
Delivering Software-Reliant Products Faster 1

Delivering Software-Reliant Products Faster
Help your organization gain speed without sacrificing quality

1. Producing high-quality, robust products and
delivering them faster depends on software
development that’s probably not delivering
everything needed— that’s the bad news.

2. The good news is that achieving high
performance and speeding time to market can be
accomplished by making better use of software
architecture.

3. The better news is that there are steps you can
take now to use software architecture more
effectively.

Leading organizations that develop software-reliant products emphasize
getting to the market or field faster with offerings of exceptional quality
that can meet changing customer needs.1,2

Research over the past two decades suggests that taking a product-
development approach centered on software architecture significantly
improves an organization’s chances for achieving this business goal.
Software architecture is an engineering blueprint that can guide each
phase of product development toward success.3,4,5

In this paper, we focus on three important ways to improve software-
reliant products by making more effective use of software architecture
throughout development:

1. Better quality—delivery of product qualities that fulfill customer
needs and expectations

2. Faster delivery—reduction of unnecessary rework that delays
product introduction

3. Easier maintenance—improved flexibility for changing the product to
meet evolving customer needs

We also suggest some steps an organization can take to learn more
and move toward adopting a product-development approach that makes
more effective use of software architecture.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213-3890

www.sei.cmu.edu

http://www.sei.cmu.edu?WT.mc_id=610010&WT.mc_ev=click

Delivering Software-Reliant Products Faster 2

Deliver products that fulfill customer needs and expectations
One prominent study says that just one-third of software projects deliver the features and
functionality customers expect.6 Other studies indicate that half of information-system
software development projects fail.7

The failure to deliver the qualities that customers want has real consequences. One example
is the web-based purchasing system developed for Ford Motor Co.8 The system, dubbed
Everest, was intended to automate manual procurement operations that had proven to be
costly, such as the exchange of invoices and other common standard documents. Rich
functionality and integration were keys to the success of this system. But suppliers reported
that the new system was very time consuming because they had to use the existing
environment along with Everest to accomplish the same things they had done before.
Lackluster supplier reaction caused Ford to abandon Everest soon after fielding it. The
organization lost more than $400 million, along with five years of development. In addition, the
organization did not gain benefits that were promised from the automation of manual
procurement processes.

Product development that focuses on software architecture from the beginning allows an
organization to verify that the product can deliver the system qualities customers want, such as
security, performance, modifiability, availability, and interoperability. Software architecture
provides (1) a forum in which all product stakeholders can work through tough questions about
how the product will behave in terms of its important qualities and (2) the artifact in which those
qualities can be verified.

Our experience: A focus on software architecture to better understand and
deliver product qualities

The SEI has evaluated 12 large-scale-system development projects for a government
organization to gauge the effect of using two software architecture methods, the Quality
Attribute Workshop (QAW) and the Architecture Tradeoff Analysis Method1

® (ATAM®).9
The QAW provides a means to discover a system’s critical qualities early in development.
 It complements the ATAM, a method for evaluating an architecture relative to those
critical qualities.

We asked representatives of the 12 projects to tell us to what degree these methods helped
them discover key qualities, assess whether their architectures would deliver these qualities,
and identify their risks. All of the projects reported improvement in these areas. Seventy-five
percent of the projects characterized this improvement as significant or very substantial. All of
the projects that used these methods early in development reported that their use produced
tangible benefits in system quality and effectiveness.

An added benefit emerged from the study as well: better communication among the product
stakeholders. Project managers, designers, suppliers, and other stakeholders were able to
“achieve a common understanding” that makes it “more likely that the completed product
will address stakeholder expectations and user needs.”9

	 ®			Architecture Tradeoff Analysis Method and ATAM are registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

Delivering Software-Reliant Products Faster
Help your organization gain speed without sacrificing quality

Projects that used SEI software
architecture methods early in
development reported tangible
benefits in system quality and
effectiveness.

Delivering Software-Reliant Products Faster 3

Gain speed by eliminating unnecessary rework
Organizations know that they need to field their products faster than the competition. But, just
as it often fails to deliver desired qualities, traditional software-reliant-product development
also typically does not meet estimated schedules. On average, time to release exceeds
planned development time by 84%.7

A major contributor to boosting development time is rework to fix errors, accounting for
somewhere between 25 and 40% of the total time, analysts say.10 Moreover, when errors are
not caught until late—during system-testing or, worse, after the system is delivered to the
customers—it takes a lot more rework, and a lot more time, to fix them.11 One large study of IT
systems pegs the additional time and rework for late fixes as high as 30 times more.12 For its
high assurance systems, NASA has determined that the rework factor can grow to 100 times
more.13

Rework can have consequences in lost revenue as well. For example, the Airbus A380 aircraft
was plagued by several delays traced to a lack of interoperability among software applications
used in different Airbus design and engineering centers. The interoperability problem
contributed to the need for many changes that compounded into more than a year’s delay, a
loss of $2.5 billion in profit, and the replacing of a project manager and a CEO.14

Attention to software architecture can help an organization avoid costly, time-draining,
unnecessary rework early in development and during the crucial system-integration phase.
Integration is a major problem area for organizations building products from systems
developed separately by different third-party organizations or migrating legacy systems to new
environments. Architecture evaluation—applied from the earliest stages of product
development—brings to light risks to the delivery of important qualities and points to ways to
address risks before they introduce errors into products. Architecture modeling and analysis
provide improved system understanding that can facilitate integration.

Our experience: A focus on software architecture
to reduce rework

The SEI, as part of a global cooperative of aerospace companies, government organizations,
and academic institutions, recently completed a study showing how an approach known as
virtual integration—as part of an architecture-centric practice—can prevent wasteful rework in
the development of aircraft software systems. The study proved how architecture methods,
including the industry standard Architecture Analysis and Design Language (AADL), allow
virtual integration that flips the traditional development approach of build then integrate.

By following an integrate then build approach centered on building and analyzing software
architecture, system designers can make more informed decisions that avoid errors, and they
can detect errors as early as possible. The study estimated, conservatively, that architecture-
centric practice can prevent about a quarter of wasteful rework effort in the development of
aircraft software systems.13

Delivering Software-Reliant Products Faster
Help your organization gain speed without sacrificing quality

By following an integrate then build
approach centered on building and
analyzing software architecture,
system designers can make more
informed decisions that avoid
errors, and they can detect errors
as early as possible. An industry
study estimated, conservatively,
that architecture-centric practice
can prevent about a quarter of
wasteful rework effort in the
development of aircraft software
systems.

Delivering Software-Reliant Products Faster 4

Co
u

ld
 t

h
is

 b
e

yo
u

?Plan for smoother change and maintenance
At some point, a software-reliant product is bound to face circumstances that trigger the
need for product maintenance and enhancement such as

• new customer requirements

• need to connect with other systems

• changes to the environments in which it is used

• improvements by the competition

For the organization, responding to circumstances such as these can account for more than
half the cost of the product over its lifespan.15

When a product proves difficult to modify, the organization can suffer in several ways, as
illustrated by a computerized billing and claims processing system that was developed for
Oxford Health Systems. A significant increase in data throughout the system choked its
performance.16 Technical problems termed “pervasive and debilitating” arose when the
health insurer doubled its business over 18 months and could not upgrade the system to
keep pace. Customers enjoyed an unexpected (and unexplained) holiday from paying on
their policies for several months. At the same time, the health insurer resorted to advancing
reimbursement to hospitals, with an agreement to make good any differences when the
system was upgraded. Seeing that the organization had less money coming in and more
going out, investment analysts calculated that Oxford had overstated its quarterly revenues
by $400 million; predictably, the publicly traded company’s stock plummeted—$3.4 billion in
value in one day.

Product development driven by deliberate attention to architecture can immunize the
product from the effects of change in two ways. In anticipation of changes such as
increased demand that might occur after the product is released, the system designer can
isolate, during development, the areas of the software architecture that would require
modification and evaluate how adaptive the system will be. Or, to meet a need for
modification after the system is in use, the system designer can find areas in the
architecture where change is needed, make changes to those areas, evaluate the changes,
and deploy the modification with less effort.

Our experience: A focus on software architecture to ensure modifiability

Our architecture-centric approach enables an organization to act with informed anticipation
to avoid over-anticipating emerging needs and under-anticipating future needs.17 Acting with
informed anticipation, an organization would find that it

• delivers customer-facing features without delay due to exhaustive requirements and
design activities and reviews

• maintains a steady focus on continual architectural evolution for ready response to
customer needs as they emerge

One example of how an architecture focus can allow an organization to begin to act from
informed anticipation is the experience of a large retail organization. This retailer needs to be
responsive in its development. It found, however, that its technology infrastructure had
become “difficult to evolve”18 through repeated code updates to meet increasing demand
for new systems, more richly featured websites, integration with other products, and
security concerns, among other needs. Despite using sound software-development
practices, the retailer saw its essential code base devolve into entangled interdependencies
that increased its system costs.

The organization changed its focus to increase both visibility and governance of the
infrastructure software architecture. As a result, the retailer realized lower cost through a
10% reduction in the number of files changed in making an update and a greater
understanding of the interdependencies in its infrastructure.

Delivering Software-Reliant Products Faster
Help your organization gain speed without sacrificing quality

Gaining Speed Without Losing
Quality: A Plausible Scenario

An organization envisions moving a
complex system to a new technology
environment in order to give
customers greater flexibility. Not
making the move successfully and as
quickly as possible could damage the
organization’s revenue and reputation.

The organization learns that an
architecture fact-finding diagnostic
approach will help connect essential
benefits with the software system
qualities that provide them. As part of
this approach, architecture experts
model the system architecture at a
high level, revealing that system
qualities must be more fully
articulated.

To refine system qualities, architecture
experts engage all of the system-
development stakeholders in forming
scenarios that show what is likely to
happen when one quality is preferred
over others, an activity known as a
tradeoff. Analytical software tools can
be used against the architecture to
quantitatively predict system
performance in the new environment.
This analysis will spot errors in design
long before they prove expensive and
time-consuming to fix. Predictable
engineering of the system eliminates
unnecessary rework that delays
system implementation; at the same
time, it keeps a focus on delivering
key system qualities.

As a by-product to the organization’s
adoption of an architecture-centric
approach, its software architects,
technical managers, and others gain
knowledge and skills through training
in architecture practice. Like their
now-migrated, more-robust system,
they are in a position to do more and
offer more.

Delivering Software-Reliant Products Faster 5

Ways to Explore How to Use Software Architecture
More Effectively
Many approaches and methods exist for developing, documenting, and evaluating an architecture.
At the SEI, in fact, we have created and matured several that can help an organization adopt an
architecture-centric approach to software-reliant product development. Here is how an organization
can learn about a more effective use of software architecture:

1. Ask for help

Start a discussion in your organization of a few key questions, such as

• What are our strategies to make the product successful?

• How do we identify and verify qualities that are important to customers?

• Is there any uncertainty that needs to be managed in the development of this product?
What is the nature of this uncertainty—cost, schedule, functionality, future upgrades or uses?

• Do we know how much rework costs us in time and money?

2. Watch a demo on an approach to reducing unnecessary rework

This demonstration walks through a use of virtual integration in a study for the
aircraft manufacturing industry.

3. Read our technical report about the use of architecture evaluation tools

We studied 12 large programs to see how an architecture-focused approach makes a difference in
the delivery of important product qualities.

4. Review presentations on architecting for change

The presentations were delivered at the SATURN 2010 Conference by software architecture
professionals from industry, government, and academic organizations.

You can find more information on our demo, technical report, and SATURN 2010 presentations at
http://www.sei.cmu.edu/goto/guidance.

5. Consider using our facilitated architecture fact-finding or skills-and-
capabilities diagnostic workshops.

Both workshops help an organization gather information to provide understanding of its current
practices and to find a pathway for improvement. Visit http://www.sei.cmu.edu/goto/guidance
for more information. or call us at +1 412-268-5800 or write to us at info@sei.cmu.edu to discuss
your needs.

About Us

We’re the Software Engineering Institute,
a federally funded research and
development center based at Carnegie
Mellon University. We work closely with
defense and government organizations,
industry, and academia to continually
improve software-reliant systems.

A primary focus of the SEI is architecture-
centric engineering practice, including
• proven technologies for architecture

evaluation
• four widely acclaimed books on

software architecture
• a four-course curriculum leading to

mastery in software architecture
practice

• an annual conference (SATURN) on
software and systems architecture
practices

• ongoing research into architecture
issues facing organizations

Delivering Software-Reliant Products Faster
Help your organization gain speed without sacrificing quality

http://www.sei.cmu.edu/go/ace/guidance.cfm?WT.mc_id=610016&WT.mc_ev=click
http://www.sei.cmu.edu/go/ace/guidance.cfm?WT.mc_id=610017&WT.mc_ev=click
mailto:info%40sei.cmu.edu?subject=Architecture%20Workshops

Delivering Software-Reliant Products Faster 6

1 Measuring and Sustaining the New Economy, Software, Growth, and the Future of the U.S. Economy,
The National Academies Press
(available from www.nap.edu/catalog.php?record_id=11587#toc).

2 Aberdeen group study,
www.aberdeen.com/Aberdeen-Library/4170/RA-inovation-agenda-2010.aspx

3 For example, see www.dtic.mil/ndia/2008systems/7137baldwin.pdf,
www.sei.cmu.edu/architecture/,
http://www.zdnetasia.com/companies-clueless-about-software-architecture-61952450.htm and
http://www.ibm.com/developerworks/webservices/library/wi-arch13.html.

4 Len Bass, Paul C. Clements, and Rick Kazman, Software Architecture in Practice, 2nd edition
(www.sei.cmu.edu/library/abstracts/books/0321154959.cfm)

5 Paul Clements. Rick Kazman, and Mark Klein. Evaluating Software Architectures: Methods and Case Studies
(www.sei.cmu.edu/library/abstracts/books/020170482X.cfm)

6 These figures come from reports that have been provided by the Standish Group since the mid-1990s.

7 Grafton Whyte and Andy Blytheway, Factors Affecting Information Systems’ Success.
(www.emeraldinsight.com/journals.htm?articleid=851592&show=html)

8 http://adtmag.com/articles/2004/11/01/oops-ford-and-oracle-megasoftware-project-crumbles.aspx and
http://www.accessmylibrary.com/article-1G1-121520297/ford-giant-purchasing-glitch.html

9 Robert Nord, John K. Bergey, Stephen Blanchette, Jr., and Mark H. Klein. Impact of Army Architecture
Evaluations (CMU/SEI-2000-SR-007)
(www.sei.cmu.edu/library/abstracts/reports/09sr007.cfm)

10 http://www.ibm.com/developerworks/rational/library/347.html and
http://www.ikmagazine.com/xq/asp/txtSearch.Measuring/exactphrase.1/sid.0/articleid.7A69C140-4A6A-
451D-90A8-AABBFA2C4EA5/qx/display.htm

11 Boehm, Barry & Basili, Victor. “Software Defect Reduction Top 10 List.” Software Management (May 2001):
135-137.

12 The Economic Impacts of Inadequate Infrastructure for Software Testing, in NIST Planning report
May 2002, NIST.

13 Peter Feiler, Jorgen Hansson, Dionisio de Niz, and Lutz Wrage, System Architecture Virtual Integration:
An Industrial Case Study (CMU/SEI-2009-TR-017) (www.sei.cmu.edu/library/abstracts/reports/09tr017.cfm).
The proof-of-concept is part of a program called System Architecture Virtual Integration (SAVI). The
Aerospace Vehicle Systems Institute (AVSI) launched SAVI. AVSI is administered by the Texas Engineering
Experiment station at Texas A&M University.

14 http://usadailycut.com/2010/06/21/malaysian-air-may-cancel-a380-order-if-delivery-delayed-further/, www.
bloomberg.com/news/2010-05-04/airbus-a380-superjumbo-risks-turning-into-double-decker-dud-as-
orders-lag.html, and http://www.bloomberg.com/apps/news?pid=newsarchive&sid=aSGkIYVa9IZk.

15 http://users.jyu.fi/~koskinen/smcosts.htm

16 http://www.businessweek.com/1997/46/b3553148.htm

17 Nanette Brown, Robert Nord, and Ipek Ozkaya. “Enabling Agility Through Architecture.” Crosstalk
(November/December 2010).

18 http://www.springerlink.com/content/p3208208q6654408/fulltext.pdf

Delivering Software-Reliant Products Faster
Help your organization gain speed without sacrificing quality

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this paper is not intended in
any way to infringe on the rights of the trademark
holder. Internal use. Permission to reproduce this
document and to prepare derivative works from this
document for internal use is granted, provided the
copyright and “No Warranty” statements are included
with all reproductions and derivative works. External
use. Requests for permission to reproduce this
document or prepare derivative works of this document
for external and commercial use should be directed to
permission@sei.cmu.edu.

This work was created in the performance of Federal
Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded
research and development center. The Government of
the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or
permit others to do so, for government purposes
pursuant to the copyright license under the clause at
252.227-7013.

http://www.dtic.mil/ndia/2008systems/7137baldwin.pdf
http://www.sei.cmu.edu/architecture/
http://www.zdnetasia.com/companies-clueless-about-software-architecture-61952450.htm
http://adtmag.com/articles/2004/11/01/oops-ford-and-oracle-megasoftware-project-crumbles.aspx
http://www.ibm.com/developerworks/rational/library/347.html
http://www.sei.cmu.edu/library/abstracts/reports/09tr017.cfm
http://usadailycut.com/2010/06/21/
http://www.bloomberg.com/news/
http://www.bloomberg.com/news/

