
Mixed-Trust Computing for Real-Time Systems
D. de Niz1, B. Andersson1, M. Klein1, J. Lehoczky1, A. Vasudevan1, H. Kim2, G. Moreno1

1Carnegie Mellon University 2University of California, Riverside

Abstract—Verifying complex Cyber-Physical Systems (CPS)
is increasingly important given the push to deploy safety-
critical autonomous features. Unfortunately, traditional verifica-
tion methods do not scale to the complexity of these systems and
do not provide systematic methods to protect verified properties
when not all the components can be verified. To address these
challenges, this paper proposes a real-time mixed-trust computing
framework that combines verification and protection. The frame-
work introduces a new task model, where an application task can
have both an untrusted and a trusted part. The untrusted part
allows complex computations supported by a full OS with a real-
time scheduler running in a VM hosted by a trusted hypervisor.
The trusted part is executed by another scheduler within the
hypervisor and is thus protected from the untrusted part. If the
untrusted part fails to finish by a specific time, the trusted part
is activated to preserve safety (e.g., prevent a crash) including
its timing guarantees. This framework is the first allowing the
use of untrusted components for CPS critical functions while
preserving logical and timing guarantees, even in the presence
of malicious attackers. We present the framework design and
implementation along with the schedulability analysis and the
coordination protocol between the trusted and untrusted parts.
We also present our Raspberry Pi 3 implementation along with
experiments showing the behavior of the system under failures of
untrusted components, and a drone application to demonstrate
its practicality.

I. INTRODUCTION

Certification authorities (e.g., FAA [28]) allow the validation
of different parts of a system with different degrees of rigor
depending on their level of criticality. Formal methods have
been recognized as important to verify safety-critical com-
ponents [4]. Unfortunately, a verified property can be easily
compromised if the verified components are not protected from
unverified ones. Thus, trust requires that both verification and
protection of components are jointly considered. This is the
notion of trust used in this paper.

A key challenge to building trust is the complexity of
today’s operating systems (OSs) making them impractical to
verify. Thus, there has been a trend to minimize the trusted
computing base (TCB) by developing small verified hypervi-
sors (HVs) and microkernels, e.g., seL4 [24], CertiKOS [21],
and uberXMHF [32], [33]. In these systems, trusted and
untrusted components co-exist on a single hardware platform
but in a completely isolated and disjoint manner. We thus call
this approach disjoint-trust computing. Trusted components
in the TCB are typically made small and simple due to the
difficulty of verification. They are isolated from untrusted parts
hosted in a virtual machine (VM) where rich functionalities
are implemented on full-scale guest OSs like Linux.

The fundamental limitation of disjoint-trust computing is
that it does not allow the use of untrusted components in
critical functionality whose safety must be assured through
verification. This is because the verified components must be
isolated from the untrusted ones if they are to be trusted. For
instance, this prevents the use of untrusted machine learning
algorithms (for which no effective verification method exists)
to drive a car if such functionality needs to be verified. Instead,
a separate trusted component would need to be in charge of
the driving, isolating it from any untrusted component. Unfor-
tunately, the complexity of the critical functionality demanded
today, e.g., autonomous driving, makes the verification of these
components very difficult or practically impossible.

In this paper, we present the real-time mixed-trust comput-
ing (RT-MTC) framework. Unlike disjoint-trust computing, it
gives the flexibility to use untrusted components even for CPS
critical functionality. In this framework, untrusted components
are monitored by verified components ensuring that the output
of the untrusted components always lead to safe states (e.g.,
avoiding crashes). These monitoring components are known
as logical enforcers [7], [16]. To ensure trust, these enforcers
are protected by a verified micro-hypervisor [33]. To preserve
the timing guarantees of the system, RT-MTC uses temporal
enforcers, which are small, self-contained codeblocks that
perform a default safety action (e.g., hover in a quadrotor)
if the untrusted component has not produced a correct output
by a specified time. Temporal enforcers are contained within
the verified micro-hypervisor without jeopardizing the existing
level of trust (e.g., using compositional verification offered by
extensible micro-hypervisors [33]).

Our framework incorporates two schedulers: (i) a preemp-
tive fixed-priority scheduler in the VM to run the untrusted
components and (ii) a non-preemptive fixed-priority scheduler
within the HV1 to run trusted components. To verify the timing
correctness of safety-critical applications in our mixed-trust
framework, we propose a new task model and schedulability
analysis. We also present the design and implementation of a
coordination protocol between the two schedulers to preserve
the synchronization between the trusted and untrusted com-
ponents while preventing dependencies that can compromise
the trusted component. Lastly, we present an implementation
of our proposed framework using uberXMHF [33], an open-
source, compositionally verified micro-hypervisor framework,
and the ZSRM scheduler [17]. However, we note that in
principle, our framework can also be instantiated with other
verified micro-kernels or hypervisors provided they satisfy our

1Simplify HV logical verification by removing task interleavings [32], [33].978-1-7281-3197-9/19/$31.00 c©2019 IEEE

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 16,2023 at 15:52:51 UTC from IEEE Xplore. Restrictions apply.

requirements (see Section II).
This work relies on innovations for code verification for

the trusted parts that were presented in previous publications.
Since this is out of the scope of this paper, we refer the read-
ers interested in the compositional verification and isolation
provided by uberXMHF to [33], the runtime verification con-
ducted by logical enforcers to [7], and the formal verification
of temporal enforcement code to [10].

The remainder of this paper is organized as follows. Sec-
tion II presents our RT-MTC framework, an introduction to the
runtime verification model that it supports, and the conditions
that it must fulfill to preserve the verified properties of the
model. Section III defines the system model. Section IV
presents schedulability analysis of mixed-trust tasks, includ-
ing the evaluation of the schedulability analysis. Section V
presents a fail-safe coordination protocol. Section VI presents
the implementation of mixed-trust scheduling. Section VII
discusses the related work and Section VIII concludes.

II. REAL-TIME MIXED-TRUST COMPUTING (RT-MTC)

To discuss our RT-MTC framework we first summarize
the logical model presented in [7]. Then, we extend it to
accommodate the temporal enforcement and describe the ar-
chitecture.

A. Logical Model

A system in [7] is modeled as a state machine with a set of
states S and a set of actions Σ; when we describe behavior,
we let s P S be a state and α P Σ be an action. The evolution
of the system is modeled by the transition relation RP , where
P is the time between consecutive transitions, also known as
period. Formally RP pαq Ď SˆS is the relation such that if the
action α is applied to the system in state s and it transitions
to state s1, then ps, s1q P RP pαq. Without loss of generality
we also require that the system always performs an action in
each period P to match the continuous evolution of physical
processes. This can include an action where the source state
is equal to the destination state (i.e., a null action). We then
define RP pα, sq “ ts1 | ps, s1q P RP pαqu as the set of states
into which the system can transition after taking action α.
We then identify φ as the set of safe states. Given these safe
states we define a subset Cφ of φ-enforceable states as the
largest set of states satisfying the following two conditions:
Cφ Ď φ and @s P Cφ ‚ Dα P Σ ‚RP pα, sq Ď Cφ.

We denote by SafeAct : Cφ ÞÑ 2Σ the mapping from φ-
enforceable states to actions that will ensure that the system
remains enforceable, i.e., SafeActpsq “ tα | RP pα, sq Ď Cφu.

The action α selected by the untrusted component in the
system is monitored and enforced by the logical enforcer. The
logical enforcer, defined as LE “ pP,Cφ, µq, receives α from
the untrusted component. Thus, we assume the logical enforcer
executes with the same period P , and µpsq Ď SafeActpsq
returns a set of enforcing actions. In each execution, the LE

takes as input the current system state s and the system action
α and produces an output action α̃ defined as:

α̃ “

"

α if α P µpsq
pickpµpsqq otherwise

(1)

where pickpq selects one element from the set with an arbitrary
criteria. We say that α̃ is an LE-enforced action.

We now extend this model by adding a temporal enforcer
TE “ pE,Cφ, αT q that executes periodically E time units
after the untrusted component job arrives, takes the enforced
action α̃ from the LE and generates a temporally-enforced
action α̂ before the end of the period as follows:

α̂ “

"

αT if α̃ “ K
α̃ otherwise

(2)

where (i) αT P tα|α P SafeActpsq@s P Cφu, that is, αT is a
safe action for any state in Cφ (i.e., the specific state s is not
needed to calculate αT) and (ii) K denotes the absence of an
action. Thus, we say that α̂ is a TE-enforced action. Finally,
our system is assumed to start in Cφ.

B. Logical Model Required Conditions

We now define the conditions that our framework must
enforce to prevent an untrusted component from causing
behaviors not present in this model (see Appendix A in [18]
for justification). For the discussion of these conditions, we
let output denote the final action produced by the job once it
has been evaluated by the LE and TE. These conditions are
defined as follow:
‚ C1. Each task must produce an output every period.
‚ C2. There is only one output per period.
‚ C3. The output produced by a task in a period is either

from LE or TE.
‚ C4. An output produced by the task and validated by the
LE must be the product of a computation that executes
within a single period, i.e., that reads the state of the
system (e.g., senses), computes an output, and generates
the output within the same period.

‚ C5. The TE of a task must execute E time units after
the arrival of the job it guards and finish before the end
of the period.

To satisfy these conditions we not only need to create
new runtime mechanisms, but the software also needs to be
structured in a way that takes advantage of these mechanisms.
This is the topic of our next section.

C. Software Architecture

Algorithm 1 shows the example behavior of a mixed-trust
application. The try block shows the core of the infinite loop
that periodically senses the state, computes and issues an
actuation. Within an iteration, the LE evaluates the computed
actuation α and replaces it with a safe one (α̃) if needed (as
in (1)). However, this loop can fail if the code within the try
block does not finish on time. Hence, a catch block is added to
respond to a timeout (E time units after the start of the current
period). If the timeout occurs, then the temporal enforcement

2
Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 16,2023 at 15:52:51 UTC from IEEE Xplore. Restrictions apply.

actuation αT is issued by the catch block, effectively imple-
menting (2). Note that it is not necessary to compute αT based
on the current state given that it is safe in any state within
Cφ. Regardless of which block performed the actuation, it
is immediately followed by a wait for the completion of the
current period before executing another iteration. Now, even

Algorithm 1: Behavior of a Mixed-Trust Periodic Task
1 while true do
2 try:
3 s Ð currentState()
4 α Ð computeActuationpsq
5 α̃ Ð LEps, αq

6 actuatepα̃q

7 catch timeout(E):
8 actuatepαT q

9 end
10 waitForNextPeriodpq

11 end

if the LE and the TE are formally verified, Algorithm 1 can
still fail to preserve trust in φ if (i) the behavior of the LE is
modified (once modified we do not consider that the output is
from the LE — C3), (ii) the system fails to issue one of the
actuations α̃ or αT before the end of the period (C1), (iii) both
α̃ and αT are issued within a period (C2), (iv) an α̃ calculated
in a previous period is issued (C4), or (v) the TE is modified
(i.e., output is not considered to be a TE output — C3).

Based on the runtime assurance requirements and the fail-
ure possibilities presented above, we designed the software
architecture presented in Fig. 1. In this architecture, the
green components are trusted and need to be protected from
untrusted components (in red). Note that the LE requires the
output of the controller (α) in order to calculate its output
(α̃) as presented in (1). Hence, while it can be (and must
be) protected against logical behavior (code) modifications, it
cannot be protected against delays given that the untrusted
controller can choose to delay its output at will. The TE, on
the other hand, does not depend on α̃ since it only uses its
arrival to decide whether or not to issue its safe action αT .2

However, the TE still needs to be protected against logical
behavior (code) modifications. Similarly, the communication
of the α̃ from the LE to the TE must also be protected against
modification or falsification. Given this analysis, we define the
following protection requirements:
‚ P1. Logical behavior protection. This requires protecting

both the code and the related internal data. This is
achieved through memory protection.

‚ P2. Temporal behavior protection. This requires protect-
ing the arrival time and the CPU bandwidth allocated in
order to meet real-time deadlines.

‚ P3. Communication authentication. This means that we
can verify the identity of the sender and ensure that the
sender itself is protected (P1).

2TE can be activated by either the arrival of α̃ from LE or the timeout
E time units after the task arrival.

VM

HV

LEController

!

"
#"

TE
$"

task
activation

control flow

control+data
flow

data flow

TSTD

USTD
TSD

Fig. 1: Architecture

‚ P4. Communication logical integrity. This means that the
message was not modified.

‚ P5. Communication temporal integrity. This means that
the output generated is the product of a computation
within a period.

It is worth noting that the protections listed above are the
protections of trusted code from untrusted code from within
the same task. Such requirements are a clear departure from
other forms of protection between different tasks. Hence, we
name this new task mixed-trust task whose timing character-
istics will be formalized in Section III.

As discussed in Section I, we use a HV and its hosted VM
to create a runtime environment to execute different parts of
mixed-trust tasks. In order to design this runtime environment,
we first design three protection domains to host the different
parts, and a coordination protocol to preserve the temporal
behavior of the overall mixed-trust task. The domains we
designed are:

Trusted Spatial protection Domain (TSD). This is where
the LE executes. It offers trusted protection against memory
modifications from untrusted components but does not offer
temporal protection.

Trusted Spatio-Temporal protection Domain (TSTD).
This is where the TE resides. It offers trusted memory and
temporal protection.

Untrusted Spatio-Temporal protection Domain (USTD).
This is where the untrusted component resides. It offers
untrusted spatial and temporal protection because it is imple-
mented in the unverified VM.

The location of these domains within the architecture is
shown in Fig. 1. This architecture allows us to (i) minimize
the code added into the HV space, (ii) protect the LE and
hence the integrity of the calculation of α̃ (P4), (iii) validate
the α̃ origin by verifying the hypercall (syscall to hypervisor)
origin (P3 – not shown in the figure), (iv) provide trusted
logical protection for the TE and the LE (P1), (v) provide
trusted temporal protection for the TE (P2), and (vi) provide
untrusted temporal and spatial protection (P1, and P2) to the
untrusted component.

In order to guarantee P5, we added a scheduler in the HV
and a coordination protocol that synchronizes the scheduler
in the VM with the one in the HV. Clearly, this coordination
requires a new integrated analysis that will be presented in
Section IV. Hence, we defer the discussion of the coordination
protocol to Section V. We now discuss the system model.

III. SYSTEM MODEL

Our system model considers a uniprocessor system with a
taskset Γ “ tµi|µi “ pTi, Di, τi, κiqu with unique priorities.

3
Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 16,2023 at 15:52:51 UTC from IEEE Xplore. Restrictions apply.

In the taskset, µi is a mixed-trust task with two execution
segments, τi and κi, with period Ti and deadline Di. The
segment τi is considered to be untrusted and runs in the
untrusted OS kernel inside the VM. The segment κi is con-
sidered to be trusted code and runs within the trusted HV. To
represent the fact that these segments are handled by different
schedulers, we consider them to be tasks and call τi the guest
task (GT) and κi the hyper task (HT). These tasks are defined
by: τi “ pTi, Ei, Ciq, κi “ pTi, Di, κCiq, where Ti and Di are
the same as in µi, Ci is the worst-case execution time (WCET)
of τi, and κCi is the WCET of κi. Consider a particular job
of µi, pτi,q, κi,qq. Ideally, τi,q will execute correctly taking no
more than Ci time units and finishing within Ei time units
after its arrival. In this case, the job κi,q is not activated. The
logical enforcer (LE) verifies the correctness of τi,q , while the
timing enforcer (TE) verifies the timing. If the logical enforcer
(LE) does not notify the HV that τi,q finished correctly and
on time, then the corresponding HT κi,q is activated by a timer
set to expire Ei time units after τi arrives running at a higher
priority than any GT. The deadline for τi,q , Ei, is chosen to
ensure that κi,q can finish by Di, the µi deadline. We show
how to calculate Ei in Section IV.

Under our mixed-trust scheduling paradigm, HTs are sched-
uled in a higher-priority band than GTs in the VM. That is,
the execution of a HT is not preemptible by any GT running
in the VM, and a GT can be preempted by any HT that is
ready to run.

Note that if a timing error is detected while a τi of a µi is
running, then its execution is interrupted and κi is run within
the HV. To detect this, a timer is set to expire Ei time units
after τi’s arrival. The goal of the schedulability analysis is to
compute the Eis in order to ensure that all GTs can finish by
Ei if all GTs execute correctly, and all activated HTs can finish
by Di if their corresponding GTs do not complete correctly,
that is the deadline of every task is met no matter whether any
of the GTs execute correctly or not.

IV. SCHEDULABILITY ANALYSIS

The schedulability analysis of a mixed-trust taskset is
performed in three steps: (1) calculation of the worst-case
response time (Rκi) of each HT κi assuming non-preemptive
fixed-priority scheduling; (2) calculation of Ei for each GT
τi by simply subtracting Rκi from the deadline Di; and (3)
calculation of the response time of each GT τi and check
whether it is at most Ei.

A. Hyper Task Response Time

To calculate the HT response time, we use previous results
on non-preemptive fixed priority scheduling (originally devel-
oped for the CAN bus) [15]. Specifically, the response time
of a HT κi is calculated in three steps:

1) We define the level-i active period as a time interval in
which the processor is busy at all times and (i) there is
at most one executing job from a task with lower priority
than κi’s arriving before the beginning of the active
period, and (ii) for the rest of the active period, there

is only execution of jobs from tasks with priority higher
than or equal to κi’s. We then compute the maximum
duration of a level-i active period, because: (i) it allows
us to compute the maximum number of jobs of task
κi in the level-i active period, and (ii) we know that
any execution outside the level-i active period cannot
influence the response times of jobs of task κi in the
level-i active period.

2) The start time of each job from κi in the level-i active
period is calculated along with their finishing time. The
finishing time of this job is calculated by just adding
the execution time, since once a task starts it cannot be
preempted. Then, the response time of a job is calculated
as the finishing time minus its arrival time.

3) For a given HT κi, the response time is the maximum
response time across all jobs of κi in the level-i active
period.

Let tκi denote the maximum duration of a level-i active period.
Following [15], we calculate tκi as the smallest solution:

tκi “ max
jPκLi

κCj `

R

tκi
Ti

V

κCi `
ÿ

jPκHi

R

tκi
Tj

V

κCj , (3)

where κLi is the set of all HTs with lower priority than κi
and κHi is the set of tasks with higher priority than κi.

Given that a lower-priority task may be running when a
higher-priority task arrives, (3) takes into account the maxi-
mum interference from one job of a lower-priority task.

Let wκi,q denote the latest starting time of κi,q in the level-
i active period. Then, (from [15]) we calculate wκi,q as the
smallest solution of:

wκi,q “ max
jPκLi

κCj`pq´1qκCi`
ÿ

jPκHi

p

Z

wκi,q
Tj

^

`1qκCj . (4)

The response time can then be calculated as follows. For the
jobs in the level-i active period, we can move the arrival times
of the κi jobs to be as early as possible; this may change the
schedule but neither the duration of the level-i active period
nor the starting time of each κi job decreases. Hence, it holds
that each κi,q in the active period arrives pq´ 1qTi time units
after the level-i active period starts. For each job of κi, we
can add κCi to its starting time and then subtract the arrival
time of this job, which yields the response time of the job.
Then we calculate the response time of κi as:

Rκi “ max
qPt1...

Q

tκ
i
Ti

U

u

pwκi,q ` κCi ´ pq ´ 1qTiq. (5)

Note that, in any schedulable taskset, the level-i active period
of a HT κi includes only the execution of its first job if its
corresponding GT τi has a Ci ą 0. This is because if the
taskset is schedulable, we verified that τi has time to run
for Ci and hence no HT runs at that time. In other words,
there is at least Ci time between two job executions (to
completion) of a HT κi when τi executes. Notwithstanding,
we keep the equation that considers active tasks with multiple
job executions to allow for tasksets without GTs.

4
Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 16,2023 at 15:52:51 UTC from IEEE Xplore. Restrictions apply.

In the rest of the paper, we use Ei “ Di´R
κ
i (see Appendix

C in [18] for further discussion).

B. Guest Task Response Time

To calculate the response times of GTs, we need a new
notion of the busy period similar to the active period of
the previous subsection but that also incorporates interference
from HTs and higher-priority GTs. Therefore, we define the
level-i busy period as a time interval such that at all times the
processor is busy only with execution from jobs from HTs or
execution from jobs of GT of priority greater than or equal to
the priority of τi.

We now present a theorem that identifies the phasings that
need to be explored to determine a GT’s worst-case response
time and motivates the schedulability equations.

Theorem IV.1. The longest response time for all GT jobs of
task τi of a mixed-trust task µi occurs in a level-i busy period
initiated by the arrival of either τi or κi and the arrival of
higher-priority GTs or HTs of other mixed trust tasks, µj .

Proof. Following the argument of Lehoczky [25], let r0, bs
denote a level-i busy period (BP). Assume the BP is initiated
by the arrival of higher-priority GTs or HTs of other mixed
trust tasks, µj . Also assume that the first job of µi in the
BP is a job of τi, and it arrives at some point, xi ą 0.
Higher priority execution occupies r0, xiq. This is followed by
alternating intervals of τi and higher priority execution until
τi finishes, ending the BP. Since τi execution cannot influence
when higher priority jobs execute, reducing xi to 0 leaves τi’s
completion time unaltered but moves its arrival time earlier
thereby lengthening its response time. Additionally, if Ei ă b,
the arrival of κi will prevent τi from ever finishing, effectively
resulting in an infinite response time and thus no need to check
any further in the BP.

Again, assume the BP is initiated by the arrival of higher-
priority GTs or HTs of other mixed-trust tasks, µj , but that
the first job of µi in the busy period is a job of κi, and
it arrives at some point, xi, after 0. Once again we reduce
xi to 0 and observe the effect on the τi job that follows κi.
The high priority and non-preemptability of κi might cause κi
to preempt or delay some high priority execution in r0, xiq.
However, τi’s completion time again will remain unaffected,
while its response time is lengthened. One can see this by
examining Fig. 2.b and moving the start time of κi from
0 to 2. We can also see the carry-in effect in Fig. 2.b. µj
is delayed by κi,q´1 thereby delaying the execution of τi,q .
The finishing time of τi,q remains the same if κi,q´1 starts
anywhere between 0 and 2.

Now assume that τi arrives at 0 and that for one µj , j ‰ i
its first τj job, has a priority higher than τi and arrives after
0. All other higher-priority tasks, τk or κk, arrive at the start
of the BP. The finish time, Fi, of τi is equal to Ci plus the
execution time of higher priority jobs that execute before Fi.
Moving the arrival of τj to 0 will either increase or leave
unchanged the amount of higher priority execution before Fi
thereby increasing Fi. If κi arrives at 0 moving the arrival of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

𝜇𝑗

𝜇𝑖 𝜏𝑖,𝑞 𝜅𝑖,𝑞
0

𝑅𝑖,𝑞=7

a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

𝜇𝑖

𝜇𝑗

𝜅𝑖,𝑞−1 𝜏𝑖,𝑞
0

𝑅𝑖,𝑞=9

b)

Fig. 2: Aligning τi and τj yields shorter Ri,q than κi and τj

τj to 0 will also either increase or leave unchanged the finish
time of all τi jobs in the BP. The same argument can be used
if µj’s first job is κj .

Previous work [9] has found the notion of a request-bound
function useful in schedulability analysis. We will now discuss
how to create a request-bound function for our model that
takes additional parameters. Our request-bound function gives
the amount of execution of a mixed-trust task.

Recall that in our model, a task µi can generate a τi job
and a κi job Ei time units later to perform HV execution.
Therefore, from the perspective of the request-bound function,
this arrival of HV execution is treated as the arrival of a job.
The normal request-bound function takes only two parameters:
a task and a duration. In our model, we will use a more
specialized variant that takes two additional parameters, y (a
phasing) and b (a 0-1 variable). We use the former parameter
(y P tE,Auq to indicate the phasing of the mixed-trust task µi;
if y “ E, then we are computing the request-bound function
for the phasing when the level-i busy period starts at a time
when a HT of µi arrives; analogously if y “ A, then we are
computing the request-bound function for the phasing when
the level-i busy period starts at a time when a GT of µi arrives.
We use the latter parameter (b P t0, 1uq to indicate whether
the GT execution should be included in the execution counted
in the request-bound function.

The definition of request-bound function for our model is
as given by the equation below:

rbfyi pt, bq “

$

&

%

Q

t´pTi´Eiq
Ti

U`

Cib`
Q

t
Ti

U

κCi if y “ E,
Q

t
Ti

U

Cib`
Q

t´Ei
Ti

U`

κCi if y “ A,

(6)
where rxs

`
“ maxp0, rxsq.

We will use this request-bound function to compute the
response time of the GT execution of a mixed-trust task µi.
Then, if the computed response time for each GT is less than or
equal to its E parameter, then the taskset is deemed schedulable
(assuming that we have already checked HT schedulability).
Therefore, our goal is now to present equations for computing
the response time of a given GT. We first present an equation
for the maximum duration of a level-i busy period. Then, we
compute the latest possible finishing time of a given job from
a given task in this level-i busy period. Since we know the
maximum duration of a level-i busy period, we can compute
an upper bound on the number of jobs of a given task in a
level-i busy period; we can compute the maximum response
time over all these jobs of the given task. This yields the GT
response time. We will compute the GT response time for
two cases: the case that the given mixed-trust task GT arrives

5
Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 16,2023 at 15:52:51 UTC from IEEE Xplore. Restrictions apply.

at the beginning of the level-i busy period and the case that
the given mixed-trust task arrives with its HT aligned with
the beginning of the level-i busy period. Given this high-level
outline, we will now present the actual equations.

For each µi, for each x P tE,Au, let tg,xi denote the
maximum level-i busy period such that this level-i busy period
starts with a job of the HT or the GT of µi arriving (x indicates
which). Then, similar to (3), we compute tg,xi as the smallest
solution of:

tg,xi “

˜

ÿ

jPLi

rbfEj pt
g,x
i , 0q

¸

` rbfxi pt
g,x
i , 1q

`
ÿ

jPHi

max
yPtE,Au

rbfyj pt
g,x
i , 1q.

(7)

where Li and Hi contains the tasks with lower and higher
priority (respectively) than τi. Given τi and level-i busy period,
we refer to job q as the qth job with a GT arrival in the level-
i busy period. For each τi, and x P tE,Au, let wg,xi,q denote
the maximum finishing time of job q of task τi, relative to
the start of the maximum level-i busy period, such that this
level-i busy period starts with a job of the HT or the GT of τi
arriving (x indicates which). Then, similar to (4), we compute
wg,xi,q as the smallest solution of:

wg,xi,q “

˜

ÿ

jPLi

rbfEj pw
g,x
i,q , 0q

¸

` qCi ` pq ´ 1` Ipx“EqqκCi

`
ÿ

jPHi

max
yPtE,Au

rbfyj pw
g,x
i,q , 1q.

(8)
In (8), Iφ is an indicator function that returns 1 if φ is true
and 0 otherwise.

For each τi, for each x P tE,Au, let Rg,xi,q denote the
maximum response time of job q of τi such that this level-i
busy period starts with the arrival of a job of the HT or the GT
of τi (x indicates which). Then, similar to (5), we compute
Rg,xi,q as:

Rg,xi,q “ wg,xi,q ´ ppq ´ 1qTi ` Ipx“EqpTi ´ Eiqq. (9)

For each τi, for each x P tE,Au, let Rxi,q denote the maximum
response time of τi, such that this level-i busy period starts
with the arrival of a job of HT or GT of τi (x indicates which).
Then, similar to (5), we compute Rg,xi as:

Rg,xi “ max
qP

"

1...

R

t
g,x
i

´Ix“EpTi´Eiq

Ti

V*

Rg,xi,q . (10)

Finally, the response time of a GT is:

Rgi “ max
xPtE,Au

Rg,xi . (11)

Note that a taskset is not required to have tasks with both
GT and HT. When a taskset contains no HT our scheduling
equations reduce to fixed-priority preemptive response time
analysis. Similarly, when a taskset contains no GT, then it re-
duces to fixed-priority non-preemptive schedulability analysis.
These conditions can also occur in a running system, e.g., even
if GTs have their corresponding HTs, the system will run like

a “preemptive” scheduling system if all GTs finish without
exceeding their Ci. On the other hand, if a VM crashes, the
system will run like a pure non-preemptive system as will be
shown in Fig. 8 of Section VI-C.

C. Solving the equations

We consider three cases depending on utilization.
1)

ř

µiPΓ
Ci`kCi
Ti

ą 1
For this case, we terminate the schedulability analysis
and report unschedulable because for this case, there is
no finite level-i busy period.

2)
ř

µiPΓ
Ci`kCi
Ti

ă 1
For this case, (7) has a solution; thus, there is an upper
bound on q. Note that (3),(4),(7), (8) are of the form
z=f(z) and the right-hand side is monotonically non-
decreasing in the variable on the left-hand side—we
solve these with fixed-point iteration.

3)
ř

µiPΓ
Ci`kCi
Ti

“ 1
For this case, it is difficult to determine whether (7) has
a solution—we pessimistically report unschedulable.

D. Budget Enforcement

Given that GTs are not trusted, their Ci values need to be
enforced. This enforcement allows us to implement a graceful
degradation scheme by preventing failing GTs from interfering
with other non-failing GTs. Clearly, if a failure affects the
kernel in the VM (e.g., due to a security attack) all the GTs
will be compromised but the HV and the HTs will be protected
from the failure. In contrast to the GTs, the HTs are trusted and
their κCis do not need to be enforced. In addition, there can be
two possible GT enforcement options when the enforcement
timer elapses: (i) the execution of the job of a GT τi is aborted
immediately and the corresponding HT κi is responsible for
cleaning up its execution, or (ii) the job of the GT τi is deferred
(suspended) and its HT κi executes only temporary actions
(e.g., safe actuation in a control task), allowing the GT’s job to
complete in the next period. Our current implementation uses
the latter option and we will call it deferral GT enforcement.

E. Experiments

This section presents experiments that show how taskset
parameters influence schedulability. We found three situations
that impact schedulability:

1) When considering a task, its HT can experience inter-
ference from HT of other tasks. Also, the HT of other
tasks can also delay the execution of the GT of the task
under consideration. This double-accounting effect has
no analog in classic fixed-priority scheduling.

2) A GT can experience a long delay because of the
execution of HTs of all the other tasks. This situation is
most impactful when the GT has very small period.

3) Consider the lowest-priority task and consider its GT.
When its period is around

?
2 of the period of its

higher priority task, then the schedulability deteriorates
(just like it does for classic rate-monotonic preemptive
scheduling).

6
Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 16,2023 at 15:52:51 UTC from IEEE Xplore. Restrictions apply.

Parameter Range Default
Number of Tasks t3, 4, . . . , 200u 10
U t0.1, 0.2, . . . , 1.0u 0.8
κC

C`κC
t0.1, 0.2, . . . , 1.0u 0.1

Tmax
Tmin

t1, 2, 4, . . . , 1024u 100.0
Tmin 1000

TABLE I: Parameter Ranges and Defaults

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pe
rc

e
n

ta
ge

 o
f

sc
h

ed
u

la
b

le
 t

as
ks

et
s

Utilization

Fig. 3: Success rate as utilization grows

We now illustrate the schedulability conditions just introduced
with the following experiments. In these experiments we vary:
(1) the taskset utilization, (2) the ratio between the maximum
period and the minimum period, (3) the number of tasks
in the taskset, and (4) the ratio between the HT WCET
and the sum of the GT and HT WCET. See Table I. We
perform four experiments to vary utilization, Tmax

Tmin ratio,
number of tasks, and κC

C`κC ratio. The default values for
the parameters that do not vary are presented in Table I.
Two observations are in order. First, the default number of
tasks is set to 10 given that a larger number of tasks reduces
the chance of having a schedulable taskset as can be seen
in Fig. 5. Second, the default utilization is set to 80% also
to reduce the influence of the utilization to dominate when
varying the other parameters. In the experiments each data
point is computed from 100,000 tasksets and we compute the
percentage of schedulable tasksets. Each taskset is generated
with the selected number of tasks. Each task is assigned a
utilization equal to the selected total utilization of the taskset
divided by the number of tasks. Then the period of the task is
chosen at random (with uniform distribution) from the period
range selected. Fig. 3 shows the percentage of schedulable
tasksets as the taskset utilization grows from 10% to 100%.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128 256 512 1024

Pe
rc

e
n

ta
ge

 o
f

sc
h

ed
u

la
b

le
 t

as
ks

et
s

Tmax/Tmin

Fig. 4: Success rate as Tmax
Tmin grows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3 18 33 48 63 78 93 108 123 138 153 168 183 198

Pe
rc

e
n

ta
ge

 o
f

sc
h

ed
u

la
b

le
 t

as
ks

et
s

Number of Tasks

Fig. 5: Success rate as number of tasks grow

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pe
rc

e
n

ta
ge

 o
f

sc
h

ed
u

la
b

le
 t

as
ks

et
s

kC/C+kC

Fig. 6: Success rate as κC
C`κC grows

Note that the experiment shows a decline in the percentage
of schedulable taskset just after 20%. This is due to reason
2. Fig. 4 depicts the percentage of schedulable tasksets as
the ratio of the maximum and minimum period grows. Here,
we can see that when increasing the ratio, the success rate
decreases and then increases and then decreases again. The
initial decrease is caused by reason 3; the second decrease
is caused by the reason 2. Fig. 5 presents the fraction of
schedulable tasksets as the number of tasks in the taskset
grows. The curve decreases exponentially reaching zero at
about 115 tasks. This is because when the number of tasks
increases, the ratio of the maximum period to by the minimum
period among the tasks generated becomes larger and then
reason 2 becomes more impactful. Fig. 6 shows schedulable
tasksets percentage as the ratio of HT WCET to the combined
HT and GT WCET grows. The figure shows a quick drop in
the percentage of schedulable tasksets as this ratio increases.
This is because of reason 2.

V. FAIL-SAFE MIXED-TRUST SCHEDULING
COORDINATION PROTOCOL

With the timing analysis as background we can now discuss
the coordination protocol between our schedulers. A key
challenge that needed to be solved in our framework was the
prevention of any dependency of trusted HV and HT code
from the untrusted code, while still enabling the successful
coordination of the HV and guest schedulers. The dependency
of a higher-critical component from a lower-critical one is

7
Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 16,2023 at 15:52:51 UTC from IEEE Xplore. Restrictions apply.

known as dependency inversion [19]. Preventing the depen-
dency inversion problem necessitates three mechanisms: (1)
a Secure HT Bootstrapping (SHTBoot) Protocol, (2) a Fail-
Safe HT Triggering (FSHTrigger) mechanism, and (3) a Late-
Output Prevention protocol (LOP).

A. Secure HT Bootstrapping (SHTBoot)

The objective of the SHTBoot protocol is to ensure that
the HT can start and execute periodically according to its
specification even if the VM is unable to bootstrap the GT.
This is necessary to properly implement the trusted tempo-
ral protection of the TSTD and the protection requirement
P2 (discussed in Section II). We leverage the secure boot
mechanism provided by uberXMHF [31] to ensure that the
micro-hypervisor framework is the first to get control when the
system is powered on. The SHTBoot protocol starts the HTs
and GTs independently out of bootstrapping task tables stored
in the HT and VM storage, respectively. To synchronize the
periodic arrival of a GT with the corresponding enforcement
timer of its HT, the guest scheduler requests the start time of
the next period from the HV and uses this time to start the
first job of the GT, aligning the periodic arrivals of the GTs
and HTs as required.

B. Fail-Safe HT Triggering Protocol (FSHTrigger)

The objective of the FSHTrigger is to prevent a failure in
the VM from disabling or corrupting the periodic arrival of the
HTs. This is the activation side of the protection requirement
P2. To implement the FSHTrigger, the strategy followed is
to program separate timers for the VM and the HV down to
the hardware level so that untrusted VM code can program its
own timer but cannot program the HV timer. This way when
a task µi is started, its Ei timer is programmed within the HV
and will always trigger no matter what code executes in the
VM (even malicious code actively trying to disable the timer).
As a result, the HT can always run on time and complete
its safety action by the deadline. We leverage the peripheral
isolation provided by uberXMHF [31] to isolate the HV and
guest timers so that the guest cannot access the HV timer.

An HT must be isolated from failures of the corresponding
GT, however, some of their timing parameters need to be
synchronized: (1) initial release offset, which is needed to
program an enforcement timer exactly Ei units after the arrival
of each job, and (2) job completion time, which is to disable
the HT if the GT completed before Ei. The creation time syn-
chronization is performed by SHTBoot. For the completion-
time synchronization we rely on the logical enforcer (LE)
in the VM to send the completion signal to the HV. More
specifically, the LE verifies that the output produced is safe (or
replaces it with a safe one) and sends the completion signal. To
guarantee that the LE only sends the completion signal when
a safe output is generated, the HV protects the LE memory
and we assume that the LE code’s trustworthiness has been
assured (e.g., through verification). This satisfies the protection
requirement P1 and P3. The only possible failure is then a
denial-of-service, i.e., P2 is not guaranteed. In particular, if

the GT τi takes longer than Ci to complete, the task will
be suspended and the LE will neither complete nor send the
completion signal to the HV before Ei. However, this failure
is part of the assumption of the FSHTrigger protocol since
the absence of the completion signal will trigger the HT and
issue the safe output. In other words, the HT that hosts the
TE preserves its temporal behavior (P2).

C. Late-Output Prevention (LOP) Protocol

A late output may occur when a GT job is allowed to
complete and generate an output (e.g., actuation commands)
Ei time units or more after its arrival. Recall the deferral GT
enforcement approach explained in Section IV-D. In this case,
a job can be suspended once Ei time units have elapsed after
its arrival, and resumed in the next period, allowing it to send
its output in the second period (violating requirement C4).
Preventing this output is important because the logic in the
application algorithm (e.g., control algorithm) assumes that
it is computed within the execution of a single job, perhaps
using inputs (sensing) from the beginning of the period that
are only valid for output (e.g., actuation) during this same
period (C4). To solve this problem, the output and completion
signals are bundled in a single call, and all the output is
mediated by an LOP enforcer in the VM kernel scheduler,
making sure that the output is discarded if it is sent after
Ei. We also protect the LOP enforcer memory (in protection
domain TSD) in the kernel and assume that trust in its code
has been established (e.g., through verification). As a result,
the LOP enforcer can only fail by not sending the output. The
use of the LOP enforcer separately from the LE allows us
to separate logical correctness from the temporal correctness,
simplifying its verification but preserving both properties.

VI. IMPLEMENTATION

Our scheduling mechanisms are implemented by the combi-
nation of the budget enforcement of the ZSRM kernel sched-
uler [17] running in a VM and a non-preemptive fixed-priority
scheduler implemented within the verifiable and extensible
uberXMHF micro-HV [32], [33], [31] running in a Raspberry
Pi-3 (RPi) platform with only one active core matching our
system model. In order to prevent failures in the VM from
affecting the code within the micro-HV, uberXMHF imple-
ments two-stage hardware memory page-tables and protections
that cannot be modified by the guest OS running inside the
VM. The two-stage hardware page tables isolate the micro-HV
memory where the HTs reside. The guest OS memory isola-
tion and protection have been formally verified as presented
in [32], [33]. uberXMHF employs a compositional verification
methodology that allows the addition of security sensitive
functionality as modularly protected and verifiable components
(called uberapps). We used this facility to implement the HV
scheduler as a uberapp.

A. Hyper-Task-Aware Budget Enforcement

The ZSRM budget enforcement is performed by shadowing
the priority queues of the fixed-priority scheduler within a

8
Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 16,2023 at 15:52:51 UTC from IEEE Xplore. Restrictions apply.

1
8
0
6

1
8
8
8

A 2005

2
0
0
5

B 2205

2
2
0
5

2
8
0
6

2
8
8
8

A 3005

3
0
0
5

3
2
0
1

3
2
8
3

B 3285

3
2
8
6

A 1700

1
7
0
0

1
8
0
6

1
8
8
8

2
0
0
5

2
2
0
5

B 2380

2
3
8
0

3
2
0
1

3
2
8
3

A 3400

3
4
0
0

F 3500

3
5
0
0

1

2

μ

μ

Fig. 7: Mixed-Trust Taskset Execution Timeline (in 10´4 secs)

kernel module to keep track of the current top-priority active
task and the amount of CPU time this task consumes. Tasks
become ready to run when they are created, and they go to
sleep by calling the ZSRM API wait_next_period()
when they finish their periodic job execution. At this time,
the shadow priority queues in ZSRM are updated, and the
top-priority active task in the queue is scheduled and marked
as the current task. Similarly, when a task period elapses,
ZSRM wakes the task up and makes a scheduling decision.
Whenever a task is scheduled, an enforcement timer is set
to expire with the maximum remaining budget of that task. If
the task either finishes or is preempted before the enforcement
timer expires, the timer is canceled and reprogrammed for the
next task. On the other hand, if the timer expires, the task
is suspended until its next periodic timer expires. The budget
accounting is implemented by recording a starting timestamp
when a task becomes the current task and a finishing
timestamp when the task is either preempted or completes its
periodic execution. Then, subtracting the starting timestamp
from the finishing one, gives us the CPU time used by the
task. We accumulate this time for all the intervals that a task
is considered to be the currently executing task in each period.

Given that HT preemptions are invisible to the VM and
the ZSRM scheduler, the ZSRM budget enforcement fails to
account for them. To handle this, we use an event logger
within the HV to record the timestamps of the activation and
completion of the HTs. Then, these events are used to discount
the HTs preemptions from the budget when the budget timer
triggers, reprogramming the timer accordingly. See Appendix
B in [18] for overhead measurements.

B. Spurious Temporal Failure Illustration

We plot the run of a two-task taskset with timestamps
captured from both the kernel and the HV schedulers for the
case when a GT try to execute beyond Ci. Both schedulers
read the same hardware timer counter register (as timestamps),
allowing us to have an integrated timeline without incurring
context-switch penalties. Fig. 7 shows the timeline plot recon-
structed from timestamps for the following events: (i) arrival
(A) marking when the job becomes ready to execute; (ii) guest
job finishing (F) by calling the wait_next_period() of
the VM scheduler when the job ends normally; (iii) budget
enforcement (B); (iv) resume marking the start of a colored
rectangle showing when the job starts to execute; and (v)
paused presented as the end of a colored rectangle. The
activation of the HTs is presented as a small rectangle marked
by the resume and paused events and filled with wavy
and checkered patterns. The timeline shows different types
of preemptions as follows. From 1806 to 1888, µ1’s HT
(κ1) preempts µ2’s GT (τ2). Then from 2005 to 2205, τ2

A 9

9

F 32

3
2

A 109

1
0
9

F 124

1
2
4

A 217

2
1
7

F 232

2
3
2

A 317

3
1
7

F 332

3
3
2

5
1
5

5
1
6

6
1
5

6
1
6

7
1
5

7
1
6

8
1
5

8
1
6

9
1
5

9
1
6

1
0
1
5

1
0
1
6

A 0

0 9 3
2

F 48

4
8

A 200

2
0
0

F 215

2
1
5

A 408

4
0
8

F 408

4
0
8

8
0
6

8
0
7

1
0
0
6

1
0
0
7

1μ

2μ

Fig. 8: Permanent VM Crash Experiment (in 10´2 secs.)

is preempted again this time by τ1. At 2205, τ1 is budget-
enforced letting τ2 to run until it is enforced at 2380. Given
that τ1 did not signal completion, its HT κ1 executes from
2806 to 2888. Then the next job of τ1 arrives at 3005 and
executes until it is preempted by the HT κ2 at 3201. κ2 finishes
its execution at time 3283 allowing τ1 to resume execution
until it is enforced at 3285. The last job execution shown in
the timeline is a normal that start at 3400 and finishes at 3500.

C. Permanent Failure Illustration
In this section we present an experiment to show how our

approach handles a complete failure of the kernel in the VM.
More specifically, we start two tasks (µ1 and µ2) with periods
T1 “ 1 and T2 “ 2 seconds, respectively, with their respective
HTs designed to run for only 10 ms each. We let the task µ1

run for four periods and µ2 for three periods without faults
(not even timing faults so their HT do not trigger). The third
job of τ2 uses a semaphore to signal a third task (not shown)
whose only role is to wait for this signal and invoke a system
call in our scheduler specifically designed to test a full kernel
failure (this scheme allows τ2 to properly finish given that
the third task has the lowest priority). This call, in turn, calls
the kernel panic() function designed to stop the kernel in
unrecoverable failures (simulating a crash). In order to capture
the timestamps, we send them to a serial port through the HV.
However, because the serial port driver implementation is slow,
it creates some disruption in the timestamps. The resulting
trace is presented in Fig. 8. A few observations about the
trace are in order. First, the call to panic() occurs after τ2
finishes at time 408. Second, after this time no more arrival
(A) or finishing (F) events occur from either of the tasks.
Third, as expected both HTs (κ1 and κ2) continue executing
periodically. Finally, the first execution of both HTs after
the panic() call occurs almost two periods from the last
GT executions. In particular, the first execution of κ1 after
the panic() call occurs at 515 that is almost two periods
from the last arrival of its GT at 317. Similarly, for κ2 its
corresponding first arrival after the panic() call is at 806
and its last GT arrival at 408. This is expected because the
HT execution is scheduled at the end of the period of a task.
This means that when the GT executes at the beginning of
the period, the execution of the HT of the following period
will happen almost two periods apart, even though an output
is produced in every period.

D. Illustrative Application
We implemented a sample mixed-trust application of a

drone mission. This application consists of two components:

9
Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 16,2023 at 15:52:51 UTC from IEEE Xplore. Restrictions apply.

Raspberry Pi 3

VV Gen L
E

Process

LOP
Kernel

Serial DrvHyp-Safe

disable

vv

vv

hvr

PX4

Raspberry Pi 3
HV

VM

Fig. 9: Drone Application Architecture

(i) the mission controller, which generates velocity vectors
(VV) that the drone must fly to follow a route, and (ii) the
Pixhawk [1] flight controller running the PX4 autopilot [2]
in off-board mode, which makes the drone fly in the direction
and speed of the last VV received. The mission controller runs
in its own processor sending a VV message every 50 ms to the
processor where the flight controller runs. A logical enforcer
in the mission controller prevents the drone from violating
spatial constraints (e.g., a virtual fence or the collision volume
of other drones [11]). In addition, we added an HT to the
mission controller to take a safe action and continue to send
VV messages to the flight controller in case the GT fails. Fig. 9
depicts this structure, which, for simplicity of presentation,
shows only one mixed-trust task. This task has a guest task
that generates velocity vectors (VV Gen) and a hypertask (Hyp-
Safe) that generates the safe drone action hover (hvr), which
is a null VV. The figure also shows the LOP mediation of the
messages sent by VV Gen ensuring that (a) no late outputs
are allowed, and (b) when no output is generated by VV Gen
the Hyp-Safe HT generates the hover action. The mission con-
troller was implemented using a version of DronecodeSDK [3]
that we modified to handle serial communications through the
serial driver in the HV, and to use the bundled output and
completion signals for the LOP. We ran this application using
hardware-in-the-loop simulation (i.e., actual mission and flight
computers connected to a drone simulation), which allowed us
to observe the physical consequences. We tested both spurious
failures and hard failures where we verified that both the LOP
and the HTs properly prevent drone failures.

VII. RELATED WORK

Previous work recognized that small operating systems
kernels can be more reliable [23] and can be formally verified
[24]. In this context, decomposing an application can provide
security benefits as well [30]. But they do not provide schedu-
lability analysis. Previous work on hierarchical scheduling
(e.g., [20]) studies run-time systems with two schedulers and
they present theories that provide real-time guarantees but
they do not consider a task that spans different components.
Operating systems works considering real-time requirements
have also been presented [26], [13], [8], [22], [34] to achieve
isolation and some offer offline schedulability tests but not for
the task model that we consider (where a task can span two
operating systems) and they do not target formal verification
of operating system code. Previous work [27], [12] combining
real-time and security are not based on a runtime verification

framework that requires the integration of trusted and untrusted
components. Works on mixed-criticality scheduling (see [14]
for an excellent survey) share our goal of monitoring run-time
behavior and taking action when behaviors that are abnormal
are detected. We are not aware of any work on a mixed-
criticality scheduler that considers our task model and uses
a formally verified HV.

Simplex [29] is an architecture comprising a complex con-
troller, a simple controller, and two sets of states. The first set
describes safe states; the second set describes when there is a
need to transition between controllers. The complex controller
is allowed to operate when the plant is in the second set. If
the plant leaves this set, then the simple controller takes over.
With this architecture, the complex controller can be optimized
for performance and does not need to be verified; the simple
controller, however, is verified to make sure that the plant is
always in a safe state. One can think of the simple controller in
Simplex as somewhat analogous to our HT. Other frameworks
(e.g., [5], [6]) mitigate the impact of attackers by rebooting,
assuming that attacks do not happen instantaneously, but do
not protect against bugs in unverified code.

VIII. CONCLUSIONS

The safe use of untrusted components in CPS critical
functions requires protection and verification; this needs to
guarantee logical and timing correctness. We presented the
first framework that satisfies these requirements—we call our
framework real-time mixed-trust computing (RT-MTC). The
framework achieves this by (i) using trusted components
to monitor and replace unsafe untrusted component outputs
with safe ones (we call these monitoring components logical
enforcers) and (ii) protecting the logical and temporal behavior
of trusted components. Enforcers are protected from logical
behavioral modification by preventing modifications to their
memory (by untrusted components). However, to protect them
from temporal behavior modifications it is necessary for an
enforcer not to rely on output from untrusted ones in order to
execute. Hence, in our framework we introduced a temporal
enforcer that produces a safe output if the guarded untrusted
component does not produce one by a pre-specified time. The
untrusted component and its logical enforcer run in a guest
task (GT) in a VM that runs on a trusted HV and the temporal
enforcer runs in a hyper task (HT) within the HV. Together
they form a mixed-trust task. A protocol was designed to
coordinate the execution of a GT and its corresponding HT
without forcing HT to depend on its GT. We also presented
a new schedulability analysis for the mixed-trust task model
and experiments to evaluate its performance. We showed the
practicality and utility of our framework by (i) implementing
it with the open source uberXMHF HV and ZSRM scheduler,
(ii) demonstrating its ability to preserve the logical and timing
correctness even in the presence of transient and permanent
failures in the VM, and (iii) modifying the open-source
drone-controller PX4 to insert enforcers that guarantee safety
properties, testing it under both transient and permanent faults.

10
Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 16,2023 at 15:52:51 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

Copyright 2019 Carnegie Mellon University, Hyoseung Kim
and John Lehoczky. All Rights Reserved. This material is
based upon work funded and supported by the Department of
Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engi-
neering Institute, a federally funded research and development
center. The view, opinions, and/or findings contained in this
material are those of the author(s) and should not be construed
as an official Government position, policy, or decision, unless
designated by other documentation. NO WARRANTY. THIS
CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVER-
SITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY OF FIT-
NESS FOR PURPOSE OR MERCHANTABILITY, EXCLU-
SIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RE-
SPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT. [DISTRIBUTION STATE-
MENT A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution. Internal use:* Per-
mission to reproduce this material and to prepare derivative
works from this material for internal use is granted, provided
the copyright and No Warranty statements are included with all
reproductions and derivative works. External use:* This ma-
terial may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission
should be directed to the Software Engineering Institute at
permission@sei.cmu.edu. * These restrictions do not apply to
U.S. government entities. Carnegie Mellon R© is registered in
the U.S. Patent and Trademark Office by Carnegie Mellon
University. DM19-0389

REFERENCES

[1] https://pixhawk.org/.
[2] http://px4.io/.
[3] https://www.dronecode.org/.
[4] RTCA Special Committee 205. Formal methods supplement to DO-

178C and DO-278A, 2011.
[5] Fardin Abdi, Chien-Ying Chen, Monowar Hasan, Songran Liu, Sibin

Mohan, and Marco Caccamo. Guaranteed physical security with restart-
based design for cyber-physical systems. In Proceedings of the 9th
ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS
’18, pages 10–21, Piscataway, NJ, USA, 2018. IEEE Press.

[6] Fardin Abdi, Rohan Tabish, Matthias Rungger, Majid Zamani, and
Marco Caccamo. Application and system-level software fault tolerance
through full system restarts. In Proceedings of the 8th International
Conference on Cyber-Physical Systems, ICCPS ’17, pages 197–206,
New York, NY, USA, 2017. ACM.

[7] B. Andersson, S. Chaki, and D. de Niz. Combining symbolic runtime
enforcers for cyber-physical systems. In RV, 2017.

[8] E. Armbrust, J. Song, G. Bloom, and G. Parmer. On spatial isolation
for mixed criticality, embedded systems. In WMC, 2014.

[9] S. K. Baruah. Dynamic- and static-priority scheduling of recurring real-
time tasks. Journal of Real-Time Systems, 2003.

[10] S. Chaki and D. de Niz. Formal verification of a timing enforcer
implementation. ACM TECS, 2017.

[11] M. C. Consiglio, J. P. Chamberlain, C. A. Munoz, and K. D. Hoffler.
Concepts of integration for UAS operations in the NAS. In Congress of
the International Council of the Aeronautical Sciences (ICAS), 2012.

[12] M. Correia, P. Verissimo, and N.F. Neves. The design of a COTS real-
time distributed security kernel. In EDCC, 2002.

[13] A. Crespo, I. Ripoll, and M. Masmano. Partitioned embedded architec-
ture based on hypervisor: The XtratuM approach. In EDCC, 2010.

[14] R. Davis and A. Burns. Mixed-criticality systems—a review.
In Technical Report, University of York, Available at https://www-
users.cs.york.ac.uk/burns/review.pdf, 2019.

[15] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller area network
(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time
Systems, 2007.

[16] D. de Niz, B. Andersson, and G. Moreno. Safety enforcement for the
verification of autonomous systems. In Proceedings of SPIE, 2018.

[17] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In RTSS, 2009.

[18] Dionisio de Niz, Bjorn Andersson, Mark Klein, John Lehoczky, Amit
Vasudevan, Hyoseung Kim, and Gabriel Moreno. Mixed-Trust Com-
puting for Real-Time System — extended version. https://www.andrew.
cmu.edu/user/dionisio/xchange/mixed-trust-scheduling-tr.pdf, 2019.

[19] H. Ding, L. Arber, L. Sha, and M. Caccamo. The dependency
management framework: a case study of the ION cubesat. In ECRTS,
2006.

[20] A. Easwaran, I. Lee, I. Shin, and O. Sokolsky. Compositional schedu-
lability analysis of hierarchical real-time systems. In ISORC, 2007.

[21] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and D. Costanzo.
CertiKOS: An extensible architecture for building certified concurrent
OS kernels. In OSDI, 2016.

[22] Z. Jiang, N.C. Audsley, and P. Dong. Bluevisor: A scalable real-time
hardware hypervisor for many-core embedded systems. In RTAS, 2018.

[23] R. Kaiser and S. Wagner. Evolution of the PikeOS microkernel. In First
International Workshop on Microkernels for Embedded Systems, 2007.

[24] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS kernel.
In SOSP, 2009.

[25] J.P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In RTSS, 1990.

[26] Y. Li, R. West, Z. Cheng, and E. Missimer. Predictable commmunication
and migration in the Quest-V separation kernel. In RTSS, 2014.

[27] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. Bobba. Real-time systems
security through scheduler constraints. In ECRTS, 2014.

[28] Special C. of RTCA. DO-178C, software considerations in airborne
systems and equipment certification, 2011.

[29] L. Sha. Using simplicity to control complexity. IEEE Software, 2001.
[30] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. Reducing TCB

complexity for security-sensitive applications: Three case studies. In
Eurosys, 2006.

[31] A. Vasudevan and S. Chaki. Have your PI and eat it too: Practical
security on a low-cost ubiquitous computing platform. In IEEE Euro
Symposium on Security and Privacy, 2018.

[32] A. Vasudevan, S. Chaki, L. Jia, J. M. McCune, J. Newsome, and
A. Datta. Design, implementation and verification of an eXtensible and
Modular Hypervisor Framework. In 2013 IEEE Symposium on Security
and Privacy, SP, 2013.

[33] A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and A. Datta. überspark:
Enforcing verifiable object abstractions for automated compositional
security analysis of a hypervisor. In 25th USENIX Security Symposium
(USENIX Security 16), 2016.

[34] S. Xia, J. Wilson, C. Lu, and C.D. Gill. RT-Xen: Towards real-time
hypervisor scheduling in Xen. In EMSOFT, 2011.

11
Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 16,2023 at 15:52:51 UTC from IEEE Xplore. Restrictions apply.

