
1Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering for
Machine Learning

Characterizing and Detecting
Mismatch and Predicting Inference
Degradation in ML Systems

Grace A. Lewis

2Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-

0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an

official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF

FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE

MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO

FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

This material was prepared for the exclusive use of SEI Webinar and may not be used for any other purpose without the

written consent of permission@sei.cmu.edu.

DM21-0059

3Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Introduction

An area of work within the SEI is developing practices, methods and tools for reliable end-

to-end development, deployment, and evolution of AI-enabled systems.

Our goal is to develop empirically validated practices to guide AI engineering and support

software engineering for machine learning (SE4ML) systems.

This webinar reports on two focus areas:

• Characterizing and Detecting Mismatch in ML-Enabled Systems

• Predicting Inference Degradation in Production ML Systems

4Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Why Software Engineering for Machine Learning? 1

Machine learning components are parts of much larger systems

One challenge with ML components is that their performance depends on how similar

operational data is to their training data (i.e., training-serving skew)

• Systems need to provide a way to know when model performance is degrading

• Systems need to provide enough information for retraining

“Only a small fraction of

real-world ML systems is

composed of the ML code,

as shown by the small

black box in the middle.

The required surrounding

infrastructure is vast and

complex.” [Sculley 2015]

5Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Why Software Engineering for Machine Learning? 2

ML-enabled systems need to be engineered such that

• System is instrumented for runtime monitoring of ML components and operational data

• Training-retraining cycle is shortened

• ML component integration is straightforward

Many existing SE practices apply directly but are simply not used in the data science field

Other SE practices will have no be adapted to extended to deal with ML components

6Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

January 2020 – December 2020

Characterizing and Detecting

Mismatch in ML-Enabled Systems

7Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Operational Environment

ML-Enabled System

Software

Component A

Software

Component B

Runtime

Monitoring

Tools

Operational

Data

Data Collection

Data

Processing

<<Software Component>>

ML Component

Trained Model

Sensors

Data Entry

Data Store

Data

Stream

Insight /

Prediction /

Inference

ML-Enabled System

We define an ML-enabled system as a software system that relies on one or more ML

software components to provide required capabilities.

A trained model(s)
is wrapped as a
special type of

Software
Component called
an ML Component

ML component
receives

(processed)
operational data

from one software
component …

… and generates an
insight for that data
that is consumed by

another software
component.

Runtime Monitoring
Tools in the
operational

environment obtain
and react to

measures produced
by the ML-Enabled

System

8Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Problem: Multiple Perspectives

ML-enabled systems typically involve three

different and separate workflows

• Model training

• Model integration and testing

• Model operation

… performed by three different sets of

stakeholders ...

• Data scientists

• Software engineers

• Operations staff

… with three different perspectives

Data Scientist Perspective

Software Engineer Perspective

Operations Perspective

Model Training Environment

Raw Data

Data Preparation

Model

Training

Model

Selection

Candidate

Models

Trained Model

Training

Data

Evaluation

Data

Untrained Model

Data

Collection

Data

Labeling

Data

Cleaning

Feature

Engineering

Repeat until model(s) satisfie

s

 performance criteria

Development and Testing Environment

Integrate

Model into

ML-Enabled

System

Test ML-Enabled

System

ML-

Enabled

System

Trained Model

Testing

Tools
Test Data

Repeat until all tests pass

Operational Environment

ML-Enabled System

Software

Component A

Software

Component B

Runtime

Monitoring

Tools

Operational

Data

Data Collection

Data

Processing

<<Software Component>>

ML Component

Trained Model

Sensors

Data Entry

Data Store

Data

Stream

Insight /

Prediction /

Inference

9Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Problem: Mismatch between Assumptions made by each
Perspective

We define an ML mismatch as a

problem that occurs in the

development, deployment, and

operation of an ML-enabled system

due to incorrect assumptions

made about system elements by

different stakeholders that results in

a negative consequence.

We also posit that ML mismatch

can be traced back to information

that could have been shared

between stakeholders that would

have avoided the problem.

10Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Operational Environment

ML-Enabled System

Software

Component A

Software

Component B

Runtime

Monitoring

Tools

Operational

Data

Data Collection

Data

Processing

<<Software Component>>

ML Component

Trained Model

Sensors

Data Entry

Data Store

Data

Stream

Insight /

Prediction /

Inference

Examples of Mismatch

Poor system
performance

because
computing

resources for
model testing
different from

operational
computing
resources

(computing
resource

mismatch)

Poor model accuracy because model training
data different from operational data (data
distribution mismatch)

Large amounts of glue code because trained
model input/output very different from
operational data types (API mismatch)

Tools not set up to detect
diminishing model accuracy,
which is the “goodness” metric
defined for the ML component
(metric mismatch)

System failure due to poor
testing — developers not
able to replicate testing
done during model
training (test data
mismatch)

11Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Goal is to develop machine-readable descriptors

for elements of ML-enabled systems that

• Can serve as checklists as ML-enabled systems

are developed

• Provide stakeholders (e.g., program offices) with

examples of information to request and/or

requirements to impose

• Include attributes for which automated detection

is feasible, and therefore define new software

components that should be part of ML-enabled

systems

Solution: Mismatch Detection and Prevention in ML-Enabled
Systems

12Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Study Protocol — Phase 1

1. Identify examples of

mismatches and their

consequences via interviews

2. Validate mismatches via a

practitioner survey

In parallel:

3. Identify attributes for describing

elements of ML-enabled

systems via a multi-vocal study

• White Literature Review

• Gray Literature Review

13Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Study Protocol — Phase 2

1. Mapping between mismatches and attributes

• For each mismatch, what is the set of

attributes needed for detection, expressed as

a predicate over identified attributes

2. Gap analysis

• Which mismatches do not map to any attribute

(and vice versa)?

• What additional attributes are necessary for

detection?

3. Descriptor Formalization

• Codify attributes into a JSON Schema

descriptor specifications

• Create sample instances for descriptors

14Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Scope of Today’s Presentation

15Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Interview — Data

Total Interviews = 20

Total Mismatch Examples = 140

Total Instances of Information that was not Communicated that Led to Mismatch = 232

Data Science
65%

Operations
10%

Software
Engineering

25%
Government

30%

Industry
60%

Research Lab
10%

Data Science
65%

Operations
10%

Software
Engineering

25%
Government

30%

Industry
60%

Research Lab
10%

Affiliation Primary Role

16Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Results: Mismatch Categories

17Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Trained Model Subcategories

Most mismatches were related to

• lack of test cases and test data that could be used for integration testing

• lack of model specifications and APIs that provide greater insight into inputs,

outputs, and internals (if applicable)

18Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Operational Environment Subcategories

Most mismatches were related to lack of runtime metrics, logs (including

deployed model version), data, user feedback, and other data collected in the

operational environment to help with troubleshooting, debugging, or retraining.

19Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Task & Purpose Subcategories

Most mismatches were related to lack of lack of knowledge of business goals or

objectives that the model was going to help satisfy.

20Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Raw Data Subcategories

Most mismatches were associated with lack of

• metadata such as how it was collected, when it was collected, distribution,

geographic location, and time frames

• description of data elements, such as field names, description, values, and

meaning of missing or null values

21Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Development Environment Subcategories

Most mismatches were related to lack of knowledge of programming languages,

ML frameworks, tools, and libraries used in the development environment.

22Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Operational Data Subcategories

Most mismatches were associated to

• lack of operational data statistics, such as distribution and other metrics, that

could be used by data scientists to validate appropriateness of training data

• details on the implementation of data pipelines for the deployed model

23Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Training Data Subcategories

Most mismatches were related to lack of details of data preparation pipelines to

derive training data from raw data.

24Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Mismatch Validation
Survey — Data

Survey Responses = 31

Data
Science

59%
Software

Engineering
37%

Operations +
Other

4%Industry
64%

Government
26%

Academia/Research Lab
10%

Affiliation Primary Role

1-3
6%

4-7
23%

8-11
23%

>=12
48%

Years of Experience

1-3
26%

4-7
39%

8-11
16%

>=12
19%

Years of ML Experience

25Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Mismatch Validation
Survey — Results

-20 -10 0 10 20 30 40

DE: Programming Language

DE: Up & Down Components

DE: Computing Resources

DE: Dev. & Integ. Timelines

OD: Data S tat istics

OD: Data Pipelines

OD: Data S ources

OD: Data Syntax & Seman.

OD: Data Rates

OE: Runtime Metrics

OE: Computing Resources

OE: Model Inference Time

RD: Metadata

RD: Data Dict ionary

RD: Proxy Data

RD: Restrictions

RD: Anonymization

TP: Business Goals

TP: Success Criteria

TP: Task

TP: Usage Context

TP: Data Rights & Policies

TM: Test Cases & Data

TM: API/Specifications

TM: Decisions/Constraints

TM: Output Interpretation

TM: Programming Language

TM: Evaluat ion Metrics

TM: Versioning

TM: System Configuration

TM: Data Buff ering

TD: Data Preparat ion Pipelines

TD: Data Statistics

TD: Versioning

Important Very Important Somewhat Important Not Important

The importance of sharing information

related to each subcategory to avoid

mismatch was mostly rated between

Important and Very Important for all,

which demonstrates the validity of the

identified causes for mismatch.

26Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Mismatch Validation Survey —
Observation

Not surprisingly, what is important varies

per role …

… which makes it even more important

to make all this information explicit.

27Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Next Steps: Develop Machine-Readable Descriptors

OE

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 Am

Mismatch 1 X X X A1 + A2 > A4

Mismatch 2 X X A8 = A12

…

Mismatch N X X Chi-Square(A5, A14)

FormalizationOD

Mismatch

Descriptors

TDTP RD TM DE

28Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Vision: Automated
Mismatch Detection

Resulting attributes have been codified into

machine-readable JSON Schema documents

that can be used by automated mismatch

detection tools.

Tools can range from a simple web-based

client that reads in all descriptors and

presents then to a user for evaluation, to a

more elaborate tool or system component for

runtime data drift detection.

29Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

November 2020 – September 2021

Predicting Inference Degradation in

Production ML Systems

30Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Motivation

• Inference quality of deployed ML models

changes over time due to differences

between characteristics of training and

operational data → Inference Degradation

• State of engineering practice in industry

relies on periodic retraining and model

redeployment strategies to evade inference

degradation, as opposed to monitoring for

inference degradation

• Strategy of periodic retraining and

redeployment becomes more infeasible as

DoD AI systems move into the Operational

AI space

The Spectrum of DoD AI Applications** RAND Corporation. (2019). The Department of Defense Posture for Artificial Intelligence: Assessment

and Recommendations. https://www.rand.org/pubs/research_reports/RR4229.html

31Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Problem: Inference Degradation is Hard to Identify Timely
and Reliably

time

In
fe

re
n

c
e
 Q

u
a

lit
y

time

In
fe

re
n

c
e
 Q

u
a

lit
y

Too frequently: Wasting
resources training and deploying
retrained models when it was not
necessary to do so, in addition to

normal redeployment risks

Too late: A non-optimal course of action
recommended by an ML capability may
have already been put in place by the time
the model is retrained and redeployed

Not all degradation is gradual:
ML capability had to be taken
offline while the model was
retrained and redeployed

Failure to recognize inference degradation can lead to misinformed decisions, costly

reengineering, and potential system decommission.

32Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Solution

Develop a set of empirically-validated metrics that are predictors of when a

model’s inference quality will degrade below a threshold due to different types of

data drift, and therefore requires retraining.

The metrics will be able to determine

1. When a model really needs to be retrained so as to avoid spending resources

on unnecessary retraining

2. When a model needs to be retrained before its scheduled retraining time so as

to minimize the time that the model is producing sub-optimal results

Metrics will be validated in the context of models using convolutional neural

networks (CNNs), which are commonly used in DoD applications for object

detection.

33Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Approach

Create a test harness and data sets to baseline existing drift metrics.

Test the ability of single metrics to predict inference quality over time for models

based on CNNs.

Develop complex metrics based on performance of single metrics.

Validate new metrics with respect to accuracy and timeliness.

Each graph illustrates the

relationship between a

change in the data drift

metric and a change in

the inference quality

metric (in this case

accuracy)

34Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Towards Empirically-Validated SE4ML Practices

Development of novel metrics for predicting inference degradation for CNN-based

models, data sets and extensible test harness software released as open source will

improve timely and resource effective retraining of ML models

Definitions of mismatch can serve as checklists as ML-enabled systems are developed

Recommended descriptors provide stakeholders with examples of information to request

and/or requirements to impose

Identification of attributes for which automated detection is feasible defines

• New software components that should be part of ML-enabled systems

• New tools for automated mismatch detection

35Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Contact Information

Grace A. Lewis

Principal Researcher and TAS Initiative Lead

Tactical and AI-Enabled Systems

glewis@sei.cmu.edu

http://www/sei.cmu.edu/staff/glewis

mailto:glewis@sei.cmu.edu
http://www/sei.cmu.edu/staff/glewis

