
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Next Steps with
Blockchain Technology

Eliezer Kanal & Gabriel Somlo

2Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.©2018 Carnegie Mellon University
How Stuff Works: Blockchain and Cryptocoins
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. DM18-1016

mailto:permission@sei.cmu.edu

3Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Previous models of computing

Data Storage:
Database

Program Execution:
Local

4Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Blockchain

Data Storage:
Blockchain or Network

Program Execution:
Network

5Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Txn
Txn
Txn
Txn

Txn
Txn
Txn
Txn

Txn
Txn
Txn
Txn

Txn
Txn
Txn
Txn

45af…
39e1…

Hash:
Prev:

39e1…
90f9…

Hash:
Prev:

90f9…
a1c4…

Hash:
Prev:

a1c4…
5668…

Hash:
Prev:

Time

6Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

45af…
39e1…

Hash:
Prev:

39e1…
90f9…

Hash:
Prev:

90f9…
a1c4…

Hash:
Prev:

a1c4…
5668…

Hash:
Prev:

Time

7Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Candidate Votes

Bob 0

Jim 0

Frank 0

State: 1

8Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Candidate Votes

Bob 0

Jim 0

Frank 0

State: 1

9Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Candidate Votes

Bob 1

Jim 0

Frank 1

State: 2

10Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Candidate Votes

Bob 1

Jim 0

Frank 1

State: 1

Candidate Votes

Bob 0

Jim 0

Frank 0

State: 2

11Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

State: 1

Candidate Votes

Bob 0

Jim 0

Frank 0

State: 2

Frank: 1 vote

Bob: 1 vote

State 1 plus…

Equivalent to:

12Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Blockchain: Executive Summary

Pros:
Authentication built-in

Easy to audit history

Easy to detect data manipulation

Very difficult to disrupt

Cons:
Proof-of-work very inefficient

State updates are slow

Best for simple computations

13Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Bitcoin: Mining
Input

• Previous block signature
• Bunch of transactions
• Random number 60C89EA…

Signature Transactions Random # Output

482AA… txn 1, 17, 88,
452

1 854A3…

482AA… txn 1, 17, 88,
452

2 B4221…

482AA… txn 1, 17, 88,
452

3 0249F…

⋮

14Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

15Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

, , ,

Tracing Transaction History

Tracing Transaction History

42Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Blockchain programming is hard!

• Over $40M were stolen from TheDAO due to a bug in the implementation (June 2016)

• $32M were stolen due to a bug
in a commonly used contract (June 2017)

• Bugs in smart contracts cannot be fixed after deployment

We want to build correct software, but current approaches have been shown to have
security vulnerabilities

43Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Obsidian: a new programming language

• Obsidian is a blockchain-based language with the goal of minimizing the risk of
common security vulnerabilities

• Obsidian contains core features to allow users to write safe programs easily and
effectively

• Obsidian programs consist of contracts, which contain fields, states, and transactions

44Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Obsidian: a new programming language

Goals
• Make certain vulnerabilities impossible

• Make it easier to write correct programs

• Show effectiveness and correctness

Components
1. Typestate-oriented programming

2. Resource types

45Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Typestate

• Blockchain programs commonly state-oriented
• Obsidian makes state first-class

- An object in Obsidian has a state that restricts which transactions can be invoked on it.
• State transitions can change the state of an object

46Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Typestate
contract LibraryPatron {

state NoCard {
transaction getCard(){
…
->HasCard;

}
}

state HasCard {
transaction getBook(){
…

}
}

}

• A LibraryPatron is always
in either the NoCard or
HasCard state

47Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Typestate
contract LibraryPatron {

state NoCard {
transaction getCard(){
…
->HasCard;

}
}

state HasCard {
transaction getBook(){
…

}
}

}

• A LibraryPatron is always
in either the NoCard or
HasCard state

• getBook can only be called
in HasCard; calling from
NoCard state results in
compile-time error

48Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Typestate
contract LibraryPatron {

state NoCard {
transaction getCard(){
…
->HasCard;

}
}

state HasCard {
transaction getBook(){
…

}
}

}

• A LibraryPatron is always
in either the NoCard or
HasCard state.

• getBook can only be called
in HasCard; calling from
NoCard state results in
compile-time error

• ->HasCard is a state
transition

49Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Typestate – Other common applications

Voting
• Not Eligible
• Eligible, not voted
• Eligible, voted

50Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Typestate – Other common applications

Supply chain
• Browsing
• Purchasing
• Order in processing
• Shipping
• Delivering to customer
• Return requested
• Delivering to business
• Returned

51Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Typestate – Other common applications

Supply chain
• Browsing
• Purchasing
• Order in processing
• Shipping
• Delivering to customer
• Return requested
• Delivering to business
• Returned

52Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Linear Types

• Blockchain programs often manage some kind of resource
- e.g., cryptocurrency, votes, items in supply chain

• Linear types allow the compiler to enforce “resource safety”:
- Resources cannot be used more than once
- Resources must be used before leaving the current scope (i.e., don’t lose it)

53Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Linear Types

resource contract Money {…};

contract Account {
Money balance;

transaction closeAccount(Account a) {
a.withdraw(balance);
balance = new Money(0);

}

transaction withdraw(Money m) {…}
}

• Financial application
example

• balance is a type of
Money, which is a linear
type

54Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Linear Types

resource contract Money {…};

contract Account {
Money balance;

transaction closeAccount(Account a) {
a.withdraw(balance);
balance = new Money(0);

}

transaction withdraw(Money m) {…}
}

• When balance is moved
out of scope, we need to
create a new Money
object to replace it

• The new Money is created
with a value of 0

• Note that we’re not
referring to the actual
amount of money, we’re
referring to the code used
to track the money

• Code security, not
accounting

55Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Linear Types

resource contract Money {…};

contract Account {
Money balance;

transaction closeAccount(Account a) {
a.withdraw(balance);
a.withdraw(balance);
balance = new Money(0);

}

transaction withdraw(Money m) {…}
}

• Introducing bug…
spending more Money
than available

• Program would fail when
trying to compile, rather
than when the user tried to
run the program

56Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Usability

Programmers should be able to write correct Obsidian code easily and effectively.

Creating an intuitive language is hard! Many difficult design choices exist

57Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Usability

Which is “correct”?

58Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Usability study

Participants were given a description of a voter registration system for a hypothetical
democratic nation.

59Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Usability study

1. Write pseudocode to implement program.
2. Given a state diagram modeling the voter registration system, modify pseudocode.
3. Given Obsidian tutorial (with no information on state transitions) invent syntax for

state transitions and complete an Obsidian contract.
4. Shown three options for state transitions, complete a brief contract for each option.
5. Choose one of the three options and use it to complete the Obsidian program from

part 3.

60Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Usability study – Findings

• Programmers do not naturally consider state-based design when architecting code
• Most intuitive design: include all possible state actions explicitly within the state

61Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Summary

Bitcoin simulator
• Virtual implementation of Bitcoin network
• Useful for forensic analysis

Obsidian
• Secure-by-design language for blockchain development
• Typestate and linear resources help users write safe programs easily and effectively
• Usable programming language design requires iteration and user testing

62Next Steps with Blockchain Technology
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Contact Information

Presenters

Elli Kanal
Technical Manager
Email: ekanal@cert.org

Gabe Somlo
Cybersecurity Researcher
Email: glsomlo@cert.org

mailto:ekanal@cert.org
mailto:glsomlo@cert.org

	Next Steps with �Blockchain Technology�
	Slide Number 2
	Previous models of computing
	Blockchain
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Blockchain: Executive Summary
	Bitcoin: Mining
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Tracing Transaction History
	Tracing Transaction History
	Blockchain programming is hard!
	Obsidian: a new programming language
	Obsidian: a new programming language
	Typestate
	Typestate
	Typestate
	Typestate
	Typestate – Other common applications
	Typestate – Other common applications
	Typestate – Other common applications
	Linear Types
	Linear Types
	Linear Types
	Linear Types
	Usability
	Usability
	Usability study
	Usability study
	Usability study – Findings
	Summary
	Contact Information

