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Introduction

An area of work within the SEI is developing practices, methods and tools for reliable end-

to-end development, deployment, and evolution of AI-enabled systems.

Our goal is to develop empirically validated practices to guide AI engineering and support 

software engineering for machine learning (SE4ML) systems. 

This webinar reports on two focus areas:

• Characterizing and Detecting Mismatch in ML-Enabled Systems

• Predicting Inference Degradation in Production ML Systems
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Why Software Engineering for Machine Learning? 1

Machine learning components are parts of much larger systems

One challenge with ML components is that their performance depends on how similar 

operational data is to their training data (i.e., training-serving skew)

• Systems need to provide a way to know when model performance is degrading

• Systems need to provide enough information for retraining

“Only a small fraction of 

real-world ML systems is 

composed of the ML code, 

as shown by the small 

black box in the middle. 

The required surrounding 

infrastructure is vast and 

complex.” [Sculley 2015]
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Why Software Engineering for Machine Learning? 2

ML-enabled systems need to be engineered such that

• System is instrumented for runtime monitoring of ML components and operational data

• Training-retraining cycle is shortened

• ML component integration is straightforward

Many existing SE practices apply directly but are simply not used in the data science field

Other SE practices will have no be adapted to extended to deal with ML components
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January 2020 – December 2020

Characterizing and Detecting 

Mismatch in ML-Enabled Systems
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We define an ML-enabled system as a software system that relies on one or more ML 

software components to provide required capabilities.

A trained model(s) 
is wrapped as a 
special type of 

Software 
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System
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Problem: Multiple Perspectives

ML-enabled systems typically involve three 

different and separate workflows

• Model training

• Model integration and testing

• Model operation

… performed by three different sets of 

stakeholders ...

• Data scientists

• Software engineers

• Operations staff

… with three different perspectives
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Problem: Mismatch between Assumptions made by each 
Perspective

We define an ML mismatch as a 

problem that occurs in the 

development, deployment, and 

operation of an ML-enabled system 

due to incorrect assumptions 

made  about system elements by 

different stakeholders that results in 

a negative consequence. 

We also posit that ML mismatch 

can be traced back to information 

that could have been shared 

between stakeholders that would 

have avoided the problem.
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Examples of Mismatch

Poor system 
performance 

because 
computing 

resources for 
model testing 
different from 

operational 
computing 
resources 

(computing 
resource 

mismatch)

Poor model accuracy because model training 
data different from operational data (data 
distribution mismatch)

Large amounts of glue code because trained 
model input/output very different from 
operational data types (API mismatch)

Tools not set up to detect 
diminishing model accuracy, 
which is the “goodness” metric 
defined for the ML component
(metric mismatch)

System failure due to poor 
testing — developers not 
able to replicate testing 
done during model 
training (test data 
mismatch)
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Goal is to develop machine-readable descriptors 

for elements of ML-enabled systems that

• Can serve as checklists as ML-enabled systems 

are developed

• Provide stakeholders (e.g., program offices) with 

examples of information to request and/or 

requirements to impose

• Include attributes for which automated detection 

is feasible, and therefore define new software 

components that should be part of ML-enabled 

systems

Solution: Mismatch Detection and Prevention in ML-Enabled 
Systems
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Study Protocol — Phase 1

1. Identify examples of 

mismatches and their 

consequences via interviews

2. Validate mismatches via a 

practitioner survey

In parallel:

3. Identify attributes for describing 

elements of ML-enabled 

systems via a multi-vocal study

• White Literature Review

• Gray Literature Review
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Study Protocol — Phase 2

1. Mapping between mismatches and attributes

• For each mismatch, what is the set of 

attributes needed for detection, expressed as 

a predicate over identified attributes

2. Gap analysis

• Which mismatches do not map to any attribute 

(and vice versa)?

• What additional attributes are necessary for 

detection?

3. Descriptor Formalization

• Codify attributes into a JSON Schema 

descriptor specifications

• Create sample instances for descriptors
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Scope of Today’s Presentation
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Interview — Data

Total Interviews = 20

Total Mismatch Examples = 140

Total Instances of Information that was not Communicated that Led to Mismatch = 232
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Results: Mismatch Categories
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Trained Model Subcategories

Most mismatches were related to 

• lack of test cases and test data that could be used for integration testing

• lack of model specifications and APIs that provide greater insight into inputs, 

outputs, and internals (if applicable)
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Operational Environment Subcategories

Most mismatches were related to lack of runtime metrics, logs (including 

deployed model version), data, user feedback, and other data collected in the 

operational environment to help with troubleshooting, debugging, or retraining.
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Task & Purpose Subcategories

Most mismatches were related to lack of lack of knowledge of business goals or 

objectives that the model was going to help satisfy.



20Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Raw Data Subcategories

Most mismatches were associated with lack of 

• metadata such as how it was collected, when it was collected, distribution, 

geographic location, and time frames

• description of data elements, such as field names, description, values, and 

meaning of missing or null values
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Development Environment Subcategories

Most mismatches were related to lack of knowledge of programming languages, 

ML frameworks, tools, and libraries used in the development environment.
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Operational Data Subcategories

Most mismatches were associated to 

• lack of operational data statistics, such as distribution and other metrics, that 

could be used by data scientists to validate appropriateness of training data

• details on the implementation of data pipelines for the deployed model
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Training Data Subcategories

Most mismatches were related to lack of details of data preparation pipelines to 

derive training data from raw data.
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Mismatch Validation 
Survey — Data

Survey Responses = 31
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Mismatch Validation 
Survey — Results
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The importance of sharing information 

related to each subcategory to avoid 

mismatch was mostly rated between

Important and Very Important for all, 

which demonstrates the validity of the 

identified causes for mismatch.
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Mismatch Validation Survey —
Observation

Not surprisingly, what is important varies 

per role …

… which makes it even more important 

to make all this information explicit.
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Next Steps: Develop Machine-Readable Descriptors

OE

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 Am

Mismatch 1 X X X A1 + A2 > A4

Mismatch 2 X X A8 = A12

…

Mismatch N X X Chi-Square(A5, A14)

FormalizationOD

Mismatch

Descriptors

TDTP RD TM DE
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Vision: Automated 
Mismatch Detection

Resulting attributes have been codified into 

machine-readable JSON Schema documents 

that can be used by automated mismatch 

detection tools. 

Tools can range from a simple web-based 

client that reads in all descriptors and 

presents then to a user for evaluation, to a 

more elaborate tool or system component for 

runtime data drift detection.
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November 2020 – September 2021

Predicting Inference Degradation in 

Production ML Systems 



30Software Engineering for Machine Learning
© 2021 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Motivation

• Inference quality of deployed ML models 

changes over time due to differences 

between characteristics of training and 

operational data → Inference Degradation

• State of engineering practice in industry 

relies on periodic retraining and model 

redeployment strategies to evade inference 

degradation, as opposed to monitoring for 

inference degradation

• Strategy of periodic retraining and 

redeployment becomes more infeasible as 

DoD AI systems move into the Operational 

AI space

The Spectrum of DoD AI Applications** RAND Corporation. (2019). The Department of Defense Posture for Artificial Intelligence: Assessment 

and Recommendations. https://www.rand.org/pubs/research_reports/RR4229.html
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Problem: Inference Degradation is Hard to Identify Timely 
and Reliably
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Too frequently: Wasting 
resources training and deploying 
retrained models when it was not 
necessary to do so, in addition to 

normal redeployment risks

Too late: A non-optimal course of action 
recommended by an ML capability may 
have already been put in place by the time 
the model is retrained and redeployed

Not all degradation is gradual: 
ML capability had to be taken 
offline while the model was 
retrained and redeployed

Failure to recognize inference degradation can lead to misinformed decisions, costly 

reengineering, and potential system decommission.
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Solution

Develop a set of empirically-validated metrics that are predictors of when a 

model’s inference quality will degrade below a threshold due to different types of 

data drift, and therefore requires retraining.

The metrics will be able to determine 

1. When a model really needs to be retrained so as to avoid spending resources 

on unnecessary retraining

2. When a model needs to be retrained before its scheduled retraining time so as 

to minimize the time that the model is producing sub-optimal results

Metrics will be validated in the context of models using convolutional neural 

networks (CNNs), which are commonly used in DoD applications for object 

detection.
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Approach

Create a test harness and data sets to baseline existing drift metrics. 

Test the ability of single metrics to predict inference quality over time for models 

based on CNNs. 

Develop complex metrics based on performance of single metrics. 

Validate new metrics with respect to accuracy and timeliness.

Each graph illustrates the 

relationship between a 

change in the data drift 

metric and a change in 

the inference quality 

metric (in this case 

accuracy)
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Towards Empirically-Validated SE4ML Practices

Development of novel metrics for predicting inference degradation for CNN-based 

models, data sets and extensible test harness software released as open source will 

improve timely and resource effective retraining of ML models

Definitions of mismatch can serve as checklists as ML-enabled systems are developed

Recommended descriptors provide stakeholders with examples of information to request 

and/or requirements to impose

Identification of attributes for which automated detection is feasible defines 

• New software components that should be part of ML-enabled systems

• New tools for automated mismatch detection
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