
A Retrospective
in Engineering
Large Language
Models for
National Security
SEPTEMBER 2023

2

Executive Summary
Large Language Models (LLMs) are powerful AI tools that can
potentially save time and effort for users. However, LLMs also
demonstrate behaviors that can lead to questions about their
trustworthiness. These types of concerns may lead to significant
consequences, particularly in high-stakes contexts such as
national security and defense.

At the request of the White House, the Office of the Director of
National Intelligence (ODNI) began exploring use cases for LLMs
within the Intelligence Community (IC). As part of this effort, ODNI
sponsored the Mayflower Project at Carnegie Mellon University’s
Software Engineering Institute from May 2023 through
September 2023. The Mayflower Project attempted to answer the
following questions:

1.	How might the IC set up a baseline, stand-alone LLM?

2.	How might the IC customize LLMs for specific intelligence
use cases?

3.	How might the IC evaluate the trustworthiness of LLMs
across use cases?

This document discusses the findings and recommendations
from the Mayflower Project and provides additional background
information about LLMs and how they can be engineered for
national security use cases. This report also describes lessons
learned at several stages of the engineering process: building a
baseline LLM, tuning an LLM for national security use cases, and
evaluating LLMs for trustworthiness.

Findings
•	Unclassified infrastructure provides sufficient resources for the

IC to setup a baseline, stand-alone model within AWS GovCloud1
at the Controlled Unclassified Information (CUI) level. Using the
AWS TOP SECRET cloud infrastructure for computation would
cost 2.01 times more than identical operations on GovCloud.
The first phase of the project did not allow for any model
development on classified infrastructure, due to the overhead
associated with provisioning classified compute resources under
the current procedures for C2E2.

•	Use cases for LLMs for national security3 include the following:
enhanced wargaming; synthetic data generation; interfacing
with knowledge management systems; and writing, querying,
modifying, and summarizing documents.

1	� https://aws.amazon.com/govcloud-us/?whats-new-ess.sort-by=item.
additionalFields.postDateTime&whats-new-ess.sort-order=desc

2	� https://www.mitre.org/news-insights/publication/intelligence-after-next-
making-integration-reality-enterprise-icam

3	� https://resources.sei.cmu.edu/asset_files/WhitePaper/2023_019_001_982148.pdf

•	For the use cases of document summarization4 and question
answering (Q&A)5, unclassified infrastructure offers sufficient
resources for customizing a baseline LLM by either fine-tuning
the LLM on new data or augmenting the LLM with external tools
at inference time. The project did not explore training LLMs
from scratch because that type of effort requires approximately
three to six orders of magnitude more financial cost than those
used for fine tuning models.

•	Prompt engineering, or incrementally developing input text to elicit
improved responses, is an important yet difficult part of LLM
usage and could serve as a potential barrier to success for users.

•	LLM output cannot be trusted for high-stakes applications6 without
expert review. This is because of both the absence of customized
metrics to assess the quality of LLM output for national security
and the lack of factual accuracy from LLM output.

Recommendations
•	Current methods for quantitively evaluating the output of LLMs

are not practical for many national security-related topics.
Further research and development are needed to establish
and improve quantitative measurements to assess LLM output
texts. Approaches to consider include hand labeling of data
and/or crowd sourced summary texts, mathematical methods
to determine how LLMs evolve internally during training, and
continuous qualitative assessment for responsible use.

•	Due to the cost of infrastructure that meets national security
guidelines, we recommend building robust capabilities for
low-to-high development, that is, developing key components
using unclassified resources and transferring technology, when
appropriate, to classified environments. This will allow the
government to use information, datasets, and human talent that
are available only in open source, unclassified environments. See
Table 1 for comparisons of on-premises and cloud development.

•	Government agencies should pursue integration of LLMs for
national security purposes. LLM-based interfaces can enhance
human-machine teaming, and future progress assumes the
integration of LLMs. For the U.S. to maintain competitive
advantage, it is critical that the U.S. adopt this critical
technology, albeit cautiously and where appropriate.	

•	To engineer customized LLMs, government agencies should
consider using external augmentation of foundational models
instead of fine tuning them. In the absence of practical metrics
for comparison, it is more efficient to use quicker and less
expensive external augmentation via interfacing traditional
software tools, as opposed to fine tuning which requires
additional and potentially costly training.

4	� https://huggingface.co/docs/transformers/tasks/summarization
5	� https://huggingface.co/docs/transformers/tasks/question_answering
6	 https://arxiv.org/abs/2304.05524

Contributors
Shannon Gallagher

Tyler Brooks

Will Nichols

Andrew Mellinger

Eric Heim

Bryan Brown

Jasmine Ratchford

Nathan VanHoudnos

Angel McDowell

Nick Winski

Swati Rallapalli

Hollen Barmer

https://aws.amazon.com/govcloud-us/?whats-new-ess.sort-by=item.additionalFields.postDateTime&whats-new-ess.sort-order=desc
https://aws.amazon.com/govcloud-us/?whats-new-ess.sort-by=item.additionalFields.postDateTime&whats-new-ess.sort-order=desc
https://www.mitre.org/news-insights/publication/intelligence-after-next-making-integration-reality-enterprise-icam
https://www.mitre.org/news-insights/publication/intelligence-after-next-making-integration-reality-enterprise-icam
https://resources.sei.cmu.edu/asset_files/WhitePaper/2023_019_001_982148.pdf
https://huggingface.co/docs/transformers/tasks/summarization
https://huggingface.co/docs/transformers/tasks/question_answering
https://arxiv.org/abs/2304.05524

3

LLMs are Compilations of Different Data,
Methods, Techniques, and Tools
Put simply, an LLM is an AI system that can produce human-like
text 7. An LLM is not a single AI model but a compilation of many
different models and tools put together in a process beginning
with input data and training objectives and resulting in a system
with human-readable chat capabilities. In Figure 1, we show the
typical process of engineering a custom LLM, which consists of
many different trainings, datasets, and inference techniques.

In Figure 1, the first step of engineering an LLM is training a
baseline LLM. Training a powerful baseline LLM like ChatGPT or
LLaMA is costly in terms of people, time, and resources; therefore,
most LLM development for national security will likely derive from
vetted, pre-trained models, commonly known as foundational
models8. Examples of foundational models include those from
large organizations (e.g., Microsoft, Google, Meta, Technology
Innovation Institute), smaller, targeted companies (e.g., MosaicML),
and community-built, open platforms (e.g., EleutherAI, OpenLM
Research). While these foundational models can differ in
transparency, business models, ethics, and guardrails, they are
connected in that they are models using typically billions of
parameters trained on terabytes of text data obtained primarily
from open sources on the internet, requiring weeks of compute
across hundreds to thousands of GPUs.

Once a foundational model has been selected, developing a
custom internal LLM can be divided into three parts: training,
augmentation at inference time, and interfacing. During training,
custom documents are used to adjust the language associations

7	 https://arxiv.org/abs/2304.01852
8	� https://hai.stanford.edu/news/what-foundation-model-explainer-non-experts

within an LLM. Further training of foundational models is often
called fine tuning. Fine tuning can be thought of as developing
and refining long-term memory for language. In this stage, an
LLM learns new information that is stored long term. Similarly,
the LLM also learns or adjusts how it generates text to reflect the
newly learned documents. Fine tuning is critical for models that
have a specific communication style or vocabulary that is absent
from or poorly represented in the foundational model training
data. For example, training has benefited LLMs customized for
biomedical or pharmaceutical9 purposes because they will learn
the terms specific to the medical community and how those
terms are related to other words. Within the context of national
security, it is possible, or even plausible, that specific terms may
have differing meaning within their specialized community, and
extending resources for LLM training is appropriate. Perhaps
more importantly, fine tuning on national security data will adjust
the LLM in a way that may mitigate the inherent biases trained
into the foundational model.

In contrast to training, augmentation does not require
further learning of the LLM but instead supplements the LLM
with external tools to create human-like processes, such as
information retrieval and question-answering. Although these
inference time tools are often affordable because they save
training and compute time, they may not adapt to information
that differs from previously encountered information.

After an LLM has been trained and augmented, the system may
finally be used for interfacing by humans. Typically, the interface
is a “chat bot” with input text boxes and output responses of text

9	 https://www.nature.com/articles/s41591-023-02448-8

Inputs Outputs

1. Train
Fine-tune to capture syntactic,
semantic information and more
fluently generate text that
conforms to the format desired.

Foundational
Model

Documents

Databases

APIs

2. Augment
Augment fine-tuned LLM with
tools to gather external
information, use tools, and post-
process generated text.

3. Interface
Build an interface to shape user
experience and parse inputs.

Fine-
tuned
Model

Tools
and
Prompts

User
Interface

User can interface
with a system that
can use tools (APIs
and databases) to
generate text that
is fluent in the
semantics and
lexicon of specific
industry.

LLM-based
Service

Figure 1. Overview of steps to engineer a custom LLM.

https://arxiv.org/abs/2304.01852
https://hai.stanford.edu/news/what-foundation-model-explainer-non-experts
https://www.nature.com/articles/s41591-023-02448-8

4

from the model. More sophisticated LLMs can even maintain
conversation history and use prior context in their responses.

Once an LLM is set up and customized, it is evaluated in a
variety of areas, including correctness and safety. Ways to
compare LLMs include abstract quantitative measurements or
testing the LLM on common benchmarks, like those in HELM10.
In general, how to assess how well an LLM is performing is an
open area of research.

While LLMs have been identified for use in many areas of national
security, the Mayflower Project focused on 1) question answering
with attribution and 2) document(s) summarization. After
engineering a single LLM, we needed to incrementally improve
the system. Our incremental challenges were to 1) engineer a
baseline LLM, 2) customize the LLM to specialized use cases and
3) evaluate the trustworthiness of the LLM.

Engineering a Baseline LLM
Much current research for LLMs focuses on creating working
models that produce human-readable text. This research
usually highlights an improvement in infrastructure, a model
architecture, a task, optimizations in memory or speed, training
data, or how humans interact with these models. All these factors
must be considered when first setting up any baseline LLM,
which may be a single foundational model or one with custom
enhancements. Infrastructure engineers, software engineers,
and research scientists should collaborate on decisions regarding
data storage, model serving, and model selection (architecture
+ weights) and its hyperparameters, which may include
sequence length, vocabulary, tokenization process, and software
implementation.

Model selection is the most important component in engineering
a baseline LLM. This component will determine the model size
and computational graph and, thus, much of the infrastructure
required to deploy the model. Like many state-of-the-art AI
technologies, LLMs require infrastructure capable of supporting
GPU compute. Establishing an environment to work with LLMs
will often need to satisfy requirements related to

•	Large data collection and labeling

•	Storage and pre-processing of input data

•	Environment accessibility in support of model development

•	Storage and management of model weights

•	Transferability and segmentation of models and data to GPUs
and back to CPUs

•	Augmenting and interfacing with both pre-trained and fine-
tuned models

•	Serving performant models to users

10	 https://crfm.stanford.edu/helm/latest/

Organizations seeking to make use of their own custom LLMs
will likely need to weigh the decision to build and manage their
own hardware or rely on cloud providers such as AWS GovCloud.
When making infrastructure decisions, engineers will need to
consider factors such as the amount of data involved, the size of
the models, the type of GPUs, the amount of GPU memory, and
the number of GPUs. These decisions will affect the amount of
time needed to train and evaluate LLMs, which impacts the costs
required to support LLM-based projects.

A second important component of engineering a working LLM
is creating a modular, flexible codebase that can integrate
many disparate models, data, and interfaces. A large part
of integrating these models into infrastructure is through
parameter optimization along with vertical and horizontal
scaling. In vertical scaling, the same model is deployed on
multiple nodes, but the data are partitioned across each node.
Typically, vertical scaling is done through batching of data where
chunks of data are operated on in parallel. In horizontal scaling,
a large model is partitioned across many nodes. The underlying
technology for horizontal scaling is referred to as “ZeRO”
for Zero Redundancy Optimization11, and one of the primary
implementations is called DeepSpeed12. Both horizontal and
vertical scaling are required to fit some of the largest models,
like LlaMA-65B, to use for inference.

A third important component is serving the model to a user via
an existing interface, or designing one that is appropriate to
the end users’ needs. Responsiveness is critical for a good user
experience and therefore inference speed and being able to have
multiple models for comparison drove our design decisions. As
an example, if chat history is not managed properly, it can lead
to memory exhaustion on the server side. The server supporting
multiple LLMs also presented memory-related challenges:
loading multiple LLMs into memory at once causes rapid memory
exhaustion. To meet this challenge, we designed the system to
load each LLM when it was chosen and immediately unload it
afterward, which also pushed us to seek techniques to speed up
the model loading and inference processes.

Engineering a Custom LLM for
Intelligence Purposes
Once a working LLM is deployed, government agencies can
then focus on the task of customizing the LLM for their needs.
Agencies can choose from three primary approaches to
customizing an LLM: 1) fine tuning, 2) augmentation at inference
time, or 3) both.

Fine tuning is the process of further training a pre-trained
foundational model to custom or specialized datasets.
Foundational models are thought to have good representation
of language and knowledge due to their massive architectures
and datasets. However, a foundational model may not be
aware of certain knowledge fields or communication structures
because the model was never trained on such data. Fine tuning

11	 https://ieeexplore.ieee.org/abstract/document/9355301
12	 https://github.com/microsoft/DeepSpeed

https://crfm.stanford.edu/helm/latest/
https://ieeexplore.ieee.org/abstract/document/9355301
https://github.com/microsoft/DeepSpeed

5

incorporates new data into a model, and the cost is directly
proportional to the amount of new data being incorporated.

During Mayflower, we experimented with different benchmarks
to obtain an approximate price estimate for standing up an
LLM. Table 1 shows the results from running a singular test
across two different infrastructure configurations for different
model sizes. The on-premises environment consisted of a single
server with 2 GPUs (2 x 40GB A100s). The cloud environment
consisted of a single instance type with 8 GPUs (8 x 40GB A100s)
in AWS GovCloud. We then fine-tuned the model on 500 new
documents with an input token size of 475 (about 1 page of
text) and recorded both the average GPU memory usage and
the total time to train for 1 epoch. The token size was selected
because it represented the largest token size that could be used
to successfully train the largest model (65B) in the on-premises
environment. To fit the models on the GPUs, this experiment
relied on the optimization technique known as LoRA13, so
fewer than 1% of the total parameters were being trained. The
experiment also used DeepSpeed Stage 3 to implement full
horizontal scaling. The table results suggest that fine tuning a
model can be an affordable option if that the total size of new
documents is relatively small. For example, one could fine-tune
the 7B parameter version of LlaMA using 10,000 new documents
for 3 epochs for $792.

Table 1: Performance benchmark tests for training LlaMA models of
different parameter sizes on our custom 500-document set. For the
estimates in the rightmost column, we define a practical experiment as
LlaMA with 10k training documents for 3 epochs with GovCloud at $39.33/
hour, LoRA (r=1, α=2, dropout = 0.05), and DeepSpeed. Current Top Secret
rates are $79.0533/hour.

Environment N
um

be
r

of
 M

od
el

Pa

ra
m

et
er

s
(B

ill
io

ns
)

A
ve

ra
ge

 p
er

 G
PU

 M
em

or
y

U
sa

ge
 (G

B)

Ti
m

e
Re

qu
ir

ed
 t

o
Co

m
pl

et
e

th
e

Te
st

 (m
in

.)

G
ov

Cl
ou

d
Co

m
pu

te
 C

os
t

to
 R

un
 t

he
 T

es
t

($
)

Pr
oj

ec
te

d
Co

st
 fo

r
Pr

ac
ti

ca
l E

xp
er

im
en

t

(M
on

ey
 ($

)/
Ti

m
e

(h
r.

))

On-premises 7 16.8 22 -
Cloud 7 16.02 6 4.17 792/20
On-premises 13 22.17 41 - -
Cloud 13 21.00 13 8.83 1,715/44
On-premises 30 35.03 98 - -
Cloud 30 34.27 30 19.87 3,960/101
On-premises 65 38.67 198 - -
Cloud 65 37.39 67 44.02 8,884/225

In contrast to fine tuning, augmenting the LLM at inference time
incorporates the development of critical software engineering
pieces outside of the LLMs. Inference time augmentation includes
prompt engineering: parsing user inputs to optimize results from
LLMs. Augmentation may require iterative use of tools and LLMs.

13	 https://arxiv.org/abs/2106.09685

For example, consider a query that, from a human perspective,
seems simple: “What day of the week was the current U.S.
President born?” An LLM-based application must decide what
tools or information are required to answer this question. The
first step would be to determine the current President of the
United States. This information could be embedded into the LLM
(via fine tuning) or derived via query to an up-to-date information
source. The second (Biography) tool may return with President
Biden’s birthday of November 20th, 1942. The third (Calendar)
tool may return with the day of the week of November 20,
1942—a Friday. This information is returned to the large language
model for it to output the “human-like” answer of “The current
U.S. President, Joe Biden, was born on November 20, 1942, which
was a Friday.”

Prompt engineering is a particularly important part of
augmentation. For example, Figure 2 shows two prompts where
the user asks the LLM to describe the Chinese high-altitude
balloon incident in two syntactically different but semantically
similar ways. In the prompt example shown on the left, the LLM
responds that it does not know about the incident. In contrast, in
the example on the right, it gives a full response. Consequently,
how a user writes a prompt affects the output and, in some cases,
can affect the user’s ability to get useful information.

The variability of effectiveness between semantically similar
prompts presents a significant challenge when leveraging LLMs
in systems that support IC-specific use cases, such as Q&A on
intelligence reports. Unless user input is standardized into a
consistent set of vocabulary and grammar, the performance of
the models at inference time may vary wildly among responses
and among users. While input standardization is one potential
solution to the problem of prompt engineering, it comes with its
own challenges, such as requiring the conversion of free-form
user input into a restricted subset of acceptable questions.

At inference time, each interaction with the LLM requires
a prompt constructed from user input and any associated
data gained from the tools. Tools can augment the long-term
knowledge of fine tuning with externally held information
that is up to date. This is akin to a person using tools to aid in
completing a task but not remembering every individual output.
There are several advantages to using tools at inference time
rather than relying on fine tuning exclusively. First, retrieved
information is as current as externally managed data and does
not depend on resource-intensive fine tuning. Second, tools
naturally enable referencing sources of information. As an
analogy, one can use Wikipedia as a reference to retrieve the fact
that an apple is a kind of fruit; using one’s internal knowledge
does not allow the same kind of referencing. Finally, tools enable
the LLM application to use explicitly verifiable logical operations—
particularly symbolic math and arithmetic—to derive more
trustworthy answers. However, the LLM will not remember any
information it encounters until it is fine-tuned once again.

https://arxiv.org/abs/2106.09685

6

Whether to choose fine tuning, inference time augmentation, or
both to create a custom LLM depends on organizational needs
and available resources. The main advantage of fine tuning is
that the model can store and recall new knowledge for future
use. However, fine tuning can potentially be expensive in terms
of people, money, and time, depending on the model and
hyperparameter selections. Inference time augmentation of LLMs
is generally a cheaper alternative to fine tuning but can be severely
limited by the model sequence length, or how much text a model
can hold in memory at a time. We suspect that under optimal
conditions, fine tuning followed by inference time augmentation
would lead to optimal results for the customized model.

Evaluating an LLM for Trustworthiness
Unfortunately, making a working and custom LLM does not
include any guarantees that it will be correct, safe, or trustworthy.
Although LLMs can create text that reads like human-generated
text, we have found time and time again that LLMs are prone to
factual errors, “hallucinations” (i.e., fabrication of new information),
overconfidence, and susceptibility to adversarial attacks14. Although
efforts can be made to make LLMs more trustworthy, such as
through further fine tuning of LLMs and reinforcement learning
with human feedback (RLHF), LLM outputs should not be trusted
for high-stakes tasks. Using internal LLM output for low-stakes tasks
such as short, informal emails with a brief review or non-critical
simulation is fine and even encouraged. However, at this time, LLM
outputs for high-stakes tasks must be verified by an expert.

14	 https://arxiv.org/abs/2307.15043

In addition to the questionable factual accuracy of LLMs, we have
noted that bias is inherent to the open-source models we have
implemented in experiments—due in large part to the unverified
and vast scale of the input data. For example, we developed a
“balloon test,” prompting the LLM to describe the high-altitude
balloon incident in the U.S. in early 2023. Models have responded
with answers such as

	 I’m sure they’ll get it right next time. The Chinese were
not able to determine the cause of the failure. I’m sure
they’ll get it right next time. That’s what they said
about the first test of the A-bomb. I’m sure they’ll get
it right next time. They’re Chinese. They’ll get it right
next time.

Generally, we have the most trust in LLMs that are trained
to respond to questions with answers verbatim from some
reference text. However, this sort of response arguably does not
require generative AI and actively avoids a key advantage of LLMs:
the ability to paraphrase and aggregate salient information from
across text sources. Following verbatim answers, we generally see
more trustworthy results when the LLM is forced to identify the
specific document(s) it is paraphrasing, which allows for an easy
check by the reviewer.

One of the biggest challenges in this field is determining what
makes an LLM and its outputs “good.” Quantitative measures
include perplexity and Recall-Oriented Understudy for Gisting

Figure 2: Example of two prompts with different syntax but the same semantic content. The two inputs result in very different outputs.

Choose Model:

Search Result:

ChatGPT 3.5 Turbo

File

file2.txt 2.2 KB Download
file3.txt 3.4 KB Download
file5.txt 3.7 KB Download
file6.txt 3.0 KB Download

Search

Search Query:

I'm sorry, but based on the given context, there is no information provided
about a specific high-altitude Chinese balloon incident.

Give an overview of the high-altitude Chinese balloon incident

Choose Model:

Search Result:

ChatGPT 3.5 Turbo

File

file2.txt 2.2 KB Download
file3.txt 3.4 KB Download
file5.txt 3.7 KB Download
file6.txt 3.0 KB Download

Search

Search Query:

The high-altitude Chinese balloon incident occurred from January 28 to
February 4, 2023. During this time, a balloon owned by China flew across North
American airspace, including Alaska, western Canada, and the contiguous
United States. On February 4, the U.S. Air Force shot down the balloon over
U.S. territorial waters off the coast of South Carolina. Debris from the wreckage
was recovered and sent to the FBI Laboratory in Quantico, Virginia, for
analysis. Following a preliminary analysis of the debris in June, U.S. officials
stated that the balloon.

Describe the high-altitude Chinese balloon incident

https://arxiv.org/abs/2307.15043

7

Evaluation (ROUGE), which are related to the complexity of word
associations but not the truth of a result15. Truth is generally
measured by a model’s ability to score well on certain tests like
Advanced Placement (AP) exams or the Law School Admission
Test (LSAT)16. While these measures work in an empirical context
where there is a single, knowable answer, the fact that a model
performs well on those metrics may not directly imply that it
will perform well when exposed to questions that do not have a
single, knowable answer.

LLMs used in the national security context require more rigorous
standards than those used for low-stakes or recreational
purposes. LLMs for national security also need to meet
established ethical frameworks such as the AI Ethics Framework
for the Intelligence Community17. In Figure 3, we show some of
the standards needed for national security use cases alongside
the strengths and weaknesses of LLMs. In general, the strengths
and weaknesses of LLMs do not align with—and in some cases
are at odds with—national security needs. In particular, derivative
classification may cause many problems for LLMs. Much research
needs to be conducted to reconcile the needs of the IC and the
reality of LLMs.

NATIONAL SECURITY NEEDS

Mission Capable Tools

High-side capability

Scalable

Test and evaluation

AI Ethics Framework for the IC18

Understanding goals
and risks

Governance of AI and data

Human judgment and
accountability

Ensuring objectivity

Testing

AI lifecycle considerations

Documentation

Transparency

Periodic review

Stewardship and
accountability

LLMs

Strengths Weaknesses

Idea generation

High-level summaries

Low-stakes tasks

Brief communications

Trust

Hallucinations

Generalizability

Metrics and evaluations

Figure 3: Comparison of National Security needs to strengths and
weaknesses of current LLMs.

15	 https://arxiv.org/abs/1801.10198
16	 https://arxiv.org/abs/2303.08774
17	� https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-

the-intelligence-community

18	� Adapted from https://www.intelligence.gov/artificial-intelligence-ethics-
framework-for-the-intelligence-community

Engineering an LLM for National Security
By the very nature of national security, it is not enough that an
LLM works or that it is customized. When lives of citizens are
at stake, it is critical that an LLM be interrogated and found
trustworthy by experts and laypeople alike. In our work on the
Mayflower Project, we made great strides at engineering both
working and customized LLMs. However, we have a long way to
go before LLMs will be reliable enough for autonomous use for
critical national security technologies, processes, and people.

Thus, it is imperative that government agencies prioritize
the exploration of quantitative assessment of 1) how models
compare to others and 2) how models improve over time during
the training process. This will likely require collecting, cleaning,
and curating custom data for running the comparisons. For
example, we may need to create an experiment where two
summaries of a report, one generated by a human and another
generated by an LLM, are shown to an expert. The expert can
then rank which summary they think is better according to
some set of subject-matter-driven criteria. The results of this
experiment would allow us to directly compare LLM output to
human output.

Additionally, government agencies need to systematically
investigate prompt engineering to reduce the barrier to
success for users. For example, government agencies must
determine what subset of vocabulary and grammatical phrases
is most effective at eliciting useful responses from LLMs. These
vocabularies may even differ from agency to agency and will
require subject matter expertise. To successfully integrate LLMs
with human users in national security applications, we must
make them simpler to use, and we must research and implement
guardrails that reduce the likelihood of these applications
providing incorrect information that could be used to make
critical decisions.

While we do not believe LLMs are currently safe for autonomous
use, we believe they can be used beneficially under the right
conditions and under the supervision of the right people. We are
hopeful that with more research, we will be able to bridge that
gap in security, safety, and trust.

https://arxiv.org/abs/1801.10198
https://arxiv.org/abs/2303.08774
https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community
https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community
https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community
https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community

About the SEI
Always focused on the future, the Software Engineering Institute (SEI) advances software
as a strategic advantage for national security. We lead research and direct transition
of software engineering, cybersecurity, and artificial intelligence technologies at the
intersection of academia, industry, and government. We serve the nation as a federally
funded research and development center (FFRDC) sponsored by the U.S. Department of
Defense (DoD) and are based at Carnegie Mellon University, a global research university
annually rated among the best for its programs in computer science and engineering.

Contact Us
CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE; PITTSBURGH, PA 15213-2612

sei.cmu.edu
412.268.5800 | 888.201.4479
info@sei.cmu.edu

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s)
and should not be construed as an official Government position, policy, or decision, unless
designated by other documentation.

References herein to any specific commercial product, process, or service by trade name,
trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by Carnegie Mellon University or its Software
Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No Warranty”
statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and
freely distributed in written or electronic form without requesting formal permission.
Permission is required for any other external and/or commercial use. Requests for
permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

*These restrictions do not apply to U.S. government entities.

DM23-1027

©2023 Carnegie Mellon University | 6125 | C 06.01.2023 | S. 09.28.2023

http://sei.cmu.edu
mailto:info%40sei.cmu.edu?subject=
mailto:permission%40sei.cmu.edu?subject=

