
Five Keys to Agile Test Automation for Government
Programs

Table of Contents

SEI WEBINAR SERIES | Keeping you informed of the latest solutions .. 3

Carnegie Mellon University... 3

Five Keys to Agile Test Automation for Government Programs ... 4

Notices .. 7

Overview ... 8

How is testing different in Agile software development? .. 9

Testing is development, development is testing .. 10

Early and repeatable testing is Agile key to quality .. 11

Agile “Inter-twingles” Development and Test .. 13

Agile iteration relies on more testing earlier .. 15

No Automation? The Backblob is going to get you! ... 16

DoD Acquisition requirements are unique ... 19

Left-shift with Agile Testing .. 21

Poll 1 .. 24

Who should develop automated tests? .. 27

Some factors to consider .. 28

OEM or government engineering or test staff?.. 29

Poll 2 .. 31

How can my program successfully adopt Agile/Automated testing? .. 34

Automated Testing = Structure and Strategy Change .. 35

Ensuring Test Automation Success ... 38

Program-Wide Test Asset Management System .. 40

Page 1 of 94

REMEMBER: No Automation? The Backblob’s gonna getcha! ... 43

What kind of tool chain do I need to support automated testing? .. 44

REMEMBER: No Automation? The Backblob’s gonna getcha! ... 45

Program-Wide Test Asset Management System .. 46

REMEMBER: No Automation? The Backblob’s gonna getcha! ... 47

What kind of tool chain do I need to support automated testing? .. 51

Testing scope, lanes, focus, tooling .. 52

Tools for Test Automation .. 55

Tools for Test Automation .. 57

Test Automation Reference Architecture ... 59

Poll 3 .. 66

What kind of testing should/should not be automated for Agile software development? 69

Testing scope, focus, automation ... 70

Avoid test automation gotchas ... 72

Poll 4 .. 76

Summary ... 79

No magic! .. 80

Reasons Automated Test Investment is Often Delayed in Agile Adoption 81

Remember: Automated Testing = Structure and Strategy Change .. 85

Start early, keep at It! ... 86

SEI WEBINAR SERIES | Keeping you informed of the latest solutions .. 94

Page 2 of 94

SEI WEBINAR SERIES | Keeping you informed of the latest solutions

38
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Carnegie Mellon University

39
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Page 3 of 94

Five Keys to Agile Test Automation for Government Programs

1
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Five Keys to Agile Test
Automation for Government
Programs

Robert Binder and Suzanne Miller

**001 Presenter: And hello from
the campus of Carnegie Mellon
University in Pittsburgh,
Pennsylvania. We welcome you to
the Software Engineering Institute's
webinar series. Our presentation
today is Five Keys to Agile Test
Automation for Government
Programs. Depending on your
location, we wish you a good
morning, a good afternoon, or good
evening. My name is Shane McGraw.
I'll be your moderator for today's
presentation, and I'd like to thank
you for attending.

We want to make today as interactive
as possible, so we will address
questions throughout the
presentation and again at the end of
the presentation. You can submit
those questions to our event staff at
any time through the Chat tab or the

Page 4 of 94

Ask a Question tab on your webinar
consoles. We also ask a few polling
questions throughout today's
presentation and they will appear as
a popup window on your screen. In
fact, the first polling question we
want to ask is: How did you hear of
today's event? And that will be on
your screen now.

Another three tabs I'd like to point
out are the Download Materials,
Twitter, and Survey tabs. The
Download Materials tab is a PDF copy
of the presentation slides there now,
along with other related work from
the Software Engineering Institute.
For those of you using Twitter, be
sure to follow @sei_news, and use
the hashtag #seiwebinar.

And now I'd like to introduce our
presenters for today. SuZ Miller is a
principal researcher at the SEI. Her
current research is focused on
synthesizing effective technology
transition and management practices
from research and industry into
effective techniques for use in the
governance of programs, adopting or
contemplating adoption of Agile or
lean methods.

Robert Binder is an SEI senior
engineer responsible for client
engagements and applied research
related to architecture, assurance,
and automated testing. Prior to
joining the SEI, he was a founder of
two consulting businesses and a test
automation startup. He's developed
hundreds of applications, app
systems, and advanced automated

Page 5 of 94

testing solutions. Bob holds a
bachelor of arts in political science in
government, a master's in finance,
and a master's degree in electrical
engineering. Bob, SuZ, welcome.
SuZ, all yours. Take it away.

Presenter: Thanks very much
Shane. So we're very pleased to be
her today. Bob and I have been
working on helping organizations in
the government space understand
what they're getting into if they want
to start looking at issues related to
automated testing, and this is part of
our ongoing research in the Agile and
government group in looking at
adoption barriers for Agile for
customers in the acquisition
community who are trying to do
things with Agile. So this is part of
an ongoing series, and we're very
pleased that Bob is able to help us
with this, because he knows more
about this stuff than pretty much
anybody at the SEI does, so.

Presenter: Happy to be here.

Presenter: So we're glad that he's
here. Today we're going to talk
about five keys. Gonna send that
forward.

Page 6 of 94

Notices

2
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Notices
Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for
the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or
decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission.
Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM17-0395

**002 You've got the remote right
now. Oh, there we go.

Page 7 of 94

Overview

3
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Overview
1) How is testing different in Agile software

development?

2) What kind of testing should/should not be
automated for Agile software development?

3) Who should develop automated tests?

4) What kind of tool chain do I need to support
automated testing?

5) What are some ways that DoD acquisition
programs can successfully adopt
Agile/Automated testing?

**003 How is testing different in
Agile software development? There's
some keys things you need to know
there. What kind of testing should or
should not be automated for Agile
software development? Who should
do that development? It's not always
as clear as you might think it should
be. The thing everybody talks about,
and we will as well, is what kind of
tool chain do you need to support
automated testing, but then, beyond
that, what are some ways that DoD
acquisition programs can successfully
adopt Agile and automated testing?

So with that, I'm going to let
Bob start us off and talk about how is
this different.

Page 8 of 94

How is testing different in Agile software development?

4
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

How is testing different in Agile
software development?

Five keys to effective Agile test automation for Government programs

**004 Presenter: Well thanks, SuZ. I
think that's a great segue into this.

Page 9 of 94

Testing is development, development is testing

5
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Testing is development, development is testing

Phased
• Design, Code, Test, Test, Test
• Release

Incremental
• Design a little, code a little, test a little…
• Test, Test, Test
• Release

Agile
• Test, fail, code, test, pass …
• Test, fail, code, test, pass …
• Test, fail, code, test, pass …
• Release

How is testing different in Agile software development?

Source: IEEE Standard 1633P, Recommended Practices for Software Reliability Engineering

**005 First of all, testing is
development and development is
testing, or at least the two things are
put together in an interesting way in
Agile practices. Compared to phased
approaches to software testing where
those things are distinct, where you
have a design, code, test, test, and
test, and then followed by release, or
even in the incremental model, where
we might do, as it has been called,
the "design a little, code a little, test
a little," and then followed by a focus
on successively different larger scope
testing, leading up to release.

In most Agile practices, this gets
sliced down much more finely, and
where-- we start out by doing a test
and we expect the first test fails,
usually. We then implement
something that achieves that
achieves that function, do the test

Page 10 of 94

again, and then we expect it to pass.
That cycle gets repeated many, many
times, and very frequently that's the
primary difference. That all leads up
to release. So you can see the
strategies for testing are very much
different in terms of where their
focus is.

Early and repeatable testing is Agile key to quality

6
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Early and repeatable testing is Agile key to quality
How is testing different in Agile software development?

Test Driven Development
• TDD – Test Driven
• BDD – Behavior Driven
• ATDD – Acceptance Test Driven

Agile Quality Practices
• Voice of the customer
• Commitment management
• Definition of Done
• Demos
• Retrospectives
• Test Driven Development
• Exploratory Testing
• Living Tests
• Find and fix within sprint

Typical Agile Testing Tool Chain
• Component/API testing: Junit, Nunit…
• BDD/ATDD: Cucumber, SpecFlow…
• GUI testing: Selenium, Ranorex…
• Continuous Integration: Jenkins, Hudson …
• DevOps: Chef, Docker, Puppet…

**006 And that focus really is
getting to an early and repeatable
testing as a key to quality. There are
lots of Agile practices that drive
quality, and Agile's underlying
pharmacy on this is a little bit
different than other ideas that were
oriented towards these more
structured and standalone type of
practices in other lifecycle
approaches.

One in particular I want to mention is
test-driven development. In test-driven

Page 11 of 94

development, the idea there is, again,
test is development; development is test.
The two things ed very closely as
the system is produced. There's
several flavors of this that are
commonly used. One is called test-
driven development, and that is
usually applied at the programming
or developer level. Behavior-driven
development is another way of
looking at how to translate user
stories and features into test, and
acceptance-test-driven development
is primarily done at the user interface
level of a system.

So, there are tool chains that are
associated with this. We've got a list
here of some of the common ones.
We'll talk a little more about this later
on and some of the specific
possibilities. These are just a very
small sample of the literally hundreds
of testing tools that are available to
support this kind of activity.

Page 12 of 94

Agile “Inter-twingles” Development and Test

7
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Agile “Inter-twingles” Development and Test

• Development and test are
not separate or standalone

• Tests are added to a
repeatable test suite

• Test suite is repeated for
each change

• Demos not a replacement
for testing

How is testing different in Agile software development?

Team Backlog

**007 So Agile can be said to "inter-
twingle" development and test.

Presenter: Which is my favorite
term. I love that term.

Presenter: It's one of your favorite
terms, and what does that mean?
Well, the blue trapezoid on the
screen is kind of to suggest how Agile
is a little bit different from the classic
V model of software development,
and in this you can see that the
activities of development really kind
of coincide with the activity of
testing, and the two things are
interleaved very closely; it's really
hard to pull them apart. So they're
not standalone and separate. Tests
are added to a repeatable test suite,
and I think this is key for
understanding how automation
factors into Agile development. And

Page 13 of 94

then each time there's a change in
the system, which happens an awful
lot in a frequent way, that test suite
is repeated.

Demos, by the way, are a key quality
practice in Agile development, but
they're certainly not a replacement
for-- and serve a different role in
testing-- even in Agile testing.

As an example of this, you can think
about what happens in many large
development organizations. For
example, in Google, where they have
tens of thousands of people checking
in code very frequently, on an hourly
basis, perhaps even more frequently
than that, the entire target systems
get rebuilt every time that happens.

Presenter: You can't do that if
you're running all of the tests that
are in the regression suite manually.

Presenter: That's right. And so you
need to have something that's an
overlay that accomplishes that for all
the participants in software
development automatically. It really
would not be possible without the
test automation system that they
developed there, which is really quite
impressive.

Page 14 of 94

Agile iteration relies on more testing earlier

8
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Agile iteration relies on more testing earlier

• Testing used for rapid
refinement of loosely
understood requirements,
architecture, and design

• Requirements and
implementation are finely
sliced

• Each slice is tested
immediately and
repetitively

How is testing different in Agile software development?

Portfolio Backlog

Value Stream Backlog

•
•
•

Portfolio
Mgmt

Release
Planning

• • •

• • •

Backlog

Quality Attribute
Requirements
Technical
Requirements

**008 Another aspect of this is that
we focused on testing earlier, and so
not only do these iterations happen
more rapidly within a sprint, but
there are, of course, many sprints
within a development of a release,
and so testing becomes a way for
developers to refine the kind of
notional definitions of their
requirements, features, user stories,
etcetera, to actually cast that into
working code and then confirm that
that code works according to the
starting point, and those two things--
the idea is to narrow that down as
much as possible.

Presenter: Fast feedback.

Presenter: That's right. Yeah,
rapid feedback. And again, one of
kind of the key principles of Agile
development is that these small slices

Page 15 of 94

are tested rapidly and immediately so
that there's no kind of delaying that
activity until some later stage. Does
this remind you of any particular
stories of how that unfolds and
circumstances you're familiar with?

Presenter: Well, we see lots of this
in large systems that have adopted
Agile and that are trying to move in
this direction, but they've got some
unique requirements and some
constraints that we have to deal with,
and I think we've got some things
coming up on that I'll talk about.

No Automation? The Backblob is going to get you!

9
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

No Automation? The Backblob is going to get you!

• The extent of manual testing
is limited to the capacity of
testers

• The extent of automated
testing is limited to the
capacity of test scripters

• Total number of tests
increases as project
progresses

• Typically, only the newest
features are tested

Total
Number
of Test
Cases

Sprint 1

Available
Test Time

Manual Test
Cases not
executed

Automated Test
Cases not
maintained

Total Developed
Test Cases

Sprint 2 Sprint 3 Sprint 4

How is testing different in Agile software development?

**009 Presenter: Okay, great.

Presenter: After the back-blob.

Presenter: After the back-blob,
yeah. And so we-- some
organizations that I've worked with in

Page 16 of 94

the past and others have attempted
to test this kind of Agile testing in a
rapid manner without the support of
automation, and so here's-- that
usually doesn't work out too well,
and there's some reasons for that.
One is that the extent of testing that
you can do-- and this is where tester
interacts directly with the system
under test and manual testing.
That's limited to the amount of hours
that you have of people who can do
that kind of stuff. Then that typically
is fixed or it doesn't change much
once a project gets in motion. The
same can be said pretty much about
the ability of people who are
maintaining or developing automated
tests to make changes and create
new tests.

Presenter: Testing has always been
a constrained resource, in every
environment, whether it's big bang
approach or incremental. I mean, I
don't know any environment where
they say, "Oh, we've got more testers
than we know what to do with."
That's just not what happens.

Presenter: That certainly is true,
yes. So there's always a constraint
on it, and in Agile development, as
we've noted, we want to do lots of
tests and run them very frequently.
So the total number of tests
increases as we move along, and
what tends to happen is that the
tests that were done previously, if
they're not automated, get crowded
out. So that's what we kind of refer
to as the testing back-blob, and it
sort of works like this.

Page 17 of 94

So, let's suppose that you had a
certain amount of available test time
at the start of a sprint, and in sprint
one you use that time to develop a
certain number of test cases. Well, I
think just simply you can see that
that goes on for however many
sprints that you have, and you end
up with a certain number of test
cases. So let's say if you had the
ability to do about a hundred, you'd
end up, after four sprints, with four
hundred test cases. Now, each of
those takes a certain amount of time
to do, and if you're doing this
manually, how many do you have
time to do? Well, including the
development, you might say that I
have time to do a hundred tests, but
that means you don't have time to
repeat all those tests that you did
previously. They get kind of crowded
out, and the same thing happens, as
there are often many changes during
a cycle of sprints-- some of those
automated test cases don't get
changed or revised to reflect the
most current version of the system.

So you end up with a large collection
of tests that appeared to me-- it
brought to mind the image of the
1957 B science fiction movie, "The
Blob", which was a large, pulsating
piece of protoplasm that consumed
all of Los Angeles, and some projects
that I've worked in previously, it seemed
like this was sort of what was going on
as the tests were produced rapidly
but really couldn't be used.

So without automation, that's kind of
a situation that you can run into.

Page 18 of 94

DoD Acquisition requirements are unique

10
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

DoD Acquisition requirements are unique

DoD requires large programs to plan
for and undergo independent
Operational Test & Evaluation
• Planned and executed by a
different organization than the
Program Office acquiring the
software system

• Requires a very early Test and
Evaluation Strategy more
compatible with a “big bang”
delivery than the incremental
delivery typical in Agile

USAF guidance (AF99-103) now
aligns independent testing with a
more incremental approach

• Integrated testing and integrated
test teams are a specific strategy
called out

• Incremental testing is specifically
discussed and encouraged prior
to full operational testing of a
deployed capability

How is testing different in Agile software development?

**010 Presenter: So let's talk for a
minute about some of the things that
get us in the DoD in particular.

Presenter: Right.

Presenter: So our DoD acquisition
requires large programs to plan a
different kind of testing than what
we've been talking about. It's called
operational test and evaluation. If
you're large enough, you're going to
have to submit a separate plan for
that to a separate organization that is
not the one that manages the
program. So this is an independent,
very independent-- almost, you might
say, isolated-- organization, and they
have a budget, constrained budget
just like everybody else, and they've
got a lot of programs that want their
testing services and need their
testing services, and they are

Page 19 of 94

accustomed to a big-bang delivery
kind of item so that your program
sort of gets paid attention to in one
block. That's not very incremental,
and that is a budgeting and cultural
issue that is one that DoD
organizations are going to run into.

We do see some success with the
OT&E, as we call them, folks moving
to a more incremental strategy but
it's not ubiquitous yet, and it's going
to come sooner though than later
because of this new guidance that
came out. This Air Force 99-103 is a
guidance document that does align
the independent testing with the
incremental approach. So this is very
recent, in the last month, and this I
think is going to make a big change
in how organizations in the DoD
acquisition programs interact with
operational tests and evaluation.
They specifically talk about
incremental testing, they talk about
integrated test teams, so this could
be a sea change in the way that this
independent testing occurs, and this
is going to-- we talk about Shift Left--
we'll talk a little bit about that later.
This actually provides a potential
opportunity for moving even the
operational test over to the left. So
that's the most positive thing we've
seen recently in terms of practices
that are likely to change an
acquisition to accommodate some of
this. What does that mean though?
It means they're going to need all
that automated testing too, because
as they go incremental, the back-blob
issues that is going to be coming up
is going to come up for them, just

Page 20 of 94

like it does for everybody else. So,
even more importance for
automation.

Left-shift with Agile Testing

11
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Left-shift with Agile Testing
Traditional Vee-process

Agile development with traditional DT and OT (Hybrid)

Agile development with traditional DT and OT, early integration synch points

OEM Dev Developmental Testing (DT) Cyber Operational Testing (OT) Deployment

Moving from
phased and

siloed testing to
Agile testing is
the “Big Deal”

Integrating
Agile cadence
with DT/OT is a
key challenge

**011 Presenter: Yeah, right. So
let's take a little bit closer look at this
idea of left-shift. In this, we've got
kind of a notional layout, the timeline
of a typical phased or V process,
where that's the orange development
work followed by developmental
testing and operational testing and
then finally release.

Presenter: And I want to point out
cyber you mention separately in here,
and in most of our federal, not just
DoD organizations, cyber testing is
also its own thread, its own
organization, and figuring out how to
integrate that into the cycle-- people
are working on it, but that is not a
problem that's solved yet, and so that

Page 21 of 94

can cause some perturbation in your
content for incremental testing.

Presenter: Right, and so those two
things-- if they're done on separate
tracks, as is probably the most
common, then there are plenty of
opportunities for potential conflicts,
and there's also kind of an interesting
dilemma that arises when we attempt
to do Agile development.

So here's Agile development in that
earlier part of the lifecycle, paired
with sort of traditional DT and OT,
and you can see that that really
doesn't-- that model--

Presenter: It doesn't give us the
feedback.

Presenter: Right. You don't get the
early feedback and you really have
the same kind of situation that you
would have in the traditional one,
and what we're trying to work
towards and assist some of our
clients in doing is to begin to take
pieces of those three kinds of later-
stage testing and achieve those
earlier on in the lifecycle.

Presenter: And I do have an
instance of a case where this is
happening in a sustainment
organization in the Air Force, where
air worthiness is another thread that
you can end up with if you're working
with airplanes, for example, and their
typical air-worthiness recertification,
whenever a change happens to
something that touches the airplane,
takes months. This organization had

Page 22 of 94

a need for fairly frequent changes to
the Apple operating system-- they're
using iPads for maintenance-- and so
they had to have changes happen
quickly, and so they were actually
able to get the OT&E folks to allow
them to actually automate what was
manual testing and approve those
tests as being, "If we pass these
tests, then we're good on the air
worthiness, except for the new thing,
whatever the new thing is, then we
have to test that traditionally." So
that to me was a huge breakthrough,
and it represents that bottom line in
ways that I hadn't seen before. So I
got at least one that's moved in this
direction.

Presenter: That's great.

Presenter: So we're looking for
more. If anybody out there in the
audience has other examples, send
them me, because I collect them.

Presenter: Right, and this is
something that we're very much
interested in and working on in a
number of different ways, and so
kind of watch this space. We hope to
have some more concrete guidance
on how to deal with these issues later
on.

Page 23 of 94

Poll 1

12
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Poll 1

A: What software life cycle do you
use?

A. Phased, “waterfall”

B. Incremental

C. Evolutionary, “Agile”

D. Hybrid

B: Is a different life cycle:

A. Being evaluated

B. Being piloted

C. Active rollout

D. No change anticipated

How is testing different in Agile software development?

**012 So we're now at our first poll.

Presenter: So, as I mentioned,
we've got back-to-back polling
questions here. Before I hit the
launch, just a quick comment, if you
guys to respond to, from Richard,
asking: How do you respond to the
assertion that TDD is the enemy of
architecture?

Presenter: It can-- I think the
sense of the question as I take it is
that TDD presumes that an
architecture isn't necessary to get
started. That's not necessary. You'd
like to have some definition of
architecture and an approach laid out
in advance, and certainly some of the
scaled Agile methods that we use and
follow and that others do provides a
means for achieving that.

Page 24 of 94

Presenter: We're not seeing a
conflict between architecture and
TDD in the places where it's being
used. Primarily these are large
programs, so it's not a single team. I
think this kind of a statement may be
something you would see more with
a much smaller kind of project, but
by the time I get to the team level in
some of these large systems, there is
architecture. There are architectural
runways, and I'm doing test-driven
development within the umbrella of
an architecture that's existing and
evolving. Now, acceptance-test-
driven development is essentially
something you would need to do in
concert with architecture because
you're really looking at the
requirements and architecture level
there. The TDD as we've been
talking about it, which is a much
lower level development task down at
the unit test level essentially, I don't
see and I haven't seen any conflicts
in how it's used in combination with a
good architectural strategy.

Presenter: In combination, and that's the
key to it. TDD as practiced sometimes can
be problematic for a lot of reasons, but
that's a story for another webinar.

Presenter: There you go.

Presenter: So I'm going to close
out the first question, which was:
What software lifecycle do you use?
And now I'm going to post the next
one, which is a different lifecycle.
So that will be on your screen now.
Take about 15 seconds, and I'll give
it back to you guys.

Page 25 of 94

Presenter: So the themes from this
part of the webinar-- development is
test, test is development. I mean,
think about it that way and a lot of
things fall right into place, and don't
let the test back-blob get you. That's
a big thing. And also don't-- there
are constraints from a DoD
acquisition viewpoint, but that
doesn't mean that you can't work
within them, and people are working
around them and through them. So
don't think that just because you're in
a DoD acquisition, "I can't do any of
this stuff." Any other themes that
you'd want to bring out?

Presenter: Just that the
understanding of how Agile achieves
quality-- it's taken me a while to
appreciate sort of how different it is,
and I would say that the Agile
approach to quality assurance really
is a system, and it relies on all these
various practices which--

Presenter: Not just test.

Presenter: Not just test, which we
alluded to earlier. So all of those fit
together in a particular way.

Presenter: Just to wrap up our
results, we got 33 percent hybrid, 33
percent evolutionary, 18 percent
incremental, 16 percent
phased/waterfall. Then for the
second question, which was, "Is a
different lifecycle being evaluated?",
that was 21 percent; being piloted,
19 percent; active rollout, 21
percent; no change anticipated, 40
percent.

Page 26 of 94

Presenter: Okay, so we still have a
lot of people that are in the No
Change Anticipated, although the
way we worded that, they could be
using Agile with no change.

Presenter: That's true. That's
right. So we don't know.

Presenter: All right, we have to go
back and get retrained on survey
question-writing.

Presenter: It was a poll, not a survey.

Presenter: Oh, right, right, right.
That's right, that's right.

Who should develop automated tests?

13
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Who should develop
automated tests?

Five keys to effective Agile test automation for Government programs

**013 Presenter: So let's move
along and try to answer-- that was
sort of the What question. Let's try
to take a crack at who should be
involved in automated test development.

Page 27 of 94

Some factors to consider

14
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Some factors to consider
Test automation is a specialty: the
software development engineer in
test (SDET)
SDET skill set versus functional
tester skill set
• Writing automated tests IS writing
software

• Not all functional testers come
from a software development
background

Organic or Outsource?
• For some types of testing, there

are consulting groups that will
convert manual to automated
tests

• Works best with well understood
systems with well-documented
tests and sufficient subject matter
experts to answer the myriad
questions that will come up

Who should develop automated tests?

**014 So I'm going to let SuZ kind of
go at this part.

Presenter: So this is one of the things
in an acquisition that we really have to
look at, because the people that have
been in what we would call traditional
testing organizations don't necessarily
come from a software development
background. Many of them come from
 an operations background, they come
from the system knowledge, domain
knowledge viewpoint, not from the
technical details of how a software
program is constructed, and now we
just said test is development, so we
have potential conflicts there, and
that's not to say everybody's in that
boat, but there's a subset of folks
that really aren't equipped in terms of
how they've been trained in how to
do this kind of development and
thinking of it as a development.

Page 28 of 94

So there is this different set of skills,
and you've got to figure out: Do you
have the right skills within your test
group? Do you need to supplement
that? And if you do need to
supplement that, can you do it with
people that are inside the
organization, or do you need to
outsource it? There are companies
that will come in and take a legacy
system and they will write the
automated tests from the legacy
manual tests for you. You have to
have well documented tests. I mean,
there's a whole lot of caveats to that,
but it can happen, so you have to
make those decisions. And then the
other decision is: How am I going to
deal with-- go ahead and go to the
next one, please.

OEM or government engineering or test staff?

15
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

OEM or government engineering or test staff?
OEMs with active Agile practices
typically use local automated testing
for component testing and local
integration testing

• Contracting to obtain those tests
as part of software delivery
increases the test base for
regression testing
- Be sure to ask for the test environment

as well, so the OEM tests can be run
by others!

DT&E (Development Test &
Engineering) government staff can
interact with Agile OEMs via
Iteration, System, and Release
Demos and the activities that lead
up to them

• Leveraging automated tests from
early activities can build
confidence in the accumulation of
evidence related to the system’s
robustness

Who should develop automated tests?

**015 --With my OEMs or
contractors? The ones that have

Page 29 of 94

active Agile practices often are using
automated testing. From the
government side, can I actually
leverage that? Now, I can't leverage
that if I didn't ask for that material to
be delivered to me as part of the
contract, right? But that-- so
contracting comes into play here,
which most people probably did not
expect to see anything about
contracting in an automated test
webinar, but it is a factor in these
kinds of environments.

The other thing is that we do have
opportunities through these demos--
this is one of the things demos can
do-- is give the government folks that
are in system test and development
test, even in OT&E, to actually see
what's happening and provide
feedback or get feedback that is
going to allow them to do a better
job of their testing, however they're
doing it. So even if you don't have a
hook in to get tests from your OEM,
the demo process is one of the
processes where you can invite
participation, and should invite
participation, from the test
community.

Presenter: Right, yeah, and that's a
pretty low-friction way to at least get
started on this, this earlier shift-left
integration. That doesn't require any
additional training, tooling, just
presence at one of these demo
events.

Presenter: And not to say that
that's trivial. I mean, I've been parts
of programs where if you're not there

Page 30 of 94

in person, you can't get through a
firewall to get to the demo, and
there's those kinds of constraints as
well, but it is a much lower barrier to
entry than actually going in and
getting all the tests from the OEM.

Poll 2

16
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Poll 2
Who is responsible for automating tests in your project?

A. We don’t automate

B. Non-technical testers or QA staff

C. Application developers

D. Test engineers

E. Software development engineer in test (SDET)

Who should develop automated tests?

**016 Presenter: All right, so
we've got our second poll now.

Presenter: You'll see that on your
screen now. The question is: Who is
responsible for automating tests in
your project? And maybe while we're
looking at that one, we had another
comment-- let me pull that up-- from
Jean-Paul asking: How do you
maintain the independence of team
testing or include this team into the
same team Agile development?

Presenter: Say that one again.

Page 31 of 94

Presenter: How do you maintain
the independence of team testing, or
include this team into the same team
for Agile development?

Presenter: Oh, I see. So I can talk
about some examples of how we see
this happening in government
settings. I have one example where
the DT&E organization, the testers in
that organization, are all assigned to
different Agile teams that are
working, and there's a part of their
time where they are actually working
in the teams, doing the kind of test
automation, the kind of local testing,
but they're also using that time to
actually build what we would call the
independent test cases that are going
to be used as things go to release
and go a little bit farther into
integration. So they are-- they're
buying into the concept of,
"Independence does not mean
isolation," and they're buying into the
fact that they learn a lot about the
system to build better tests by being
involved at that local level on the
teams. I have another case that's a
larger application where we have
layers of testing that are going on,
and the layer that is at the OEM
level-- so the contractor level-- they
have TIMs, Technical Interchange
Meetings, with the testers on the
government side that come out of
these different layers on a regular
basis. So in that case I don't have
the government testers in bed, if you
will, with the team, but they are
frequently interacting with those
teams and they get to provide
feedback, and they also do attend

Page 32 of 94

the demos. Everyone's invited to the
demos. So those are a couple of
different strategies that we've seen in
government settings for doing that.

Presenter: Okay, and we'll wrap up
our polling question with some
results. Twenty-one percent, we
don't automate; 6 percent,
nontechnical testers; 23 percent
application developers; 42 percent
test engineers; 8 percent software
development engineer.

Presenter: Okay, so I-- wow, only
21 percent are saying, "We don't
automate." Okay, so from this poll, if
you're in that 21 percent, you're a
little bit behind the curve, if you
didn't hear that, because-- so I don't
know where our population is in
terms of government versus non-
government, but I would say if I
were to poll a pure government
audience, it would be higher than
that, that this is at the beginning of
the curve, not in the middle of the
curve, for the government audience.
But this is also just very informal
support for: People are doing this.
You got to get onboard.

Presenter: Yeah.

Page 33 of 94

How can my program successfully adopt Agile/Automated testing?

17
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

How can my program successfully
adopt Agile/Automated testing?

Five keys to effective Agile test automation for Government programs

**017 All right. So now let's go to
kind of our third question. What we
want to try to address here are some
of the considerations that are going
to drive whether or not you're
successfully adopting Agile and/or
automated testing within your
program.

Page 34 of 94

Automated Testing = Structure and Strategy Change

18
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Automated Testing = Structure and Strategy Change

• Scope of change is similar to
automating a manual
business or operational
process

• Requires many behavioral
changes

• Not plug-and-play

• Learning curve

Strategy

Structure

Procedures

Skills

Time to adjust Magnitude of Technological
Change Sought

Culture

Years LargeSmallWeeksMonths

Level of Learning Required

**018 Presenter: So this is a
model that Bob has seen a lot now,
and some of you have seen it--

Presenter: It's a great model.

Presenter: --If you have worked
with the SEI. We talk about this a
lot. This comes from Paul Adler
years ago, but it's talking about how
big is the change that you are
contemplating. So the question here
is: How big is the change if I'm going
to Agile and automation-based
testing? And I could argue that we
are at least looking at structure
changes. We've already talked about
things related to how the testers
interact. We've talked about the
lifecycle differences. Those are
structural changes. But there's also a
strategy change in terms of moving
from big bang to incremental. That

Page 35 of 94

in itself is a strategy change. It
means I have to change the way my
resources are applied, change the
way I phase my budget, right? So
these are all strategic kinds of
questions.

Some would argue that it's also a
cultural change, and if you are in an
organization where independence
equals isolation, I would argue, yeah,
you're moving into culture there as
well. But a lot of times you're not
dealing as much with culture as you
are with the strategy and structure.
Now, the thing about this model is
that I have to deal with the stuff
below too. Right? "Oh great,
strategy. All right, we'll just our
strategic plan and we'll change the
structures," but you've also got to
change the skills and the procedures
that go along with this. So basically
this is not a small change, and we
are not-- part of our series Agile in
Government, our theme is "Go in
with your eyes open", and this is one
of the places you need to go in with
your eyes open.

So a couple things, and you can think
of this-- it's like automating some
other manual business or operational
process. I have to understand what's
being done now, I have to figure out
what the structural changes are, and
I've got to deal with the actual
automation itself, the skills, abilities,
etcetera, that go along with that.
The behavioral changes just in terms
of I may have test engineers that
have never written code. Some of
them decide they're going to learn

Page 36 of 94

that; some of them decide they're
not, and they're going to have to go
do something different. So there's a
lot of things that could be different in
terms of the behavior. This is not a
plug-and-play technology. This is not
just about putting a new app on your
cell phone and automatically being
able to do the new things.

Presenter: Yeah, it's not like
installing a virus detector on your PC
or laptop. It's not that kind of
automation.

Presenter: Right. Right, exactly.
So these are all things to pay
attention to, and of course the other
thing that this diagram highlights is
that you're not talking about weeks,
in most cases, to do this, unless it's
something very small. You're
probably talking about months and
possibly into years depending on how
big your legacy system is that you're
evolving into this. So don't expect
this to be an overnight change, or
else you will be disappointed.

Oh, and the learning curve. I forgot
about that one, but we've already
talked about that.

Page 37 of 94

Ensuring Test Automation Success

19
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Ensuring Test Automation Success

• Treat development and operationalization of your test automation
system like any other critical operational system
- Agile development of test infrastructure & assets

- Rollout support: deconfliction, training, socialization, funding of maintenance

• Grow or hire Software Development Engineers in Test (SDETs)

• The payoff of automation is repeatability and consistency

• Automation doesn’t eliminate the need for manual testing (and
testers)

• Training and support for tools is critical

19

**019 So some things that you want
to be sure you're dealing with. Treat
it like any other critical operational
system. It is a system. You are
building a system. Test is
development. You have
infrastructure and assets. You need
to have rollout support. You need to
have deconfliction across different
organizations, training, all these
things, funding of the maintenance--
don't like the back-blob get you. All
those things are the same as if you're
doing the system itself. And this idea
of Software Development Engineers
and Test-- SDETs? Is that how you
say it?

Presenter: SDET, yeah. It's a
Microsoft-ism originally, but now it's
pretty well understood, I'd say, in the
industry at large.

Page 38 of 94

Presenter: It's a way to understand
that I still have-- one of the things
I've learned about software engineers
is you tell them they're now a
software tester and some of them
feel like they've lost some status.

Presenter: A lot. Yeah.

Presenter: I think this is one of the
ways of getting through that and
saying, "No, you're still a software
development engineer, but you're
developing the test system and the
test assets, and that's just as
important as developing the system
itself." If I can't verify that the
system is working, I can't deploy it,
or I shouldn't. And so it is a very
important role.

What's our payoff for automation?
Consistency, repeatability, and the
thing that's not on here is just
capacity. Without automation and all
this incremental building and
development, I don't have capacity
for it in almost any environment, so
we need all of those payoffs from
automation. But it doesn't
completely eliminate the need for
manual testing and testers that do
certain kinds of testing. Exploratory
testing is something that maybe in
ten years machine learning will be
able to take up the role of
exploratory testers, but not yet.

Presenter: Certainly not today.

Presenter: So there are certain
things, and we'll talk a little more
about that, that you need to still do

Page 39 of 94

manually. So don't eliminate-- just
because someone doesn't transition
over into an SDET does not mean
that they are not still useful for the
testing activities.

Presenter: Absolutely correct.

Presenter: All right, we've said
"training" a lot. We're going to keep
saying it, and the support for the
tools, there's a whole-- there's
licensing, there's configuration
management-- there's all the things
that go along with managing
software. You're managing a
software system. So get used to it.

Program-Wide Test Asset Management System

20
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Program-Wide Test Asset Management System
• Team-wide repository, test meta-data
• Tool chain interfaces

• Test harness(es)
• Bug tracking
• Requirements
• Version control
• Continuous integration

• Part of all leading Application Lifecycle
Management (ALM) systems

• Several open source systems
• Can track status of all test activity

Greg Hendricks. Software Testing With Testopia

**020 All right, why don't you talk
about the asset management system,
because that's a really big part of
this.

Page 40 of 94

Presenter: Kind of picking up on
that theme of test asset
management, there are tools which
are sort of not all that well known
that I refer to and others do as Test
Asset Management Systems, and that
basically means that-- what they do
is they provide a database of
metadata about the testing activity.

So you can see a picture here on the
left that kind of suggests how one of
those-- this is actually a diagram from
Testopia, which is an open source
tool that's paired up with another
open source tool that's very popular
called Bugzilla, and you can see there
that the items in the diagram
basically are about the testing
process, the things that get created
in test, what their status is, what
you've done with them, not
necessarily the test cases or the
automated scripts themselves. So
this is information about testing and
where it stands. This can be very
useful and is particularly important in
trying to support some of that
collaboration, or at least shift left
from the original development
organization up to development test
organization, operational test
organizations.

So these kinds of systems typically
have interfaces to other parts of the
tool chain. We'll talk about those
later. There are some of the sort of
main ones. They are part of all of
the leading application lifecycle
management systems, and those are,
of course, the systems from large

Page 41 of 94

vendors like IBM, HP or Microsoft,
and others as well.

Presenter: This is like VersionOne,
and the CollabNet and Rally and
some of those other-- in the Agile
space--

Presenter: For example, in the
Agile space, those would be part of
them, but you'd also see these as
part of the tooling suite. For
example, HP has one that's popular
called Quality Center, and there are
many others.

There are several open source
systems. They have their pros and
cons. Of course all these systems do.
The key thing about this is that they
give support for looking at and
tracking the status of all test activity
in sort of a single dashboard or place.
So it gives you kind of a focus for
that.

Presenter: And you can imagine, if
I've got these layers of developer
testing, development test and
evaluation-- sort of the government
side of initial testing-- and then the
operational, I have a lot of activity
going on potentially. So this kind of
a system is going to make that
activity a little bit easier to manage.

Presenter: Right, and so it also
provides a kind of common way of
defining test requirements such that
if there's a test requirement that's
really important to developmental
testers, for example, you can start to
call that out early on and perhaps

Page 42 of 94

achieve part of it, at least, during
some of the earlier phases. So
there's an opportunity for sharing
and reuse of test assets or at least
concepts, information, definitions--
lots of ways that this can facilitate
cooperation.

REMEMBER: No Automation? The Backblob’s gonna getcha!

21
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

REMEMBER: No Automation? The Backblob’s gonna getcha!

Total
Number

of Test
Cases

Sprint 1

Manual Test
Cases not
executed

Automated Test
Cases not
maintained

Total Developed
Test Cases

Sprint 2 Sprint 3 Sprint 4

• The extent of manual testing
is limited to the capacity of
testers

• The extent of automated
testing is limited to the
capacity of test scripters

• Total number of tests
increases as project
progresses

• Typically, only the newest
features are tested

**021 And then kind of remember,
in terms of our subject here, is: What
does it take for success? Don't let
the back-blob get you.

Page 43 of 94

What kind of tool chain do I need to support automated testing?

22
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

What kind of tool chain do I
need to support automated
testing?

Five keys to effective Agile test automation for Government programs

**022 All right. So we're going to
go now to the next topic.

Presenter: Before we go there, do
we have any questions?

Presenter: We do have a good
question here that just came in.
It said: Should SDETs--

Page 44 of 94

REMEMBER: No Automation? The Backblob’s gonna getcha!

21
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

REMEMBER: No Automation? The Backblob’s gonna getcha!

Total
Number

of Test
Cases

Sprint 1

Manual Test
Cases not
executed

Automated Test
Cases not
maintained

Total Developed
Test Cases

Sprint 2 Sprint 3 Sprint 4

• The extent of manual testing
is limited to the capacity of
testers

• The extent of automated
testing is limited to the
capacity of test scripters

• Total number of tests
increases as project
progresses

• Typically, only the newest
features are tested

**021 I think I said it right there--

Page 45 of 94

Program-Wide Test Asset Management System

20
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Program-Wide Test Asset Management System
• Team-wide repository, test meta-data
• Tool chain interfaces

• Test harness(es)
• Bug tracking
• Requirements
• Version control
• Continuous integration

• Part of all leading Application Lifecycle
Management (ALM) systems

• Several open source systems
• Can track status of all test activity

Greg Hendricks. Software Testing With Testopia

**020 Who develop test automation be
the same person who develops the code?

Page 46 of 94

REMEMBER: No Automation? The Backblob’s gonna getcha!

21
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

REMEMBER: No Automation? The Backblob’s gonna getcha!

Total
Number

of Test
Cases

Sprint 1

Manual Test
Cases not
executed

Automated Test
Cases not
maintained

Total Developed
Test Cases

Sprint 2 Sprint 3 Sprint 4

• The extent of manual testing
is limited to the capacity of
testers

• The extent of automated
testing is limited to the
capacity of test scripters

• Total number of tests
increases as project
progresses

• Typically, only the newest
features are tested

**021 Presenter: I think there are
pros and cons on that. They can be.
Typically an SDET is somebody who
focuses primarily on producing test
automation. Oftentimes in larger
project teams, the SDETs will have a
close working relationship with the
developers, where the developers in
a sense are their customers, where
they are looking-- the developers
may be looking to the SDETs to
create and establish an environment
and perhaps some specialized type of
tooling that's application-specific.

Presenter: I mean, the case I've
seen that's closest to this is where I
develop code and I develop tests but
I don't develop the tests for my code;
I develop the test for Bob's code. So
I'm still not developing-- it's not that
fox in the henhouse where, "Oh, I
know how the code works, so I'll

Page 47 of 94

write the test that makes it pass."
But it's more that sometimes-- I think
in terms of-- I know some people
that are just really, really good
algorithm developers in terms of
bringing mathematical algorithms into
code, and you want them doing that,
and they also are very good at
writing automated tests, but you
don't want them to write the ones for
the algorithms that they put in.
That's really the boundary that I've
seen.

Presenter: Yeah, and oftentimes
SDETs kind of live in that middle
world between unit-level testing and
system testing, where system testing
is driven by subject matter experts
and unit-level testing is driven by
developers. They're the ones that
have the technological chops to
actually grab hold of those parts of
the system and drive them through a
particular test plan automatically
when that might be technically
challenging for others to do who
don't really have that job of
integration and the sort of technical
support to do that.

Presenter: And I think the place
where you're going to see the
temptation for that to be-- where you
have the code and the SDET in the
same person is in really small teams,
where you don't have a large team,
and in that setting, one of the things
I've seen is just using a different
team; "I'm the SDET for your team,
you're the SDET for my team" is
another way of dealing with that sort
of resource-constrained environment

Page 48 of 94

when you're looking at that kind of
an issue.

Presenter: Yeah, this has been a
classic debate within the testing
community for probably 50 years.

Presenter: At least.

Presenter: As to whether or not
you should write your own test code,
the philosophies on that have varied,
and so I think-- I'll just say it
depends.

Presenter: There you go. There
you go.

Presenter: How's that for a great
answer?

Presenter: So one more relevant to
this section, if you don't mind. It
says: Where the unit-test integration
and system testing is automated, are
organizations seeing significantly
shorter integration and test phases
and lower defect densities?

Presenter: I think other things
being equal, yes.

Presenter: The thing I'll say is not--
I would say in my experience, not
necessarily lower defect density
initially, because you now also have
the defects related to the tests. So
at the beginning, I've seen a mix of
maybe not so much defect density in
the code, but I also have to deal with
maintaining and making sure that the
tests give me the right information.
So there's a defect potential in the

Page 49 of 94

automated tests as well. I think the
thing that I can say with a lot of
confidence is that automation is
freeing resources to do more
analysis, and so when I do have
defects and when I do have issues
and risks coming up, the people that
normally would be taken up with
trying to fix a lot of little defects,
they're freed up because that stuff is
coming through faster; it's coming
through when it's easy to fix. When I
only have one to two weeks of code
that I've put into a code base, I don't
have as many opportunities for
defects as when I'm putting a month
or three months or six months or a
year's worth of code in. So it's a
different cadence, maybe?

Presenter: Cadence-- yeah, sure.

Presenter: A different cadence, and
the size of effort related to actually
dealing with the defects seems to be
less, is what I'm seeing.

Presenter: Yeah, it's a very
interesting question, and it's hard to
give a general answer. This is--
there are a lot of factors that
determine what drives defect density.
Test is certainly a big one. It's not
the only one though.

Presenter: Right, right.

Presenter: All right, so let's move
on to the tool chain question.

Page 50 of 94

What kind of tool chain do I need to support automated testing?

22
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

What kind of tool chain do I
need to support automated
testing?

Five keys to effective Agile test automation for Government programs

**022 What kind of tool chain do I
need to support automated testing?

Page 51 of 94

Testing scope, lanes, focus, tooling

23
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Testing scope, lanes, focus, tooling
What kind of tool chain do I need?

Component,
Subsystem

OEM/
Dev

PO
FAT

DTO OTO

Functions

Use cases,
Performance
Mission threads,

Features,
User stories

Scope Focus Example Tool

Junit
SonarCube

Selenium
SOAP UI

System,
SoS

Jmeter

Unit,
CSCI

**023 Presenter: And there's
people on here that have been
waiting for half an hour already just
to-- because they wanted to hear
about tools. We've been talking
about all this other stuff, so now they
get their fix.

Presenter: Now we're getting into
the real interesting stuff, depending
on your perspective. So let's just try
to do a little level-setting here in
terms of testing. Testing, by the
way, is not a monolithic activity.
There are many different kinds of
testing, many that depend on certain
factors for many purposes, and that
also drives variation in the kinds of
tools that make sense and the kinds
of tools that are available.

So first of all you have testing at the
so-called unit level, or what's

Page 52 of 94

sometimes called the Computer
Software Configuration Item level,
and that's a focus on a small part of
the system and its functionality. If
you start to put those together in
some useful way, that gives us
integration testing of components
and subsystems, and then at the
system external level, we have an
entire system and perhaps its
interoperation with other systems--
so-called system of system testing--
we then have a different kind of
testing problem.

Presenter: And that testing
problem-- I like the fact that you put
the black boxes in there, because
that's really what you're getting, is
when you're doing system of
systems, you may know the
interfaces and that's about it. You
really don't have a lot of information.
So that kind of testing is a really
complex type of testing.

Presenter: It definitely has its own
challenges. We'll mention a few
minutes some of the ways in which
automation can help with that.

The other one is lanes or sort of who
does what and when. Here's a very
rough guide to that. Of course there
are many possible exceptions to this,
but essentially kind of the smaller-
scope testing unit and component
tends to be done by development.
Development also will typically do
some kind of system testing.
Often times the main focus of that will
be on the program office and their
so-called factory acceptance testing.

Page 53 of 94

And then system testing for
developmental test organizations and
operational test organizations
typically focus on the external factors
and integration with external
systems. So focus is on functions,
computable types of things; others
on features and user stories. Use
cases, performance, and mission
threads are at the sort of highest
level.

Here are some example tools. We'll
talk a little bit about these later.
Since I have called these out, I do
want to say that these are just
examples and we're not endorsing
anything. These are some of the
more popular tools in these
Categories. The point
here is that there are many forms
and purposes of testing and they
each have their own kind of
automated support.

Page 54 of 94

Tools for Test Automation

24
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Tools for Test Automation

• There are hundreds of
COTS, FOSS, and GOTS
software testing tools

What kind of tool chain do I need?

**024 So what kind of tools are
there out there? Well, there are
hundreds-- commercial, off-the-shelf,
free open source and government
off-the-shelf software testing tools.
It really is quite a lot, and I think,
SuZ, you'd commented previously on
how this is different from times that
you looked at this in other
circumstances.

Presenter: So, yeah, I was telling
Bob that the first time that I actually
looked at automated tools was back
in 1988 when I worked at Lockheed,
and not very many vendors were
actually competing for our business,
and we didn't buy anything at that
point because what you could get out
of automated testing, it required a
huge investment and you really
weren't getting a lot at that point,
and the automation was-- we talk

Page 55 of 94

about some of the complexity of
managing the assets and things; it
was actually a lot worse at that point.
I've observed that since Agile came
into play as a dominant force in
commercial industry, that's when I
saw a real uptake in the number and
the quality of automated testing
tools, because it just is such a
necessity in Agile to be able to have
that fast feedback, and fast is not a
day many times, it's minutes, and
you can't do that without automation.
So that's a big difference. We talk
about a lot of things are the same as
they used to be back in the '80s.
This is one of the things that's really
different, is what you can achieve
and what's available to you in this
setting.

Presenter: Right, yeah, and so it's
changed really very substantially, and
if you've even been looking at test
automation, say, ten years ago or
five years ago, I think you might be
surprised if you kind of take another
look. There are lots of new
capabilities and lots of stuff that
really, frankly, is quite impressive.
Things that I personally hands-on
struggled with for months for years in
trying to automate in previous
situations are now essentially a drop-
in that you can get for free and really
are quite impressive.

Page 56 of 94

Tools for Test Automation

25
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

GUI

Embedded
Control
Systems

API

Enterprise
Information

Systems

Windows

*nix
RTOS

Application
Domain

Interface
Supported

Platforms
Supported

Function
Performance

Security
...

Function
Performance

Security
...

Function
Performance

Security
...

Function
Performance

Security
...

• There are hundreds of
COTS, FOSS, and GOTS
software testing tools

• Each tool is specialized for
a certain kind of testing

• Each tool is specialized for
a tool stack, target stack,
and target interface

Tools for Test Automation
What kind of tool chain do I need?

**025 One of the reasons that there
are so many tools is that there are so
many ecological niches,
you might say, for the different kinds
of tools. So you can sort this
by application domain, whether
you're supporting doing testing of a
large enterprise transaction
processing system, or whether you're
doing some kind of embedded control
or communication system. And then
you can look at what is the main
interface that you're trying to drive
during test, whether it's a
programmatic one or whether you're
interacting with a user interface.

And then the platform that the tool
runs on and the kind of application
that it tests its platform are also
variables in all of this. So this is kind of
a Rubik's Cube, and that's how you get
the hundreds of possible testing

Page 57 of 94

tools, because each one is specialized.
You can slice this further
according to what sort of test
purpose it supports, whether that's
function, performance or security
testing, and there are other
specializations as well.

So I guess the takeaway from this is
when you start to look at a tool, just
be aware that you really have to know the
answers to these questions in order
to pick the tool that makes sense
for your environment.

Presenter: As you said, if I'm doing
an enterprise payroll system, that's
going to give me a whole different
set of answers than if I'm doing a
robotics manufacturing line.

Presenter: Absolutely, yes.

Page 58 of 94

Test Automation Reference Architecture

26
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Test Automation Reference Architecture

Bug Tracking
Test Asset Management

Application Life Cycle Management

Requirements Management
Model-based Systems Engineering

Configuration Management
Continuous Integration
Continuous Deployment

Load Generation
Performance Monitor

Network Capture

BDD/ATDD Support
Combinational Design
Model-based Testing

J-Meter
SOASTA

WireShark
Dev Test Framework

Code Coverage Analyzer
Static Analyzer

Mutation Testing
Fault Injection

Web UI Harness
Dot Net UI Harness

Smartphone Harness
SOA/API Harness

Ranorex
Selenium
SOAP UI

Service
Virtualization

CA-Lisa

SpecFlow
ACTS

Smartesting

Junit
Klocwork

Fortify
Pit

Byteman

Representative tools,
not recommendations.

Many for each slot

What kind of tool chain do I need?

**026 So let's now take a look at
a reference architecture
for the categories of tools and
make sense of how these things fit
together. So again, I want to
emphasize we're going to
mention some representative tools,
they're not recommendations, and
there are many possibilities for each
particular slot.

So first of all, let's look at the
basic environment for
a typical test automation tool
chain. This starts with
requirements
management, model-based systems
engineering, or, in the Agile space,
something like VersionOne, which
manages user stories and all of the
derivatives of that. The other part of
this that's typically in evidence today
is configuration management,

Page 59 of 94

continuous integration, and
continuous deployment. Those
tools don't do testing per se, but
they are absolutely critical for
automated testing.

Another basis for this, the data
management if you will, bug tracking,
test asset management, and
application lifecycle management
tools, of which there are quite a few.

All right, now we can start to ask the
question: What's the test automation
tool chain that lives within environment?
At the first layer are black box tools and
support. In the Agile space, we see tools
for behavior-driven development or "BDD"
and acceptance-test-driven development
or "ATDD." There is some interesting
products in this space. Combinational test
design is something I always try to mention
because it is such a simple test concept but
yet it's so powerful. And then there's a
specialized kind of test generation called
model-based testing, which is a topic for
another day.

Presenter: And it kind of goes
along with model-based engineering.
As model-based engineering becomes
more prevalent, model-based testing
becomes more possible.

Presenter: That's right. Model-
based testing is essentially the
automated production of tests, where
instead of having a person handcraft
them, the tests are produced from a
model.

So here are three examples.
SpecFlow supports behavior-

Page 60 of 94

driven development for the Windows
platform. ACTS is a government,
off-the-shelf testing tool provided by
NIST at no charge. It does combinational
test design. And Smartesting is an
example of a model-based testing tool.

Now, let me remark about the blue
arrows. The blue arrows indicate
that all of these tools have interfaces
potentially amongst each other, and
whether or not that interface is
supported automatically or whether
you do that through some kind of
knowledge that you transfer among
your team or people who might be
using these, there is an interface and
that's something that's part of the
picture of a test automation tool
chain.

Then if we look at the kind of gray
box, are tools that are sort of
oriented towards code level or
developer level. We have developer
test framework, code coverage
analyzers, static analyzers, and then
sort of in the advanced category you
have something that's called
mutation testing, and then fault
injection. Examples of this, and
probably one of the most well-known
ones for developer test framework is
something called Junit, and it's very
widely used for Java development,
and it was one of the original of this
particular type of test framework.
It's open source, it's free, it's
relatively easy to use. It's very
popular.

Klocwork is an example of a
commercial off-the-shelf tool that

Page 61 of 94

supports coverage analysis. Fortify is
a tool which is used for static analysis
related to cyber vulnerabilities
and is rather popular.

Presenter: Security based, yeah.

Presenter: Pit is a cloud service
that does mutation testing for Java.
Byteman is one which is also for a
Java development environment that
does fault injection in an interesting
way.

The next group of tools drives the
system under test at an intermediate
level or system level. So there are many
tools that drive web browser tests if
that's the user interface. Selenium is the
most widely used. Ranorex is popular
for the Windows/ dot Net platform.
There are many tools for various Unix,
Linux platforms as well.
The mobile application development
environment (mainly Smartphones) has
quite a few interesting testing products
in it. This is still challenging due to all the
variations in form factor and operating
systems, but there are some useful tools
and services that support automated
testing over all of these variations.

And then for service-oriented
architectures and APIs, especially
in the last several years, there's been
a lot of new stuff that's been released for
that, especially if you're doing REST
APIs. There's a lot of very good stuff
for that. SOAP UI from SmartBear is
one example.

To testing systems at scale to make
sure that they perform adequately

Page 62 of 94

under load is a critical activity and
really can only be done if you have
test automation.

Presenter: Even back in the '80s,
this was the first place that we were
looking at using automated testing,
was to be able to create large
batches of data that we could pass
through and look at performance,
and that was hard even then. Today
that's really one of the best-
implemented areas for automated
testing.

Presenter: Yeah, for test
automation, this is really I'd say a
pretty mature technology. There's
some very interesting stuff in terms
of generating this through scalable
cloud resources. And then network
capture.

All right, then one final category
that's not as well known is something
called service virtualization, and
service virtualization is the idea that
we generate not just sort of-- if
you're a developer, you may be
familiar with the idea of a stub. So if
you're writing a piece of code and
you have a dependency on another
one, you might write something
that's kind of a temporary
placeholder for that other one.
Service virtualization is a similar idea,
but instead of just a block of code,
we're producing a stand-in for
another entire system.

Presenter: Gotcha.

Page 63 of 94

Presenter: And so this is very
useful when we have interoperability
concerns with other systems that we
have to work with, but for example,
we were really limited in terms of
testing because they have production
sensitivities that can occur for many
reasons.

So this is kind of the landscape,
broadly speaking, of the functional
categories and some examples of
tools that fit into each one of those.
And again, I want to say the noted examples
are representative, they're not
recommendations, and there are
many, many, many tools for each of
these categories.

Presenter: But I just want to come
back to the testing is development.
I know I'm harping on that. This is
why testing is development, this
world. If I'm doing automated
testing, this is not just a single, "Oh,
I'm just going to develop a little
thing." This has got some complexity
to it. A lot of decisions-- architectural
decisions, implementation-- what am
I going to use, where am I going to
focus, what am I going to do first?
Am I going to do load generation
first? Am I going to do-- all of those
are system kinds of decisions and so
we have to look at it this way if we're
going to be productive in this
environment.

Presenter: That's right, yeah. And
so getting all these things spun up
and working, it's part of the reason
that we say that this is a substantial
effort and should be approached with

Page 64 of 94

that in mind. It certainly is doable,
but putting together and integrating
all of these is a nontrivial effort.

Presenter: I will give you one little
anecdote on the much simpler scale.
So this is an organization-- a
government organization that
adopted Agile very early, 2003
timeframe. No automated testing,
and they worked for a year and
actually got to where they had a
pretty good cadence of delivery and
all the rest of it, and after about a
year they had to stop the
development and put up a test
harness just for the beginning levels
of their automated testing because it
had gotten to where it took two
weeks, which was the space of their
iteration, to run the regression tests,
and they went, "Okay, this is not
going to fly." It's the back-blob,
right?

Presenter: The back-blob got them.

Presenter: It got them. But they
recognized it early enough, and then
they took a strategic pause, they
called it, for three months, got
things--

Presenter: Good idea.

Presenter: Got this going, and then
from then on they were managing
this very actively. But this is reality
that this is a job not to underestimate.

Presenter: Right. Yeah. So let's
move on our next poll on this.

Page 65 of 94

Poll 3

27
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Poll 3
What kinds of testing are automated in your project?

A. Unit/CSCI testing

B. User interface functional testing (desktop, mobile, web page)

C. APIs, web services

D. Software/Hardware in-the-loop testing

E. Performance testing

F. Robustness testing

G. Other

What kind of tool chain do I need?

**027 So Shane?

Presenter: So the poll is up now,
and the question is: What kinds of
testing are automated in your
project? And I think we had another
question in the queue while we're
waiting for that one. This one was
from a little bit earlier which I
missed, but from Virginia asking: Is
requirement selloff embedded as part
of the Agile development test or
separate event before fielding?

Presenter: Yeah, I know Bob's
looking at me, he's going, "What?"
So requirement selloff in the
government has a very important
meaning, because requirement selloff
is the point at which the government
is taking ownership of the product
that the requirement is related to,
and that's really when contractors, in

Page 66 of 94

a contract environment, that's when
they really get paid. So very
important construct for people is
requirement selloff. What we're
finding is a variety of approaches to
that. So there's something that's
often called FQT, which is a full
qualification test, or factory
qualification test-- I've heard it used
both ways-- is the traditional time
when requirements are sold off in
some settings, and that may not
change.

So that could be something that still
happens at the end. I will tell you
that one of the heuristics about
requirement selloff is that there has
to be a level of confidence on both
the developer and the receiver
organization that, "We're really done
with this part of the system," that we
are not iterating anymore on it. And
so you typically will not see
requirement signoff in the earliest
iterations in integrations. It's going
to happen later. But how it happens
is very idiosyncratic to the type of
organization, to the type of
acquisition. Are we kind of a
standalone thing, or are we part of a
larger system where it has its own
requirement selloff practices and we
have to be part of those? So, as
usual, it's not a single answer. I
didn't say "It depends" until now.

Presenter: Right, and we had some
comments from the polling question
just saying that they wish it was
multiple choice because there are
some multiple--

Page 67 of 94

Presenter: Oh, okay. Gotcha.

Presenter: Which was a limitation
of the system, but yeah.

Presenter: Okay, sorry about that.

Presenter: But to close the results
here, we had 44 percent with unit
testing, 17 percent user interface
functional, 17 percent APIs, web
services, 5 percent
software/hardware, 10 percent
performance testing, and 7 percent
other.

Presenter: I'm betting that some of
that is because we didn't allow
multiple. You'll have to fix that with
your-- put a change request into the
webcast people.

Presenter: There you go.

Presenter: But I mean, I think it's--
unit CSCI testing is a place that many
people start, but I would also say
that performance testing is the other
place I've seen people start. So that
one's probably a little lower because
of the way that the question was set
up.

Presenter: Right. That's absolutely
right.

Page 68 of 94

What kind of testing should/should not be automated for Agile software
development?

28
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

What kind of testing
should/should not be automated
for Agile software development?

Five keys to effective Agile test automation for Government programs

**028 So I think we're on now to
the sort of last part of the discussion.
Do we have any guidance about
shoulds and should-nots for
automating development?

Page 69 of 94

Testing scope, focus, automation

29
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Testing scope, focus, automation
What kind of testing should/should not be automated for Agile software development?

Component,
Subsystem

Functions

Use cases,
Mission threads,
Performance

Features,
User stories

Scope Focus

System,
SoS

Unit,
CSCI

User Interface SW Interface

Notional proportion of automated
and manual test cases

**029 So I'm going to go back and
kind of reprise this slide again. Here
are-- we're trying to answer the
question here: How much of your
testing really should be automated?
And the answer here is: Let's take a
look at what type of testing we're
talking about. If we're talking about
software components themselves
that really don't have a user
interface, that pretty much has to be,
by definition, almost entirely
automated.

Presenter: And it's feasible for it to
be automated.

Presenter: And it is feasible. That's
a fairly straightforward and well-
solved problem. If we're talking
about component subsystems, it
depends on what type of interface
those components or subsystems

Page 70 of 94

have. If it's something where the
user interacts with it, then that can
be manual and that can also be
automated, but we don't want to
automate everything necessarily right
out of the box. We'll have some
suggestions on that consideration
later.

If we're talking about a subsystem
that has, again, a primarily
programmatic interface, again, for
the same reason, that should be
mostly automated.

If we come and look at the system of
systems or systems level, it's pretty
much the same story as it as on the
subsystem level. Of course some of
the considerations here are different,
but to the extent that it makes sense
to automate some of those
repeatable interactions, we should do
that, but we should also reserve
some effort for interaction that is
driven by experienced testers. And
again, if the system is one which
primarily has technology interfaces as
opposed to user interfaces, those can
be driven automatically.

Presenter: One of the heuristics
I've heard is that if I'm going to write
an emulator for it, I might as well
automate the testing for it, because
I'm already using software that I'm
going to know about, I'm going to
know some characteristics of, so I
can use that to help me with the
automation. And that goes to the
software interface type of thing.

Presenter: Right. Yep.

Page 71 of 94

Avoid test automation gotchas

30
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Avoid test automation gotchas

• Much more work converting
manual to automated testing than
expected

• Don’t automate tests for unstable
interfaces

• Do use exploratory testing
• Do automate tests for APIs,

stable user interfaces
• Tools don’t automate test design

and judgement

• Capture/replay usually results in
breakage and/or test script re-
recording

• Set expectations for test asset
maintenance

• Automate performance testing
incrementally

• Follow test automation design
patterns

What kind of testing should/should not be automated for Agile software development?

**030 All right. So, here are some
gotchas. We're going to suggest that
these are the kinds of things that
we've seen go wrong in test
automation efforts and something
maybe to keep in mind is this sort of
a risk checklist. I've often seen that
the amount of work involved in
converting from a manual, procedural
approach to testing to an automated
one can be surprisingly large, and
that's because the persons who are
doing the manual testing actually
have a substantial amount of domain
knowledge, expertise that they've
accumulated perhaps over a long
period of time that really is not
captured in the written form of the
test.

Presenter: We call that
unconscious competence. There's
things that you know that you don't

Page 72 of 94

even realize that you know, and so
you don't write them down, because
you don't need to.

Presenter: Exactly. But those are--

Presenter: But the computer
doesn't know those things.

Presenter: It's teasing those things
out and figuring out what they are
that can be very time-consuming.

Another area where people often get
snagged is in automating tests for
unstable interfaces, and unstable
means not that they're bad, that
they're kind of flaky, but that they're
likely to change rapidly, and so you
haven't really completely figured it
out; they're subject to change.
That's the kind of where usually-- not
always-- but it usually doesn't make
sense to automate tests for those.

Exploratory testing is where you have a
kind of testing that is guided by a principle
or a general plan of attack, but not by a
specific procedure. That's very
effective, especially when you have
evolving interfaces. And as we've
noted, things that have technology
interfaces and stable user interfaces
are good candidates for automated
testing.

And of course tools don't automate
test design and judgment. They're
not a replacement for a good
understanding of the system under
test and then deciding how to
exercise it.

Page 73 of 94

If you're doing test automation of
user interfaces-- this might be a
Windows desktop app or a browser--
one mode of doing that is what's
called capture replay, and most of
the tools make it pretty easy to do
this. So you just turn on a recorder,
you interact with the system
following a plan of some kind, and
this gets recorded and can be played
back, and that's capture and replay.
So that's good for some things, but in
terms of using that as a basis to do
test automation is not usually a good
idea, because if anything at all changes
in the user interface, whether it's new
functionality or new design or layout,
that test is probably going to be
broken and will have to be
recaptured or redone. So a capture
replay is sort of like a sugar high. It
feels good for little while but then
you get a sort of unpleasant after-effect
pretty soon on.

Presenter: You get the hangover.
You get the capture replay hangover.

Presenter: That's right. So avoid
that. And the way to do that is
through-- there are other strategies
that take a little bit more in the way
of software architecture for tests that
are pretty good at preventing that
type of problem.

Also, test assets are not kind of fire-
and-forget, one-and-done. They're like
other kinds of software-- they need to
 be maintained, kept up to date in terms
of functionality and interfaces.

Page 74 of 94

One of the things we see, that people
may defer on performance testing
until they get the entire system in
place, which makes a lot of sense,
but it usually is smarter to do
performance testing incrementally,
and try to build to it as you go rather
than waiting and doing it all at the end.

Presenter: And I'll say here that in
cases-- legacy systems, a lot of times
you have a baseline of performance
and you're trying to either maintain
that performance level or increase
performance, and if you start your
performance testing early, you can
find out if you've already hit those
boundaries. I mean, that's one of
the things about performance
testing-- when you make changes,
you don't realize a lot of times how
you're changing the way the
resources are used.

Presenter: That's true.

Presenter: And if I've got an early
indication that I've broken some
performance boundary, I can deal
with it, I have time to deal with it. If
I wait until the end to find that out,
then it's a much harder recovery.

Presenter: Right. Yeah. So get
those things going soon. And then,
kind of related to the test asset and
all these other things, are to learn
about and apply test automation
design patterns. That's a longer
story, but perhaps someday we'll
have a webinar on that.

Presenter: Sure.

Page 75 of 94

Poll 4

31
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Poll 4

What kinds of testing are routinely done in your project?

A. All manual

B. Mostly manual, some automated

C. About same manual and automated

D. Mostly automated, some manual

E. All automated

What kind of testing should/should not be automated for Agile software development?

**031 Presenter: Okay, poll
number four.

Presenter: Okay, that is launched
now and it's asking: What kinds of
testing are routinely done in your
project? And while they're voting on
that one, we had another question,
asking: What is the effort estimation
techniques used?

Presenter: Oh, for doing test asset
design and management?

Presenter: Yeah. Yes, I believe
that's--

Presenter: In the Agile settings
that I've been working in, they
actually use relative estimation,
similar to they do in the rest of the
project. So they'll use story points to
do complexity estimation. I've not

Page 76 of 94

seen-- there's an idea of value points
that kind of comes into play for
software for understanding the
business value. I haven't seen that
used in the test community, but I can
also imagine where that could be
useful. For more traditional
automation, I've also seen just
traditional, "This is how many hours
it's going to take." I saw once place-
I don't know if you've even seen this-
I've seen one place that had a
heuristic of, "If this is my effort for
developing this code," then they had
a percentage that they applied. "It's
going to take this percentage of that
to develop the testing automation." I
honestly don't remember what the
percentage was, but that was their
going-in position. I don't know if
you've ever seen that before. I've
only seen it once.

Presenter: Actually, there are
variations on that theme, and I think
it's probably not a bad high-level
estimator. If you follow what we're
saying about Test is Development,
Development is Test, you can make
the case that about 50 percent of
your effort ought to be test. Some
people might find that to be
excessive, but--

Presenter: Actually there's research
that says the opposite, that it's
higher than 50 percent by the time
you're done.

Presenter: Right. So a high level is not a bad
benchmark. Of course every
situation is different. The methods
for doing estimation I think for tests,

Page 77 of 94

at least in my experience, are not all
that different than they are for doing
software development, or at least
doing test automation. It's a similar
kind of problem.

Presenter: And the other thing,
when you're getting started-- I mean,
we do this in software development
as well-- do some prototyping and
record your actuals. Figure out
what's the difference in writing a test
automation script for a user interface
task versus a software interface and
collect some of that data so that you
have it to use in your estimation of
the larger system.

Presenter: Yeah.

Presenter: All right, to wrap up our
question, we had 18 percent all
manual, 45 percent mostly manual,
16 percent about some manual and
automated, 18 percent mostly
automated, and 2 percent all.

Presenter: Ooh.

Presenter: Oh hey, we want to talk
to that 2 percent.

Presenter: I bet they're not in
government. But still, I mean, even
if you're not-- not all our audience is
government. A lot of our
government people are saying there's
no way that anybody could ever do
all automated. We got 2 percent that
say they are, so.

Presenter: Well, it depends, and if
you have a system with a lot of user

Page 78 of 94

interfaces, with a lot of user
interaction, oftentimes there are
things that it doesn't make sense to
automate. There are some kind of
unusual or complicated interactions
that don't occur very often and
maybe on parts of the system that
you're not that interested in, for one
reason or another, and perhaps just
the effort that it would take to create
usable automation is just too much.

Summary

32
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Summary
Five keys to effective Agile test automation for Government programs

**032 All right, so let's try to wrap
up.

Page 79 of 94

No magic!

33
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

No Magic!

When done skillfully, test
automation can deliver
strong benefits to support
organizations in delivering
high-quality software at a
faster pace.

When done badly, it
creates more problems
than it solves.

Summary

Sobejana and Herschmann, “The Eight Essentials When Moving to Automated Software Testing,”
Gartner Inc., 2016.

**033 I guess first, this is no magic.
Test automation is not magic. It's
like a lot of things in software
engineering; it has high potential for
payoff but it also takes a pretty
conscientious effort to achieve that
result. So here's a quote from the
Gartner group on this. I won't read
it, but I think the bottom one
probably bears repeating. If done
badly, it creates more problems than
it solves, and I will underscore that
point. That's been my experience in
test automation. So if you're not
sure about how to get going in this,
tread lightly, take it a little bit at a
time, and build your confidence in it.
It's not that you have to be scared
about it, but just have an
understanding that it can be a
challenging effort.

Page 80 of 94

Presenter: Go in with your eyes
open.

Presenter: Yeah.

Reasons Automated Test Investment is Often Delayed in Agile Adoption

34
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Reasons Automated Test Investment is Often Delayed in
Agile Adoption

• Testers aren’t included in initial
adoption strategy

• Difficulties in obtaining required
tooling to support

• Some can be bought, but some has
to be built from scratch

• Training test personnel in
tooling/approach while executing
their normal activities

• Hard to pause ongoing work to
establish a new capability going vs
build it piecemeal

• Organizational challenges related to
dev/test structures

• Using automated mechanisms to do
things that used to require human
governance

• This isn't just "throwing a switch"
• Evolutionary implementation means

incremental utility, so monetary
benefit won't be seen right away,
even though risk reduction might be

Summary

**034 SuZ, I'm going to let you do
this one.

Presenter: Yeah, so one of the
things that we've been-- we've
worked with a lot of organizations in
the government that are just getting
started in their Agile transformation,
and when we teach about Agile, we
actually encourage people to consider
automated testing early. I mean, I
hope after seeing all the things we've
talked about that people can see why
we would recommend that as an
early decision. But it is often
delayed. It's like I'll teach a group
and then come back two months
later and they haven't even started

Page 81 of 94

on this. It's like, "You're not talking
about this yet." Some of these are
reasons that we hear and reasons
that we see. If you don't have
testers included in your Agile
adoption strategy, then they're not
going to get a voice and they're not
going to necessarily know there's a
different way that they could be
doing things.

There are some difficulties in
obtaining required tooling in some
environments. Some places-- open
source may have lots of offerings but
they don't really have the potential
for actually getting to it. So that's
one of the things that you have to
look at, or budget. I mean, there's a
budgeting aspect. "I have to buy
licenses," all that kind of stuff. So
that's one of the reason that people
delay it. Some areas, in some of our
very specialized domains, you can't
actually get the tooling that you
need. You have to develop from
scratch, and so that adds a burden to
this.

And test personnel, we've said
earlier, tend to be a very scarce
resource. Just making them available
for training for new tooling
approaches can be very challenging
because they're trying to get
through-- they've already got testing
underway for the last system, and so
getting ready for the next system can
be very challenging. So given them
the time available to do the training
that's needed is a barrier, and even
just pausing ongoing work to
establish the new capability.

Page 82 of 94

This is-- the example that I gave
earlier, that they solved this by
saying, "Okay, everybody's going on
to automated testing." All the
developers, everybody was on that
strategic pause, because they
couldn't just do it incrementally.
They had to figure out how to get it
going. And so there's some different
decisions there.

There are some organizational
challenges related to development
and test structures. I said that so
politely. There are times when
there's political battles between the
resources that go into the
development shop and the test shop,
and when I can have access to a lab,
and all those kinds of challenges can
make it harder for people to
approach the idea of automated
testing. And when we use
automated mechanisms to do things
that used to require human
governance-- that example I gave
about the sustainment group that got
the OT&E folks to say, "Yes, if you
pass these tests, you can go
forward," they were automating
governance. That's a decision that a
human used to make, to look, "Can I
go forward?" That was a really big
deal.

Human governance is what we're
accustomed to putting our confidence
in, and that shift of saying, "Well you
know, since we're doing all this
automation, we could just push it
out," and this is-- we haven't talked
very much about dev-ops, but dev-
ops is a place where this is

Page 83 of 94

happening, and bringing test into
that is one of the ways that you
make that governance able to be
dealt with in an automated fashion.

Once people learn-- so there's
probably a subset of people that are
attending this webinar that are going,
"Holy cow, this is going to be too
hard. This is not throwing a subject.
I thought this was going to be just
buy-- 'Here, I'm going to buy the SEI
test reference architecture and all will
be well,'", and once they find that
out, they can't approach it; they've
got all these other barriers. So that
will happen.

And the monetary benefits-- so when
I go to you as a manager and say, "I
want to buy this many thousands of
dollars in test licenses, test tooling
licenses, and I want everybody to
have an application lifecycle
management tool and I want all my
testers to have a test asset
management, and I need to train
them in all this stuff, and I need to
take a subset of the testers and
redeploy them as SDETs," and the
manager is going to say, "Okay, what
do I get for that? What's the ROI?
What's the return on investment for
that?" And most of the evolutionary
implementation that we see means
incremental utility. So I see risk
reduction very early, but that's not a
monetary benefit, and so some
people that need the monetary
benefit, they can't get approval
because that reduction in cost is not
going to happen until much later.

Page 84 of 94

So these are all things that you may
run into or you may go, "Yep, that's
me," and so these are all reasons
that we've seen that that delay
occurs, and that's part of what we
work with people on, is how to get
past some of these barriers, because
if you never get started, you'll never
get finished, and that's-- I know
that's a truism, but I mean, it's a
truism because it's true.

Presenter: It's true. There's no
arguing with it.

Presenter: And this is enough of a
job that you want to get started
early. So that's the thing there.

Remember: Automated Testing = Structure and Strategy Change

35
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Remember: Automated Testing = Structure and Strategy Change

• Scope of change is similar to
automating a manual business or
operational process

• Requires many behavioral changes

• Not plug-and-play

• Learning curve

Summary

Strategy

Structure

Procedures

Skills

Time to adjust Magnitude of Technological
Change Sought

Culture

Years LargeSmallWeeksMonths

Level of Learning Required

**035 And just a reminder that the
scope of change is large enough that
this is going to require more than just
a, "Okay, let's put it on this year's

Page 85 of 94

Goals and Objectives list, and at the
end of the year we'll have automated
testing." It's more than that.

Start early, keep at It!

36
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Start early, keep at It!
Summary

Bug Tracking
Test Asset Management

Application Life Cycle Management

Requirements Management

Model-based Systems Engineering

Configuration Management

Continuous Integration

Continuous Deployment

Load Generation
Performance Monitor

Network Capture

BDD/ATDD Support
Combinational Design
Model-based Testing

J-Meter
SOASTA

WireShark
Dev Test Framework

Code Coverage Analyzer
Static Analyzer

Mutation Testing
Fault Injection

Web UI Harness
Dot Net UI Harness

Smartphone Harness
SOA/API Harness

Ranorex
Selenium
SOAP UI

Service
Virtualization

CA-Lisa

SpecFlow
ACTS

Smartesting

Junit
Klocwork

Fortify
SonarCube

Pit

Representative tools,
not recommendations.

Many for each slot

Modernizing legacy testing is just like modernizing legacy operations!

**036 So start early, keep at it, and
there you go, and you'll get there.
You'll get to the reference
architecture implemented in your
space. You don't want the reference
architecture. You want the reference
architecture implemented in your
space. But this is like modernizing
anything else, and so you got to keep
going. Final words?

Presenter: I think-- yeah, so what's
the tradeoff here? If you don't do
this, you leave a lot of opportunities
on the table. I think there's pretty
uniform agreement of people who
have put the effort in to establishing
this kind of capability within their
development organizations that it

Page 86 of 94

pays off, but we mentioned some of
the caveats that you have to pay
attention to, to make sure you get the
desired result.

With that, the only other comment
that I'd make about the reference
architecture is: By the way, you do
not have to have every one of those;
you don't have to check every box in
that picture. It depends, again, on
your situation. So it's not a "must do
all of these", but these are the things
that are available.

Presenter: And you have to
prioritize your backlog just like you
do any other development, right?

Presenter: Certainly. But as SuZ says,
if you don't start, you won't finish.

Presenter: Before we get into the
final Q&A section with Bob and SuZ,
we had a couple questions just
asking about the archive of today's
presentation. That will be available
by no later than tomorrow morning.
We'll send out an email to everybody.
It's the same URL for registration
that was used today. You log in with
your email and you'll be able to
watch that tomorrow morning.

Presenter: And we're going to be
on YouTube at some point, right?

Presenter: Yeah, we'll be on
YouTube. It will be on the SEI
website as well. We do ask that you
fill out the survey today upon exiting
today's event, and I'm going to push
that survey live now. You can just

Page 87 of 94

minimize it until we close out, but we
do ask that you fill out that survey
because your feedback is always
greatly appreciated. And then let's
get into a question from Martin,
asking: Is there a way to swag the
cost slash manpower for converting a
legacy system with no unit test to
one with a sufficient number of unit
tests? This would need to include
some factor of how complex the code
would be to break apart so it could
be unit-tested. And let me know if
you need a repeat.

Presenter: That's a great question.
This is actually an issue that I've
been working on myself, and I think--
it's hard to provide a swag answer. I
think that you might-- one, you might
get some very rough guidelines by
asking how many functions there are,
how many files. So if it's a system
composed of something like C or
C++, the number of files usually is a
rough indicator, and you might ask
yourself if a typical file has ten
functions in it or ten methods, I want
to write one test for each one of
those, or do I want to write five, on
average?

Presenter: Composite, yeah.

Presenter: And how long will it take
me to do those? And so then it's just
a matter of running that arithmetic.
It's of course a very rough
approximation of what it will take.
There are so many variables involved
in that, it is difficult to give you more
than just kind of a general outline for
that. SuZ, any ideas?

Page 88 of 94

Presenter: The only one thing I'll
say about that kind of a shift is, from
a manpower viewpoint, if you are
talking about the people that know
the system intimately, I'm going to
give you a heuristic that that's about
half as much as if you're bringing in
new people that have to learn the
system. It's a much bigger lift, if it's
people that know the system, know
the domain, know the software, than
if you're bringing in new people, and
a lot of these legacy systems, you're
bringing in new people because it's
been sitting around. So it's going to
be more work depending on what
your situation is. But I agree with
Bob's advice about-- you're going to
have to get granular with the
estimation on this to get any kind of
an idea of what you're up against.

Presenter: So there's one other
question in the queue and it's from a
little bit earlier, and it's about CMMI,
or mentions CMMI, so I'm going to
look to you, SuZ, and it's from Jean-
Paul asking--

Presenter: I have a past with that.

Presenter: Yeah. In this context,
how do you apply CMMI for
development for the process areas
verification, validation, and product
integration? Because CMMI requests
many information, plans, etcetera,
when do you define this? Into the
sprint planning, or sprint zero?

Presenter: So, when you look at--
I'm going to sort of go back into
CMMI speak for a minute. Look at

Page 89 of 94

the goals level and there's nothing in
the goals level that says that you
can't provide the utility of verification
and validation incrementally, and so
that's what you really want to
establish, is that all three-- well
actually, if you're doing Agile, not just
these three areas but also your
architecture requirements are also
going to be done incrementally. So
your system solution is incremental.

So you want to establish in your
master plans, which are one of the
things that you would want to be
delivering-- what's my strategy? And
my strategy is going to be
incremental and that means these
things are going to be at a high level
initially and then they're going to get
detailed out as we go along. So I
haven't seen a problem with applying
those process areas in settings with
Agile where the implementers
understand Agile, and also
eventually, if you do benchmark
kinds of appraisals, your appraisers
have to understand Agile. If they
don't understand Agile, then they're
not going to understand how these
can happen productivity,
incrementally, and you're going to
have a whole bunch of other issues
besides just verification and
validation.

Presenter: Okay, next question:
Any technical skills you can
recommend that will help someone
that is not an SDET but obviously
needs to use automated testing? Any
technical skills you can recommend
that will help someone that is not an

Page 90 of 94

SDOT but obviously needs to use
automated testing?

Presenter: You might try to learn
one of the more popular scripting
languages, such as Python.
JavaScript is also used in a lot of
tools. I would try to learn just the
sort of basic software development
techniques that are applicable to
doing automated test.

Presenter: And the other skill-- I
mean, there's a design skill here.

Presenter: Yes there is. Right.

Presenter: So if you're not already
kind of in tune to modular design,
decoupling-- I mean, there's
principles of design that apply to test
automation as well, so getting a good
course on software design, actually,
would probably help you with the test
asset design.

Presenter: Yeah, and there are
quite a few resources. There's a
number of good books on this subject
if you do a web search on test design
patterns, or test automation design
patterns. I think you'll find a number
of useful sources.

Presenter: Okay, so you guys got a
couple compliments on a great
presentation. Another comment said:
We'd love to see a follow-up webinar
on automated testing for legacy
systems, including estimating,
choosing what, how much to go back
and automate, architecting, etcetera.

Page 91 of 94

Presenter: I told you this was the
beginning of a long set of things
you're going to be doing.

Presenter: And then a question
from Wayne asking: How sensitive
are test script development costs to
maturity of automated test system
implementation? How sensitive or
test script development costs to
maturity of automated test system
implementation?

Presenter: That's a very interesting
question, and I think it-- you know,
it's like a lot of other things. You can
do a kind of quick-and-dirty test
generation by doing so-called capture
replay, and I've seen this done plenty
of times. You can get lots of test
code that looks like-- it's impressive
because there's a lot of it, but you
then find out fairly soon afterwards
that it's really unmaintainable and not
highly usable. So if your organization
has maturity and the insight to good
software engineering practices as
they apply to doing test automation,
I think you're going to come out
ahead coming out of the box.

Presenter: And a heuristic I might
think about in terms of looking at
that sensitivity is if I look at this
reference architecture, it sets up an
organization of test assets. Right? If
I can't-- if I've got a bunch of test
assets but I have no organization--
not necessarily this one-- but I can't
really see I have this many of this
type, this many that do this, this
many that do that-- if I have no
visible organization, then I think my

Page 92 of 94

test scripting is going to be very
sensitive to changes because I'm not
going to be mindful of how changing
my test tools is going to change my
scripting. And so there's some
relationship-- maturity has to do with
maturity of the design, not just
maturity of how old the tools are and
how many times I've used them.

Presenter: That's true. Like a lot of
these other things, it's kind of hard to
generalize; there's so many various
factors that come into play.

Presenter: Okay, and then we'll
wrap up with this comment from our
friend Bill, saying: As Martin Fowler
says, daily builds are for wimps.
Thanks for covering great ground and
the challenges associated with
automation in support of Agile
practices. So again, thanks everyone
for attending today. Our next
webinar will be August 9, and the
topic will be "Weaving a Fabric of
Trust" by the CERT division chief
scientist, Dr. Greg Shannon. So be
sure to attend that. And lastly, be
sure to fill out that survey. Thanks
for attending, everyone. Have a great
day.

Page 93 of 94

SEI WEBINAR SERIES | Keeping you informed of the latest solutions

38
Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Five keys to effective Agile test automation for Government programs
June 29, 2017
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Page 94 of 94

	Five Keys to Agile Test Automation for Government Programs
	Table of Contents Page 1 of 2
	Table of Contents Page 2 of 2

	SEI WEBINAR SERIES | Keeping you informed of the latest solutions
	Carnegie Mellon University
	Five Keys to Agile Test Automation for Government Programs
	Notices
	Overview
	How is testing different in Agile software development?
	Testing is development, development is testing
	Early and repeatable testing is Agile key to quality
	Agile “Inter-twingles” Development and Test
	Agile iteration relies on more testing earlier
	No Automation? The Backblob is going to get you!
	DoD Acquisition requirements are unique
	Left-shift with Agile Testing
	Poll 1
	Who should develop automated tests?
	Some factors to consider
	OEM or government engineering or test staff?
	Poll 2
	How can my program successfully adopt Agile/Automated testing?
	Automated Testing = Structure and Strategy Change
	Ensuring Test Automation Success
	Program-Wide Test Asset Management System
	REMEMBER: No Automation? The Backblob’s gonna getcha!
	What kind of tool chain do I need to support automated testing?
	REMEMBER: No Automation? The Backblob’s gonna getcha!
	Program-Wide Test Asset Management System
	REMEMBER: No Automation? The Backblob’s gonna getcha!
	What kind of tool chain do I need to support automated testing?
	Testing scope, lanes, focus, tooling
	Tools for Test Automation
	Tools for Test Automation
	Test Automation Reference Architecture
	Poll 3
	What kind of testing should/should not be automated for Agile software development?
	Testing scope, focus, automation
	Avoid test automation gotchas
	Poll 4
	Summary
	No magic!
	Reasons Automated Test Investment is Often Delayed in Agile Adoption
	Remember: Automated Testing = Structure and Strategy Change
	Start early, keep at It!
	SEI WEBINAR SERIES | Keeping you informed of the latest solutions

