Construction and Implementation of
CERT Secure Coding Rules
Improving Automation of Secure
Coding

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Mark Sherman, PhD
Technical Director, CERT
mssherman@sei.cmu.edu

Aaron Ballman
Software Security Engineer, CERT
aballman@cert.org

—— - - - ' . . _ . [Distribution Statement A] This material has been approved for
— Software Englneerlng Institute (Aill'll(‘gl(‘ Mellon U lll\'(‘l'!"3|‘}' public release and unlimited distribution. Please see Copyright

© 2016 Carnegie Mellon University notice for non-US Government use and distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software
Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-1S” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0003814

[Distribution Statement A] This material has been approved for

—_— SOftware Engineering Institute (:&ll'll(‘gi(‘ l\l(‘l I("l ll] i\(‘I'Hil_\' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

Need for secure coding standards

Common rule development
methodology

Creating rules is difficult
Systematic rule development
CERT Coding Standards

Summary

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'ﬁi‘__' public release and unlimited distribution. Please see Copyright

- notice for non-US Government use and distribution. 3

T
-

-
‘} -
-

Security Is a lifecycle issue

| N
e VA" x s
\

2
1
=)

Sustainment

Engineering and Development

NN S

Mission Threat Abuse Architecture Coding Testing, Monitoring Breach
Thread Analysis Cases : and Design Rules and Validation Awareness
: Principles Guidelines and
: Verification
Requirements and Acquisition : Deployment and Operations
--- "

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'H“__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

7

: o ! A" -t ‘,\
g \\ \ﬂg, \
) T
r

Security Is a lifecycle issue

u*

Today’s focus

Sustainment

Engineering and Development

N AN

Mission Threat Abuse Architecture Coding Testing, Monitoring Breach
Thread Analysis Cases : and Design Rules and Validation Awareness
: Principles Guidelines and
: Verification
Requirements and Acquisition : Deployment and Operations
--- "

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'ﬁi‘__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 5

Code security quality reviews generally reveal

problems
KEEPIN MIND THAT TM | ..\JOL IT'S LKE A SALAD RECIPE | | IT'5 LIKE. SOMEONE TOOK A
SELF-TRUGHT, SOMY CODE | 145 15 LIKE BeING N | WRITTEN BY A CORPORATE. | | TRANSCRIPT OF A COUPLE
FAY BEA LIILE MESSY | A HOUSE BUILT BY A LAWYER DSING A PHONE | | ARGUING AT IKEAR AND MADE
CHILD USING NOTHING AUTOCORRECT THAT OMLY | | RANDOM EDITS UNTILIT
LEEYESEE- | T A HATCHET AD A | KNEW EXCEL FORMULAS, | | COMPILED LITHOUT ERRORS.
, C , OKAY, TLL REPD
TSFANE. | P EE‘E OF A HOUSE (\ il
i

Source: http://xkcd.com/1513/

%% Software Engineering Institute

[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution. 6

Carnegie Mellon University

Code security quality reviews generally reveal
problems — that manifest as vulnerabilities

UGH,

I HATE
READING
YOUR (ODE.

IT'S LIKE YOU RAN OCR ON
A PHOTD OF A SCRABBLE
BOARD FROM A GAME WHERE
JAVRSCRIPT RESERVED LJORDS

IT LOOKS LIKE SOMEONE
TRANSCRIBED A NAVAL EATHER
FORECAST WHILE. LICODPELKERS
HAMMERED THEIR SHIFT KEY5,
THEN RANDOMLY INDENTED IT.

T know, | | COUNTED FOR TRIPLE POINTS,
I KNOL. \
N

TS LIKE AN EE CUMIINGS | | THIS LOOKS LIKE THE OUTPUT OF A MARKOV
POEIM URITTEN USING ONLY' | [BOT THAT'S BEEN FED BUS TIMETABLES FROM
THE USERNANES A LUEBSITE | | A CITY WHERE THE BUSES CRASH (ONSTANTLY.

Wi | L
S0 DOES A

\ B
I

Source: http://xkcd.com/1695/

[Distribution Statement A] This material has been approved for

__ SOftware Englneerlng Instltute (:&ll'll(‘gi(‘ l\l(‘l I("l ll] i\(‘I'Hil_\' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 7

9 h L | 7 ‘1
«\;\7‘;‘; \} . M 7
== = . 1S

Most Vulnerabilities Are Caused by
Programming Errors

64% of the vulnerabilities in the National Vulnerability Database were due
to programming errors

* 51% of those were due to classic errors like buffer overflows, cross-site scripting,
injection flaws

Top 25 CWE includes
* Integer overflow
« Buffer overflow
« Missing authentication
e Missing or incorrect authorization
 Reliance on untrusted inputs (aka tainted inputs)

Sources: Heffley/Meunier (2004): Can Source Code Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate Software
Security?; cwe.mitre.org/top25 Jan 6, 2015

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'H“__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

8

Need for secure coding standards

Common rule development
methodology

Creating rules is difficult
Systematic rule development
CERT Coding Standards

Summary

[Distribution Statement A] This material has been approved for

Software Engineering Institute (:&ll'n(‘gi(‘ Mellon Un i\"(‘l'ﬁi‘__' public release and unlimited distribution. Please see Copyright

- notice for non-US Government use and distribution.)

Another ¢

riIses occurs

BANK SECURITYS

Fraud Summit Chicago is Next Week - View Agenda »

RSA Conference 2014

News Videos
Banking Cyber-Attack Trends to Watch
Social Engineering, Mcbils Risks on Riss

Kain | Fabary 5 2

-

Edtars Mot: T ioca was crasied o (SUG s Secanty Agerca mageaie, dsntutes st RSA

Whan 2 e o epbarirasts, what ara e msor ccncama fo backioginaif Aons n 2047

e barking channck o promiog el Bt

s r hreats [T——r

e i e
s Do Jobran, i resit s sanie adeerof ik
ican Barkars Assocaton

BTG gy an it
ssmpted dats e
[rest————

Gy Amatis: How s et

[r—

e —

o 2003, iy
[Eprpesp————

= s

NewsMome Pomics OpES BusesaMows EnisnunmariNews USNews WoddNews Phots Gak

News Home

P> Listd
Computer Hacker Targets Electronic
Road Signs

=

PTSDNI& ryis oopidoi 4

Customer Service Digital Newspaper el Nuevo Herald

Hiami Hevald Business Breaking News

Home News Sports Business Lifestyle Entertainment Opinion Obituaries Subscriptions . 80 (N

Mismi Herald » Bushiess » Business Bresking News

THE ASsoeWTED pRESS

ALBANY, N.Y. - A yeariong survey of New York bank securty has found that cyber thieves are using
increasingly sophisticated methods to breach bank accounts.

The eport, issued Monday by Gov. Andrew Cuomo and the state's Department of Financial Services,
found that a majority of the 154

pastthree years.

The attacks involved the use of|
accounts, seize data and steal |

Cuomo says he's directing bani
vuinerable they are to attack.

3

READ MORE BREAKING NE\

¥ Tweet |3

FAA OKs $4.8M for airports in M|

HP Security

Home Wobcasts Whitepape

TcowentcramneLs | 4
caisn
Cyber Detense. Wh4
Datensa IT

Mot

Natwork and Systama.
Managemant

UAS and Robotics

. o report,enteiod: kiary and Socurty
Deveiopments Involving the Peopie’s Repubsc of Ching 2073.7

DOWNLOAD THE
LET APP TODAY! »

2 sy

work axplotaton cananity 1o suppar el
cotaction aga-e! the LS. diplomatsc, aconomic and da's .,,.,. cetiel
5o soctors that zupport U.S. natonal defonce prograr:
ity be used
industey, high-echnokgy indusiries, pol cymsier interest in U.S.
laadarsnip thinking on key China (zauss., and miltary piannars uliding a
S. network defense networks, fogistics. and rolted i
rat coukd be exsioited curing

HP Security

Relatod Webcasts

axcarpis from the e
otk o e 65 el oo 1 Chinbee o et
wartars, ISR and space actiias

MILITARY INFORMATION OPERATIONS y Y
e Comachte e

Crinese writings have outined the five koy perational level

of 8 maturiog Chiness o miomation operaions 10y shalegy Fret, Cinews
s the top that Compulee

ek Deenea (CN) st e o ghes ity n pascatie;
Crinece deting supgesis s e counterofensves woukd ory be
Gondered an adversany s oporstions ok it be counter

Relsted Whitopaper!

S20nd 10 viewed s an unconvenionel warare weepon, which st
ng 3l

Classifieds Jobs Cars ReslEstate Find&Save Desls Public Notices Place

76% of all
breaches involve
stolen passwords

Protect yourself

(nue)

the security ledger

I

I”ﬂtil)ﬂﬂl NDIA
DEFENSE

MEGADRECTORY ADVERTSING READERSSERVICES EDITORIALCALENDAR ARGHVE| .
et e >t > 201t > Harch bR R el o R 4
This Month Cybersecurity = spowsoRs
sonuary [T p— . . =
ki J Homeland Security: Hack Attempts On CLOUD INNOVATORS
March Defense Companies Facing Array of New Cyberthreats Energy, Manufacturing Way Up in 2013
Ao (UPDATED) "
way March 2014 . -
June oy stew Magnusen J— ——
o . [t

Down Bt

clous, Man:
Servioes

Warns Basry Firms 0f
: Used In Tavgetod

[
b}

Of Things Will
b s O Dot B

' REUTERS ==

U.S. regulators warn banks about rise
in cyber-attacks

B

Town adminisirator Karen Anderson leamed of the infection on 30 December, by which
time Cryplolocker's ransom deadiine had expired, taking with it Microsoft Word and
Excal fles going back most of a decads.

rylolocker scrumbios US low s orte cache oflgalfhas | Gyplokochar 20 b

The resuilts have left us with documents that are no longer readable. I've lost eight
years-worth of my work,* Anderson was quoted 85 saying by Seacosst Onlins,

Many of the files had been recovered from backups, inciuding some that had been
stored in papet form in & safe, Files lost forever included forms, requests for proposals,
business bids, and some miscellaneous data on costs

I've tracked all our electric eosts by buiiding, waste tonnage, recycling tonnage ... for
the eight years. All that data is gone,” Anderson said. "It is not harmful to the town. It
wil just be more time consurming recreating allof these documents.”

Luckly, a propristary software system had been used lo store tax fles, saving It from
Gryptoiacker's attention possibly because it used an unusual data format.

Tech Toj

Antivirus.

US. regulators on W
bank

The attack highlights the vulnerabilty of small and probably under-protectsd
offies arSMES tathe reyages of Cryptolocer a foshof melware
aatt e

[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

ie Mellon University

10

L.

Posts are written: CWE Guidance
C\W Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Tipes

m

Presentation Filter: --Mone-- -
rul oeenay vien | CWE-120: Buffer Copy without Checking Size of Input (‘'Classic Buffer

Development View
Research View oVerflow')
Fault Pattern View
Reports

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

Mapping & Havigation

About Weakness ID: 120 (w.
¥ Description

Status: Incomplete

Sourc

Pro

Documents Description Summary

S The program copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the
size of the output buffer, leading to a buffer overflow.

Use & Citations

Dis:
Contact Us

¥ Detection Methods

Prioritization

Automated Static Analysis
This weakness can often be detected using automated static analysis tools. Many modern tools use data flow analysis or

constraint-based techniques to minimize the number of false positives.

Requirments Automated static analysis generally does not account for environmental considerations when reporting out-of-bounds
EZ;???&ZT memaory operations. This can make it difficult for users to determine which warnings should be investigated first. For
Compatible Products example, an analysis tool might report buffer overflows that originate from command line arguments in a program that is
Malce a Declaration not expected to run with setuid or other special privileges.

Effectiveness: High
Detection techniques for buffer-related errors are more mature than for most other weakness types.

Automated Dynamic Analysis
This weakness can be detected using dynamic tools and techniques that interact with the software using large test suites

with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation
may slow down, but it should not become unstable, crash, or generate incorrect results.

Calendar

Fres Newsletter
Search the Site

Manual Analysis

Manual analysis can be useful for finding this weakness, but it might not achieve desired code coverage within limited
time constraints. This becomes difficult for weaknesses that must be considered for all inputs, since the attack surface
can be too large.

Automated Static Analysis - Binar Bytecode

According to SOAR, the following detection techniques may be useful:

[Distribution Statement A] This material has been approved for

= Software Engineering Institute (:ill'll(‘;.., » Mellon Un i\-'(‘l'Hil__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 11

More guidance is generated

Page Discussion

Buffer Overflows

Home

About OWASP . .
Acknowledgements General Prevention Techniques
Advertising

A number of general techniques to prevent buffer overflows include:
AppSec Events

Books +« Code auditing (automated or manual)
Brand Resources « Developer training — bounds checking, use of unsafe functions, and group standards
Chapters

P) « MNon-executable stacks — many operating systems have at least some support for this
Donate to OWASP
Downloads « Compiler tools — StackShield, StackGuard, and Libsafe, among others
Funding « Safe functions — use strncat instead of streat, strncpy instead of strepy, etc

ERLETITTE « Patches — Be sure to keep your web and application servers fully patched, and be aware of bug reports relating to

Initiatives N) .
S applications upon which your code is dependent.
Mailing Lists l
Membership « Periodically scan your application with one or more of the commonly available scanners that look for buffer overflow flaws in
Merchandize your server products and your custom web applications.
Mews

Community portal
Presentations
Press

Projects

Video

Valunteer

[Distribution Statement A] This material has been approved for

Software Engineering Institute (-]&ll'n(‘gi(‘ Mellon Un i\"(‘l'H“__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 12

Need for secure coding standards

Common rule development
methodology

Creating rules is difficult
Systematic rule development
CERT Coding Standards

Summary

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'ﬁi‘__' public release and unlimited distribution. Please see Copyright

- notice for non-US Government use and distribution. 13

Writing rules is hard

You know it when you see it
Turn up sensitivity => False positives

Turn up selectivity => False negatives

[Distribution Statement A] This material has been approved for

—== Software Engineering Institute | Carnegie Mellon University pubiic retease and uniimited distribution. Please see Copyright

notice for non-US Government use and distribution. 14

<A
‘} -
|

What Is a Buffer Overflow?

A buffer overflow occurs when data is written (or accessed) outside of the
boundaries of the memory allocated to a particular data structure.

<

\ ::‘
1
=)

16 Bytes of Data

/\
- N
Source
Memory
Copy
o Operation
Destination
Memory

J
- e < Y

Allocated Memory (12 Bytes) Other Memory

[Distribution Statement A] This material has been approved for

Software Engineering Institute ‘ (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'H“__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 15

Buffer overflow: check your bounds

A programmer might code a bounds-check such as

char *ptr; // ptr to start of array
char *max; // ptr to end of array
size t pos; // index input unknown to programmer
if (ptr + pos > max)
return EINVAL;

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'ﬁi‘__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 16

Buffer overflow: check your bounds

A programmer might code a bounds-check such as

char *ptr; // ptr to start of array
char *max; // ptr to end of array
size t pos; // index input unknown to programmer
if (ptr + pos > max)
return EINVAL;

If pos is very large, it can cause ptr + pos to overflow, which

typically wraps around — pointing to an address that is actually lower in
memory than ptr (and max).

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'ﬁi‘__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 17

Buffer overflow: check your bounds

A programmer might code a bounds-check such as

char *ptr; // ptr to start of array
char *max; // ptr to end of array
size t pos; // index input unknown to programmer
if (ptr + pos > max)
return EINVAL;

If pos is very large, it can cause ptr + pos to overflow, which
typically wraps around — pointing to an address that is actually lower in
memory than ptr (and max).

Since (overflowed) ptr + pos is less than max, execution proceeds

[Distribution Statement A] This material has been approved for

Software Engineering Institute ‘ (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'ﬁi‘__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 18

« 2\ | -
 \ =2 i
-]

Buffer overflow: surprising code elimination

One might write a check like this:
if (ptr + len < ptr || ptr + len > max)

return EINVAL;

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_-]&ll'n(‘gi(‘ Mellon Un i\-"(‘l'-“i“__"' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 19

Buffer overflow: surprising code elimination

One might write a check like this:
if (ptr + len < ptr || ptr + len > max)

return EINVAL;

A compiler could assume that
- Programs are well defined

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_-]&ll'n(‘gi(‘ Mellon Un i\-"(‘l'-“i“__"' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 20

Buffer overflow: surprising code elimination

One might write a check like this:
if (ptr + len < ptr || ptr + len > max)

return EINVAL;

A compiler could assume that

. Programs are well defined
- Hence ptr + len will not overflow

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_-]&ll'n(‘gi(‘ Mellon Un i\-"(‘l'-“i“__"' public release and unlimited distribution. Please see Copyright

- notice for non-US Government use and distribution. 21

T
| ‘ N ¢ e, e —

+ EEYY NS =S
B\ i 'I‘ }:. Gl

L2 b5 | i —% -

Buffer overflow: surprising code elimination

One might write a check like this:
if (ptr + len < ptr || ptr + len > max)

return EINVAL;

A compiler could assume that

. Programs are well defined
- Hence ptr + len will not overflow

- Hence, since len is unsigned, ptr + len must be
greater than or equal to (not less than) ptr

[Distribution Statement A] This material has been approved for

Software Engineering Institute (-]&ll'n(‘gi(‘ Mellon Un i\-’(‘l'-“i“__"' public release and unlimited distribution. Please see Copyright

- notice for non-US Government use and distribution. 22

T
N < e, e -—
"W\ AR RSt
= A:‘F i 1 g - :‘:. G
=) =3 Sy T

Buffer overflow: surprising code elimination

One might write a check like this:
if (ptr + len < ptr || ptr + len > max)

return EINVAL;

A compiler could assume that

. Programs are well defined
- Hence ptr + len will not overflow

- Hence, since len is unsigned, ptr + len must be
greater than or equal to (not less than) ptr

- Hence ptr + len < ptr Is always true and can be
removed as dead code

[Distribution Statement A] This material has been approved for

Software Engineering Institute ‘ (-]&ll'n(‘gi(‘ Mellon Un i\-’(‘l'-“i“__"' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 23

e — . - "{‘ i
- AN\ 4 . S o el :
: . \«j"‘" | - R e San e -) .
- ":‘, i kad] P o g S 4

Buffer overflow: surprising optimization

In our example:
if (ptr + len < ptr || ptr + len > max)

return EINVAL;

This optimization proceeds as follows:
ptr + len < ptr

[Distribution Statement A] This material has been approved for

Software Engineering Institute (-]&ll'n(‘gi(‘ Mellon Un i\-’(‘l'-“i“__"' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 24

Buffer overflow: surprising optimization

In our example:
if (ptr + len < ptr || ptr + len > max)

return EINVAL;
This optimization proceeds as follows:
ptr + len < ptr
ptr + len < ptr + 0

[Distribution Statement A] This material has been approved for

Software Engineering Institute (-]&ll'n(‘gi(‘ Mellon Un i\"(‘l'H“__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 25

a
<
"K‘:’:} \)
R\ “:: \) -
=) =

Buffer overflow: surprising optimization

In our example:
if (ptr + len < ptr || ptr + len > max)

return EINVAL;
This optimization proceeds as follows:
ptr + len < ptr
ptr + len < ptr + 0

;)4+1en<p){+o

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'H“__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 26

L

——— x ® B
Y B i
>, y s J
L —

Buffer overflow: surprising optimization

In our example:
if (ptr + len < ptr || ptr + len > max)

return EINVAL;
This optimization proceeds as follows:
ptr + len < ptr
ptr + len < ptr + 0
p)é + len < p)z{ + 0
len < 0 (impossible, len is unsigned)
The rewritten len < 0 IS removed.

[Distribution Statement A] This material has been approved for

Software Engineering Institute (:&ll'n(‘gi(‘ Mellon Un i\"(‘l'ﬁi‘__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 27

Mitigation

This problem is easy to remediate, once it is called to the attention of the

programmer, such as by a diagnostic message when dead code is
eliminated.

For example, if ptr is less-or-equal-to max, then the programmer could
write:
if (len > max - ptr)
return EINVAL;

This conditional expression eliminates the possibility of undefined
behavior.

[Distribution Statement A] This material has been approved for

notice for non-US Government use and distribution.

Software Engineering Institute (_-]&ll'n(‘gi(‘ Mellon Un i\-"(‘-l'-“i“__" public release and unlimited distribution. Please see Copyright

28

Need for secure coding standards

Common rule development
methodology

Creating rules is difficult
Systematic rule development
CERT Coding Standards

Summary

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'ﬁi‘__' public release and unlimited distribution. Please see Copyright

- notice for non-US Government use and distribution. 29

An alternative methodology for rule creation
Exploit language ambiguities

Analyze vulnerable programs

Systematically test the rules

And still consult with experts

[Distribution Statement A] This material has been approved for

—== Software Engineering Institute | Carnegie Mellon University pubiic retease and uniimited distribution. Please see Copyright

notice for non-US Government use and distribution. 30

Examine language definitions and standards for
undefined, unspecified and implementation-

defined behavior
3.4.3

1 undefined behavior
behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

2 NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the

environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the 1ssuance of a diagnostic message).

3 EXAMPLE An example of undefined behavior 1s the behavior on integer overflow.
3.4.4

1 unspecified behavior
use of an unspecified value, or other behavior where this International Standard provides |
two or more possibilities and imposes no further requirements on which is chosen n any
instance

2 EXAMPLE An example of unspecified behavior 1s the order in which the arguments to a function are
evaluated.

Source: http://www.open-std.org/jtc1/sc22/wgl4/www/docs/n1124.pd (ISO 9899 - Programming Languages — C draft)

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_-]&ll'n(‘gi(‘ Mellon Un i\-"(‘-l'-“i“__" public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

31

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pd

& | > N\ & =
e - G AN L . AN =
3 TN _ﬁ'«.‘ W\ A ¥ “t}\ <l
e ey \ m\u\‘;; -
- . A\ ;
2 IEEN) -

Examine vulnerable code for patterns

‘ Malware repository with millions of unique, tagged artifacts ‘

‘ CERT Secure Coding Team has evaluated over 100M LOC ‘

@ | ‘% Software Engineering Institute | Carnegie Mellon Universiiy

Vulnerability Notes Database

Advisory and mitigation information about software vulnerabilities

CERT Knowledgebase

The CERT Knowledgebase is a collection of internet security information related to incidents and
vulnerabilities. The CERT Knowledgebase houses the public Vulnerability Motes Database as well
as two restricted-access components

® Vulnerability Card Catalog contains descriptive and referential information regarding thousands
of vulnerabilities reported to the CERT Coordination Center,

= Special Communications Database contains briefs that provide advance warning and important
information about vulnerabilities, intruder activity, or other critical security threats

[Distribution Statement A] This material has been approved for

Software Engineering Institute (:ill'n(‘gi(‘ Mellon L-'Ili\'(‘l'ﬁil_\' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 32

Implement candidate rules and run against
sample code

- Focus rule when possible to
* maximize true positive of weakness (tag bad code)

* minimize false negative of weakness (don'’t tag good code)

- Write program to evaluate source code for particular rule

- Run program against collection of known bad source code and a
collection of other (suspected good) code to check sensitivity and
specificity of results

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_-]&ll'n(‘gi(‘ Mellon Un i\-"(‘l'-“i“__"' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 33

N e&
Experience with systematic testing

- Candidate rule typical evaluation
« 10 iterations of proposed rule and associated checker
* 7 Internal evaluations
« 3 external evaluations

- Each evaluation iteration carried out against > 10M lines of
representative code

« Variety of domains
« Variety of code quality

- As part of creating C++ standard, general methodology applied to
generate 46 rules and corresponding Clang C++ checkers
19 by CERT researchers, 27 by others

[Distribution Statement A] This material has been approved for

Software Engineering Institute (-]&ll'n(‘gi(‘ Mellon Un i\-’(‘l'-“i“__"' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 34

Tapping into expert knowledge for developing
CERT coding standards

Engage
community

Consensus
on

vulnerability Tool vendor

analysis

and
mitigation

- T e . [Distribution Statement A] This material has been approved for
Software Englneerlng Institute (.&ll'll(‘gl(‘ Mellon Un l\'(‘l'ﬁﬂ__' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 35

Evolution of coding support

Coding
standard

[Distribution Statement A] This material has been approved for

Software Engineering Institute (.]ill'l’l(‘gi(‘ Mellon Un i\-’(“-l'ﬁiit}" public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 36

Evolution of coding support

Custom
checkers

Coding
standard

[Distribution Statement A] This material has been approved for

—== Software Engineering Institute | Carnegie Mellon University pubiic retease and uniimited distribution. Please see Copyright

notice for non-US Government use and distribution. 37

Evolution of coding support

Custom

checkers Custom IDE

Coding
standard

[Distribution Statement A] This material has been approved for

— Software Engineering Institute (.]ill'l’l(‘-gi(‘ Mellon Un i\-’(“-l'ﬁiit}-" public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 38

Evolution of coding support

e Custom IDE SUSEm
checkers remediation

Coding
standard

[Distribution Statement A] This material has been approved for

— Software Engineering Institute (.]ill'l’l(‘-gi(‘ Mellon Un i\-’(“-l'ﬁiit}-" public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.)

Evolution of coding support

Generated
remediation

Generated

Generated IDE
checkers

Custom
remediation

Custom

checkers Custom IDE

Coding
standard

[Distribution Statement A] This material has been approved for

— Software Engineering Institute Cill'l’l(‘-gi(‘ Mellon Un i\-’(‘?l'ﬁiil}-" public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 40

Evolution of coding support

Generated
remediation

Generated

Generated IDE
checkers

Custom
remediation

Custom

checkers Custom IDE

E e
S S
ERp N
on e New features
standard

[Distribution Statement A] This material has been approved for

— Software Engineering Institute Cill'l’l(‘-gi(‘ Mellon Un i\-’(‘?l'ﬁiil}-" public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 41

Evolution of coding support

Generated
remediation

Generated

Generated IDE
checkers

Custom Custom
Custom IDE .
checkers remediation
(e oo —{ vz) B e =
S S S S S S
[Stom.]_.[cu,mm o Hm;';;';;:on] [ci‘é;;‘;’;‘,]—-[cu,mm o Hm;';;';;m]
Codin New
9 New features
standard languages

[Distribution Statement A] This material has been approved for

— Software Engineering Institute Cill'l’l(‘-gi(‘ Mellon Un i\-’(‘?l'ﬁiil}-" public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 42

Evolution of coding support

Generated
remediation

Generated

Generated IDE
checkers

Custom Custom
Custom IDE L.
checkers remediation
e e (o s Y ([t J—{oomrasa e} —{ g |
/ / / uuuuuu / / cccccc / / / /
() | e e (o J{ cmomom }—{ iz () J{ s oe =3
Codin New
g New features New systems
standard languages

[Distribution Statement A] This material has been approved for

—== Software Engineering Institute | Carnegie Mellon University pubiic retease and uniimited distribution. Please see Copyright

notice for non-US Government use and distribution. 43

Need for secure coding standards

Common rule development
methodology

Creating rules is difficult
Systematic rule development
CERT Coding Standards

Summary

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'ﬁi‘__' public release and unlimited distribution. Please see Copyright

- notice for non-US Government use and distribution. 44

CERT C Secure Coding Standard

« Version 1.0 (C99) published in 2009 THE CERT
ORACLE SECURE

« Version 2.0 (C11) published in 2014 CODING STANDARD
* ISO/IEC TS 17961 C Secure Coding Rules Technical FOR JAVA
Specification

« Conformance Test Suite

CERT C++ Secure Coding Standard
« Version 1.0 under development

CERT Oracle Secure Coding Standard for Java
» Version 1.0 (Java 7) published in 2011
« Java Secure Coding Guidelines

» Subset applicable to Android development THE C(EZ:(I}I;{N%
« Android Annex STANDARD

The CERT Perl Secure Coding Standard 98 Rues for Developing Safi

Relinble, and Secure Systems

« Version 1.0 under development

CERT Python Secure Coding Standard
« Version 1.0 under development

SECOND EDITION

>>>>>>>>>>>>

>>>>>>>>

RoOBERT C. SEACORD

[Distribution Statement A] This material has been approved for

—_ Software Engineering Institute | Carnegie Mellon University pubic release and uniimited distribution. Please see Copyright

notice for non-US Government use and distribution. 45

- e

y -\
=\ : ‘
< ™~ -

* Collected wisdom of programmers and
tools vendors

* Fed by community wiki started in
Spring 2006

« Over 1,500 registered contributors

SEI CERT . .
C Coding Standard Available as downloadable eBook

Rules for Developing Safe, Reliable, and Secure Systems http //Ce rt. OrQ/SeCU re'COd | nQ/p rOd UCtS'
services/secure-coding-download.cfm

[Distribution Statement A] This material has been approved for

=—— Software Engineering Institute | Carnegie Mellon University pubic release and uniimited distribution. Please see Copyright

notice for non-US Government use and distribution. 46

http://cert.org/secure-coding/products-services/secure-coding-download.cfm

Learning from rules and recommendations

Rules and recommendations in the secure coding standards focus to improve behavior

Noncompliant Code Example

The “Ah ha” moment: vy e Compliant solutions in a
Noncompliant code blue frame that conform
examples or antipatterns SR - with all rules and can be

in a pink frame—do not reused in your code

copy and paste into your
code

Compliant Solution

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_-]&ll'n(‘gi(‘ Mellon Un i\-"(‘l'-“i“__"' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 47

A"‘; i

Secure Coding_eNewsletter

M
AL

L n‘:-‘j‘i L4
MY
N |2 S Bttt g et

October 2013 Edition

News

Language Standards Updates
Upcoming Events and Training
Our People

Secure Coding Resources

News

The school year is well underway, so O}
Robert Seacord all escaped to the Jav{
enjoyed San Francisco and gave seve

* Session ID: CON6396 Don't Be H
Programming in Java, Dean Sutl

* Session ID: CON3122 Anatomy
Svoboda

 Session ID: TUT5599The Java S
David Svoboda

All three presentations were well attens
These recordings will be made availab

Carnegie Mellon

AR A
P
LA n"

‘CERT 2= Software Engineering Institute

Carnegie Mellon

November 2013 Edition

News

Language Standards Updates
Upcoming Events and Training
Our People

Secure Coding Resources

News

We are still working hard to complete the CERT C Secure

upgrade for C11. To do so, we need your help in reviewing
submitting comments on the wiki or by email. This is the la:

before publication.

Although we remain focused on security, we have begun t
our publications to indicate that many of our coding standa|

security to address other quality attributes as well. This br
reflected in the title of our must recent book, Java Coding

Recommendations for Reliable and Secure Programs, and|

revision to the CERT C Secure Coding Standard, which is
CERT C Coding Standard: 92 Rules for Developing Safe,
Systems, the tentative part being the number of rules. We

Secure Coding_eNewsletter

Secure Coding_eNewsletter

December 2013/January 2014

News

L Standards Updates
Upcoming Evets and Training
Our People

Secure Coding Resources

News

Tue CERT C
. CopING
STANDARD

Signup: info@sei.cmu.edu.

‘.(...“.'.'.‘.5‘4‘4(“,

is avalable for pu

requirements for analyzers, including static analysis tools af

U HRIL LT
7\ Ity
[CERT | 5= Software Enginotring Instituts | Carnegie Mellon Universy

February / March 2014

News
Language Standards Updates
Upcoming Events and Training

Secure Coding Resources

News

It is beginning to feel like spring here in Pittsburgh: the temperature has not
fallen below zero degrees for several days now, and it has even briefly stopped
snowing. Many of the updates to the secure coding wiki have been in the
CERT C Coding Standard space as Carol Lallier synchronizes changes from
the manuscript of the upcoming Addison Wesley book. This project is nearing

[we are currently reviewing the page
proofs, which are due back to the publisher on March
7. Overall, the project is on schedule and the books
are still expected to be available on or about April 18,
2014

Tue CERT C
CobING

STANDARD

The SEI has launched a new version of the CERT
website. The site has been redesigned to improve the
user experience, to better represent the key
capabilities and current research functions of the
SEl's CERT Division, and to enable one-click access
to the site's most in-demand resources (such as

:L:..:.ung“ﬁ”

|

i

[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Software Engineering Institute

Carnegi

mailto:info@sei.cmu.edu

Need for secure coding standards

Common rule development
methodology

Creating rules is difficult
Systematic rule development
CERT Coding Standards

Summary

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_:&ll'n(‘gi(‘ Mellon Un i\"(‘l'H“__' public release and unlimited distribution. Please see Copyright

- notice for non-US Government use and distribution. 49

Summary

Application of coding standards can avoid many vulnerabilities seen in
the field

Making a standard should be based on more than opinion
Prescriptive standards give
- Developers actionable guidance to create secure code

- Tool makers actionable guidance to create testers for secure code
- Acquirers actionable requirements for licensed or developed code

[Distribution Statement A] This material has been approved for

—== Software Engineering Institute | Carnegie Mellon University pubiic retease and uniimited distribution. Please see Copyright

notice for non-US Government use and distribution. 50

&8

J.. ui] N :—gi
| R TR = ek . S

L - B
o S| “_~% DAY i \ 4
: ?’." R | '{\{‘.\\‘\-“-7"' : m -
| = - Y
- - 4 . ‘ = i ‘
, %) a’éi’.;‘? o) S

Contact Information

Mark Sherman

(412) 268-9223
mssherman@sei.cmu.edu

Web Resources (CERT/SEI)

http://www.cert.org/

http://www.sei.cmu.edu/

[Distribution Statement A] This material has been approved for

t? SOftware Engineering Institute (:ill'lll‘,‘.{'i(‘ RI(‘I I("] l]li\(‘l'*-iil_\' public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution. 51

%% Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] This material has been approved for

Software Engineering Institute (_-]&ll'n(‘gi(‘ Mellon Un i\-"(‘-l'-“i“__" public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.)

