
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Construction and Implementation of

CERT Secure Coding Rules

Improving Automation of Secure

Coding

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Mark Sherman, PhD
Technical Director, CERT
mssherman@sei.cmu.edu

Aaron Ballman
Software Security Engineer, CERT
aballman@cert.org

2

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software
Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0003814

3

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

• Need for secure coding standards

• Common rule development
methodology

• Creating rules is difficult

• Systematic rule development

• CERT Coding Standards

• Summary

Agenda

4

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Security is a lifecycle issue

5

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Security is a lifecycle issue

Today’s focus

6

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Code security quality reviews generally reveal
problems

Source: http://xkcd.com/1513/

7

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Code security quality reviews generally reveal
problems – that manifest as vulnerabilities

Source: http://xkcd.com/1695/

8

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Most Vulnerabilities Are Caused by
Programming Errors

64% of the vulnerabilities in the National Vulnerability Database were due
to programming errors

• 51% of those were due to classic errors like buffer overflows, cross-site scripting,
injection flaws

Top 25 CWE includes

• Integer overflow

• Buffer overflow

• Missing authentication

• Missing or incorrect authorization

• Reliance on untrusted inputs (aka tainted inputs)

Sources: Heffley/Meunier (2004): Can Source Code Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate Software

Security?; cwe.mitre.org/top25 Jan 6, 2015

9

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

• Need for secure coding standards

• Common rule development
methodology

• Creating rules is difficult

• Systematic rule development

• CERT Coding Standards

• Summary

Agenda

10

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Another crises occurs

11

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Posts are written: CWE Guidance

12

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

More guidance is generated

13

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

• Need for secure coding standards

• Common rule development
methodology

• Creating rules is difficult

• Systematic rule development

• CERT Coding Standards

• Summary

Agenda

14

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Writing rules is hard

You know it when you see it

Turn up sensitivity => False positives

Turn up selectivity => False negatives

15

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

What Is a Buffer Overflow?
A buffer overflow occurs when data is written (or accessed) outside of the
boundaries of the memory allocated to a particular data structure.

Destination

Memory

Source

Memory

Allocated Memory (12 Bytes) Other Memory

16 Bytes of Data

Copy

Operation

16

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Buffer overflow: check your bounds

A programmer might code a bounds-check such as

char *ptr; // ptr to start of array

char *max; // ptr to end of array

size_t pos; // index input unknown to programmer

if (ptr + pos > max)

return EINVAL;

17

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Buffer overflow: check your bounds

A programmer might code a bounds-check such as

char *ptr; // ptr to start of array

char *max; // ptr to end of array

size_t pos; // index input unknown to programmer

if (ptr + pos > max)

return EINVAL;

If pos is very large, it can cause ptr + pos to overflow, which

typically wraps around — pointing to an address that is actually lower in
memory than ptr (and max).

18

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Buffer overflow: check your bounds

A programmer might code a bounds-check such as

char *ptr; // ptr to start of array

char *max; // ptr to end of array

size_t pos; // index input unknown to programmer

if (ptr + pos > max)

return EINVAL;

If pos is very large, it can cause ptr + pos to overflow, which

typically wraps around — pointing to an address that is actually lower in
memory than ptr (and max).

Since (overflowed) ptr + pos is less than max, execution proceeds

19

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Buffer overflow: surprising code elimination

One might write a check like this:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

20

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Buffer overflow: surprising code elimination

One might write a check like this:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

A compiler could assume that

• Programs are well defined

21

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Buffer overflow: surprising code elimination

One might write a check like this:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

A compiler could assume that

• Programs are well defined

• Hence ptr + len will not overflow

22

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Buffer overflow: surprising code elimination

One might write a check like this:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

A compiler could assume that

• Programs are well defined

• Hence ptr + len will not overflow

• Hence, since len is unsigned, ptr + len must be
greater than or equal to (not less than) ptr

23

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Buffer overflow: surprising code elimination

One might write a check like this:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

A compiler could assume that

• Programs are well defined

• Hence ptr + len will not overflow

• Hence, since len is unsigned, ptr + len must be
greater than or equal to (not less than) ptr

• Hence ptr + len < ptr is always true and can be

removed as dead code

24

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Buffer overflow: surprising optimization

In our example:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

This optimization proceeds as follows:

ptr + len < ptr

25

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Buffer overflow: surprising optimization

In our example:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

This optimization proceeds as follows:

ptr + len < ptr

ptr + len < ptr + 0

26

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Buffer overflow: surprising optimization

In our example:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

This optimization proceeds as follows:

ptr + len < ptr

ptr + len < ptr + 0

ptr + len < ptr + 0

27

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Buffer overflow: surprising optimization

In our example:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

This optimization proceeds as follows:

ptr + len < ptr

ptr + len < ptr + 0

ptr + len < ptr + 0

len < 0 (impossible, len is unsigned)

The rewritten len < 0 is removed.

28

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Mitigation

This problem is easy to remediate, once it is called to the attention of the
programmer, such as by a diagnostic message when dead code is
eliminated.

For example, if ptr is less-or-equal-to max, then the programmer could

write:

if (len > max – ptr)

return EINVAL;

This conditional expression eliminates the possibility of undefined
behavior.

29

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

• Need for secure coding standards

• Common rule development
methodology

• Creating rules is difficult

• Systematic rule development

• CERT Coding Standards

• Summary

Agenda

30

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

An alternative methodology for rule creation

Exploit language ambiguities

Analyze vulnerable programs

Systematically test the rules

And still consult with experts

31

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Examine language definitions and standards for
undefined, unspecified and implementation-
defined behavior

Source: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pd (ISO 9899 - Programming Languages – C draft)

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pd

32

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Examine vulnerable code for patterns

Malware repository with millions of unique, tagged artifacts

CERT Secure Coding Team has evaluated over 100M LOC

33

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Implement candidate rules and run against
sample code

• Focus rule when possible to

• maximize true positive of weakness (tag bad code)

• minimize false negative of weakness (don’t tag good code)

• Write program to evaluate source code for particular rule

• Run program against collection of known bad source code and a
collection of other (suspected good) code to check sensitivity and
specificity of results

34

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Experience with systematic testing

• Candidate rule typical evaluation

• 10 iterations of proposed rule and associated checker

• 7 internal evaluations

• 3 external evaluations

• Each evaluation iteration carried out against > 10M lines of
representative code

• Variety of domains

• Variety of code quality

• As part of creating C++ standard, general methodology applied to
generate 46 rules and corresponding Clang C++ checkers

• 19 by CERT researchers, 27 by others

35

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Tapping into expert knowledge for developing
CERT coding standards

Engage
community

Tool vendor
analysis

Consensus
on

vulnerability
and

mitigation

36

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Evolution of coding support

Coding

standard

37

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Evolution of coding support

Coding

standard

Custom

checkers

38

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Evolution of coding support

Coding

standard

Custom IDE
Custom

checkers

39

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Evolution of coding support

Coding

standard

Custom

remediation
Custom IDE

Custom

checkers

40

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Evolution of coding support

Coding

standard

Custom

remediation
Custom IDE

Custom

checkers

Generated

remediation
Generated IDE

Generated

checkers

41

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Evolution of coding support

Coding

standard

Custom

remediation

New features

Custom IDE
Custom

checkers

Generated

remediation
Generated IDE

Generated

checkers

42

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Evolution of coding support

Coding

standard

Custom

remediation

New features
New

languages

Custom IDE
Custom

checkers

Generated

remediation
Generated IDE

Generated

checkers

43

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Evolution of coding support

Coding

standard

Custom

remediation

New features
New

languages
New systems

Custom IDE
Custom

checkers

Generated

remediation
Generated IDE

Generated

checkers

44

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

• Need for secure coding standards

• Common rule development
methodology

• Creating rules is difficult

• Systematic rule development

• CERT Coding Standards

• Summary

Agenda

45

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

CERT Secure Coding Standards
CERT C Secure Coding Standard

• Version 1.0 (C99) published in 2009

• Version 2.0 (C11) published in 2014

• ISO/IEC TS 17961 C Secure Coding Rules Technical
Specification

• Conformance Test Suite

CERT C++ Secure Coding Standard

• Version 1.0 under development

CERT Oracle Secure Coding Standard for Java

• Version 1.0 (Java 7) published in 2011

• Java Secure Coding Guidelines

• Subset applicable to Android development

• Android Annex

The CERT Perl Secure Coding Standard

• Version 1.0 under development

CERT Python Secure Coding Standard

• Version 1.0 under development

46

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Coding rules – 2016 Edition

• Collected wisdom of programmers and

tools vendors

• Fed by community wiki started in

Spring 2006

• Over 1,500 registered contributors

• Available as downloadable eBook

http://cert.org/secure-coding/products-

services/secure-coding-download.cfm

http://cert.org/secure-coding/products-services/secure-coding-download.cfm

47

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Learning from rules and recommendations

Rules and recommendations in the secure coding standards focus to improve behavior

The “Ah ha” moment:

Noncompliant code
examples or antipatterns
in a pink frame—do not
copy and paste into your
code

Compliant solutions in a
blue frame that conform
with all rules and can be
reused in your code

48

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Secure Coding eNewsletter engages community

Signup: info@sei.cmu.edu.

mailto:info@sei.cmu.edu

49

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

• Need for secure coding standards

• Common rule development
methodology

• Creating rules is difficult

• Systematic rule development

• CERT Coding Standards

• Summary

Agenda

50

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Summary

Application of coding standards can avoid many vulnerabilities seen in
the field

Making a standard should be based on more than opinion

Prescriptive standards give

• Developers actionable guidance to create secure code

• Tool makers actionable guidance to create testers for secure code

• Acquirers actionable requirements for licensed or developed code

51

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Contact Information

Mark Sherman

(412) 268-9223

mssherman@sei.cmu.edu

Web Resources (CERT/SEI)

http://www.cert.org/

http://www.sei.cmu.edu/

52

[Distribution Statement A] This material has been approved for

public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

