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Security is a lifecycle issue
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Security is a lifecycle issue

Today’s focus
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Code security quality reviews generally reveal 
problems

Source: http://xkcd.com/1513/
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Code security quality reviews generally reveal 
problems – that manifest as vulnerabilities

Source: http://xkcd.com/1695/
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Most Vulnerabilities Are Caused by 
Programming Errors

64% of the vulnerabilities in the National Vulnerability Database were due 
to programming errors

• 51% of those were due to classic errors like buffer overflows, cross-site scripting, 
injection flaws

Top 25 CWE includes

• Integer overflow

• Buffer overflow

• Missing authentication

• Missing or incorrect authorization

• Reliance on untrusted inputs (aka tainted inputs)

Sources: Heffley/Meunier (2004): Can Source Code Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate Software 

Security?; cwe.mitre.org/top25 Jan 6, 2015
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Another crises occurs
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Posts are written: CWE Guidance
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More guidance is generated
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Writing rules is hard

You know it when you see it

Turn up sensitivity => False positives

Turn up selectivity => False negatives
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What Is a Buffer Overflow?
A buffer overflow occurs when data is written (or accessed) outside of the 
boundaries of the memory allocated to a particular data structure.

Destination

Memory

Source

Memory

Allocated Memory (12 Bytes) Other Memory

16 Bytes of Data

Copy 

Operation
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Buffer overflow: check your bounds

A programmer might code a bounds-check such as

char *ptr; // ptr to start of array

char *max; // ptr to end of array

size_t pos; // index input unknown to programmer 

if (ptr + pos > max)

return EINVAL;
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Buffer overflow: check your bounds

A programmer might code a bounds-check such as

char *ptr; // ptr to start of array

char *max; // ptr to end of array

size_t pos; // index input unknown to programmer 

if (ptr + pos > max)

return EINVAL;

If pos is very large, it can cause ptr + pos to overflow, which 

typically wraps around — pointing to an address that is actually lower in 
memory than ptr (and max).  



18

[Distribution Statement A] This material has been approved for 

public release and unlimited distribution. Please see Copyright 

notice for non-US Government use and distribution.

Buffer overflow: check your bounds

A programmer might code a bounds-check such as

char *ptr; // ptr to start of array

char *max; // ptr to end of array

size_t pos; // index input unknown to programmer 

if (ptr + pos > max)

return EINVAL;

If pos is very large, it can cause ptr + pos to overflow, which 

typically wraps around — pointing to an address that is actually lower in 
memory than ptr (and max).  

Since (overflowed) ptr + pos is less than max, execution proceeds 
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Buffer overflow: surprising code elimination 

One might write a check like this:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;
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Buffer overflow: surprising code elimination 

One might write a check like this:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

A compiler could assume that

• Programs are well defined
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Buffer overflow: surprising code elimination 

One might write a check like this:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

A compiler could assume that

• Programs are well defined

• Hence ptr + len will not overflow
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Buffer overflow: surprising code elimination 

One might write a check like this:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

A compiler could assume that

• Programs are well defined

• Hence ptr + len will not overflow

• Hence, since len is unsigned, ptr + len must be 
greater than or equal to (not less than) ptr
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Buffer overflow: surprising code elimination 

One might write a check like this:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

A compiler could assume that

• Programs are well defined

• Hence ptr + len will not overflow

• Hence, since len is unsigned, ptr + len must be 
greater than or equal to (not less than) ptr

• Hence ptr + len < ptr is always true and can be 

removed as dead code
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Buffer overflow: surprising optimization

In our example: 

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

This optimization proceeds as follows:

ptr + len < ptr
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Buffer overflow: surprising optimization

In our example: 

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

This optimization proceeds as follows:

ptr + len < ptr

ptr + len < ptr + 0
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Buffer overflow: surprising optimization

In our example: 

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

This optimization proceeds as follows:

ptr + len < ptr

ptr + len < ptr + 0

ptr + len < ptr + 0
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Buffer overflow: surprising optimization

In our example: 

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

This optimization proceeds as follows:

ptr + len < ptr

ptr + len < ptr + 0

ptr + len < ptr + 0

len < 0 (impossible, len is unsigned)

The rewritten len < 0 is removed.
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Mitigation

This problem is easy to remediate, once it is called to the attention of the 
programmer, such as by a diagnostic message when dead code is 
eliminated.  

For example, if ptr is less-or-equal-to max, then the programmer could 

write:

if (len > max – ptr)

return EINVAL;

This conditional expression eliminates the possibility of undefined 
behavior.
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An alternative methodology for rule creation

Exploit language ambiguities

Analyze vulnerable programs

Systematically test the rules

And still consult with experts
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Examine language definitions and standards for 
undefined, unspecified and implementation-
defined behavior

Source: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pd (ISO 9899 - Programming Languages – C  draft)

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pd
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Examine vulnerable code for patterns

Malware repository with millions of unique, tagged artifacts

CERT Secure Coding Team has evaluated over 100M LOC
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Implement candidate rules and run against 
sample code

• Focus rule when possible to 

• maximize true positive of weakness (tag bad code)

• minimize false negative of weakness (don’t tag good code)

• Write program to evaluate source code for particular rule

• Run program against collection of known bad source code and a 
collection of other (suspected good) code to check sensitivity and 
specificity of results
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Experience with systematic testing

• Candidate rule typical evaluation

• 10 iterations of proposed rule and associated checker

• 7 internal evaluations

• 3 external evaluations

• Each evaluation iteration carried out against > 10M lines of 
representative code

• Variety of domains

• Variety of code quality

• As part of creating C++ standard, general methodology applied to 
generate 46 rules and corresponding Clang C++ checkers

• 19 by CERT researchers, 27 by others
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Tapping into expert knowledge for developing  
CERT coding standards

Engage 
community

Tool vendor 
analysis

Consensus 
on 

vulnerability 
and 

mitigation
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Evolution of coding support

Coding 

standard
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CERT Secure Coding Standards
CERT C Secure Coding Standard

• Version 1.0 (C99) published in 2009

• Version 2.0 (C11) published in 2014

• ISO/IEC TS 17961 C Secure Coding Rules Technical 
Specification

• Conformance Test Suite

CERT C++ Secure Coding Standard

• Version 1.0 under development

CERT Oracle Secure Coding Standard for Java

• Version 1.0 (Java 7) published in 2011

• Java Secure Coding Guidelines

• Subset applicable to Android development

• Android Annex

The CERT Perl Secure Coding Standard

• Version 1.0 under development

CERT Python Secure Coding Standard

• Version 1.0 under development
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Coding rules – 2016 Edition

• Collected wisdom of programmers and 

tools vendors

• Fed by community wiki started in 

Spring 2006

• Over 1,500 registered contributors

• Available as downloadable eBook

http://cert.org/secure-coding/products-

services/secure-coding-download.cfm

http://cert.org/secure-coding/products-services/secure-coding-download.cfm
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Learning from rules and recommendations

Rules and recommendations in the secure coding standards focus to improve behavior 

The “Ah ha” moment: 

Noncompliant code 
examples or antipatterns
in a pink frame—do not 
copy and paste into your 
code

Compliant solutions in a 
blue frame that conform 
with all rules and can be 
reused in your code
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Secure Coding eNewsletter engages community

Signup: info@sei.cmu.edu.

mailto:info@sei.cmu.edu
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Summary

Application of coding standards can avoid many vulnerabilities seen in 
the field

Making a standard should be based on more than opinion

Prescriptive standards give

• Developers actionable guidance to create secure code

• Tool makers actionable guidance to create testers for secure code

• Acquirers actionable requirements for licensed or developed code
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Contact Information

Mark Sherman

(412) 268-9223

mssherman@sei.cmu.edu

Web Resources (CERT/SEI)

http://www.cert.org/

http://www.sei.cmu.edu/



52

[Distribution Statement A] This material has been approved for 

public release and unlimited distribution. Please see Copyright 

notice for non-US Government use and distribution.


