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Executive Summary 
Large Language Models (LLMs) are powerful AI tools that can 
potentially save time and effort for users. However, LLMs also 
demonstrate behaviors that can lead to questions about their 
trustworthiness. These types of concerns may lead to significant 
consequences, particularly in high-stakes contexts such as 
national security and defense. 

At the request of the White House, the Office of the Director of 
National Intelligence (ODNI) began exploring use cases for LLMs 
within the Intelligence Community (IC). As part of this effort, ODNI 
sponsored the Mayflower Project at Carnegie Mellon University’s 
Software Engineering Institute from May 2023 through 
September 2023. The Mayflower Project attempted to answer the 
following questions:

1.	How might the IC set up a baseline, stand-alone LLM? 

2.	How might the IC customize LLMs for specific intelligence  
use cases? 

3.	How might the IC evaluate the trustworthiness of LLMs  
across use cases?

This document discusses the findings and recommendations 
from the Mayflower Project and provides additional background 
information about LLMs and how they can be engineered for 
national security use cases. This report also describes lessons 
learned at several stages of the engineering process: building a 
baseline LLM, tuning an LLM for national security use cases, and 
evaluating LLMs for trustworthiness.

Findings
•	Unclassified infrastructure provides sufficient resources for the 

IC to setup a baseline, stand-alone model within AWS GovCloud1 
at the Controlled Unclassified Information (CUI) level. Using the 
AWS TOP SECRET cloud infrastructure for computation would 
cost 2.01 times more than identical operations on GovCloud. 
The first phase of the project did not allow for any model 
development on classified infrastructure, due to the overhead 
associated with provisioning classified compute resources under 
the current procedures for C2E2. 

•	Use cases for LLMs for national security3 include the following: 
enhanced wargaming; synthetic data generation; interfacing 
with knowledge management systems; and writing, querying, 
modifying, and summarizing documents.

1	� https://aws.amazon.com/govcloud-us/?whats-new-ess.sort-by=item.
additionalFields.postDateTime&whats-new-ess.sort-order=desc

2	� https://www.mitre.org/news-insights/publication/intelligence-after-next-
making-integration-reality-enterprise-icam

3	� https://resources.sei.cmu.edu/asset_files/WhitePaper/2023_019_001_982148.pdf 

•	For the use cases of document summarization4 and question 
answering (Q&A)5, unclassified infrastructure offers sufficient 
resources for customizing a baseline LLM by either fine-tuning 
the LLM on new data or augmenting the LLM with external tools 
at inference time. The project did not explore training LLMs 
from scratch because that type of effort requires approximately 
three to six orders of magnitude more financial cost than those 
used for fine tuning models.

•	Prompt engineering, or incrementally developing input text to elicit 
improved responses, is an important yet difficult part of LLM 
usage and could serve as a potential barrier to success for users.

•	LLM output cannot be trusted for high-stakes applications6 without 
expert review. This is because of both the absence of customized 
metrics to assess the quality of LLM output for national security 
and the lack of factual accuracy from LLM output. 

Recommendations
•	Current methods for quantitively evaluating the output of LLMs 

are not practical for many national security-related topics. 
Further research and development are needed to establish 
and improve quantitative measurements to assess LLM output 
texts. Approaches to consider include hand labeling of data 
and/or crowd sourced summary texts, mathematical methods 
to determine how LLMs evolve internally during training, and 
continuous qualitative assessment for responsible use.

•	Due to the cost of infrastructure that meets national security 
guidelines, we recommend building robust capabilities for 
low-to-high development, that is, developing key components 
using unclassified resources and transferring technology, when 
appropriate, to classified environments. This will allow the 
government to use information, datasets, and human talent that 
are available only in open source, unclassified environments. See 
Table 1 for comparisons of on-premises and cloud development.

•	Government agencies should pursue integration of LLMs for 
national security purposes. LLM-based interfaces can enhance 
human-machine teaming, and future progress assumes the 
integration of LLMs. For the U.S. to maintain competitive 
advantage, it is critical that the U.S. adopt this critical 
technology, albeit cautiously and where appropriate.	

•	To engineer customized LLMs, government agencies should 
consider using external augmentation of foundational models 
instead of fine tuning them. In the absence of practical metrics 
for comparison, it is more efficient to use quicker and less 
expensive external augmentation via interfacing traditional 
software tools, as opposed to fine tuning which requires 
additional and potentially costly training. 

4	� https://huggingface.co/docs/transformers/tasks/summarization
5	� https://huggingface.co/docs/transformers/tasks/question_answering
6	 https://arxiv.org/abs/2304.05524
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LLMs are Compilations of Different Data, 
Methods, Techniques, and Tools
Put simply, an LLM is an AI system that can produce human-like 
text 7. An LLM is not a single AI model but a compilation of many 
different models and tools put together in a process beginning 
with input data and training objectives and resulting in a system 
with human-readable chat capabilities. In Figure 1, we show the 
typical process of engineering a custom LLM, which consists of 
many different trainings, datasets, and inference techniques.  

In Figure 1, the first step of engineering an LLM is training a 
baseline LLM. Training a powerful baseline LLM like ChatGPT or 
LLaMA is costly in terms of people, time, and resources; therefore, 
most LLM development for national security will likely derive from 
vetted, pre-trained models, commonly known as foundational 
models8. Examples of foundational models include those from 
large organizations (e.g., Microsoft, Google, Meta, Technology 
Innovation Institute), smaller, targeted companies (e.g., MosaicML), 
and community-built, open platforms (e.g., EleutherAI, OpenLM 
Research). While these foundational models can differ in 
transparency, business models, ethics, and guardrails, they are 
connected in that they are models using typically billions of 
parameters trained on terabytes of text data obtained primarily 
from open sources on the internet, requiring weeks of compute 
across hundreds to thousands of GPUs. 

Once a foundational model has been selected, developing a 
custom internal LLM can be divided into three parts: training, 
augmentation at inference time, and interfacing. During training, 
custom documents are used to adjust the language associations 

7	 https://arxiv.org/abs/2304.01852
8	� https://hai.stanford.edu/news/what-foundation-model-explainer-non-experts

within an LLM. Further training of foundational models is often 
called fine tuning. Fine tuning can be thought of as developing 
and refining long-term memory for language. In this stage, an 
LLM learns new information that is stored long term. Similarly, 
the LLM also learns or adjusts how it generates text to reflect the 
newly learned documents. Fine tuning is critical for models that 
have a specific communication style or vocabulary that is absent 
from or poorly represented in the foundational model training 
data. For example, training has benefited LLMs customized for 
biomedical or pharmaceutical9 purposes because they will learn 
the terms specific to the medical community and how those 
terms are related to other words. Within the context of national 
security, it is possible, or even plausible, that specific terms may 
have differing meaning within their specialized community, and 
extending resources for LLM training is appropriate. Perhaps 
more importantly, fine tuning on national security data will adjust 
the LLM in a way that may mitigate the inherent biases trained 
into the foundational model. 

In contrast to training, augmentation does not require 
further learning of the LLM but instead supplements the LLM 
with external tools to create human-like processes, such as 
information retrieval and question-answering. Although these 
inference time tools are often affordable because they save 
training and compute time, they may not adapt to information 
that differs from previously encountered information. 

After an LLM has been trained and augmented, the system may 
finally be used for interfacing by humans. Typically, the interface 
is a “chat bot” with input text boxes and output responses of text 

9	 https://www.nature.com/articles/s41591-023-02448-8

Inputs Outputs

1.  Train
Fine-tune to capture syntactic, 
semantic information and more 
fluently generate text that 
conforms to the format desired.

Foundational
Model

Documents

Databases

APIs

2.  Augment
Augment fine-tuned LLM with 
tools to gather external 
information, use tools, and post- 
process generated text.

3.  Interface
Build an interface to shape user 
experience and parse inputs.

Fine-
tuned
Model

Tools
and
Prompts

User
Interface

User can interface  
with a system that 
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Figure 1. Overview of steps to engineer a custom LLM. 
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from the model. More sophisticated LLMs can even maintain 
conversation history and use prior context in their responses.  

Once an LLM is set up and customized, it is evaluated in a 
variety of areas, including correctness and safety. Ways to 
compare LLMs include abstract quantitative measurements or 
testing the LLM on common benchmarks, like those in HELM10. 
In general, how to assess how well an LLM is performing is an 
open area of research.  

While LLMs have been identified for use in many areas of national 
security, the Mayflower Project focused on 1) question answering 
with attribution and 2) document(s) summarization. After 
engineering a single LLM, we needed to incrementally improve 
the system. Our incremental challenges were to 1) engineer a 
baseline LLM, 2) customize the LLM to specialized use cases and 
3) evaluate the trustworthiness of the LLM.  

Engineering a Baseline LLM
Much current research for LLMs focuses on creating working 
models that produce human-readable text. This research 
usually highlights an improvement in infrastructure, a model 
architecture, a task, optimizations in memory or speed, training 
data, or how humans interact with these models. All these factors 
must be considered when first setting up any baseline LLM, 
which may be a single foundational model or one with custom 
enhancements. Infrastructure engineers, software engineers, 
and research scientists should collaborate on decisions regarding 
data storage, model serving, and model selection (architecture 
+ weights) and its hyperparameters, which may include 
sequence length, vocabulary, tokenization process, and software 
implementation. 

Model selection is the most important component in engineering 
a baseline LLM. This component will determine the model size 
and computational graph and, thus, much of the infrastructure 
required to deploy the model. Like many state-of-the-art AI 
technologies, LLMs require infrastructure capable of supporting 
GPU compute. Establishing an environment to work with LLMs 
will often need to satisfy requirements related to 

•	Large data collection and labeling

•	Storage and pre-processing of input data

•	Environment accessibility in support of model development

•	Storage and management of model weights

•	Transferability and segmentation of models and data to GPUs 
and back to CPUs

•	Augmenting and interfacing with both pre-trained and fine-
tuned models

•	Serving performant models to users 

10	 https://crfm.stanford.edu/helm/latest/ 

Organizations seeking to make use of their own custom LLMs 
will likely need to weigh the decision to build and manage their 
own hardware or rely on cloud providers such as AWS GovCloud. 
When making infrastructure decisions, engineers will need to 
consider factors such as the amount of data involved, the size of 
the models, the type of GPUs, the amount of GPU memory, and 
the number of GPUs. These decisions will affect the amount of 
time needed to train and evaluate LLMs, which impacts the costs 
required to support LLM-based projects. 

A second important component of engineering a working LLM 
is creating a modular, flexible codebase that can integrate 
many disparate models, data, and interfaces. A large part 
of integrating these models into infrastructure is through 
parameter optimization along with vertical and horizontal 
scaling. In vertical scaling, the same model is deployed on 
multiple nodes, but the data are partitioned across each node. 
Typically, vertical scaling is done through batching of data where 
chunks of data are operated on in parallel. In horizontal scaling, 
a large model is partitioned across many nodes. The underlying 
technology for horizontal scaling is referred to as “ZeRO” 
for Zero Redundancy Optimization11, and one of the primary 
implementations is called DeepSpeed12. Both horizontal and 
vertical scaling are required to fit some of the largest models, 
like LlaMA-65B, to use for inference. 

A third important component is serving the model to a user via 
an existing interface, or designing one that is appropriate to 
the end users’ needs. Responsiveness is critical for a good user 
experience and therefore inference speed and being able to have 
multiple models for comparison drove our design decisions. As 
an example, if chat history is not managed properly, it can lead 
to memory exhaustion on the server side. The server supporting 
multiple LLMs also presented memory-related challenges: 
loading multiple LLMs into memory at once causes rapid memory 
exhaustion. To meet this challenge, we designed the system to 
load each LLM when it was chosen and immediately unload it 
afterward, which also pushed us to seek techniques to speed up 
the model loading and inference processes. 

Engineering a Custom LLM for  
Intelligence Purposes
Once a working LLM is deployed, government agencies can 
then focus on the task of customizing the LLM for their needs. 
Agencies can choose from three primary approaches to 
customizing an LLM: 1) fine tuning, 2) augmentation at inference 
time, or 3) both. 

Fine tuning is the process of further training a pre-trained 
foundational model to custom or specialized datasets. 
Foundational models are thought to have good representation 
of language and knowledge due to their massive architectures 
and datasets. However, a foundational model may not be 
aware of certain knowledge fields or communication structures 
because the model was never trained on such data. Fine tuning 

11	 https://ieeexplore.ieee.org/abstract/document/9355301
12	 https://github.com/microsoft/DeepSpeed

https://crfm.stanford.edu/helm/latest/
https://ieeexplore.ieee.org/abstract/document/9355301
https://github.com/microsoft/DeepSpeed
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incorporates new data into a model, and the cost is directly 
proportional to the amount of new data being incorporated.  

During Mayflower, we experimented with different benchmarks 
to obtain an approximate price estimate for standing up an 
LLM. Table 1 shows the results from running a singular test 
across two different infrastructure configurations for different 
model sizes. The on-premises environment consisted of a single 
server with 2 GPUs (2 x 40GB A100s). The cloud environment 
consisted of a single instance type with 8 GPUs (8 x 40GB A100s) 
in AWS GovCloud. We then fine-tuned the model on 500 new 
documents with an input token size of 475 (about 1 page of 
text) and recorded both the average GPU memory usage and 
the total time to train for 1 epoch. The token size was selected 
because it represented the largest token size that could be used 
to successfully train the largest model (65B) in the on-premises 
environment. To fit the models on the GPUs, this experiment 
relied on the optimization technique known as LoRA13, so 
fewer than 1% of the total parameters were being trained. The 
experiment also used DeepSpeed Stage 3 to implement full 
horizontal scaling. The table results suggest that fine tuning a 
model can be an affordable option if that the total size of new 
documents is relatively small. For example, one could fine-tune 
the 7B parameter version of LlaMA using 10,000 new documents 
for 3 epochs for $792.  

Table 1: Performance benchmark tests for training LlaMA models of 
different parameter sizes on our custom 500-document set. For the 
estimates in the rightmost column, we define a practical experiment as 
LlaMA with 10k training documents for 3 epochs with GovCloud at $39.33/
hour, LoRA (r=1, α=2, dropout = 0.05), and DeepSpeed. Current Top Secret 
rates are $79.0533/hour.
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On-premises 7 16.8 22 -
Cloud 7 16.02 6 4.17 792/20
On-premises 13 22.17 41 - -
Cloud 13 21.00 13 8.83 1,715/44
On-premises 30 35.03 98 - -
Cloud 30 34.27 30 19.87 3,960/101
On-premises 65 38.67 198 - -
Cloud 65 37.39 67 44.02 8,884/225

In contrast to fine tuning, augmenting the LLM at inference time 
incorporates the development of critical software engineering 
pieces outside of the LLMs. Inference time augmentation includes 
prompt engineering: parsing user inputs to optimize results from 
LLMs. Augmentation may require iterative use of tools and LLMs. 

13	 https://arxiv.org/abs/2106.09685

For example, consider a query that, from a human perspective, 
seems simple: “What day of the week was the current U.S. 
President born?” An LLM-based application must decide what 
tools or information are required to answer this question. The 
first step would be to determine the current President of the 
United States. This information could be embedded into the LLM 
(via fine tuning) or derived via query to an up-to-date information 
source. The second (Biography) tool may return with President 
Biden’s birthday of November 20th, 1942. The third (Calendar) 
tool may return with the day of the week of November 20, 
1942—a Friday. This information is returned to the large language 
model for it to output the “human-like” answer of “The current 
U.S. President, Joe Biden, was born on November 20, 1942, which 
was a Friday.” 

Prompt engineering is a particularly important part of 
augmentation. For example, Figure 2 shows two prompts where 
the user asks the LLM to describe the Chinese high-altitude 
balloon incident in two syntactically different but semantically 
similar ways. In the prompt example shown on the left, the LLM 
responds that it does not know about the incident. In contrast, in 
the example on the right, it gives a full response. Consequently, 
how a user writes a prompt affects the output and, in some cases, 
can affect the user’s ability to get useful information.  

The variability of effectiveness between semantically similar 
prompts presents a significant challenge when leveraging LLMs 
in systems that support IC-specific use cases, such as Q&A on 
intelligence reports. Unless user input is standardized into a 
consistent set of vocabulary and grammar, the performance of 
the models at inference time may vary wildly among responses 
and among users. While input standardization is one potential 
solution to the problem of prompt engineering, it comes with its 
own challenges, such as requiring the conversion of free-form 
user input into a restricted subset of acceptable questions.  

At inference time, each interaction with the LLM requires 
a prompt constructed from user input and any associated 
data gained from the tools. Tools can augment the long-term 
knowledge of fine tuning with externally held information 
that is up to date. This is akin to a person using tools to aid in 
completing a task but not remembering every individual output. 
There are several advantages to using tools at inference time 
rather than relying on fine tuning exclusively. First, retrieved 
information is as current as externally managed data and does 
not depend on resource-intensive fine tuning. Second, tools 
naturally enable referencing sources of information. As an 
analogy, one can use Wikipedia as a reference to retrieve the fact 
that an apple is a kind of fruit; using one’s internal knowledge 
does not allow the same kind of referencing. Finally, tools enable 
the LLM application to use explicitly verifiable logical operations—
particularly symbolic math and arithmetic—to derive more 
trustworthy answers. However, the LLM will not remember any 
information it encounters until it is fine-tuned once again. 

https://arxiv.org/abs/2106.09685
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Whether to choose fine tuning, inference time augmentation, or 
both to create a custom LLM depends on organizational needs 
and available resources. The main advantage of fine tuning is 
that the model can store and recall new knowledge for future 
use. However, fine tuning can potentially be expensive in terms 
of people, money, and time, depending on the model and 
hyperparameter selections. Inference time augmentation of LLMs 
is generally a cheaper alternative to fine tuning but can be severely 
limited by the model sequence length, or how much text a model 
can hold in memory at a time. We suspect that under optimal 
conditions, fine tuning followed by inference time augmentation 
would lead to optimal results for the customized model. 

Evaluating an LLM for Trustworthiness
Unfortunately, making a working and custom LLM does not 
include any guarantees that it will be correct, safe, or trustworthy. 
Although LLMs can create text that reads like human-generated 
text, we have found time and time again that LLMs are prone to 
factual errors, “hallucinations” (i.e., fabrication of new information), 
overconfidence, and susceptibility to adversarial attacks14. Although 
efforts can be made to make LLMs more trustworthy, such as 
through further fine tuning of LLMs and reinforcement learning 
with human feedback (RLHF), LLM outputs should not be trusted 
for high-stakes tasks. Using internal LLM output for low-stakes tasks 
such as short, informal emails with a brief review or non-critical 
simulation is fine and even encouraged. However, at this time, LLM 
outputs for high-stakes tasks must be verified by an expert. 

14	 https://arxiv.org/abs/2307.15043

In addition to the questionable factual accuracy of LLMs, we have 
noted that bias is inherent to the open-source models we have 
implemented in experiments—due in large part to the unverified 
and vast scale of the input data. For example, we developed a 
“balloon test,” prompting the LLM to describe the high-altitude 
balloon incident in the U.S. in early 2023. Models have responded 
with answers such as 

	 I’m sure they’ll get it right next time. The Chinese were 
not able to determine the cause of the failure. I’m sure 
they’ll get it right next time. That’s what they said 
about the first test of the A-bomb. I’m sure they’ll get 
it right next time. They’re Chinese. They’ll get it right 
next time.  

Generally, we have the most trust in LLMs that are trained 
to respond to questions with answers verbatim from some 
reference text. However, this sort of response arguably does not 
require generative AI and actively avoids a key advantage of LLMs: 
the ability to paraphrase and aggregate salient information from 
across text sources. Following verbatim answers, we generally see 
more trustworthy results when the LLM is forced to identify the 
specific document(s) it is paraphrasing, which allows for an easy 
check by the reviewer. 

One of the biggest challenges in this field is determining what 
makes an LLM and its outputs “good.” Quantitative measures 
include perplexity and Recall-Oriented Understudy for Gisting 

Figure 2: Example of two prompts with different syntax but the same semantic content. The two inputs result in very different outputs.

Choose Model:

Search Result:

ChatGPT 3.5 Turbo

File

file2.txt 2.2 KB Download
file3.txt 3.4 KB Download
file5.txt 3.7 KB Download
file6.txt 3.0 KB Download

Search

Search Query:

I'm sorry, but based on the given context, there is no information provided
about a specific high-altitude Chinese balloon incident.

Give an overview of the high-altitude Chinese balloon incident

Choose Model:

Search Result:

ChatGPT 3.5 Turbo

File

file2.txt 2.2 KB Download
file3.txt 3.4 KB Download
file5.txt 3.7 KB Download
file6.txt 3.0 KB Download

Search

Search Query:

The high-altitude Chinese balloon incident occurred from January 28 to
February 4, 2023. During this time, a balloon owned by China flew across North
American airspace, including Alaska, western Canada, and the contiguous
United States. On February 4, the U.S. Air Force shot down the balloon over
U.S. territorial waters off the coast of South Carolina. Debris from the wreckage
was recovered and sent to the FBI Laboratory in Quantico, Virginia, for
analysis. Following a preliminary analysis of the debris in June, U.S. officials
stated that the balloon.

Describe the high-altitude Chinese balloon incident

https://arxiv.org/abs/2307.15043
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Evaluation (ROUGE), which are related to the complexity of word 
associations but not the truth of a result15. Truth is generally 
measured by a model’s ability to score well on certain tests like 
Advanced Placement (AP) exams or the Law School Admission 
Test (LSAT)16. While these measures work in an empirical context 
where there is a single, knowable answer, the fact that a model 
performs well on those metrics may not directly imply that it 
will perform well when exposed to questions that do not have a 
single, knowable answer. 

LLMs used in the national security context require more rigorous 
standards than those used for low-stakes or recreational 
purposes. LLMs for national security also need to meet 
established ethical frameworks such as the AI Ethics Framework 
for the Intelligence Community17. In Figure 3, we show some of 
the standards needed for national security use cases alongside 
the strengths and weaknesses of LLMs. In general, the strengths 
and weaknesses of LLMs do not align with—and in some cases 
are at odds with—national security needs. In particular, derivative 
classification may cause many problems for LLMs. Much research 
needs to be conducted to reconcile the needs of the IC and the 
reality of LLMs.  

NATIONAL SECURITY NEEDS

Mission Capable Tools

High-side capability

Scalable

Test and evaluation

AI Ethics Framework for the IC18

Understanding goals  
and risks

Governance of AI and data

Human judgment and 
accountability

Ensuring objectivity

Testing

AI lifecycle considerations

Documentation

Transparency

Periodic review

Stewardship and 
accountability 

LLMs

Strengths Weaknesses

Idea generation

High-level summaries

Low-stakes tasks

Brief communications 

Trust

Hallucinations

Generalizability

Metrics and evaluations

Figure 3: Comparison of National Security needs to strengths and 
weaknesses of current LLMs. 

15	 https://arxiv.org/abs/1801.10198
16	 https://arxiv.org/abs/2303.08774
17	� https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-

the-intelligence-community 

18	� Adapted from https://www.intelligence.gov/artificial-intelligence-ethics-
framework-for-the-intelligence-community

Engineering an LLM for National Security
By the very nature of national security, it is not enough that an 
LLM works or that it is customized. When lives of citizens are 
at stake, it is critical that an LLM be interrogated and found 
trustworthy by experts and laypeople alike. In our work on the 
Mayflower Project, we made great strides at engineering both 
working and customized LLMs. However, we have a long way to 
go before LLMs will be reliable enough for autonomous use for 
critical national security technologies, processes, and people. 

Thus, it is imperative that government agencies prioritize 
the exploration of quantitative assessment of 1) how models 
compare to others and 2) how models improve over time during 
the training process. This will likely require collecting, cleaning, 
and curating custom data for running the comparisons. For 
example, we may need to create an experiment where two 
summaries of a report, one generated by a human and another 
generated by an LLM, are shown to an expert. The expert can 
then rank which summary they think is better according to 
some set of subject-matter-driven criteria. The results of this 
experiment would allow us to directly compare LLM output to 
human output. 

Additionally, government agencies need to systematically 
investigate prompt engineering to reduce the barrier to 
success for users. For example, government agencies must 
determine what subset of vocabulary and grammatical phrases 
is most effective at eliciting useful responses from LLMs. These 
vocabularies may even differ from agency to agency and will 
require subject matter expertise. To successfully integrate LLMs 
with human users in national security applications, we must 
make them simpler to use, and we must research and implement 
guardrails that reduce the likelihood of these applications 
providing incorrect information that could be used to make 
critical decisions. 

While we do not believe LLMs are currently safe for autonomous 
use, we believe they can be used beneficially under the right 
conditions and under the supervision of the right people. We are 
hopeful that with more research, we will be able to bridge that 
gap in security, safety, and trust. 

https://arxiv.org/abs/1801.10198
https://arxiv.org/abs/2303.08774
https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community
https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community
https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community
https://www.intelligence.gov/artificial-intelligence-ethics-framework-for-the-intelligence-community
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