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Previous models of computing

Data Storage:
Database

Program Execution:
Local
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Blockchain

Data Storage:
Blockchain or Network

Program Execution:
Network
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Blockchain: Executive Summary

Pros:
Authentication built-in

Easy to audit history

Easy to detect data manipulation

Very difficult to disrupt

Cons:
Proof-of-work very inefficient

State updates are slow 

Best for simple computations
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Bitcoin: Mining
Input

• Previous block signature
• Bunch of transactions
• Random number 60C89EA…

Signature Transactions Random # Output

482AA… txn 1, 17, 88, 
452

1 854A3…

482AA… txn 1, 17, 88, 
452

2 B4221…

482AA… txn 1, 17, 88, 
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3 0249F…
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Blockchain programming is hard!

• Over $40M were stolen from TheDAO due to a bug in the implementation (June 2016)

• $32M were stolen due to a bug 
in a commonly used contract (June 2017)

• Bugs in smart contracts cannot be fixed after deployment

We want to build correct software, but current approaches have been shown to have 
security vulnerabilities
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Obsidian: a new programming language

• Obsidian is a blockchain-based language with the goal of minimizing the risk of 
common security vulnerabilities

• Obsidian contains core features to allow users to write safe programs easily and 
effectively

• Obsidian programs consist of contracts, which contain fields, states, and transactions
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Obsidian: a new programming language

Goals
• Make certain vulnerabilities impossible

• Make it easier to write correct programs

• Show effectiveness and correctness

Components
1. Typestate-oriented programming

2. Resource types
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Typestate

• Blockchain programs commonly state-oriented
• Obsidian makes state first-class

- An object in Obsidian has a state that restricts which transactions can be invoked on it.
• State transitions can change the state of an object
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Typestate
contract LibraryPatron {

state NoCard {
transaction getCard(){
…
->HasCard;

}
}

state HasCard {
transaction getBook(){
…

}
}

}

• A LibraryPatron is always 
in either the NoCard or 
HasCard state
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Typestate
contract LibraryPatron {

state NoCard {
transaction getCard(){
…
->HasCard;

}
}

state HasCard {
transaction getBook(){
…

}
}

}

• A LibraryPatron is always 
in either the NoCard or 
HasCard state

• getBook can only be called 
in HasCard; calling from 
NoCard state results in 
compile-time error
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Typestate
contract LibraryPatron {

state NoCard {
transaction getCard(){
…
->HasCard;

}
}

state HasCard {
transaction getBook(){
…

}
}

}

• A LibraryPatron is always 
in either the NoCard or 
HasCard state.

• getBook can only be called 
in HasCard; calling from 
NoCard state results in 
compile-time error

• ->HasCard is a state 
transition
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Typestate – Other common applications

Voting
• Not Eligible
• Eligible, not voted
• Eligible, voted
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Typestate – Other common applications

Supply chain
• Browsing
• Purchasing
• Order in processing
• Shipping
• Delivering to customer
• Return requested
• Delivering to business
• Returned
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Linear Types

• Blockchain programs often manage some kind of resource
- e.g., cryptocurrency, votes, items in supply chain

• Linear types allow the compiler to enforce “resource safety”: 
- Resources cannot be used more than once
- Resources must be used before leaving the current scope (i.e., don’t lose it) 
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Linear Types

resource contract Money {…};

contract Account {
Money balance;

transaction closeAccount(Account a) {
a.withdraw(balance);
balance = new Money(0);

}

transaction withdraw(Money m) {…}
}

• Financial application 
example

• balance is a type of 
Money, which is a linear 
type
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Linear Types

resource contract Money {…};

contract Account {
Money balance;

transaction closeAccount(Account a) {
a.withdraw(balance);
balance = new Money(0);

}

transaction withdraw(Money m) {…}
}

• When balance is moved 
out of scope, we need to 
create a new Money
object to replace it

• The new Money is created 
with a value of 0

• Note that we’re not 
referring to the actual 
amount of money, we’re 
referring to the code used 
to track the money

• Code security, not 
accounting
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Linear Types

resource contract Money {…};

contract Account {
Money balance;

transaction closeAccount(Account a) {
a.withdraw(balance);
a.withdraw(balance);
balance = new Money(0);

}

transaction withdraw(Money m) {…}
}

• Introducing bug… 
spending more Money
than available

• Program would fail when 
trying to compile, rather 
than when the user tried to 
run the program
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Usability

Programmers should be able to write correct Obsidian code easily and effectively.

Creating an intuitive language is hard! Many difficult design choices exist
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Usability

Which is “correct”?



58Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Usability study

Participants were given a description of a voter registration system for a hypothetical 
democratic nation.
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Usability study

1. Write pseudocode to implement program.
2. Given a state diagram modeling the voter registration system, modify pseudocode.
3. Given Obsidian tutorial (with no information on state transitions) invent syntax for 

state transitions and complete an Obsidian contract.
4. Shown three options for state transitions, complete a brief contract for each option.
5. Choose one of the three options and use it to complete the Obsidian program from 

part 3.
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Usability study – Findings

• Programmers do not naturally consider state-based design when architecting code
• Most intuitive design: include all possible state actions explicitly within the state
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Summary

Bitcoin simulator
• Virtual implementation of Bitcoin network
• Useful for forensic analysis

Obsidian
• Secure-by-design language for blockchain development
• Typestate and linear resources help users write safe programs easily and effectively
• Usable programming language design requires iteration and user testing
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