

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 1

Tom Longstaff: Hi everyone. Welcome to today's installment of the SEI webcast, a discussion
on DoD software advances and what's next for the SEI. So sorry for the delay for a couple of
minutes; we had a few technical difficulties, looked like focused around improvements in
security for YouTube. So with any luck, we are rolling now, and I'm seeing your comments on
the top chat, so this is great. Again, we want this session to be interactive, so please, at any time,
we'll be watching the chat and we'll try to get to your questions as soon as we see them.

I have with me here today Jeff Boleng. Jeff, if you could please introduce yourself and tell me a
little bit about your background.

Jeff Boleng: Sure. Yeah, I'm a retired Air Force officer, and I started at Carnegie Mellon at the
Software Engineering Institute in about 2012, and in 2018 had the privilege of being recruited to
go to work in Acquisition and Sustainment at OSD to work on software modernization efforts.

Tom Longstaff: Okay, great. What'd you do before that? Where have you been around? How
did you get to where you are now?

Jeff Boleng: Well, most of the time, post-2012, working at the Software Engineering Institute.
Was principal researcher there, worked on a lot of embedded software support for SOCOM and
some other projects. For the last couple of years there I was the acting CTO, the job that you've
got now, Tom, and then for the last two years been working at OSD. It started off-- a lot of the
momentum started off really around the software modernization effort. In early 2018-- actually,
probably 2017, when the Defense Science Board did their study on software practices in the DoD
and the Defense industrial base, and they released their final report at the first of February on
2018, and I joined A&S, Acquisition and Sustainment, in April of 2018.

Tom Longstaff: That sounds great. By the way, thank you for warming up the seat for me in
the CTO chair. It was really great. I've been here for about a year and a half now, coming into
sort of do it, and you sort of left us in good hands before going off to an IPA.

So for those of you don't realize it, IPA is an inter-personnel agreement. It's an arrangement
where the government can actually hire somebody in from like an FFRDC or a contractor and
bring them in and have them operate with all the rights and privileges as a full government
employee, in this case a full government senior. So Jeff, can you tell us a little bit about what it
was like to be an IPA down at the Pentagon and sort of working day to day in that situation?

Jeff Boleng: Yeah, absolutely. Interestingly, 21-plus years in the Air Force and I never had a
Pentagon assignment, so this was my first real time to join and work day to day at the Pentagon.
I learned an awful lot. It is the bureaucracy that we all feared and loved. There's pros and cons
with the bureaucracy at the Pentagon. It was really a privilege to work for Ms. Lord, for Ellen
Lord, as the undersecretary for Acquisition and Sustainment. She gave me a pretty clear

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 2

mandate to help modernize not just defense programs' software approaches, but also help the
Defense industrial base as much as we could, and that was what we embarked on over a couple-
year journey.

Tom Longstaff: Sounds really fun. I myself served as an IPA for a few years at NSA, so this
was one of the more exciting times in my life in terms of trying to get some of this work done. I
assume for you it's been that kind of a really interesting rollercoaster ride. So while you've been
there, while you've sort of been working that area, what kinds of policy initiatives, what kinds of
things were you able to work on?

Jeff Boleng: So I was lucky that when I got there, not just the Defense Science Board report had
been released just a couple of months before I got there, and it had a number of
recommendations, seven recommendations, on ways to improve software practices of DoD and
the industrial base, but then also right about the same time, in I think the 2018 National Defense
Authorization Act, Congress also told the Defense Innovation Board to do a study on software
acquisition and practices. That was executed through a lot of 2018, and I actually really got to
piggyback and travel with them to a lot of programs and interact with them a lot on a lot of their
findings; and then in January of 2019 the lead for that study moved to the HASC-- Bess
Dopkeen-- she moved over to become a HASC staffer, and I took over as the government rep for
that study, which we delivered in April of 2019, and then from that point on, Ms. Lord asked me
to stay on and implement as many of the recommendations as I could-- or not just me, obviously-
- but help OSD and the services implement as many of the recommendations from both the
Defense Innovation Board study and also the Defense Science Board study, and that's led to a
whole number of things that we'll talk more about, I think.

Tom Longstaff: That sounds really excellent. Just as a side note, during this time period, Lee
online has asked: Did you ever work with Kessel Run? So what was your relationship with the
things that are going on within the software factories that are happening in Air Force and more
broadly in DoD?

Jeff Boleng: Yeah, in fact I have worked very closely with Kessel Run. I was on a call with
some of the Kessel Run leadership right before this, actually, and the F-35. So one of the things,
I'm really a big proponent of learning by doing, and I think that policy, especially at the OSD
services level, at the highest levels, really needs to be informed by practical experience and by
doing, and one of the things I've been heavily involved with is the F-35 program, the joint strike
fighter. In that program, we're working with Kessel Run as one of the primary application
developers to replace the Autonomic Logistics Information System, which is the maintenance
and supply system for the F-35. So working closely with them. They've been developing--
they've got at least 10 or 12 application development teams that have been working on that
software with us; and then more broadly, getting to know many of the other software
development activities-- "software factory"-- that's the term that was coined in the Defense

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 3

Science Board report. I've got mixed feelings about the term. It conjures some really good
things but also maybe some things that maybe trivialize the difficulty of software production
sometimes.

But organizations like NIWC, was SPAWAR, I think, they have an initiative called CANES and
C2C24, which is Code to Combat in 24 hours. The Army, especially Army Intel, has been doing
a lot of software modernization with their work. JIDO, the Joint Improvised Defeat
Organization, they had one of the very early, really agile responsive software development
activities. So there's been a whole group of programs that have been transitioning and doing this.
Interesting news reports came out this morning about the F-16 has really pivoted with their flight
software in the jet to deliver much more quickly and even to the point where they're talking
about online updates, probably not in flight, but definitely being able to update very quickly the
software in the cockpit of the F-16. So yeah, there's a lot of momentum now. We have a long
way to go, but there's a lot of momentum.

One of the findings and recommendations from both the DSB, the Defense Science Board, and
the Defense Innovation Board, was that DoD and our industrial base, they actually really did say
about two decades behind in our software practices. I find that to be true. We've come a long
way; we've still got a long ways to go. The effort really has been on bringing our practices in the
industrial base and in software programs in the DoD to sort of commercial best practice state of
the practice. There's going to be more effort-- which I think, Tom, you and I will talk about
later-- about what's next, what do we do next.

Tom Longstaff: Yeah, it's interesting, because one of the major initiatives at the SEI, one of the
things that we're trying to do next, is to build on all those sort of practices from industry that
have been sort of out there, tailor them such that they deal with sort of the unique nature of some
of the DoD missions, and then try to get them actually embedded in some of these larger
programs-- very, very tricky in some of these cases to take what is a long-term culture and then
sort of evolve it into what we know is going to be a lot more effective in terms of software
creation, delivery, feedback, using what we know about DevOps, what we know about Agile,
what we know about resilience and security tools, and what we're learning about AI engineering.
So when you look to all of these areas and the places within DoD that are really leaning forward,
like F-35, do you see them as very similar to what you know about in industry? Do you see
much difference between what they're doing and what you've seen in the industry side? How big
are the differences between DoD and industry?

Jeff Boleng: Wow. I do think-- we try hard-- DoD has a history of considering-- government in
general has a history of considering that it's-- the phrase we use is a "special snowflake"-- and
we've been trying hard to dispel that notion, that we're not all that different, that the software
challenges we have and the software programs that we have can use, by and large, a lot of
commercial best practices. I think some of the differences though are a lot of our programs are

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 4

embedded program. So some of the continuous integration, continuous delivery and agile
approaches-- I'm a proponent that they can and do work well on embedded programs, on safety-
critical and embedded programs. That's something the industry is still working to discover as
well, and there's open debate there.

And then a lot of our programs have humungous legacy code bases. Programs like Aegis is one
of the ones that I visited early on and have done some interaction with. They've got a common
source repository that is upwards of 20-ish million lines of code, and the Aegis weapons system
writ large is a massive amount of complexity and subsystems, and I think they have well over a
thousand developers that contribute to that code base from a whole variety of companies, not just
from the prime contractor but a variety of subs, and also there's actually good government
partnering and government interaction with that code base, which I think is one of the keys to
success, of good programs, is government takes ownership and is involved day to day on the
agile teams with the contractors. I think that kind of partnering is essential. That's where we see
a lot of success.

Another big difference I think is the level of required rigor for developmental test, operational
test, which developmental test is really sort of verification, "Did I build what I was supposed to
build?" Operational test really is validation, is, "Is it fit for purpose? Does the thing that we
built meet the mission requirements that we need?" And then also the safety certification and
flight testing and all of that other stuff. Anytime you build a system, especially a complex
weapons system that yields deadly force, there's a huge responsibility there to make sure that it's
safe and secure and high quality. So what have been referred to as "tailgate processes"-- that I
think diminishes the importance of them a little bit-- but those end processes are necessary, and
one of the big challenges we're having and seeing is how do we integrate those. Another term
that's used often is "shift-left", "shift-left testing". How do we integrate those activities more into
the DevOps cycle, the DevSecOps cycle, and create confidence as early as we can during
development so that those other processes at the end can be shortened because we've got things
like automated testing that-- we're never going to get away from some level of developmental
test, operational test and safety certification flight test-- we're never going to get away from that
entirely, but I do think that we can develop ways, or build confidence into the development tool
chain so that those processes are shortened and we can move on more rapid iterations.

And then also the big principle of DevOps-- another big principle of Agile and DevOps is batch
size, decreasing batch size. If we introduce smaller changes more often, those things are also
easier to certify. But then another challenge with that one is the legacy code bases we have in
some cases-- in many cases, actually-- don't lend themselves to isolation as well. So a lot of the
testing community will always say, "If you touch one line of code, I got to retest the whole
thing." In a good architecture and a good design, we ought to be able to implement those
changes and localize their impact so that we maybe don't have to retest the whole thing or
recertify the whole thing, and actually that's the case in some other more modern programs that

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 5

we've been working on. There's been very good architectural and design approaches that have
helped localize. Like the mission systems in the cockpit are completely segregated from the
flight control systems. So if we make a change to the mission systems to be more responsive to
an adversary threat, we don’t necessarily have to recertify the flight control systems. So in some
of our newer programs, that design architecture approach has been showing fruit, so that we can
move some of the certification and testing earlier into the lifecycle.

Tom Longstaff: Actually, Jeff, that is a wonderful segue to a question we got from David in the
chat. By the way, hi David. It's been a long time. One of the things that we're looking at in
terms of helping to solve that problem, how do you get automation and isolation of the pieces so
you don't have to retest the whole thing, is in model-based software engineering, in creating
formalized models that allow us to do guaranteed separation, and some of the automation that
would test against these kind of requirements. Do you see that as something that could really be
effective at helping us get to some of the automation and some of the real-time operational T&E
that needs to happen in order to make this cycle time short?

Jeff Boleng: I do. I'm a huge proponent, obviously-- people that have heard me talk before or
met me-- huge proponent of automation and tools. Tools do not trump competence-- I have to
say that up front. At the end of the day, the single most important thing about software
development is the competence of the developers and the engineers involved. But tooling can go
a long way to assist, and especially automation. There's a lot of promise in model-based system
engineering, especially when you couple model-based system engineering-- the question I think
David was really asking is: Do the tools need more help in model-based system engineering?
And I think they absolutely do. We have some tooling around it. I think a recent program--
actually maybe not as recent nowadays-- but there was a DARPA program called HACMS, the
High-Assurance Cyber Military Systems program, that was about a four- or five-year program
that showed incredible amounts of power from model-based system engineering, from formal
verification, and from automating the tool chain.

One of the things that I see though is we've got these model-based system engineering tools and
we create digital twins and we create a simulation environment so that we can work analysis of
alternatives and tradeoffs and design alternatives and even test different code changes, but the
digital thread from actual engineering and creation to the end, where we actually deploy to
operations with those code, that digital thread is not always preserved, and one of the things that
I have said for a long, long time now, since I was a wee developer years ago, was the only thing
that really gets maintained in our systems and sustained is the actual source code, and until we
have a way to kind of round-trip from our tool chains, if I make a design change and that thing
generates source and I need to fix something, I need fix a complex race condition or something
like that, if I can fix it in the tool or even fix it in the code and round-trip it back to the model-
based engineering tool, there's got to be parity there between all of the digital artifacts in the tool

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 6

chain, all the way from conception and engineering all the way to operations. If we can't fully
close that loop I think the tools are going to continue to struggle.

Tom Longstaff: Yeah, I completely get you, and of course the other thing that really resonated
with me a lot was your statement that tools are really no substitute for expertise. They can help
that human-machine teaming, where we can get together and really take the most advantage of
the human designer, the human coder, the people who are actually giving the feedback from the
operational perspective and sort of coming back, so that the tools are even more powerful in the
hands of expertise and things that are happening there. Completely agree though-- the tooling
that we have right now, probably insufficient to link the feedback and design requirements all the
way back to a modeling change that would then lead to potentially automated code construction,
that would go down that way. Do you think that-- these were solutions or items that are really
called out within the DIB study and the DSB recommendations. Is this in line with where those
studies came down in terms of the real problem with software never being finished and things
that are kind of out there? Do you see that as all lined up in the same direction?

Jeff Boleng: Let me make sure I understood the question properly. So certainly I think the DIB,
the Defense Innovation Board report, touched more on model-based system engineering, and we
had the participation of the folks in OSD from research and engineering that lead the digital
engineering strategy, Philomena Zimmerman and some of the other folks in R&E-- so shout-out
to them; they were very helpful. I don't think the DSB study did it as much. I actually really
have to say a lot of the recommendations are more fundamental than advanced tools and
advanced approaches around model-based system engineering. I think our biggest struggle right
now is talent, digital talent, attracting and retaining digital talent. The DoD has a personnel
system that's been around for a long time and it's not really responsive to talent.

The DDS, the Defense Digital Service, has done a lot of work, and continue to do work, and
there's some new language in the most recent 2020 National Defense Authorization Act. They've
done a lot of work on helping attract and maintain talent, and one of the vignettes and the stories
they tell is if you go out on USAJobs, which is the place where we try to attract our talent, and
you do a search for modern titles for software developers, like User Experience Designer, or a
product manager or a product owner, you won't find those in any of those job announcements.
So we really-- like I said, I think really the reports were less about high-tech tools and processes
and more about really simplicity and adopting commercial best practices. The commercial
world-- I mean, the Facebooks, Netflix, Google, Microsoft, all of the big software companies,
they are able to iterate on a capability and deliver new features in hours and minutes and dozens
of times or hundreds of commits per day, or thousands of commits per day, that actually go
through the tool chain with automated test and security scanning to deployment, sometimes to
sort of red/black AB deployments, and then 1 percent, 5 percent, 10 percent rollout, but they're
able to actually release capability at incredibly rapid paces in order to continue to innovate, and
that's as much of a culture and people thing as it is anything to do with tooling and processes.

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 7

Tom Longstaff: Yeah, I can absolutely see that as true. Actually, this kind of gets into some of
the things that Edward is saying in the chat, where if you're going to use things like auto-coders,
they have to generate actual working source. I think that's also sort of in line with this, and
making sure the tools are working in this way. Robin has sort of an interesting thing: Do you
think the functional-based organization is impacting success for DevSecOps? So in your travels
around DoD and your visits to commercial areas, have you seen a lot of success within
functional-based organizations and that entire movement toward functional languages and
representations and models, as opposed to some of the more traditional procedural ways that
we've constructed these codes?

Jeff Boleng: There's a lot there. I want to comment on the auto-coding thing really quickly and
then I'll get to that part-- is I completely agree that auto-coding, if we use it and we do it, it's got
to create executable code, workable code. I think it also has to create human-intelligible code. A
lot of times-- especially in the era where we can't round-trip things. So human-intelligible code
is really important from automatic code generation, and I'm glad to see Robin's participating.
Thanks, Robin, for the question. You made the leap to sort of functional languages. I'm also a
big proponent of modern languages and using modern languages to help provide guardrails and
safety checks for programmers and developers. I actually haven't seen-- or this could be my
own-- I just didn't see it and they could exist, but I haven't seen a real uptick of really modern
language and even functional languages in any really of the programs that I reviewed.
Languages, a teeny bit of use of things like Go, not really a lot of use of things like Scala or Rust,
which provide a whole bunch of benefits.

There's an interesting story about the Firefox team at Mozilla. They rewrote their code rendering
engine in Rust and it was not only far more defect-free because of the inherent strong typing of
the language, it's also faster-- it was like 30 percent faster-- and they rewrote the entire rendering
engine in a matter of less than a year with a fairly small development team. Some of those
things-- the expressiveness and productivity of some of the new languages, while they're a lot
more complex to learn and master, really do bring a lot of benefits, and I haven't seen a real
uptick in those.

Interesting, I got to go to Oklahoma City and talk to some of the B2 team there, and they have in
their-- this goes back to our legacy code base issue-- they've got massive piles of JOVIAL code
that they have to maintain, and I actually said, "Wow, how many graduates do you have that are
fluent in JOVIAL that you can hire?", and the answer of course is zero. So that's a challenge.

One of the things-- I don't know, I might have seen it in the chat window over on my left-- I'm a
fan-- the legacy code bases we deal with, I'm actually a fan of, in some cases-- in fact, maybe in
many cases-- we need to do clean sheet. We should not be afraid to abandon some of our legacy
code bases because they're so hard to maintain and use so much old technology that we need to

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 8

really start strangling the leviathan, as I think it was-- I'm trying to remember who coined that
term. But we really need to start replacing a lot of these legacy code bases with modern
languages, modern tools, and modern design approaches, because we can't forklift the old ones.
I just don't think it's feasible to do effectively.

Tom Longstaff: Yeah, I can absolutely see and completely agree, and this sort of leads directly
into the next comment from Young Thang, where they basically were saying: Are you
considering refactoring, or tool-aided refactoring? We at the SEI absolutely-- we're doing a
significant amount of investment in refactoring, Jeff, for exactly the reason you're talking about,
for trying to understand how are we finally going to get away from some of this legacy code, and
one of most important things in refactoring that we're trying to do is isolating various portions
that in a very large code base we can refactor out, bring into a modern language, bring into sort
of a modern set of tools, and then essentially reimplement, using sort of much better and much
more solid and much more resilient techniques that might kind of come into that way. So I think
that's a great direction.

I'm encouraged to see that we have so much of the language work and some of the things
happening in industry and sort of moving that way, because that is probably the way that we're
going to pick up what the real benefits are and then move them sort of into DoD. We used to
have DoD spin-out, and we talk a lot about spin-in now, and spinning these technologies back
into DoD and sort of making that work. Hasan, of course, talks about: What do you think about
the requirements and use cases for functional programming? Can it be applied to many DoD
systems? So I think you started to answer that. Do you want to go down a little bit further down
that to talk a little bit about where you see the primary areas? One of the things that, for
example, people talk a lot about the use of functional languages within embedded systems and
various kinds of real-time systems. So what do you see there?

Jeff Boleng: Interesting. Yeah, I want to keep the discussion a bit more broad and not maybe
do a deep-dive on just functional languages. There are different programming paradigms that are
very appropriate for different problem sets, and I think we haven't always done a good job of
applying the right language that supports the right programming paradigm to the right piece of
the design, and we also sometimes have-- I think we have a resistance to use multiple paradigms
and multiple languages for a single system and we shouldn't be afraid of that. Modern design
techniques that create a lot of loose coupling allow a lot of the components to be implemented
separately and in the most effective technology that is available, and I think those are disciplines
that we need to push on. The auto-refactoring-- I know there's a lot of research at SEI in Ipek's
group that-- they've got a research project called Untangling the Knot, which is understanding
legacy code bases. I think it's important to be able to use some level of automated tools to
refactor legacy code bases, but I'm actually maybe a bigger proponent of constantly refactoring
your existing code base and reimplementing.

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 9

If you look at some of the articles that are out there about some of the really big commercial
code bases, some of the big commercial code bases, there's not code in them that's more than five
or ten years old, because the teams are constantly refactoring, and this is a problem-- the
subheading of the Defense Innovation Board's report was "Software's Never Done", and in the
government and in DoD, we haven't yet embraced the fact that software's never done, that we
need to constantly refactor our code bases and ferret out the legacy pieces and reimplement the
legacy pieces. Part of it is we never actually-- from a programmatic standpoint, from an
acquisition standpoint, we never actually budget for that. We think that we can have a long list
of requirements that once we satisfy them all with some level of software, we're done, and then
we turn it over to maintenance, sort of like you would a hardware, like a tank or a jeep. But
software is just not like that, and that's one of the big things that-- I'm a bit of a crusade to kill the
term "software maintenance". "Software sustainment" is a little better, but even that I'm not a
big fan of. We need to continuously refactor our code bases and continue to modernize them. I
actually have been an advocate with program managers I've talked to of budgeting between 20
and 30 percent of your ongoing software budget just to refactoring and improvement of the code
base, just to caring and feeding for the code base.

Tom Longstaff: Yeah, that would be a real game-changing, if we actually had that level of
budget in refactoring and keeping code from becoming too legacy. Young Thang's point on the
chat was: Do you have difficulty understanding legacy code? Yeah, the older it gets, the harder
it is to understand it, and the fewer number of software professionals that remember what the
code was really like. This is, I think, one of the reasons why this sort of constant refactoring and
constant movement and budgeting for it, as you say, is sort of the way around that. Maybe the
other area that I find there that's required if we're going to do that level of refactoring and
pushing out updates on a regular basis is we're going to have to break down some of the barriers
between acquisition and sustainment. We're going to have to create common infrastructure that
actually sort of works between deployed systems and the acquisition systems and the models that
generate the acquisition systems. These all come together for really an entire new environment
or new approach to the way software happens within DoD. I think that's an incredible direction
that you're sort of pointing out here.

Jose actually points to a huge elephant in the room, so I'm going to go ahead and go there:
Classified systems and high-security systems and security requirements on development systems
and deployed systems. Is this a barrier? Is this something that helps us? What is the interaction
between all that we're talking about in software and the security requirements, some of which
have been handed down for an awfully long time, that are within our systems?

Jeff Boleng: Yeah, I'm going to comment on that and take it a bit more broadly also, as most of
our systems, most of our weapons systems at some level, some of the software capabilities that
they deliver are classified. Especially offensive capabilities become special access programs.
We've seen a lot of-- we've seen the ability to do an awful lot of source code development in an

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 10

unclassified space. It's probably still going to be a highly controlled place, like for official use
only, or in a GovCloud instance that's still highly controlled, but we can do a lot of development
in an unclassified sense. There was one of the programs that I was associated with that upwards
of 80 to 90 percent of their software development is done unclassified, and if you follow the sort
of cloud native development and 12-Factor App, you want to localize a lot of your specific
changes to configuration files and not actually embed those kinds of dependencies in your source
code.

So a big challenge that we have is we have these enclaves, these classified network enclaves, and
they're still to this day-- this has been-- I've witnessed this for three decades. We've always
talked about interconnecting our classified enclaves with each other so that we can share data in
a secure, appropriate way from low to high or whatever. We still struggle with that and are
challenged with that, and where this becomes a real issue is if we have to do something on a
classified enclave and new development, the tool chains and the features lag sometimes
significantly behind what's available in commercial cloud or commercial tools. An example of
this is there's a thing call C2S, which is the classified cloud computing enclave that has the TS-
SCI enclave that the intelligence computer instituted with AWS and now they've broadened it to
Azure. The feature sets available in those APIs lag from 12 months to two years, for example.
So if you develop most of your software in an unclassified enclave, even though it's a secure
enclave-- I don't want anybody to misunderstand that-- and you depend upon a certain feature
set, like a certain data API or a certain backing store or something like that, and there's not
feature parity when you move that up to your production environment, which oftentimes the
production environments are definitely classified even if most of the development is not, and
there's not feature parity on the infrastructure, we run into a lot of problems, and that's a real
technical challenge that we have to address, we've got to get better at.

Tom Longstaff: Yeah, I agree. This is, I think, leading to Martin's comment in the chat of: It's
close to impossible to develop on a separate system. I wouldn't go so far as to say close to
impossible, but clearly there's a lot of the infrastructure and modern tools that we expect to have
on these systems, but my perception is we have two major issues. In the first place, some of
these modern software tools are difficult to run in isolation. They count on having the entire
backend of sort of the internet in the place; and the second thing is the whole-- how do you do
C&A? How do you do certification and accreditation fast enough to keep the development
system on these secure enclaves that are secure for a reason? How do we really keep those up to
date? I think that gets to Paul's question: Do we have modern software tools on classified
clouds? So, what do you think, Jeff?

Jeff Boleng: I think we have-- it depends on how you define "modern". I think our classified
clouds are definitely in much better-- much more modern than they ever have been, but like I
said, there's still some feature lag of, I don't know, twelve months to two years in some cases.
That's getting better but it's still a really manual process to keep those featured updated when a

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 11

new software release comes out for a library, like identity management library, or for Kubernetes
or something. When a new release comes out, even as hard as we try to move those releases into
our classified enclaves, in our classified development enclaves,. It's still a largely manual
process. So while that's getting better, we're still not there.

I would say the SAP community has done a really good job with a thing called FENCES, which
is a capability that they've built out to allow the kind of work that's actually helping some of our
programs that are really getting started with new software.

I wanted to comment and actually make a little point that it's my belief that a lot of software
today, if not a predominant amount of software today, is really software by construction. There
are so many good open-source libraries and even commercial libraries that are available that you
can use that really-- I take a phrase from Leo Lessig from the Free Software Foundation-- or not
Free Software Foundation, sorry-- I think from his book called "Rip, Mix, Burn", and I think a
lot of our software now is we rip capabilities from a lot of places, we mix them together and we
burn them, and we've got our own new capability that we provided some level of code but it's a
lot less than what we have been doing in the past, and in that kind of an era, having access to
those widely available libraries that are both commercial and open source and having feature
parity is just essential. So like I said, it's another challenge that is recognized and is being
worked on, but I think we're maybe not making the progress that we need to make on that one.

Tom Longstaff: Yeah, that makes absolute sense. I think looking to David's comment online,
the Federated Kubernetes cluster, yeah, I think that's directly in line with the kind of stuff that
you're talking about. Completely agree that greenfield programming almost doesn't exist
anywhere. For a long time, earlier in my career, we talked a lot about clean room software
engineering and reinventing from scratch and redoing that thing. But going back to an earlier
discussion, when we were talking about refactoring and doing sort of constant refactoring and
keeping that up to date and keeping code fresh, again, it really isn't about always recoding
everything; it's always about adapting sort of latest things that other people have coded, mixing
them up, gluing them in, twisting them until they fit just right, and then sort of having the new
capabilities sort of in there.

That doesn't seem to be the way acquisition works. That doesn't seem to be the way that within
DoD the regs and the FAR and everything else-- it just doesn't seem to fit with that. So where
are our disconnects in DoD acquisition versus sort of code by construction?

Jeff Boleng: This is a much bigger challenge that goes more broadly, is of course we all want to
be good stewards of our taxpayer dollars. A lot of the way that that gets interpreted is we never
want to have to pay for something more than once. But that ignores the fact that budgeting to
actually increase or manage a code base and increase our capability because we're refactoring--
that's part of the challenge. I mean, it goes all the way to Congress, where-- I mean, Congress, of

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 12

course, both authorizes and appropriates money for the DoD. It's hard for them-- and I'll use a
concrete example, the F-35 maintenance and sustainment system, ALIS. We already paid for
that. We paid to have a maintenance and sustainment system implemented so that we could
properly maintain the joint strike fighter. We're currently paying to reimplement it, because the
current system had design issues and couldn't scale as the fleet grew. That's a hard pill to
swallow for the appropriators and the authorizers in Congress. It's a hard pill to swallow for
program managers and senior leaders in DoD. But it's something that I think we're just going to
have to accept, that we need to keep pace with commercial tech and modernize at the same speed
as commercial.

One of the actual things that we talk about with some of the policy changes that I've always
made emphasis of, we have this-- we come and go-- DoD comes and goes about build versus
buy, or buy versus build. Sometimes we think we want to build everything from scratch. Other
times we really look and we want to adopt commercial products and as much commercial things
as we can. I'm a fan of buy before build. If the commercial industry offers a software capability,
we should adopt that software capability. There's a couple caveats there though. One of the
caveats is we should never modify commercial software because our workflows and processes
are different than commercial workflows and processes; we should actually modify our
workflows and processes to fit the commercial software because it's widely used by a whole
bunch of companies, and so we should modify our processes. The other thing is when and if we
adopt commercial software, we need to commit to staying on the upgrade pace of the commercial
software. I mean, there's large chunks of commercial software that get used in the DoD, but we
tend to be so risk-averse and not implement the changes and the fixes as they come in that we
fall further and further behind. I mean, there's a bunch of Windows XP floating around in Navy
ships that we're going to extraordinary lengths to secure now because we didn't continually
modernize, because we committed to a commercial operating system but we didn't continually
modernize.

One of the Defense Innovation Board members, Milo Medin, actually used to say that DoD, their
risk aversion is what leads them to not upgrade and patch at the same pace that the commercial
world does, and he actually made the point that that doesn't help our risk profile. That actually--
we swallow massive amounts of risk by doing that, by not keeping pace with updates, and we
think we're being risk-averse by, "If it's not broke, don't fix it," but really we're actually incurring
way more risk because we're falling further and further behind, and our tech and our ability to
respond to things like cyber vulnerabilities just gets further and further behind, and then we get
to a point where we're almost forced into greenfield again. We have to reimplement. If we had
kept up, we maybe wouldn't have the same pressure to reimplement.

Tom Longstaff: Yeah. By the way, Fitch, yes, this is live. I'm seeing the comments as they're
coming in, so absolutely is live. You actually referenced Ada, and that's a real blast from the
past for me in terms of how Ada is actually being used and sort of where it's there. So Jeff, I'll

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 13

ask you to sort of respond to the Ada comment, but what I really want to do is I want to follow
up on some of your comments around the congressional allocation. I specifically want to talk
about NDAA and the different clauses in NDAA that are beginning to help us get to where we
need to go. So first, talk to me a little bit about where you think Ada sits in the ecosystem of
where we are, and then, if you could, let's talk about the recent sections in 2019, 2020 NDAA
that are moving us in the right direction.

Jeff Boleng: All right, I'll address the Ada one first and then I'll probably pass it back to you to
hone in on some of the NDAA sections.

I don't make it a secret that I am still a supporter of Ada. In fact, it's not a secret I was the
SIGAda chair at one of the SIGAda conferences a few years back. I think the U.S. government
and DoD have largely abandoned the use of Ada. It has shown good traction in embedded
communities in Europe. I think the Ada ecosystem in Europe is still pretty healthy, in the areas
that it's good. It's still a fundamentally good language. It's continually being modernized,
actually. There was a 2012 update to Ada and I think there maybe was a 2017 update to the Ada
standard that's included more things like syntactic (inaudible) and some other things. So I would
say it's definitely not a dead language but it really has been adopted in very specific instances
where safety criticality is important.

Now, there still-- our large legacy code bases, there's still a fair bit of Ada in the DoD programs
and systems, I think particularly in the space community. Some of our satellites and our
spacecraft have got a fair bit of Ada in them, and that's sort of like-- it's not quite as old as
JOVIAL, but it's, again, a hard place to get people that have that level of expertise to use the
language features. Ada is an actual fairly complex language, and I think that part of the reason it
struggled with adoption is the design of the language was ahead of compiler technology, so it
was hard to actually implement compilers that could enforce all of the typing rules and all of the
constraints in the language. But anyway, still a proponent. But I'm going to pass it back, Tom,
to you. Which ones of the NDAA provisions do you want to talk about first?

Tom Longstaff: To start with, why don't we jump back to 2019, with 860-- I'm trying to
remember exactly what the number is.

Jeff Boleng: Eight sixty-eight?

Tom Longstaff: Yes, 868. That's exactly right. Let's start there.

Jeff Boleng: Okay. I apologize, I shouldn't have done that. I'm going to go back a little further
because that's what 868 references, but first I want to share a little anecdote that the Defense
Innovation Board-- an observation they made which I thought was funny. There's been an awful
lot of legislation coming from Congress from the HASC and the SASC, the two Armed Services

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 14

Committees, directing DoD on how to do software better. So there's been a whole bunch of
provisions, and it's funny that-- the Defense Innovation Board jokes that Congress is inside
DoD's OODA loop when it comes to software modernization, that being the decision loop-- the
observe, orient, decide, act loop-- that Congress is legislating faster than DoD can actually take
action to modernize. So the folks that I know, the staffers in the HASC and the SASC-- I've
asked them several times, "Give us a little bit of a break. Can you slow down and let us actually
implement some of the things you're telling us to implement so that we can get some breathing
room?"

But yeah, specifically the 2019 868 provision, it actually required a report-- it basically was a
provision in 2019 that basically said, "Hey, that 2018 Defense Science Board set of
recommendations, the seven recommendations in the Defense Science Board report from 2018,
go implement those. Go do those. Send us your report telling us how you're doing, and if you're
not going to do some of those recommendations, you need to tell us why you're not going to do
them."

So what we did-- and it actually goes back and references some stuff from 2018, I think, also. In
the 2018 NDAA there was a provision-- there were several provisions-- 872, 873 and 874-- that
also talked about software modernization. The 872 provision is the one that actually tasked the
Defense Innovation Board also to do a software study, and 873 and 874 basically mandated a
number of agile pilot programs that have been in execution and being reported on. So the 868
report from 2019, interestingly, I sort of volunteered to author that report as a result of all the
effort we put behind both the Defense Science Board study and the Defense Innovation Board
study, and I actually really want to point out that the implementation of these recommendations,
it was really-- my predecessor on the SWAP study, Bess Dopkeen, set up a series of working
groups from across the agencies and the services in DoD that was really the key to the successes
we've had, and so it's really not a single individual. I don't want anybody to mistake that I'm
taking credit for any of this. I was involved, I think I contributed, but really is was a very big
effort by a whole bunch people at OSD and the services to actually make the program we've
made.

And so the 868 report, which is-- it's in final coordination right now-- is really a report on what
we've done over the last two years for software modernization specifically to address the seven
recommendations from the Defense Science Board report and the ten major recommendations
from the Defense Innovation Board report. So I think we're going to be able to deliver that to
Congress by the end of May, at which point it'll be a public report and it'll be available for
everybody, but I'm actually looking at a matrix in front of me of the 16 or so major efforts that
we did in order to answer that requirement from Congress to report on what we've been doing for
software modernization, and we can get into-- I'll try to summarize them.

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 15

Most of them are around really four different lines of effort. Policy-- there's a new software
acquisition policy that was published in January of last year, actually, I think, or this year--
anyway, new software acquisition progress is part of the Adaptive Acquisition Framework.
There's multiple acquisition pathways now. We're working on a pilot program with the
appropriators to actually create a single kind of budget authority for software and digital
technology, what some people call Colors of Money. We're prototyping a single budget type for
software and digital technology. Done a lot of work with enterprise services with both the
partnership with CIO, the DoD CIO, and DISA to provide enterprise services. The Air Force has
really been helping us with this as well, the Air Force chief software office-- creating enterprise
tooling, cloud-based development environments, comprehensive DevSecOps reference
implementations.

The big, tough one we've been working on is workforce improvements on how we, like I said,
attract, retain, hire, develop-- right? We want to develop internal talent and keep it modern as
well. And then the last one is really culture and things like security accreditation, working
towards things like continuous ATOs, Authority to Operates, the rapid ATOs, those kinds of
things. Those are the four sort of broad areas that we've done work, and there's been a lot of
specific things that we've done in each of those areas to modernize our ability to do software,
both internal to DoD and with our industrial base, essentially providing a framework or
capabilities or authorities for the industrial base to be more innovative as well.

Tom Longstaff: That's fantastic. So we're getting closer to the end of the time, and where I
really want to go with the NDAA clause closer to my heart, 255. So let's talk a little bit about
what the feature of software looks like and how NDAA is really leading us toward a future that
might pick up on a lot of the things that we've talked about over the last 50 minutes.

Jeff Boleng: Sure. Yeah, so in 2020-- I think it was the SASC, actually, put this language in
there. Section 255-- I refer to it as 0xff, which is a little bit of a nerd joke since that's hex for
255. I don't know if they did that on purpose for not. The 255-- basically we've spent a couple
of years-- we're not done, and I'm not at all claiming we're done-- really working on modernizing
policy, tooling, enterprise services, personnel, everything that I just discussed. But really what
that's doing is getting us closer to-- or the goal is to get us to commercial best practice,
commercial stated of the practice.

We haven't, as an organization, done as much work on sort of what's next. So what 255 does is it
calls for a science and technology strategic roadmap for software research and development, and
it's something that the SEI is working on. We're working closely with Research and
Engineering-- both Acquisition and Sustainment, Research and Engineering, and the CIO are sort
of partnered on this, working together, to say, "What does that roadmap look like?"

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 16

Another sort of claim that I've made or opinion that I have is that I think the predominance of
software engineering innovation is really done in the commercial sector right now, not just in
commercial companies on the product side but also in the research pieces of commercial
companies. Places like Microsoft Research and a lot of the big companies have their own R&D
shops. And-- excuse me-- and so an awful lot-- see, it's live, so everybody probably just saw
that. An awful lot of innovation is done on the commercial sector, and so working to harness
that, both commercial research, academic research, and the government labs, working to harness
those and say, "Where should DoD invest to bring about the next big advancement in the ability
to produce good software?" So some of that is model-based system engineering; some of it is
virtual environments. I think there's a whole lot of ways to go, which I'm going to flip the script
a little and ask Tom: Where does SEI see this?

Tom Longstaff: So I'm actually very optimistic, and the way I see this is the SEI has had a long
history of working directly with the private sector, going back into our product line work and
architecture work and various places where we've partnered closely with the private sector, and
then brought that technology and sort of the new techniques into DoD and applied them directly.
I see especially the study and the recommendations that are going to come out of the NDAA 255
report as taking us in that direction, as really helping us to say: Let's take the best of what
academia, the private sector, and a few places in the government are really offering and create an
R&D roadmap that will fill in the gaps, that will fill in those specific areas that the private sector
just isn't really investing in very deeply, and some of the areas that we need some additional
investment, also maybe even to help the private sector succeed more greatly. So I see this as not
an SEI-only effort. I see this as a huge collaborative effort across the world, where the SEI,
much like we've done in reports in the past, like the Ultra-Large-Scale Systems study and some
other things that we've done in the past, can really begin to get an R&D roadmap that looks not
to just fix kind of the tactical problems of today, but really understanding what the future of
merging everything we're learning in AI engineering, all the stuff that we're learning within the
Agile DevOps community and that world, everything that we're learning in resilience, formal
methods, formal modeling, and really understand what research will round out our ability to
apply this into the feature, and really sort of make it really effective at getting to the
implementation of the future construction of software, to sort of use the term that we've come up
this way.

So that's what I see. It's where-- I feel like we at the SEI are all in in bringing all of the different
best elements of the world together to help us understand this, to really get the very best advice
we can get from everywhere to create that R&D agenda, and then get buy-in throughout the
federal government and throughout other areas in the private sector to begin to fill in some of
these areas that have just been so difficult and so thorny all the way through the end.

So anyway, that's my feeling. That's where I come off very optimistic. It's why I feel good
about where things are actually going over the next few years, and it keeps me excited to sort of

SEI Webcast

A Discussion on DoD Software Advances and What’s Next from SEI
by Tom Longstaff and Jeff Boleng Page 17

being here. So Jeff, any sort of final thoughts or things that you want to share before we close
out?

Jeff Boleng: I just want to throw out one more thing, is I really want to encourage all of us to
collaborate closely with commercial industry, and one of the things I want to-- another, I guess,
elephant in the room that I wanted to close on is the government and DoD needs our commercial
industry-- I mean, the innovation in our commercial industry, especially our tech sector and our
software sector-- I think it could be an element of our national safety, international power. So I
wanted to call to mind-- there was an interesting sort of op-ed or editorial that one of the Defense
Innovation Board members wrote. Jen Pahlka wrote something called "Sharp Knives", which is
there's been some resistance in some parts of our tech sector to not want to collaborate with the
Department of Defense. But I would refer people to that article, and it makes a really good case
for why we all should contribute and we're all in this together, and having a strong national
security is important I think for everybody in America.

Tom Longstaff: Thank you, Jeff. Thank you so much. This has been a really wonderful
session. Thanks all of you for participating in the chat and to watching and spending an hour
with us today. Again, I apologize for the late start, but I hope that you were able to take
something away from this discussion. Please join us for the next webcast June 2, which will be
hosted by Linda Northrup and Philippe Kruchten, and you'll get the registration link, especially if
you have subscribed, so please do, and hopefully we will see you all again next time. Thanks for
being here.

VIDEO/Podcasts/vlogs This video and all related information and materials ("materials") are owned by
Carnegie Mellon University. These materials are provided on an "as-is" "as available" basis without any
warranties and solely for your personal viewing and use. You agree that Carnegie Mellon is not liable with
respect to any materials received by you as a result of viewing the video, or using referenced web sites, and/or
for any consequence or the use by you of such materials. By viewing, downloading and/or using this video
and related materials, you agree that you have read and agree to our terms of use
(http://www.sei.cmu.edu/legal/index.cfm).
DM20-0394

http://www.sei.cmu.edu/legal/index.cfm

