Software Engineering for
Machine Learning

Characterizing and Detecting
Mismatch and Predicting Inference
Degradation in ML Systems

Grace A. Lewis

Carnegie Mellon University
Software Engineering Institute




Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material was prepared for the exclusive use of SEI Webinar and may not be used for any other purpose without the
written consent of permission@sei.cmu.edu.

DM21-0059

Carnegie Mellon University N
o ¥ Software Engineering for Machine Learning [Distribution Statement A] Approved for public release and unlimited distribution. 2
<

Software Engineering Institute 2021 Camegie Mellon University



Introduction

An area of work within the SEI is developing practices, methods and tools for reliable end-
to-end development, deployment, and evolution of Al-enabled systems.

Our goal is to develop empirically validated practices to guide Al engineering and support
software engineering for machine learning (SE4ML) systems.
This webinar reports on two focus areas:

» Characterizing and Detecting Mismatch in ML-Enabled Systems

* Predicting Inference Degradation in Production ML Systems
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Why Software Engineering for Machine Learning? ,

Machine learning components are parts of much larger systems

One challenge with ML components is that their performance depends on how similar
operational data is to their training data (i.e., training-serving skew)

» Systems need to provide a way to know when model performance is degrading
» Systems need to provide enough information for retraining

Configuration

Data Collection

Data
Verification

Machine
Resource
Management

Feature
Extraction

Analysis Tools

Process

Management Tools

Serving

Monitoring

Infrastructure

“Only a small fraction of
real-world ML systems is
composed of the ML code,
as shown by the small
black box in the middle.
The required surrounding
infrastructure is vast and
complex.” [Sculley 2015]
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Why Software Engineering for Machine Learning? ,

ML-enabled systems need to be engineered such that
» System is instrumented for runtime monitoring of ML components and operational data
* Training-retraining cycle is shortened
* ML component integration is straightforward

Many existing SE practices apply directly but are simply not used in the data science field

Other SE practices will have no be adapted to extended to deal with ML components
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Characterizing and Detecting
Mismatch in ML-Enabled Systems
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ML-Enabled System

We define an ML-enabled system as a software system that relies on one or more ML
software components to provide required capabilities.

Runtime Monitoring

A trained model(s) .
. q : Operational Environment 3 Tools in the
is wrapped as a ! operational

special type of Bl environment obtain
Software § and react to

Component called ; measures produced
an ML Component B oata Colection

by the ML-Enabled

<<Software Component>> . Syste m
ML Component Insight /
Prediction /
Data - Software iaEres Software
Processing OpeDrZiE"a' Component A Component B
Trained Model

ML component
receives
(processed)

... and generates an

Q@ insight for that data

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' B that is consumed by
another software

operational data
from one software
component ...

component.
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Problem: Multiple Perspectives

Data Scientist Perspective

Model Training Environment

TP MO B, AT, D

Software Engineer Perspective

Development and Testing Environment

ML-
Enabled
System

Operations Perspective

Operational Environment

ML-enabled systems typically involve three
different and separate workflows

* Model training

* Model integration and testing

» Model operation
... performed by three different sets of
stakeholders ...

 Data scientists

 Software engineers

» Operations staff

... with three different perspectives
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Problem: Mismatch between Assumptions made by each

Operational Software
Environment Components
Implicit Implicit
e [k Assumptions Assumptions
Implicit
Assumptions

Training Data

e\

Trained Model

Implicit
Assumptions

—

Implicit
Assumptions

/-

Mismatch

Operational Data

Implicit
Assumptions

Late discovery of mismatch results in

System delivery delays due to rework

Poor system performance
System or mission failure

L]
 Incorrect results
L]
L]

We define an ML mismatch as a
problem that occurs in the
development, deployment, and
operation of an ML-enabled system
due to incorrect assumptions
made about system elements by
different stakeholders that results in
a negative consequence.

We also posit that ML mismatch
can be traced back to information
that could have been shared
between stakeholders that would
have avoided the problem.
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Examples of Mismatch

Tools not set up to detect
diminishing model accuracy,

Poor system

performance
because which is the “goodness” metric
computing T A defined for the ML component
resources for " Operational Environment (metric mismatch)
model testing a'.u.

different from
operational
computing
resources
(computing
resource
mismatch)

Data Collection ML-Enabled System

ML Component Insight /
Prediction /
Data Entry Data Software Iiisieree Software
Processing
Data
Data Store
Trained Model

Operational Component A Component B
Data
Stream

—_ System failure due to poor
testing — developers not
able to replicate testing
done during model
training (test data
mismatch)

Poor model accuracy because model training Large amounts of glue code because trained
data different from operational data (data model input/output very different from
distribution mismatch) operational data types (APl mismatch)
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Solution: Mismatch Detection and Prevention in ML-Enabled

Systems

Goal is to develop machine-readable descriptors
for elements of ML-enabled systems that

» Can serve as checklists as ML-enabled systems
are developed

* Provide stakeholders (e.g., program offices) with

examples of information to request and/or

requirements to impose
* Include attributes for which automated detection

is feasible, and therefore define new software
components that should be part of ML-enabled

systems

Raw Data

Explicit
Assumptions

Trained Model

Explicit
Assumptions

Operational Software
Environment Components
Explicit Explicit
Assumptions Assumptions

Training Data

codiifed in

Explicit
Assumptions

Operational Data

Explicit
Assumptions

ML-Enabled
System Element
Descriptors

JSON

/ used by\

System
Stakeholders

Information,
Awareness,
Evaluation, ...

Machine-readable

Automated
Mismatch
Detectors

Design time and
runtime
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Study Protocol — Phase 1

Practitioners

Practitioner
Interviews

-

Y

Mismatches and
Consequences

—1

Practitioner
Survey

AR

Practitioners

Y

Google
Search
Engine

. Gra
White aray
. Literature
Literature .
. Review
Review
Y Y

Validated
Mismatches and
Consequences

SE Best Practices
for ML Systems
(from literature)

SE Best Practices

for ML Systems (in

practice)

ML System Element
Descriptor: Attributes

1. ldentify examples of
mismatches and their
consequences via interviews

2. Validate mismatches via a
practitioner survey

In parallel:

3. Identify attributes for describing
elements of ML-enabled
systems via a multi-vocal study

* White Literature Review
» Gray Literature Review
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Study Protocol — Phase 2

Validated
Mismatches and
Consequences

Mapping
between
Mismatches and
Attributes

Gap Analysis

Descriptor
Formalization

ML System Element
Descriptor: Attributes

ML-Enabled
System Element
Descriptors
[JSON Schema]

Instances of ML-
Enabled System
Element
Descriptors

[JSON]

1.

2.

3.

Mapping between mismatches and attributes
» For each mismatch, what is the set of
attributes needed for detection, expressed as
a predicate over identified attributes
Gap analysis
» Which mismatches do not map to any attribute
(and vice versa)?
« What additional attributes are necessary for
detection?
Descriptor Formalization

» Codify attributes into a JSON Schema
descriptor specifications

» Create sample instances for descriptors
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Scope of Today’s Presentation

Practitioners

Practitioners

Practitioner
Interviews

Y
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-
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Google
Scholar
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Interview — Data

Total Interviews = 20

Total Mismatch Examples = 140
Total Instances of Information that was not Communicated that Led to Mismatch = 232

Affiliation Primary Role

Research Lab
Software

10% . .
Government Engineering
30% 25%

\

Operations
10%

\

Industry
60%

Data Science
65%
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Results: Mismatch Categories

6% Training Data 10% Raw Data 16% Operational
Environment

15% Task and Purpose 36% Trained Model
9% Development Environment

8% Operational Data

~ . . .
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Trained Model Subcategories

Trained Model 36% iz% Data Buffering
11% Evaluation 8% Versioning 117% API/ 14% Model Output 17% Test Cases
Metrics Specifications Interpretation & Data
14% Decisions, Assumptions, 12% Programming Language/ 5% System Configuration
Limitations & Constraints ML Framework/ Tools/ Libraries  Requirements

Most mismatches were related to
* lack of test cases and test data that could be used for integration testing

* lack of model specifications and APIs that provide greater insight into inputs,
outputs, and internals (if applicable)

ad many attempts but was never able to get from the [data scientists] a description o
what components exist, what are their specifications, what would be some reasonable test
we could run against them so we could reproduce all their results.”
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Operational Environment Subcategories

Operational Environment 16%

Most mismatches were related to lack of runtime metrics, logs (including
deployed model version), data, user feedback, and other data collected in the
operational environment to help with troubleshooting, debugging, or retraining.

32% Computing Resources 114% Required Model Inference Time 54% Runtime Metrics & Data

"A typical thing that might happen is that in the production environment, something would
happen. We would have a bad prediction, some sort of anomalous event. And we were
asked to investigate that. Well, unless we have the same input data in our development
environment, we can’t reproduce that event.”

Larnegle VIE"O“ Un‘th‘rS]t'V‘ Software Engineering for Machine Learning
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Task & Purpose Subcategories

Task and Purpose 15%

15% Usage Context 18% Task 26% Success Criteria 12% Data Rights & Policies |29% Business Goals

Most mismatches were related to lack of lack of knowledge of business goals or
objectives that the model was going to help satisfy.

scientist frequently is — hey, we have a lot of data. Go do some data science to it — like go
... And then, that leaves a lot of the problem specification task in the hands of the data
scientjst.”
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Raw Data Subcategories

Raw Data 10%

13% Proxy Datal 4% Restrictions 31% Data Dictionary  14% Anonymization 48% Metadata

Most mismatches were associated with lack of
* metadata such as how it was collected, when it was collected, distribution,

geographic location, and time frames
« description of data elements, such as field names, description, values, and

meaning of missing or null values

"Whenever they had data documentation available, that was amazing because you can
immediately reference everything, bring it together, know what’s missing, know how it all
relates. In the absence of that, then it gets incredibly difficult because you never know
exactly what you're seeing, like is this normal? Is it not normal? Can | remove outliers?
What am | lacking? What do some of these categorical variables actually mean?”
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Development Environment Subcategories

Development Environment 9%

I45% Programming Language/

ML Framework/ Tools/ Libraries

LO% Computing Resources I40% Upstream and Downstream
System Components

5% Development & Integration Timelines

Most mismatches were related to lack of knowledge of programming languages,
ML frameworks, tools, and libraries used in the development environment.

“The weird failures that you see porting models from R prototypes to other languages is
interesting . . . almost like re-optimizing the whole model for a new language . . . | was
able to diagnose that the way floating point numbers are handled in R and Python does

not translate directly.”
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Operational Data Subcategories

Operational Data 8%

]16% Data Syntax & I21 % Data Sources IS% Data Rates I21% Data Pipelines I37% Data Statistics
Semantics

Most mismatches were associated to
* lack of operational data statistics, such as distribution and other metrics, that
could be used by data scientists to validate appropriateness of training data

» details on the implementation of data pipelines for the deployed model

“There’s the data inputs being restructured appropriately on the prototypes with this big
complicated data pipeline leading up to them ... and we take it to deployment and you
don’t have the data coming through that same route anymore. You want to have it being
straight from the sensor data. If they reconstruct that pipeline onboard ... there’s so many

opportunities there for mismatches.”
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Training Data Subcategories

Training Data 6%

62% Data Preparation Pipelines LS% Versioning |23% Data Statistics

Most mismatches were related to lack of details of data preparation pipelines to
derive training data from raw data.

"A group developed the architecture for a whole ML pipeline . . . but as a consequence of
that, | think they sort of went a few steps further than they should have, creating lock-in,
and kind of took over the feature engineering phase as well ... The mismatch was

really at the design phase of the architecture of the machine learning pipeline where it
really precluded us from doing more extensive research into alternative model
architectures.”
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Mismatch Validation
Survey — Data

Survey Responses = 31

Affiliation

Primary Role

Academia/Research Lab
10%

Industry
64%

Government
26%

Operations +
Other \

4%

Data
Science
59%

Software
Engineering
37%

Years of Experience

Years of ML Experience

1-3
6%

47
23%

>=12
48%

23%

>=12
19% .

8-11
16%
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Mismatch Validation
Survey — Results

The importance of sharing information
related to each subcategory to avoid
mismatch was mostly rated between
Important and Very Important for all,
which demonstrates the validity of the
iIdentified causes for mismatch.

DE: Programming Lang uage
DE:Up & Down Components
DE: Computing Resources
DE:Dev. & Integ. Timelines
OD: Data Statistics

OD: Data Pipelines

OD: Data Sources

OD: Data Syntax & Seman.
OD: Data Rates

OE: Runtime Metrics

OE: ComputingResources
OE: Model Inference Time
RD: Metadata

RD: Data Dictionary

RD: Proxy Data

RD: Restrictions

RD: Anonymization
TP:Business Goals
TP:Success Criteria
TP:Task

TP: Usage Context

TP: Data Rights & Policies
TM: Test Cases & Data

TM: API/Specifications
TM: Decisions/Constraints
TM: Output Interpretation
TM: Programming Language
TM: Evaluation Metrics
TM: Versioning

TM: System Configuration

TM: Data Buffering

TD:Data Preparation Pipelines

TD: Data Statistics

TD: Versioning

Il riot Important

-20

|
u
u
|
| |
|
u
u
u
-10 o 10 20 30

Somewhat Important [Jill iImportant [l very Important

40
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Mismatch Validation Survey — e
Science Engineering + Other

. VI+1 %o VI+I %o VI+I %

O b Se rV atl O n - DE: Programming Language 11 69 8 80 5 100

DE: Up & Down Components 14 88 10 100 4 80

DE: Computing Resources 11 69 9 90 5 100

.. . . . DE: Dev. & Integ. Timelines 14 88 9 90 5 100

OD: Data Statistics 15 94 10 100 4 80

Not surprlsmgly, what is Important varies O Dain Pipelies A

OD: Data Sources 14 88 9 90 5 100

per r0|e e OD: Data Syntax & Seman. 16 100 10 100 5 100

OD: Data Rates 11 69 10 100 4 80

OE: Runtime Metrics 13 81 9 90 3 60

H H H OE: Computing Resources 14 88 10 100 5 100

... which makes it even more important e

P . . RD: Metadata 14 88 9 90 3 60

to make all this information eXpIICIt. RD: Data Dictionary 16 | 100 | 10 | 100 | 4 | 80

RD: Proxy Data 14 88 9 90 4 80

RD: Restrictions 15 94 10 100 4 80

RD: Anonymization 14 88 9 90 5 100

TP: Business Goals 16 100 9 90 5 100

TP: Success Criteria 15 94 10 100 5 100

TP: Task 15 94 10 100 5 100

TP: Usage Context 15 94 10 100 5 100

TP: Data Rights & Policies 15 94 10 100 4 80

TM: Test Cases & Data 14 88 10 100 4 80

TM: API/Specifications 14 88 9 90 4 80

TM: Decisions/Constraints 15 94 10 100 5 100

TM: Output Interpretation 15 94 10 100 5 100

TM: Programming Language 11 69 7 70 4 80

q TM: Evaluation Metrics 16 100 8 80 5 100

TM: Versioning 14 88 8 80 4 80

TM: System Configuration 12 75 7 70 5 100

TM: Data Buffering 14 88 8 80 4 80

TD: Data Preparation Pipelines 15 94 9 90 4 80

TD: Data Statistics 13 81 9 90 3 60

TD: Versioning 12 75 5 50 2 40
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Next Steps: Develop Machine-Readable Descriptors

Validated
Mismatches and

ML System Element
Descriptor: Attributes

Consequences

Mapping
between
Mismatches and
Attributes

Gap Analysis

Descriptor
Formalization

De pto
TP RD TD ™ DE oD OE 0
a A1| A2 |A3|A4|A5|A6|A7|A8|A9[A10[A11[A12|A13|A14|A15|AL16|Am
Mismatch 1 X | X X Al+A2>A4
Mismatch 2 X X A8 = Al12
Mismatch N X X Chi-Square(A5, A14)

ML-Enabled
System Element
Descriptors
[JSON Schema]

Instances of ML-
Enabled System
Element
Descriptors
[JSON]
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-
VI S I O n . Auto I I l ate d Trained Model  Operational Environment ... I Analysis
Identified Mismatches

M I S I I I atC h D ete Ctl O n Computing Resources required for Trained Model execution do not

match Computing Resources in Operational Environment (details)

Success Criteria from Task and Purpose do not match Runtime
Metrics in Operational Environment (details)

Resulting attributes have been codified into S Gl st U st
machine-readable JISON Schema documents AT ] e A R el e i

that can be used by automated mismatch )
detection tools.

Tools can range from a simple web-based Training Data

Descriptor ——
client that reads in all descriptors and / zm—
presents then to a user for evaluation, to a peratons _see_ Diabution .+ Lo

more elaborate tool or system component for .
runtime data drift detection. i

Logs
A
'
1 Input+Prediction+Other Metrics

Downstream
Components

Upstream

Data Predictions
=——> ML Component =———>
Components
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November 2020 — September 2021

Predicting Inference Degradation in
Production ML Systems
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Motivation

ENTERPRISE MISSION SUPPORT OPERATIONAL

* Inference quality of deployed ML models Al Al Al
changes over time due to differences
between characteristics of training and
operational data — Inference Degradation

OPERATING ENVIRONMENT

« State of engineering practice in industry
relies on periodic retraining and model
redeployment strategies to evade inference
degradation, as opposed to monitoring for
inference degradation

RESOURCES

Ample Scarce

« Strategy of periodic retraining and
redeployment becomes more infeasible as -
DoD Al systems move into the Operational | »
Al space sanifican

FOUR INDEPENDENT FACTORS

* RAND Corporation. (2019). The Department of Defense Posture for Atrtificial Intelligence: Assessment The Spectrum of DoD Al Applications*
and Recommendations. https://www.rand.org/pubs/research_reports/RR4229.html
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Problem: Inference Degradation is Hard to Identify Timely
and Reliably

2 2
= =

>
8, (6]
Py [}
8 [8)
o o
o Q
£ - £

Too frequently: Wasting time time

resources training and deploying
Not all degradation is gradual:
ML capability had to be taken

retrained models when it was not
necessary to do so, in addition to
normal redeployment risks

Too late: A non-optimal course of action
recommended by an ML capability may

offline while the model was
retrained and redeployed

have already been put in place by the time
the model is retrained and redeployed

Failure to recognize inference degradation can lead to misinformed decisions, costly
reengineering, and potential system decommission.
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Solution

Develop a set of empirically-validated metrics that are predictors of when a
model’s inference quality will degrade below a threshold due to different types of
data drift, and therefore requires retraining.

The metrics will be able to determine

1. When a model really needs to be retrained so as to avoid spending resources
on unnecessary retraining

2. When a model needs to be retrained before its scheduled retraining time so as
to minimize the time that the model is producing sub-optimal results

Metrics will be validated in the context of models using convolutional neural
networks (CNNs), which are commonly used in DoD applications for object
detection.
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Approach

Create a test harness and data sets to baseline existing drift metrics.

Test the ability of single metrics to predict inference quality over time for models

based on CNNSs.

Develop complex metrics based on performance of single metrics.

Validate new metrics with respect to accuracy and timeliness.

Chi Square Score

KL divergence

Accuracy
o
™
(3]

0.80 1

0.75 1

Diw(PlQ) = [ piog (f;) d

=

T T T T
5000 10000 15000 20000

Each graph illustrates the
relationship between a
change in the data drift
metric and a change in
the inference quality
metric (in this case
accuracy)
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Towards Empirically-Validated SE4ML Practices

Development of novel metrics for predicting inference degradation for CNN-based
models, data sets and extensible test harness software released as open source will
improve timely and resource effective retraining of ML models

Definitions of mismatch can serve as checklists as ML-enabled systems are developed

Recommended descriptors provide stakeholders with examples of information to request
and/or requirements to impose
Identification of attributes for which automated detection is feasible defines

* New software components that should be part of ML-enabled systems

* New tools for automated mismatch detection

Carnegie Mellon University . i
© . . . Software Engineering for Machine Learning [Distribution Statement A] Approved for public release and unlimited distribution. 34
Software Engineering Institute 2021 Carnegie Mellon University
2 2



Contact Information

Grace A. Lewis

Principal Researcher and TAS Initiative Lead
Tactical and Al-Enabled Systems
glewis@sei.cmu.edu

http://www/sei.cmu.edu/staff/glewis
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