically known states and configurations of components, their connections and properties.
Modes can be used for fault tolerant system reconfigurations affecting hardware and software as well
as software operational modes.

The AADL supports component evolution through inheritance, allowing more specific components to
be refined from more abstract components. Large scale development is supported with packages
which provide a name space and a library mechanism for components, as well as public and private
sections. Packages support independent development and integration across contractors.

AADL language extensibility is supported through a property sublanguage for specifying or modifying
AADL properties, which can be used for additional forms of analysis. The AADL also provides an
annex extension mechanism that can be used to specify sub-languages that will be processed within
an AADL specification. An example is the Error Modeling Annex which allows specification of error
models to be associated with core components. The combination of annex extensions and user
defined property sets provide the means to integrate new specification capabilities and new analysis
approaches to support the analysis tools and methods desired for multiple dimensions of analysis.

Safety-criticality is supported by AADL in a number of ways.

o AADL is strongly typed, e.g., if a processor specification indicates that it requires access to a
Peripheral Component Interconnect (PCI) bus and an Ethernet, then only a PCI bus can get
connected to the one bus access feature.

o The protected address space enforcement of processes and resource allocation enforcement of
virtual processors ensure time and space partitioning.

« A safety level property on system components, initially used for major subsystems and later
attached to more detailed components, is used to ensure that components with high safety
criticality are not controlled by or receive critical input from low criticality components.

o AADL has a built-in fault-handling model for application threads and extends into an explicit
representation of a health monitoring architecture, and fault management by reconfiguration,
which is modeled through AADL modes.

o AADL supports fault modeling through the Error Model Annex standard, which allows us to
introduce intrinsic faults, error state machines, and fault propagations across components —
including stochastic properties such as probability of fault occurrence. These annotations to the
architecture support hazard and fault impact analysis as well as reliability and availability analysis.

« The dynamic behavior of the architecture is represented by modes and further refined through the
Behavior Annex standard of AADL. This allows us to apply formal methods such as model
checking to validate system behavior.

Virtual System Integration and Validation

A key concept of virtual integration is the use of an annotated architecture model as the single source
for architecture analysis. Thus, it becomes important to integrate the different analysis dimensions into
a single architecture model. An architecture model that is annotated with analysis-specific information
can drive model-based engineering by generating the analysis-specific models from this annotated
model. This allows changes to the architecture to be reflected in the various analysis models with little
effort by regenerating them from the architecture model. This approach also allows us to evaluate the
impact across multiple analysis dimensions. In other words (see Figure 2), analytical models are auto-
generated from an architecture model with well-defined semantics and annotated with relevant
analysis-specific information (e.g., fault rates or security properties). Any changes to the architecture
throughout the life cycle are reflected in all dimensions of analysis (e.g., substitution of a faster
processor to accommodate a high workload not only is reflected in schedulability analysis, but also
may impact end-to-end response time, and requires revalidation of increased power consumption
against capacity as well as possible change in mass).
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Figure 2: Analytical Models from an Annotated Architecture Model

A second key concept of virtual integration is the ability to interchange architecture models with their
annotations through a standardized interchange format, such as the AADL XML standard. This allows
system integrators and suppliers to exchange specifications and models of subsystems in a
standardized representation and facilitates the integrator to routinely predict and validate system
properties early and throughout the development life cycle.

Virtual integration facilitates quantitative analysis, verification and validation using models. As such it
complements system testing by focusing on system issues due to concurrent execution and non-
deterministic interaction of time-sensitive nature. To this end, AADL is being embraced by the V&V
(validation and verification) community because it is a vehicle to express high-level system
requirements and perform verification across a range of analyses. These analyses are made available
through a number of tools such as the Eclipse-based open source OSATE, the commercial Stood
environment [20], and tool chains put together in industry initiatives such as ASSERT [18],
TOPCASED [17], and SPICES [19].
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The Aerospace Vehicle Systems Institute (AVSI), a global cooperative of aerospace companies,
government organizations, and academic institutions, has launched the System Architecture Virtual
Integration (SAVI) program, which is a multiyear and multimillion dollar effort focused on developing a
capability for system validation and verification through virtual integration of systems. Major players of
the SAVI project include Boeing, Airbus, Lockheed Martin, BAE Systems, Rockwell Collins, GE
Aviation, FAA, U. S. Department of Defense (DoD), Carnegie Mellon Software Engineering Institute
(SEI), Honeywell, Goodrich, United Technologies, and NASA. The SAVI paradigm necessitates:

An architecture-centric, multi-aspect model repository as the single source of truth

A component-based framework to support model-based and proof-based engineering

A model bus concept for consistent interchange of models between repositories and tools

An architecture-centric acquisition process throughout the system life cycle that is supported by
industrial standards and tool infrastructure

To establish cost-effective management and limit risks of the SAVI program, the Proof-Of-Concept
(POC) project [21] has been executed as the first of multiple phases with the following goals:

« Document the main differences between a conventional acquisition process and the projected
SAVI acquisition process and identify potential benefits of the SAVI acquisition process

« Evaluate the feasibility and scalability of the multi-aspect model repository and model bus
concepts central to the SAVI project

« Assess the cost, risk, and benefits of the SAVI approach through a return on investment (ROI)
study and development of a SAVI development roadmap

Together with the successful proof-of-concept demonstration of SAVI, an analysis to determine the
economic gains was conducted, comparing the current acquisition and development practice (referred
to “as-is”) with a model-driven acquisition and development approach (‘to-be”). Conservative
estimates show that a cost reduction between 7.6%-26.1% is to be expected, which translates into a
cost avoidance of $717M-$2,391M; the range is a function of the various levels of rework cost and
anticipated defect removal efficiency.

Sidebar #2
Virtual System Integration Case Study by AVSI
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For the proof of concept phase of the System Architecture Virtual Integration (SAVI) initiative, a multi-
tier aircraft model was created and analyzed along multiple quality dimensions. The demonstration
illustrated analyses at the Tier 1 level for system properties such as mass and electrical power
consumption, and at the Tier 2 level focusing on the Integrated Modular Avionics (IMA) architecture by
revisiting the previous analyses and adding computer resource analyses and end-to-end latency
analysis across subsystems. The demonstration continued by showing AADL support to manage
subcontracting with suppliers through a model repository. A negotiated subsystem specification could
be virtually integrated and inconsistencies between supplier specifications such as inconsistent data
representation, mismatched measurement units, and mapping into the ARINC 429 protocol could be
detected. Three of the suppliers then developed a task-level specification of their subsystem and
performed local validation through analysis. In one case, the subsystem was elaborated into
behavioral specifications via UML diagrams, and an implementation in Ada. During this process the
suppliers routinely delivered AADL models back to the airframer for repeated revalidation through
virtual integration with increasing model fidelity. The demonstration model itself was developed by a
team located in lowa, Pennsylvania, France, and the UK utilizing the model repository located in
Texas. At the end of the POC demonstration the SAVI team concluded that “the results of the
demonstrations indicate that the SAVI concept is sound and should be implemented with further
development”.

Summary

In this article we have discussed architectural modeling, verification and validation as a means to
realize virtual integration. The approach builds on AADL, which was designed for modeling software-
intensive systems with real-time, embedded, fault tolerant, secure, safety-critical behaviors. Using the
precise semantics of AADL, developers of subsystems can more readily share and understand
architecture specifications. The language is designed to create a machine-analyzable, single
architectural model annotated with precise notation. The language supports model creation and
analysis throughout a full model-based development life-cycle .75 including system specification,
analysis, system tuning, integration, and upgrade. There are several advantages with this approach.
Virtual integration activities replace traditional design reviews by:

« Recording subsystem requirements in an initial system model during request for proposals

« Validating supplier model compatibility and initial resource allocations during proposal evaluation
« Validating interfaces and functionality during preliminary design integration

o Validating performance during critical design integration

Conducting early and continuous virtual model integration based on standardized representations has
a number of advantages:
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It ensures that errors are detected as early as possible with minimal leakage to later phases

¢ Models with well-defined semantics facilitate auto-analysis and generation to identify and eliminate
inconsistencies

« Automated compatibility analyses at the architecture level scale easily

o Industrial investment in tools is leveraged through well-defined interchange formats
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