
Three Software Innovations that DoD Needs Now 

Table of Contents 

Three Software Innovations that DoD Needs Now ........................................................................ 2 

Virtual Integration: AADL as a “Single Source of Truth” ................................................................. 4 

Machine Learning for the DoD: Malware ..................................................................................... 10 

Machine Learning for the DoD: Malware ..................................................................................... 11 

Data Analysis for the DoD: Information Extraction ...................................................................... 14 

Automated Analysis - Prioritizing Vulnerabilities ......................................................................... 21 

Automated Code Repair ............................................................................................................... 26 

Automated Analysis - Prioritizing Vulnerabilities ......................................................................... 31 

AADL Success Stories .................................................................................................................... 32 

Document Markings ...................................................................................................................... 59 

Carnegie Mellon University........................................................................................................... 60 

 

  

Page 1 of 60



Three Software Innovations that DoD Needs Now 

[DISTRIBUTION STATEMENT Please copy and paste the appropriate distribution statement into 
this space.]

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA  15213

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.  Please see 
Copyright notice for non-US Government use and distribution.

Three Software Innovations 
that DoD Needs Now

Jeff Boleng, Sam Procter, Nathan VanHoudnos, 
Lena Pons, Robert Schiela

 

**001 Facilitator: And hello, from  
the campus of Carnegie Mellon  
University in Pittsburgh,  
Pennsylvania.  We welcome you to  
Virtual SEI.  Our presentation today's  
a panel discussion on "Three  
Software Innovations that DoD Needs  
Now."  My name is Shane McGraw.  
I'll be your facilitator for the  
discussion, handling audience  
questions.  So feel free to type those  
questions in at any time on whatever  
platform you are joining with us  
today. 
  
So now I'd like to introduce our  
moderator for today.  It's going to be  
SEI CTO Jeff Boleng.  Jeff, I'm going  
to turn it over to you to introduce our  
panelists. 
  
Moderator: Welcome.  Thanks,  
Shane.  Thanks for joining us today.  
We're going to--we were trying to be  

Page 2 of 60



a little provocative with the title, so  
hopefully we deliver with three  
software innovations that DoD can--  
needs and can use now.  I'm going to  
start with introducing--I'll start on my  
left here with Bob Schiela.  Bob's the  
Tech Manager for our Secure Coding  
Division, and so one of the things  
he'll be talking about is automated  
code analysis, which is one of the  
three.  Next one over is Sam Procter.  
Sam's an architecture researcher, and  
he'll be focusing on something we  
call virtual integration, which we'll  
describe in more detail there.  Next  
to Bob is Lena Pons.  She's one of  
our machine learning research  
scientists in the CERT, our  
cybersecurity division, and next to  
her is Nathan VanHoudnos, which I  
got the name right. 
  
Speaker 1: Yeah, good job. 
  
Moderator: Yeah.  Thanks.  I've  
been coached, and he's also a  
machine learning research scientist,  
that we'll have them cover essentially  
data science is the last of the three  
innovations I think Do--needs now  
and needs more of, and so we took a  
little bit of a liberal license with that  
one. 
  
So I'm going to start with Sam  
Procter talking about virtual  
integration, and he'll give an  
overview of kind of what we mean  
with virtual integration, where it fits,  
and sort of why it's important. 
  

Page 3 of 60



Virtual Integration: AADL as a “Single Source of Truth” 

3Three Software Innovation that DoD Needs Now
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-US Government use and 
distribution.

Virtual Integration: AADL as a “Single Source of Truth”

Model-Based Engineering for System Design
Build models of components, combine them into a unified 
system, and verify that everything fits before the system is 
built: Integrate-then-Build

Detect Issues Early, Save Money and Effort
Studies show most system defects are created early – in 
the design and architecture stages – but fixed late. Defects 
caught later are more costly in terms of both budget and 
schedule overruns.

Multiple Analyses, One Model
A single AADL model can support multiple analyses. 
Custom analyses are easy to implement, or use outputs of 
preferred tools to annotate AADL model

Change of 
Encryption from 128 

bit to 256 bit

Higher CPU 
Demand

Increased 
Latency

Potential 
New Hazard

Affects 
Temporal 

Correctness

SAE AS5506 AADL

SAFETY & 
RELIABILITY

 

**003 Speaker 2: Yeah.  So  
model-based engineering is one of  
sort of the classic ideas in  
engineering.  It's pretty well accepted  
and it's used in a number of domains.  
So those domains really range from  
aeronautics, if you're building a wing.  
You may be testing models of that  
wing, either virtually or in some sort  
of computer system.  Same thing  
with, you know, flames, rocket  
engines, all over the place.  Model-  
based engineering is well accepted. 
  
So virtual integration is really the  
application of model-based  
engineering to system engineering,  
where you build a model of the  
components of your system and then  
you plug them together.  So this is  
sort of a radical departure from the  
traditional system engineering  
methodology of building the  
components and hoping that when  

Page 4 of 60



you plug them all together,  
everything fits. 
  
So like a lot of things, a lot of project  
design and system acquisition both  
within the DoD and outside of it, cost  
is a driving factor behind this  
research.  A lot of, in fact, the  
majority of system errors are  
introduced when people are  
architecting their system or designing  
their system, and that's also when it's  
cheapest to fix those problems.  But  
it gets more expensive and more  
likely that problems will be detected  
later on in the development lifecycle.  
So that can mean that when it comes  
time to plug your system components  
together, that you're discovering  
errors then or even once the system  
has been deployed, and at this point  
these errors that were introduced  
early in the system development  
lifecycle can be very expensive to fix. 
  
So one of the main goals is to bring  
these costs down by integrating the  
system before you build it.  This is  
the integrate-then-build approach  
that we advocate here at the SEI.  
Then a final benefit of AADL, the  
architecture analysis and design  
language that we use to study virtual  
integration here at the SEI, is that it  
supports a number of different  
analyses.  So one, a critical weakness  
with a lot of model-based  
engineering tools, is that they really  
only address one area.  So you build  
a model of your system or of your  
component or whatever and it  
supports one analysis that then runs  
on that model, and if you want to do  

Page 5 of 60



a different analysis, you have to build  
a different model. 
  
So in the best case, this leads to a lot  
of repeated work, but because  
systems, as they get built, inevitably  
have requirements change or have to  
be updated in some way, you then  
have to update all of your models,  
and keeping those in sync is  
laborious and error-prone.  So AADL  
is a rich language that supports a  
number of different analyses, and  
you can have this one model that we  
like to call the single source of truth  
for your system.  So whether you're a  
system integrator looking at how  
everything plugs together, you're a  
security person looking at how you  
can defend against possible attacks,  
or a safety guy, all of these analyses  
can be run on one model, and so real  
quickly I want to walk through a cool  
scenario that can come about with  
this single source of truth model. 
  
So your security people might decide  
that they need to change the key size  
of your encryption from 128 to 256  
bit.  Now, in the status quo, a lot of  
times this means you're just going to  
change key size and hope for the  
best, but with a single integrated  
model you can see the impacts of  
that on the resource consumption.  
So with a larger key you may need  
more CPU time, which may increase  
the latency through some critical  
paths in your system, which can  
affect the temporal correctness of  
your data in a real-time system, and  
this could even mean a potential  
safety problem, and these issues are  

Page 6 of 60



going to be a lot easier to discover if  
you, all your analysts and all your  
different design aspects, are relying  
on one model as the single source of  
truth. 
  
Moderator: So just a quick question  
before we move to the next topic.  So  
with AADL on some of the modeling  
tools that we've got, what's the--the  
Eclipse plugin we have. 
  
Speaker 2: So we have a--we have  
a tool environment called OSATE, the  
Open Source Architecture Tool  
Environment, built on top of Eclipse. 
  
Moderator: Yeah, there's an Eclipse  
plugin. 
  
Speaker 2: Yeah. 
  
Moderator: But you can model  
down to such a fine level of  
granularity that you can actually  
simulate these changes in the  
system. 
  
Speaker 2: Yeah.  Absolutely.  So  
AADL supports modeling at a number  
of levels of abstraction.  So when you  
first start out, you would say, "Oh, I  
have a device here.  I have an entire  
system here," and you would just  
sort of define the inputs and outputs.  
But then exactly as you're saying,  
you can model at successively lower  
levels of abstraction, you can refine  
that model down to really the low-  
level hardware, the processors, the  
memory banks, and even the buses  
that are used for the network  
communication. 

Page 7 of 60



Moderator: Yeah, and the fine-level  
timing constraints for--yeah. 
  
Speaker 2: The fine-level timing  
constraints.  Absolutely. 
  
Moderator: Embedded real-time,  
safety critical. 
  
Speaker 2: Yeah, yeah.  The power  
consumption.  All sorts of things. 
  
Moderator: Okay.  Thanks, Sam.  
We're going to-- 
  
Speaker 2: Yeah. 
  
Moderator: --move--we're going to  
bounce around a little bit.  We'll get  
an overview of the three cores, three  
or four core things we're talking  
about today, and then we'll do a little  
more deep dive and I'll remind  
everybody that we've got audience  
questions and Shane's going to be  
watching for audience questions to  
interject those too, so I encourage  
people to do that. 
  
Next we're going to go to Nathan,  
and he's going to give an overview of  
data science and not just data  
science but how we're applying data  
science here at SEI and in some  
other contexts, so-- 
  
Speaker 1: Thank you, Jeff.  So  
when we think about data science at  
the SEI, we don't think of like a  
single person that is a data scientist.  
We think about data science as more  
of a set of three roles.  The first role  
is the statistical machine learning  

Page 8 of 60



role, which is what often people think  
about when they think about data  
science, but another role that is  
sometimes overlooked is the subject  
matter expert role, right.  This is the  
person that has the data, this is the  
person that has the questions that  
we want to answer, and so not only  
do we need to have the expertise of  
the subject matter expert, we also  
need the expertise of the data  
scientist.  But there's a third role as  
well, which is the engineer.  This is  
the person who makes sure that the  
data that we get from the subject  
matter expert can be understood in a  
machine-learning framework or can  
even be run at scale, for example, at  
internet scale or very large scales. 
  
One of the ways that we have  
applied this methodology at the SEI  
is with a product that we call  
malfaces. 
  

Page 9 of 60



Machine Learning for the DoD: Malware 

6Three Software Innovation that DoD Needs Now
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-US Government use and 
distribution.

Machine Learning for the DoD: Malware
Many suspect files. Manual pairwise analysis is expensive.

 

**006 And the problem that we're  
trying to solve here is let's say that  
you're a malware reverse engineer  
and what you're given is you're given  
a pile of suspect files and your task is  
to figure out which of these files are  
related to each other.  In sort of the  
traditional ways of doing this, what  
you often are reduced to is opening  
up a file in a disassembler, looking at  
all of that disassembled language,  
and then opening up another file and  
comparing them side by side, and  
this manual pairwise analysis is very  
expensive to do.  So what if instead  
we could use those three different  
roles and give ourselves something  
better to work with?  So this is what  
we did. 
  

Page 10 of 60



Machine Learning for the DoD: Malware 

7Three Software Innovation that DoD Needs Now
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-US Government use and 
distribution.

Machine Learning for the DoD: Malware
Many suspect files. Statistical visualization lowers costs.

 

**007 Instead of relying on the  
subject matter expert to do their  
analysis, we had an engineer take  
those suspect files and break them  
down into a way that a machine  
learning algorithm could understand,  
and then we had someone like myself  
come along and perform different  
similarity comparisons and make a  
statistical visualization so that now  
when you just sort of stare at this  
thing on the screen, you can see that  
those suspect files that appear on  
your operating system, that first one  
and that third one are actually  
relatively similar to each other  
because we've expressed them in a  
way that you can immediately see  
them as faces.  And by using these  
sort of key components, we have the  
subject matter expert that says, "Oh,  
yeah.  Those two files are actually  
quite similar to each other," so we  
can check that.  We have the  

Page 11 of 60



engineer that can make sure that we  
can break this down at scale, and  
then we have someone like myself,  
who's a machine learning research  
scientist, to sort of tie it all together. 
  
Moderator: So it sort if, when I first  
was exposed to this, I was like, "What  
are we making cartoon faces for?"  
but--so I just wanted to highlight that. 
  
Speaker 1: Sure. 
  
Moderator: That this is a thing  
called turn-on faces, which allow you  
to actually express multidimensional  
data in two dimensions with different  
size, shape, colors of faces, right?  Is  
that reasonably accurate? 
  
Speaker 1: That is the idea. 
  
Moderator: Yeah, okay.  And then  
you--one of the things I think I know  
you used in the background was  
principle coded analysis?  And-- 
  
Speaker 1: Yes. 
  
Moderator: --what were--is that one  
of the primary techniques?  Did you  
use some others? 
  
Speaker 1: So to dive into the details a  
little bit, what happens is we take the  
binary file and then we disassemble  
it so that now what we're left with is  
a representation of the file in assembly  
language, and then what we do is we  
convert that assembly language file into  
essentially a--trying to think of the  
right level of detail for this audience.  
Because I don't want to go in, too  

Page 12 of 60



into the weeds.  Basically we take  
that assembly language and we  
summarize it so that the words in the  
assembly language now become a  
series of keys, and the question is,  
"Oh, this file has these keys and this  
file has these keys," and then we look  
at that matrix and break it down in  
something, using a technique called  
principle components analysis, that will  
then allow us to say, "Okay. Well, this  
file needs big eyes and this file needs  
a small nose," and those sorts of things. 
  
Moderator: Right.  So you--they  
don't have to be exact matches.  
They can--this really does pull out the  
similarities in the binary files so that  
you can know, even when those  
small changes happen, you can still  
pull out the similarities. 
  
Speaker 1: That is correct. 
  
Moderator: Awesome.  Yeah.  So  
much better than signature-based. 
  
Speaker 1: Yeah. 
  
Moderator: Okay.  Now make sure I  
get my order right.  We're going to  
go to Lena.  Lena's going to talk  
about, I don't want to spoil it, but  
one of the problems that we have is,  
I make the argument, we're  
generating more data than we can  
consume at this point, and so we  
need smart ways to try to handle that  
data at creation time, either through  
labeling or metadata tagging or some  
of those things.  So I'm going to turn  
it over to Lena to talk a little bit about  
that, give an introduction there. 

Page 13 of 60



Speaker 3: Sure.  So I'm also a  
machine learning research scientist,  
but I come into the data science field  
from a slightly different background.  
My background is in information  
extraction, information retrieval and  
natural language processing.  So in  
these techniques, in these ways, I  
think about the data that the DoD is  
collecting and particularly in a  
cybersecurity context in terms of  
what it contains and what we can  
mine out of it, what we can identify  
and how we can build intelligence,  
and so one of the ways that we do  
that is through information extraction  
techniques. 
  

Data Analysis for the DoD: Information Extraction  

10Three Software Innovation that DoD Needs Now
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-US Government use and 
distribution.

Data Analysis for the DoD: Information Extraction 

Cyber incident tickets are 
comprised of semi-structured 
data containing indicators

Traditional indicators like IP 
address, filename, file hash, 
email address can be 
augmented with concepts & 
relations

 

**010 So broadly, information  
extraction is the process of taking a  
set of typically we think of it as  
documents. 
  

Page 14 of 60



But it could be any data set,  
and identifying the pieces of  
information that are distinguishing an  
important for gaining knowledge and  
insight into that data set. 
  
So my previous experience was  
working in the biomedical research  
space, which has a very developed  
system of logical language  
representations to support things like  
metadata, like automated metadata  
generation, and cataloguing these,  
these large sources of biomedical  
research and also clinical data. 
  
So one analogous case that I see  
coming from biomedical space into  
the cybersecurity space is for  
electronic medical records you have  
what you could think of as sort of  
semi-structured documents which  
contain an amalgamation of, like, key  
value pair data that has stuff about,  
like, "Here are, you know, patient  
data," or in the case of cybersecurity  
it could be like a tracking number.  It  
could be an incident type.  It could  
be some specific sort of key value, a  
specific malware signature.  These  
would be sort of your structured data  
types within that data collection, but  
then you also have a description  
about the incident that says, "At this  
time we noticed this behavior.  
There's--intrusion detection system  
sent us a signal.  We did these pieces  
of investigation and we were able to  
discern this information." 
  
When you take a collection of these  
documents, then you start to have  
the basis for doing some intelligence  

Page 15 of 60



and some pattern recognition and  
some tracking of actors like across a  
series of incidents, and so what we  
have done here is build an  
information extraction system that  
will combine extracting from the  
structured and the pros portions of  
an incident ticket, and then compute  
similarities between incidents to start  
to develop clusters, to say, "Here are  
incidents that share a lot of similar  
characteristics." 
  
The advantages to that are that you  
can identify types of patterns of  
behavior, which can help you to build  
intrusion detection methods that will  
identify similar types of attack paths,  
but also you can identify incidents  
that occur in time sequence and  
identify an attack as it moves through  
a network of people who may share  
some data or some similar network  
characteristics or are just people who  
are connected to each other in like a  
broader professional or social  
network, and so that kind of  
intelligence is tremendously valuable  
for getting ahead of the cyber  
incident timeline. 
  
Moderator: So I was at a workshop  
just on Wednesday about applying  
data science and machine learning to  
the logistics enterprise in the DoD  
and one of the--so I have couple--  
then I'm going to play the naove role  
on purpose a little bit.  So some of  
what I saw was, "Well, we've got all  
this data.  It's--we've got tons of  
data.  We dump it all, all this  
disparately formatted data into a big  
data lake."  That's the new--right?  

Page 16 of 60



That people love that phrase now,  
and I am just going to pour some ML  
on there and it's going to answer all  
my questions.  Can you comment on  
the accuracy of sort of that thinking  
there? 
  
Speaker 3: Right.  Right.  So  
information retrieval is kind of, is kind  
of fishing in the lake, right?  Like, you  
are trying to, you know, you have a  
big lake that's full of things and it's  
hard to know what they are if you  
don't have any kind of metadata to  
help you sort of identify, like, where  
the things that you're looking for are,  
and so information extraction,  
information retrieval, information  
extractions is the process of taking a  
data structure and mining out the  
specific pieces of information that  
you might want to store, and  
information retrieval is the process of  
saying, "Within the lake, you know, I  
would like to find all the fish that are  
trout."  Like-- 
  
Moderator: What's relevant to my  
question of interest? 
  
Speaker 3: Yeah, what's relevant--  
what's relevant to me, my question  
of interest, and identifying the--not  
just the things that you might find  
through a traditional Boolean query,  
but actually, like, building a logical  
hierarchical representation of the  
relationships between pieces of, like,  
structures, right.  So, like, again, I  
frequently think of it in terms of  
documents, like, within your sort of  
like larger data set, and those kinds  
of information retrieval questions are  

Page 17 of 60



very important when you start to  
think about, "How do I manage a  
data store like this?"  You know,  
because just collecting and storing all  
of these, like, large amounts of data  
can be very expensive and also it can  
bog down an analyst trying to make  
sense of what's in there and what's  
relevant and what's going to be  
important and timely for answering  
the type of question that they're  
answering, and so yeah.  Those kinds  
of information retrieval techniques  
are really critical for identifying,  
"What do I need to store?  How do I  
need to store it, and how can I  
quickly find the things that I need to  
answer a particular question of  
interest?" 
  
Moderator: Right.  And so I see--tell  
me if I'm going to describe this  
properly.  I really do see this, you've  
got a subject matter expert with one  
of the things they need to know is,  
"What do I need to know that I don't  
know now?"  Or they need to know  
the questions they want to answer  
from their data.  Either they want to  
answer it faster, more accurately, or  
actually answer some questions that  
they don't have answers to now, but  
it seems like it's very much an  
iterative process of I propose a  
question to a data scientist and I  
work with a data scientist and I say,  
"Hey, can my data answer this  
question today?" and you--and then  
maybe you figure out how to do that,  
but then we iterate again and say,  
"Oh.  Well, that's interesting.  Now  
that I know that, I want to know this." 
  

Page 18 of 60



Speaker 3: Yeah.  Yeah.  So, I  
mean, there's actually a process  
within information retrieval called  
question analysis, where you identify  
whether the question that you're  
asking is actually giving you back the  
answer that you're looking for and  
expanding out, and so one technique  
in question analysis is you start with  
the question that somebody asked  
and then you ask sort of more  
probing questions to say--to narrow  
things down and also to identify, like,  
what path the question is taking for  
the end user, and one of the things  
that you can do there is what's called  
query expansion, right?  So you've  
expressed a question one way but  
there could be two or three or many  
different ways to pose that same  
question because of sort of linguistic  
ambiguity and-- 
  
Moderator: Well, a nuance. 
  
Speaker 3: --and, you know,  
synonymy.  Like, you know, people  
use different words that mean the  
same thing to express the same  
concept, and so--and so this is where  
having not enough logical language  
representation within sort of like the  
cybersecurity and software realm  
really hurts our ability to leverage  
some of these techniques like query  
expansion.  It's very difficult to do  
automatic query expansion if you  
don't have, like, a computer readable  
set of linguistically similar representations  
of the same question, and so it's much  
more laborious to do that type of question  
analysis. 
  

Page 19 of 60



Moderator: Yeah, thanks.  So we're  
going to move to our final panelist  
right now, Bob Schiela, and he's  
going to talk about automated code  
analysis.  A little different, but we  
still, there's a big application of some  
data science machine learning in the  
automated code analysis nowadays  
as well, so-- 
  
Speaker 4: Yeah, absolutely,  
absolutely, so--but I think to talk  
about where we are today and where  
we're going, it might be worth a  
minute to talk about where we've  
been, and looks like I have 40  
minutes, so I'll try and finish. 
  
Moderator: Sure, yeah, yeah.  The  
rest of the time's yours, Bob. 
  
Speaker 4: Within the 40 minutes,  
so thanks for everyone being very  
quick.  So about 15 years ago, CERT  
started identifying common defect  
types in source code and trying to  
identify and codify rules to avoid  
defects that lead to security  
vulnerabilities.  About 10 years ago,  
we developed the source code  
analysis lab, which the purpose was  
to help organizations test their source  
code for conformance to this, the  
CERT standards, the secure coding  
standards.  So. 
  

Page 20 of 60



Automated Analysis - Prioritizing Vulnerabilities 

8Three Software Innovation that DoD Needs Now
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-US Government use and 
distribution.

Automated Analysis - Prioritizing Vulnerabilities

Long-term goal: Automated 
and accurate statistical 
classifier, intended to 
efficiently use analyst effort 
and to remove code flaws

Analyzer
Analyzer

Analyzer

Codebases

Alerts

Today

Project Goal

Image of woman and laptop from http://www.publicdomainpictures.net/view-
image.php?image=47526&picture=woman-and-laptop  “Woman And Laptop”

Classification algorithm development using 
CERT- and collaborator-audited data, that 
accurately classifies most of the diagnostics 
as: 
Expected True Positive (e-TP) or 
Expected False Positive (e-FP), and 
the rest as Indeterminate (I) 

66 effort days

12,076

45,172

6,361

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

e-TP e-FP I

3,147

11,772

48,690

0

10,000

20,000

30,000

40,000

50,000

60,000

TP FP Susp

Prioritized, small number 
of alerts for manual audit

Many alerts left unaudited!

**008 That was about 10 years ago  
we developed this, and the way that 
it worked was that it used static  
analyzers on source code to try and  
find these problems and we learned 
through our own efforts that using  
multiple static analyzers actually  
made the tools better and the  
outcomes better, so-- 

Moderator: So just to interject a little bit. 

Speaker 4: Sure. 

Moderator: The space here is not  
like we're hocking our static code 
analyzers.  It's there's a-- 

Speaker 4: That's actually what I'm going-- 

Moderator: --really rich commercial. 

Speaker 4: That's exactly right. 

Page 21 of 60



Moderator: Okay. 
  
Speaker 4: So that's--I'm going back  
10 years. 
  
Moderator: Right, okay. 
  
Speaker 4: So this was 10 years ago.   
So this is not the innovations of today. 
  
Moderator: This is a long time ago. 
  
Speaker 4: Right. 
  
Moderator: In computer. 
  
Speaker 4: So I'm going to get to  
the innovations of today.  So 10  
years ago we developed this source  
code analysis lab and we've been  
adding features, functionalities, and  
trying to improve it.  So I'll get to  
where we are today with it.  As you  
said, so 10 years ago we were using  
static analyzers, some commercial  
and some open-source, and in the  
last 10 years the area of static  
analysis has grown and improved  
greatly on the commercial area.  
There are now also aggregator and  
correlation tools to try and help  
identify problems and so, you know,  
that's where a commercial and where  
a state of practice is now, at least  
with regard to tools.  From a DoD  
point of view in innovation, what the  
research shows though from  
adopting these is that there are still  
many programs that are not using  
static analysis, and so now we're  
into, "Why?" 
  
Moderator: Right. 

Page 22 of 60



Speaker 4: All right.  "Why today?"  
Even with the tools and how, you  
know, the performance levels that  
these tools are available, why are the  
DoD and DoD contractors not using  
it?  And there's a few reasons.  One  
reason that some of our teams here  
at CERT are researching, are  
integrating the toolsets into the  
development stack and so into the  
IDEs and the whole development and  
testing.  You know, there's a lot of  
advancement and continuous  
development and so trying to  
integrate these tools as part of that,  
that process, is one area of research  
that we're doing. 
  
Another area of research that our  
team is specifically focusing on is the  
problem of false positives, and so  
one of the issues with static analysis  
is that it can create lots of alerts, and  
going through the alerts is a large  
manual process and it turns out that  
many of them, many of the alerts,  
are actual problems that might lead  
to a security issue, and so here  
looking at this diagram that we have  
here, the area today is that  
organizations can take their code  
bases, put them through analyzers  
and they get lots of alerts, and then  
those alerts have to manually be  
looked at and you see the red box on  
the left, which is the arrow--sorry--  
the yellow circle is basically which  
alerts get manual inspection, and you  
can see it's a very small percentage,  
and the red are suspicious, and  
they're left that way largely because  
the analyst just ran out of time and  
couldn't get to them. 

Page 23 of 60



So what our project, one of the  
projects that we're working on now,  
is to improve this, and we're  
improving it by I think your term was  
spilling machine learning on top or  
pouring machine learning-- 
  
Moderator: Sprinkle.  We sprinkle.  
We're seasoning it.  We're seasoning  
with the...yeah. 
  
Speaker 4: --on top of it.  However,  
we are working with data scientists to  
help us identify and interpret the  
information and categorize it  
correctly so that it means something.  
But the goal is to use machine  
learning classifiers with the data that  
we've collected to try and predict  
whether these alerts are true  
positives or false positives without  
any manual inspection at all, and the  
goal is that if 80 percent or 90 percent  
of them can be predicted to be true  
positive or false positive with high  
confidence, then there's a small  
number of alerts that need to be  
inspected by a person, and that's  
shown by the small yellow circle in  
the bottom right.  And so that's one  
area of work that we're trying to  
improve this is trying to reduce the  
amount of work and manual labor  
that it takes to improve the security  
or software through source code  
analysis. 
  
Moderator: So that research has  
been ongoing for a while, a couple  
years, and we've already got some  
positive results there, right? 
  
  

Page 24 of 60



Speaker 4: It has.  We've published  
some results as well.  I think at the  
end of this we have some links to  
some of those reports.  Just in the  
time that we had here, I just wanted  
to talk a little bit-- 
  
Moderator: Sure, absolutely, yeah. 
  
Speaker 4: --and give some teasers  
on the work.  But we do have some  
references to show some of the  
results that we have.  It is also still  
though ongoing.  It's not complete. 
  
Moderator: Absolutely.  But we can  
always get better. 
  
Speaker 4: But we can get better,  
and we're always looking for  
organizations that are interested to  
help us with data.  One of the early  
findings that we had was that finding  
data was a challenge and in  
particular finding data with the  
correct components, attributes, to  
help us define the right factors or  
features to help with the machine  
learning was a challenge, and  
because lots of people identify or  
audit their code with using various  
terms and terminology and that it's  
very subjective. 
  
So that's one area of work.  Now, this  
helps with what, you know, I noted  
here as automated analysis, but so  
future work that we're doing that will  
hopefully help even more in the  
future is automated code repair. 
  

Page 25 of 60



Automated Code Repair 

9Three Software Innovation that DoD Needs Now
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-US Government use and 
distribution.

Automated Code Repair

Many violations of rules follow a small number of anti-patterns with corresponding 
patterns for repair
These can be feasibly recognized by static analysis

• printf(attacker_string)  printf("%s", attacker_string)
Creating tools to automatically repair these types of defects in source code

• Integer Overflows that lead to memory corruption
• Inferred memory bounds for reading from reused buffers
• Verified memory safety

Constraints
• The patched and unpatched program behave identically over the set of all traces that 

conform to the rules. (formally proven)
• No trace violates the rules. (formally proven)
• Repair in way that is plausibly acceptable to the developer.

 

**009 So that's kind of the next  
step as opposed to just minimizing  
the amount of labor for inspection of  
these alerts.  But what if we could  
just remove the alerts and address  
them entirely?  That's what we're  
working on now.  So the idea is that  
many violations to the secure coding  
roles follow specific anti-patterns and  
that--so they're easy to find and we  
know what the correct code should  
look like, and so here's an example of  
a printf with just an input parameter  
where it should be--so that's, that is  
vulnerable to injection attacks.  It's  
not using, in particular, format string  
attacks, and so the correct would be  
using the format string identifier  
present_s to help make sure that a  
string doesn't have any format string  
vulnerabilities within it. 
  
So we know it's easy to find the error  
and it's easy to fi--or to identify what  

Page 26 of 60



the fix should be.  So we're looking at  
different types of errors that are in  
those categories.  This is also work  
that has been going on for a couple  
years, and so we have some results  
with regard to integer overflows,  
identifying and automatically  
repairing integer overflows that lead  
to memory corruption and particular  
buffer overflows, as well as inferred  
memory bounds, and so this is  
largely for reused buffers where you  
might write data into the same buffer  
multiple times and if you don't clear  
the previous data that was there, you  
might give access to someone data  
that was sensitive to a previous user,  
and so we try and identify when that  
vulnerability or weakness is there and  
to fix it automatically, and right now  
we have a multi-air project working  
on verified memory safety. 
  
And so we are working and so I have  
here some of the constraints with  
regard to, you know, proving that the  
patch doesn't break anything.  
Obviously, we'll want to make sure it  
doesn't break anything and that it  
doesn't violate any of the other  
secure coding rules.  We don't want  
to make not just break functionality  
but also not add any new software or  
security vulnerabilities to the code,  
and so one area in particular for DoD  
need, that we see this as we're going  
forward, is the legacy code that's out  
there for the DoD.  Even though we  
showed on the previous slide for  
automated analysis, that we're trying  
to improve that, a lot of the legacy  
code that's out there, nobody's going  
to start analyzing that code and  

Page 27 of 60



looking for vulnerabilities or defects  
in the source code, and so this might  
be a way-- 
  
Moderator: Except the bad guys. 
  
Speaker 4: Except the bad guys.  
Yes, exactly.  If they can get their  
hands on the source code or they  
might be attacking it, you know,  
through-- 
  
Moderator: Right.  Fuzzing it or  
something else.  Yeah. 
  
Speaker 4: --fuzzing and other  
dynamic analysis techniques.  But the  
idea is that without much manual  
interaction at all, we might be able to  
remove a whole class or multiple  
classes of vulnerabilities in legacy  
code without using manual labor to  
do that. 
  
Moderator: Completely  
automatically, yeah. 
  
Speaker 4: That is the goal. 
  
Moderator: Yeah. 
  
Speaker 4: Yes.  
~~~  
Moderator: And I think we're, we've  
already shown, that there's  
techniques that have been successful  
for some classes or errors already. 
  
Speaker 4: That's right.  Yeah. 
  
Moderator: Yeah. 
  
  

Page 28 of 60



Speaker 4: So in particular, like I  
mentioned, the integer overflow and  
the inferred memory bounds are past  
projects we have published and some  
tools available for collaborators to  
try.  It's still in research phase,  
meaning that it's not, you know, a  
production quality type of tool, but it  
does work and it does identify and  
correct code. 
  
Moderator: Well, at the end of the  
day we want to get these things in  
the compiler tool change, right? 
  
Speaker 4: That's right.  That's  
right. 
  
Moderator: So you would get nice  
compilator warnings or even set the  
right compiler flag and it would fix it  
for you. 
  
Speaker 4: Yes, yes. 
  
Moderator: And I think one of the  
other, just to point out to the  
audience, one of the other emphasis  
for this team is that any automatic  
code repair that happens remains--  
maintains human readability and  
human maintainability as well. 
  
Speaker 4: Yeah.  That's actually a  
great point.  So there are currently  
automated code repair tools out  
there.  Most of them either repair at  
the binary level or they generate  
code that can be in the source code  
that is easily machine readable but  
hard for humans to read with regard  
to specific execution statements and  
such, and so a goal of this is to  

Page 29 of 60



maintain readability and  
maintainability with the code edits so  
that it's still human readable after the  
fixes are put in, and then to your  
other point, as I mentioned, there is  
other research that I don't have time  
to go into, but both at the SEI and  
other tool vendors, where one whole  
area of research is trying to improve  
the integration into the development  
chain and continuous development,  
and so that is also a goal is to get  
these into the--get these type of  
tools and functionality into the  
development pipeline so that it's not  
an extra tool that people have to go into. 
  
Moderator: More mainstream, yeah. 
  
Speaker 4: That's exactly right. 
  
Moderator: Yeah.  Remember the  
first time I ran a static analyzer  
against some of my code, I think it  
was Valgrind.  It just completely  
overwhelmed me. 
  
Speaker 4: Yeah. 
  
Moderator: And it wasn't even a  
very complex code set, and I was  
like, "Oh.  I'm just going to ignore  
this and hope I'm okay." 
  
Speaker 4: That's--and to that, you  
know, to go to the previous slide-- 
  

Page 30 of 60



Automated Analysis - Prioritizing Vulnerabilities 

8Three Software Innovation that DoD Needs Now
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-US Government use and 
distribution.

Automated Analysis - Prioritizing Vulnerabilities

Long-term goal: Automated 
and accurate statistical 
classifier, intended to 
efficiently use analyst effort 
and to remove code flaws

Analyzer
Analyzer

Analyzer

Codebases

Alerts

Today

Project Goal

Image of woman and laptop from http://www.publicdomainpictures.net/view-
image.php?image=47526&picture=woman-and-laptop  “Woman And Laptop”

Classification algorithm development using 
CERT- and collaborator-audited data, that 
accurately classifies most of the diagnostics 
as: 
Expected True Positive (e-TP) or 
Expected False Positive (e-FP), and 
the rest as Indeterminate (I) 

66 effort days

12,076

45,172

6,361

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

e-TP e-FP I

3,147

11,772

48,690

0

10,000

20,000

30,000

40,000

50,000

60,000

TP FP Susp

Prioritized, small number 
of alerts for manual audit

Many alerts left unaudited!

 

**008 That is largely, even when  
people are looking at it, the point at  
the upper-right column there in the  
red circle, is that most of the things  
are ignored. 
  
Moderator: Right.  Half of them I didn't  
even know what to do with. Honestly. 
  
Moderator: Didn't know what to do  
with.  All right.  So let's pivot back to  
virtual integration a little bit. 
  
Speaker 2: Okay. 
  
Moderator: I wanted to talk, as  
much examples as we can give-- 
  
Speaker 2: Yeah. 
  
Moderator: --about some places  
we've actually applied virtual  
integration and assisted some  
programs. 

Page 31 of 60



Speaker 2: Yeah. 
  
Moderator: And I think we could  
talk about future vertical lift. 
  
Speaker 2: Yeah, yeah, yeah.  So-- 
  
Moderator: And maybe even--  
maybe we get to HACMS after a  
while if we can talk about that too. 
  
Speaker 2: Yeah, absolutely.  So. 
  

AADL Success Stories 

4Three Software Innovation that DoD Needs Now
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-US Government use and 
distribution.

AADL Success Stories

Wheel Braking System
• Example used in SAE 

standardization efforts 
(ARP 4761 & AIR61160)

• AADL source publically 
available on github

• Used in ongoing safety 
research

System Architecture Virtual 
Integration
• “Incremental Validation, 

Continuous Integration”
• Pays for itself in 

commercial development

HACMS: Strong Security
• Secure drone and 

helicopter developed 
using AADL, seL4 & 
other tech

• Resistant to weeks of 
red-team attacks, even 
with source code

Image adapted from loonwerks.com

 

**004 There are a number of projects that  
have successfully applied AADL and  
OSATE, the tool environment that we  
build here.  Jeff mentioned the JMR  
and FVL, which are--so these are--  
JMR stands for Joint Multi-Role. 
  
It's, as I understand it, sort  
of a technology demonstration/look  
at better ways to build the next  

Page 32 of 60



generation of helicopters and vertical  
lift aircraft, and that, it feeds into, the  
larger project of future vertical lift,  
and so that is an ongoing project  
where AADL is being used right now  
on a pretty significant scale, and then  
there are some success stories that I  
have up on the slide here. 
  
So these range from pretty small to  
pretty big.  The small one, the wheel  
braking system, is not trivial by any  
means, but it was built as an  
example to be used in some  
standardization efforts.  So AADL is  
not just an SEI product, it's this  
international standard and we are  
also using it in some other standards  
to build this example of how things  
can and I believe did at one point go  
wrong in a wheel braking system. 
  
So this is a publicly available  
example, and it's actually been used  
in ongoing safety research.  So other  
academics have picked up this  
example and pointed out ways that  
we could improve what we've done  
and how safety analysis could be  
improved.  Which, coming from  
academia, I really like this idea that  
SEI is creating examples and then  
those examples are picked up by the  
community and used as conversation  
points. 
  
Then there's this larger effort, the  
system architecture virtual  
integration, which really drives this  
idea of integrate-then-build, that  
much the same way you have a V-  
model of software development that  
many of you are probably familiar  

Page 33 of 60



with where you go from requirements  
down to building the code down to--  
or all the way back up to acceptance  
and deployment, that you should also  
have a V-model of testing, and so  
when you are building your  
requirements there should be some  
way to verify those requirements,  
and one of the cool up-shots of the  
SAVI, the S-A-V-I effort, is that it has  
been shown to pay for itself in  
commercial development.  That this  
isn't something that costs a ton of  
money and, you know, maybe  
incrementally improves your software  
development, but this actually  
avoided enough errors that it paid for  
itself. 
  
Moderator: And some of the SAVI  
members are things, people, like  
Boeing and Airbus, right? 
  
Speaker 2: Yeah, yeah.  These are big-- 
  
Moderator: Yeah.  So-- 
  
Speaker 2: --commercial-- 
  
Moderator: --good acceptance in  
the avionics and safety critical real-  
time areas. 
  
Speaker 2: Absolutely.  So AADL is  
usable to describe a range of  
systems.  It's primarily right now, see  
most use, in the avionics world.  But,  
you know, not necessarily.  When I  
was in grad school, we were looking  
at applying at medical devices and  
found some good benefits there, and  
then the last project that you  
mentioned is HACMS, which is a  

Page 34 of 60



really neat project where the DoD  
said, "Okay.  We recognize that we  
need some sort of foundational shift  
to build really strong security into our  
systems. 
  
Moderator: So just for the audience.  
It was DARPA program. 
  
Speaker 2: Oh, yeah, yeah. 
  
Moderator: Yeah.  So high  
assurance, cyber military systems I  
think is how it expands? 
  
Speaker 2: I think so. 
  
Moderator: Yeah. 
  
Speaker 2: And it was--and correct  
me if I'm wrong here, but there were  
sort of phases where they first  
wanted to build this little drum, the  
small quadcopter on the left, and  
then a full-size one that would carry  
people, on the right there. 
  
Moderator: Yeah.  The ultimate  
demonstrator was a full-size  
autonomous helicopter. 
  
Speaker 2: Yeah. 
  
Moderator: So a full-size helicopter  
autonomously flown. 
  
Speaker 2: So-- 
  
Moderator: And not remotely flown  
but autonomously flown, yeah. 
  
Speaker 2: But yeah.  So the  
security problems or potential  

Page 35 of 60



problems are pretty apparent here  
that you have an autonomously flying  
drone, and so the effort was to see if  
we could develop these in such a way  
that they would be resistant to  
attack, like, really resistant to attack.  
So a number of technologies were  
used, various formal methods, but  
AADL was used to specify the  
architecture because it has strong  
semantics that really don't leave a lot  
of ambiguity that could be exploited,  
and it was.  It worked.  It was  
resistant to several weeks of red-  
team attacks.  They couldn't take  
control of it.  I think at one point they  
found they could, you know, disable  
logging temporarily or something.  So  
pretty low-level stuff, and that was  
even with the source code, the full  
design schematic.  It's really a great  
success story of all sorts of cool  
software engineering research,  
including using AADL to get this rock-  
solid architecture specification. 
  
Moderator: Very cool.  Yeah.  I'm  
very impressed with that project. 
  
Speaker 2: Yeah. 
  
Moderator: I've referred to it a lot  
lately.  So let's--I'm going to reattack  
over here on the--with our data  
scientists.  I'm going to make a  
comment, and you guys please  
comment on this after the fact if you  
want, is I make it a point always to  
talk about the discipline or the area  
of data science and not call it just  
blind application of machine learning,  
because I think machine learning and  
artificial intelligence is a bit of a buzz  

Page 36 of 60



word that we have going on today.  
But in my mind, machine learning is  
one of the algorithmic tools in your  
toolkit as a data scientist, right.  It's  
not really a field of its own.  Well,  
some people think it might be a field  
of its own but-- 
  
Speaker 1: I'll push back real  
strongly there. 
  
Moderator: Please do.  Please do. 
  
Speaker 1: Machine learning is a  
field of its own. 
  
Moderator: Good. 
  
Speaker 1: Yeah.  I'll get a PhD in  
Machine Learning. 
  
Moderator: Yeah, yeah, yeah. 
  
Speaker 1: Mine's in Statistics, but  
so we kind of like fight with each  
other about, you know, sort of who-- 
  
Moderator: Statisticians versus  
machine learning experts or-- 
  
Speaker 1: Yeah.  One comes from- 
  
Moderator: --yeah, machine learn-- 
  
Speaker 1: --a computer science  
background and one comes from  
more of an experimental design  
background, and I come from more  
of an experimental design  
background instead of a computer  
science background. 
  
Moderator: Right. 

Page 37 of 60



Speaker 1: But at the PhD level, we  
read each other's papers, we go to  
the same conferences.  There's not a  
lot of differ-- 
  
Moderator: So I made this  
statement in the past and you agreed  
with me that all ML is statistics.  Is  
that too controversial? 
  
Speaker 1: ML is its own field that  
has its own methods of knowledge in  
attacking problems. 
  
Moderator: I hope that the  
questions are going to go crazy here  
in that answer.  Tried to be  
provocative. 
  
Speaker 1: Versus--and statistics is  
different.  Like, for example, a broad  
brush of machine learning is to look  
at a problem and then write down  
something like a loss function and  
then optimize it, right.  Versus, like, a  
statistician might look at a problem  
and say, "Okay.  What are the  
experiments that we might perform  
to do some causal inference or  
something?  Machine learning people  
are often primarily focused around  
problems that have to do with  
prediction because prediction is  
important.  Statisticians are often  
focused around problems that have  
to do with causal inference because  
knowing why something is, is important. 
  
Moderator: So explanation and  
prediction sort of things. 
  
Speaker 1: And we work together  
and sometimes I do ML stuff,  

Page 38 of 60



sometimes my ML colleagues do  
statistics stuff. 
  
Moderator: Right.  Tools in the  
toolkit of the data scientist. 
  
Speaker 1: Yeah.  Well, this part of  
the data scientist, right? 
  
Moderator: Okay, yeah. 
  
Speaker 1: We've still got the  
engineers and the subject matter  
experts. 
  
Moderator: And subject matter  
experts.  Absolutely, yeah.  So that  
bigger collaboration, as I were-- so  
Lena, you have any comments?  I  
saw you making a couple of faces at  
me there. 
  
Speaker 3: I, I mean, I think, you  
know, this is again why, like,  
communication is pretty important.  
Because when you're trying to span a  
couple of domains and describe a  
problem where there might be a little  
bit of, like, domain mismatch in how  
people are using terminology, like,  
that is where having logical language  
models really helps to resolve a lot of  
that difference, because everybody  
can speak the same language and  
then we can resolve it, you know,  
sort of by machine, like, through a  
logical language model to say, "This  
way that statisticians talk about this  
problem is getting at the same  
question that this way that machine  
learning researchers talk about the  
same problem," but there's a little bit  
  

Page 39 of 60



of miscommunication that comes just  
from like domain-specific language. 
  
Moderator: Interesting.  Okay.  So I  
want to come back and we talked  
about this just a little bit before, Lena  
and I did, about what can we do--  
when I say "we," I mean, well,  
society at large, but the DoD, even  
specific programs, what can we do  
with our data now as we create vast  
amounts of more data that could  
greatly aid using that data most  
effectively in data science to answer  
questions. 
  
Speaker 3: So I think that when you  
are starting a data collection there's a  
strong responsibility to think about  
how you might want to use it and  
what the implications of the decisions  
that you make about what you collect  
are at that time.  Right?  Because  
one of the big problems that you see  
with trying to answer a question is,  
"Can I identify some data that speaks  
to that question, and then with the  
features and the specific data types  
that I'm collecting and the specific  
elements that are in that data set  
that I have collected or will collect in  
the future, what kinds of questions  
will that data support answer?" and  
so one of the things that I have run  
up a lot in my work is trying to  
identify opportunities to influence  
some of the--based on some analysis  
that I've done on existing data that  
we have, what are features that I  
can't currently extract from that or  
infer from that that might help me  
understand my problem so much  
better?" 

Page 40 of 60



Speaker 1: Right.  And just to build  
on that, like, there's that-- 
  
Moderator: I want to ask a question  
about the feature thing.  I'm sorry. 
  
Speaker 1: No, please. 
  
Moderator: On the--when you say--  
if the data doesn't have the features  
you need, how can it get the  
features?  Do you have to modify the  
sensor?  Do you have to modify how  
the data's collected? 
  
Speaker 3: Well, it kind of depends  
on what the question you're asking is  
and what things you can measure in  
your environment, right?  And so, I  
mean, but that's why sort of  
involving--involving data science in a  
data collection decision can be really  
powerful in terms of controlling what  
kinds of questions you might be able  
to answer and just that sunk cost of  
once you started data collection, you  
have something that has a value and  
if you had additional pieces of  
information you might be able to  
answer more questions more cleanly  
or more quickly than you would be  
able to with what somebody thought  
was the right thing to collect when  
they started, so-- 
  
Moderator: All right.  So I'm going  
to go out on a limb and then I'm  
going to let Nathan comment, is  
we've got this--that--so what you  
said, I think, underlines that team  
approach to data science where  
you've got a subject matter expert, a  
strong subject matter expert, some  

Page 41 of 60



engineering support to help realize  
the system, and the data scientists.  
So I'm going to coin the term called  
data science DevOps.  How's that  
sound?  Because that's sort of like  
the DevOps component, right.  You  
bring in the people that have to  
operate the system at the end.  
You've got a subject matter expert  
and a user with the developers and  
as a core team. 
  
Speaker 4?: Can I interject? 
  
Moderator: Absolutely. 
  
Speaker 4?: Data science secure  
DevOps. 
  
Moderator: Data science secure  
DevOps, there we go.  So we're-- 
  
Speaker 4?: Yeah.  Because we're  
moving toward secure DevOps. 
  
Speaker 1?: How can we make this  
longer? 
  
Moderator: Yeah, right, yeah.  Well,  
we have secure-- 
  
Speaker 4?: Secure DevOps is a  
thing now, so we might as well not  
lose it.  Might as well just add it in  
there, so-- 
  
Moderator: Right.  All right.  
Nathan, please, I'm sorry I had to  
interrupt your-- 
  
Speaker 1: No, I like that a lot.  I do  
like that a lot.  The only thing that I  
was going to add to Lena's was that  

Page 42 of 60



there's that joke about a man outside  
of a bar looking for his keys under a  
streetlight and someone comes up to  
him and says, "Hey, did you lose your  
keys under the streetlight?" and he  
says, "No.  But that's where the light  
is."  Right. 
  
Moderator: Yeah. 
  
Speaker 1: And with all of the  
sensors and all of the data that we're  
collecting, we're essentially picking  
where our streetlights are, and if  
people who are not involved with the  
kinds of questions that are going to  
be asked, are involved in those,  
"What are we going to collect?"  
things, we might end up pointing our  
lights at places that make it really  
hard to find the answers that we  
really want. 
  
Moderator: Well, and the adversary,  
which ultimately the Department of  
Defense has--builds, has to build  
systems that are robust to adversary  
action, they're going to try to infer  
where our streetlights are pointed  
and operated in the shadows. 
  
Speaker 1: Right. 
  
Moderator: That's, I mean, there's a  
whole field of malicious--presenting  
malicious data to a machine learning  
algorithm specifically to trick them or  
break them. 
  
Speaker 1: Right. 
  
Moderator: And they can be quite  
brittle sometimes, so-- 

Page 43 of 60



Speaker 1: Right.  You can put on  
specially formatted sunglasses that  
make you look like Tom Cruise to a  
learning system. 
  
Moderator: Yes.  Lujo Bauer at  
Carnegie Mellon.  That's some of his  
work, actually. 
  
Speaker 1: Right.  Right.  Exactly. 
  
Moderator: So yeah.  I actually try  
to look like somebody else.  No.  No.  
Okay.  So let's come back to  
automated code analysis.  Where do  
you want to go here with this one? 
  
So a lot of what you do is static analysis. 
  
Speaker 4: Right. 
  
Moderator: Can you talk a little bit  
about dynamic analysis, how that  
plays in and how maybe--I know  
there's another team at SEI that's  
doing a lot more dynamic analysis,  
but can you talk about some of the  
applications of dynamic analysis as  
well? 
  
Speaker 4: Sure, sure.  So dynamic  
analysis-- 
  
Moderator: And maybe actually  
give, explain the difference, between  
the two for the audience. 
  
Speaker 4: That's what I was going  
to do. 
  
Moderator: Yeah. 
  
  

Page 44 of 60



Speaker 4: So they come from  
things, from different perspectives,  
kind of like statisticians and machine  
learning experts.  So dynamic  
analysis is analyzing software while  
it's running, and so often--there's  
many types of dynamic analysis just  
like there's many types of static  
analysis, but often it's trying to find  
inputs to software while it's running  
to break the software, and  
sometimes the breakage of the  
software is security-related,  
sometimes it's not, but often if you  
find something that, you know, some  
behavior of the software that is  
unexpected, then you might be able  
to adjust that to get to a security  
issue, and so that's a whole different  
area of research, as you were  
mentioning.  The benefit of dynamic  
analysis is that you have basically  
every incident is a true positive,  
right? 
  
Moderator: Oh, right. 
  
Speaker 4: That something breaks. 
  
Moderator: That really broke.  
Yeah. 
  
Speaker 4: Right.  We know it  
broke.  So there must be something  
wrong with the software that allowed  
it to break.  Whereas with static  
analysis, as we mentioned, a  
significant concern or challenge, is  
the amount of false positives, right.  
We get lots of alerts that maybe  
something in the code isn't right, but  
it might actually be mitigated  
somewhere in the code so you can't  

Page 45 of 60



actually attack it and there's no real  
vulnerability.  So basically every  
security incident or security finding  
that you have in dynamic analysis is  
a vulnerability of some type, and  
from the-- 
  
Moderator: Or at least an error. 
  
Speaker 4: Well, what-- 
  
Moderator: That could become a  
vulnerability, yeah. 
  
Speaker 4: Well, as you say, from  
the information assurance model of  
confidentiality, integrity and  
availability, often it might just be  
availability.  We crashed it and you  
don't want it to crash, and maybe  
that's all it is, but it crashed, and so  
they're coming from two different  
angles, but as research has kind of  
continued, they're starting to merge,  
to try and get the benefits of both  
worlds, and so we have, you know,  
different types of analysis that are  
merging different types of things like  
execution or other methodologies that  
are trying to use, again, depending on  
the direction you're coming from, either  
first use binary--or dynamic analysis, to  
find the vulnerability and then go back  
and look at source--or static analysis,  
to try and find where it is. 
  
Moderator: Right. 
  
Speaker 4: Right.  Because-- 
  
Moderator: And that's the happy  
scenario where you've got the binary  
and the source code. 

Page 46 of 60



Speaker 4: Exactly. 
  
Moderator: And at least some  
mapping between the two. 
  
Speaker 4: That's right.  Because  
the--what I didn't mention was the  
challenge with dynamic analysis.  The  
challenge is fixing it, so now we know  
that there's something in the code  
that breaks and this input that causes  
the unexpected behavior.  But we  
have--we don't necessarily know  
where in the code, you know, from  
the source path, the execution path,  
where it failed, and so trying to find  
what the fix should be is a problem. 
  
Now, some researchers are, as I  
mentioned, just trying to fix the  
binary and they don't care about the  
source code, because it might be  
hard to find or because they don't  
have access to the source code.  But  
that then hurts the ability for  
maintainability and making sure that  
you don't have a regression error the  
next time you update that code or  
your contractor updates the code.  So  
the happy medium is then using  
static analysis and source code  
analysis to try to find where a lineup  
of weakness in the code to the  
vulnerability, and similarly, if you're  
starting with static analysis, people  
are using dynamic analysis methods  
to try to identify whether or not that  
particular weakness will lead to a  
vulnerability. 
  
Moderator: Is a true positive. 
  
Speaker 4: Yeah. 

Page 47 of 60



Moderator: Yeah. 
  
Speaker 4: Yeah. 
  
Moderator: Nice. 
  
Speaker 4: Whereas where, you  
know, where the project I talked  
about is using machine learning and  
data to try and predict whether or  
not something is, there's other  
methods that are actually trying to do  
execution paths, and try and tell,  
"Did this really lead to or will this lead  
to some sort of a vulnerability?" 
  
Moderator: Right.  Yeah, so one of  
the techniques I try to use is I try to  
imagine the ideal instinct for things.  
So if you're massively successful in all  
your research, where would we be,  
you know, 5 and 10-so years from  
now?  So that's what I want to--want  
to go around the table.  We got  
about 10 minutes left. 
  
Actually, questions?  We have any? 
  
Facilitator: We do have a couple  
audience questions.  We could sneak  
them in before the-- 
  
Moderator: Go ahead.  Sneak those  
in, and then we're going to do-- 
  
Facilitator: --future states. 
  
Moderator: --the idealized end  
state.  I-- 
  
Facilitator: Okay. 
  
Moderator: Okay. 

Page 48 of 60



Facilitator: One that came in  
during, I believe, Sam's section, was,  
"Many DoD customers--" and this is  
from Brian, asking, "Many DoD  
customers are concerned with time-  
to-mission rather than design  
activities.  How do you convince  
government/non-engineers MBSE  
values, a model-based systems  
engineering value?" 
  
Speaker 2: Well, I think that you  
would look at the success of model-  
based system engineering in bringing  
down costs, which typically are a  
function of manpower.  So when we  
say that this is paying for itself in  
commercial development, that means  
that you are saving enough time to  
save money.  I also think that, you  
know, I recognize that this is a  
driving need, but there are  
competing needs, like the need for a  
secure system, and I would make  
that case to the acquisition director  
or manager. 
  
So yeah.  I would say that, you  
know, you are going to be saving  
quite a bit of time, that the cost  
savings from these efforts stem  
largely from development time  
savings, and then also the fact that  
you would be producing higher-  
quality software in, you know, in a  
insecure cyber world.  Insecure  
software is extremely costly both in  
terms of development delays and  
even human lives. 
  
Moderator: And not just insecure  
but correctly functioning software,  
right? 

Page 49 of 60



Speaker 2: Right.  Right. 
  
Moderator: And so my argument  
honestly to this one is, and very  
sensitive to the whole time-to-  
capability argument, that we want to  
spend capability as quickly as we can  
to stay ahead of or at a minimum at  
pace, but ahead of adversary  
development, but you really want to  
have not time-to--shorter time-to-  
capability.  You want to have the  
minimum amount of time to correct  
capability. 
  
Speaker 2: Right. 
  
Moderator: And my argument with  
model-based systems is very in doing  
things, having more discipline, earlier  
in the lifecycle. 
  
Speaker 2: Yeah. 
  
Moderator: You're going to get,  
you're a lot--you're assured a bunch,  
much more, correct capability, even  
on the same or less time, than you  
would overall be.  So you have to  
take care to--sometimes if you spin  
too quickly, you field things that are  
very fragile or break. 
  
Speaker 2: Yeah, and I would also  
just add sort of as an under view,  
that this is a weakness of research in  
all aspects of software engineering  
research.  You know, whether--  
particularly formal verification, but  
model-based engineering as well,  
that, you know, cool techniques are  
developed but then don't work for  
whatever reason in the real world,  

Page 50 of 60



and so--but I would loop back to the  
state of the art even if you find that  
the current technology doesn't meet  
your needs.  I'd loop back in a few  
years because the work is  
progressing and so whereas before  
you had these individual models for  
each sort of analysis you wanted to  
do with something like AADL that is  
the single source of truth for multiple  
analyses.  You know, there really are  
time savings that weren't there a  
technology generation previously. 
  
Moderator: Yeah, couldn't agree  
more, and to sum the point out, that  
the SAE standard for architectural  
analysis and design language is like  
18 years old now. 
  
Speaker 2: The first version, yeah,  
yeah. 
  
Moderator: So quite mature. 
  
Speaker 2: Yeah, yeah. 
  
Moderator: And has been  
successfully used in big-system  
integrations. 
  
Speaker 2: Absolutely. 
  
Moderator: And my argument, it's  
one of the three things DoD needs  
more of right now. 
  
Speaker 2: Yeah. 
  
Moderator: So-- 
  
Facilitator: Another one, one for  
Bob actually asking, this is from Jack,  

Page 51 of 60



asking, "Are your analyzing--are you  
analyzing executable level code  
instead of just source code?" 
  
Moderator: I can give an intro there  
but-- 
  
Speaker 4: Well, I guess it depends  
on the "you," but let me answer and  
then you can add. 
  
Moderator: Yeah.  Sure. 
  
Speaker 4: So my specific team  
largely focuses on source code, but  
there are other groups at CERT that  
are working on executable binary  
analysis, both for--well, largely for  
correctness and/or for, you know,  
finding vulnerabilities to be able to  
patch them or whatnot and that goes  
back to, like we said-- 
  
Moderator: And about more of the  
identifying malware. 
  
Speaker 4: Yeah. 
  
Moderator: Malware analysis, yeah. 
  
Speaker 4: And also identifying and  
categorizing malware to understand,  
you know, what type of malware is  
happening.  So there's, there's a lot  
of executable binary analysis going  
on for various purposes as well. 
  
Moderator: Yeah.  One of the really  
compelling areas that I think, neat  
things that I think SEI's been doing,  
is so Bob's team is up here at source  
code and they actually, a lot of times,  
will take that source code to the  

Page 52 of 60



intermediate representation and  
actually do analysis there or  
correctness and security  
vulnerabilities and actually even  
make changes there, which helps  
make them language agnostic, right. 
  
Speaker 4: Right. 
  
Moderator: So you can go to the--  
fix it in intermediate representation  
and go back to whatever source  
language needed, and that's a pretty  
good terministic process, right? 
  
Speaker 4: That's right. 
  
Moderator: But we got another  
team at the other end that they've  
largely made their living doing  
hardcore binary analysis where that's  
the only artifact they have is the  
binary, and they've actually created  
techniques to hoist that binary not  
just to assembly language but even  
to higher-level object  
representations, data structure  
representations, and I really think the  
two teams in the two outlines of  
research are getting pretty close to  
meeting.  Now, I don't think I would  
make the claim that we can go from  
source code to binary in a  
deterministic fashion.  We can, if you  
know all the switches.  
The other way's a lot more, there's a  
lot more non-determinism going the  
other way.  But I think there's a lot of  
progress being made with both the  
binary analysis and the source code  
analysis. 
  
Speaker 4: Yeah, yeah. 

Page 53 of 60



Moderator: And they collaborate a  
lot also. 
  
Speaker 4: Unfortunately I think  
you just took my 5 to 10-year  
answer. 
  
Moderator: Yeah.  That's your--  
that's what's also look like. 
  
Speaker 4: But that's okay.  I'll--but  
yes. 
  
Moderator: Before we tie those to  
the--that's okay. 
  
Speaker 4: Yes, that's fine. 
  
Moderator: We only have four  
minutes, so-- 
  
Speaker 4: That's okay.  So yeah.  
So as a detail, as I was mentioning,  
that those two directions, we are  
actively working towards connecting  
those and one model to think of that  
is connecting through the whole  
compiler process that whether you're  
looking at the input or the output,  
that we can go by directionally  
through that whole compilation  
process. 
  
Moderator: Yeah.  So I think this  
might be--I apologize in advance.  I  
hope it's not a hard question for--  
because I think these are pretty  
specific technologies when we did the  
provocative title of "What Three  
Things Does DoD Need Now?"  Data  
science was a lot more of a more  
general area, but I think it's--we  
need more of that.  What does  

Page 54 of 60



awesome look like for a data scientist  
5 or 10 years from now? 
  
Speaker 1: Superpowers. 
  
Moderator: Superpowers.  Like that  
answer. 
  
Speaker 1: But a, somewhat a  
serious answer in terms of  
superpowers.  Like, a lot of my work  
has to do with there is a subject  
matter expert with a problem and  
there's all of this stuff that a machine  
might be able to help them with, but  
they just don't know how to do it yet.  
So like with the malware thing, let's  
break up that malware into different  
pieces and let's use the machine to  
give context.  Now that reverse  
engineer has a superpower where  
they look at all this stuff and say,  
"Oh, these groups are related; these  
groups aren't.  I'm going to reverse  
engineer that, that, that and that,"  
and now I understand the whole pile,  
instead of having to reverse engineer  
all hundred things.  So more things  
like that.  That's what I mean by  
superpowers. 
  
Moderator: So data science gives  
people superpowers. 
  
Speaker 1: Indeed.  That's the idea. 
  
Moderator: That's awesome.  That's  
awesome. 
  
Speaker 1: We're like the Green Lantern. 
  
Moderator: Yeah. 
  

Page 55 of 60



Speaker 1: Little rings. 
  
Moderator: Well, he's one of my  
least favorite of the superheroes, I  
guess.  Just joking.  All the Green  
Lantern fans are going to get mad at  
me now. 
  
Speaker 1: Batman's a scientist. 
  
Moderator: Lena, do you want to  
talk to that one?  What does  
awesome look like for you? 
  
Speaker 3: Yeah.  I mean, very  
similarly, like, better capacity to carry  
and understand the data sets that we  
have and better visibility to sources  
that are creating and storing data to  
the kinds of data that have the  
highest value to them, and the kinds  
of data collections that will empower,  
like, the best kinds of insight, and so  
just really thinking about the, like,  
the data curation and maintenance  
parts of sort of the data science  
process in the sense that, like, as  
Nathan and I have discussed a few  
times about, you know, enabling the  
relationship between a subject matter  
expert who understands the domain  
that you're working in, to building  
some kind of a model, to engineering  
a way of processing the real-world  
data to build that model, and so just  
really being able to understand what  
it is that you're collecting and storing. 
  
Moderator: Yeah, and I think the,  
one of the elephants in the room we  
didn't probably spend enough time  
talking about, we don't probably have  
time, is data curation I think is just a  

Page 56 of 60



humongous task for data scientists  
and for machine learning experts in  
general, that a lot of times you're  
given literally a pile, and I mean that  
in a very negative sense, of data,  
that is a pile of data that you have to  
make sense of, and it's not curated  
well. 
  
Speaker 3: Yeah.  I mean, one big  
problem for a data scientist is that a  
lot of their time can be spent just  
trying to, like, make the data usable  
and then just try to understand  
what's even in it before they can  
even make any inferences, and so  
anything that we can do to improve  
the tools for curating and  
understanding the data sets so that  
we can make the data scientist time  
be better spent on the actual analysis  
portion of the task is definitely a  
need. 
  
Moderator: Yeah, and this is where  
my sort of push, I hope it came  
through a little bit, was get your local  
data scientist involved early in your  
data creation so that they can help  
you create it in a way that makes it  
much more effective, and I think  
we're-- 
  
Speaker 3: Absolutely. 
  
Moderator: --out of time. 
  
Facilitator: Yeah. 
  
Moderator: Are we going to wrap  
up? 
  
Facilitator: We're fine.  Yeah. 

Page 57 of 60



Moderator: Okay. 
  
Facilitator: We can--if you want to  
answer, you know, Bob and Sam. 
  
Moderator: Well, I just--we can  
wrap up, but buy, you know, go to  
your local software engineering store  
near you.  Buy some--get some data  
science and some data scientists.  Go  
get some virtual integration, and we  
didn't get to talk about design space  
exploration.  I wish, but maybe the  
next time, and go get yourself some  
automatic code analysis and repair  
and I think a lot of it's mature  
enough now to apply industrial scale  
problems and I think we'd be better  
off if we all just used a little bit more,  
or seasonings or ML and virtual  
integration and automatic code repair  
seasonings. 
  
Facilitator: Looks like a good way to  
end.  Thank you, Jeff.  Thank you,  
panelists, for-- 
  
Moderator: Yeah.  I want to thank  
all the panelists and the folks behind  
the scenes too that make all this  
happen. 
  
Facilitator: Yeah.  Great.  Great  
discussion today.  We'll wrap up.  
Just want to invite everybody to their  
upcoming Software and Solutions  
Symposium 2018 that's going to take  
place at our Arlington office in--March  
27th.  This event--I'll read the tagline  
here.  Says, "Attend this exciting  
event to learn to tailor acquisition  
and development programs to avoid  
common software and cyber pitfalls  

Page 58 of 60



and position your programs for  
success."  So it's free to anybody  
with a .mil or .gov address, and we'll  
send this information on this event.  
Hopefully you can attend there. 
  
Our next virtual event will be March  
23rd, and the topic will be "Five Ways  
to Boost Cybersecurity with DevOps."  
Again, thanks everyone for attending.  
We had a number of comments we  
didn't get to but maybe we'll share  
these with our panelists and try to  
get back to everybody in the future.  
But have a great day, everyone.  
Thanks for attending. 
 

Document Markings 

2Three Software Innovation that DoD Needs Now
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-US Government use and 
distribution.

Document Markings
Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie 
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government 
position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON 
AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS 
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, 
OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF 
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.  Please see Copyright notice 
for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting 
formal permission. Permission is required for any other use.  Requests for permission should be directed to the Software Engineering Institute 
at permission@sei.cmu.edu.

DM18-0334

 

Page 59 of 60



Carnegie Mellon University 

12Three Software Innovation that DoD Needs Now
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and 
unlimited distribution.  Please see Copyright notice for non-US Government use and 
distribution.

CMU Copyright

 

 

Page 60 of 60


	Three Software Innovations that DoD Needs Now
	Three Software Innovations that DoD Needs Now
	Virtual Integration: AADL as a “Single Source of Truth”
	Machine Learning for the DoD: Malware
	Machine Learning for the DoD: Malware
	Data Analysis for the DoD: Information Extraction 
	Automated Analysis - Prioritizing Vulnerabilities
	Automated Code Repair
	Automated Analysis - Prioritizing Vulnerabilities
	AADL Success Stories
	Document Markings
	Carnegie Mellon University



