Carnegie Mellon University

This video and all related information and materials (*materials”) are owned by Carnegie Mellon University.
These materials are provided on an “as-is” “as available” basis without any warranties and solely for your
personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of
viewing the video, or using referenced websites, and/or for any consequences or the use by you of such
materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read and
agree to our terms of use (www.sei.cmu.edu/legal/).

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

© 2016 Carnegie Mellon University.

From Secure Coding to Secure Software
August 17, 2016

C amegie Mellon UnjverSity © 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Software Engineering Institute

From Secure Coding to
Secure Software

Robert Schiela
Mark Sherman

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

== : : . Yo Y s el © 2016 Carnegie Mellon University
—~—— SOftware Englneerlng InStItUte (Aal negle N[ell()n Unlvel Slty [Distribution Statement A] This material has been approved for public

release and unlimited distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIALIS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be directed
to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.
DM-0003927

From Secure Coding to Secure Software
August 17, 2016

Software Engineering Institute | Carnegie Mellon University RIDE DT Sl d 3

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

i

Why Software Security?

Developed nations’ economies and defense depend, in large part, on the
reliable execution of software

Software is ubiquitous, affecting all aspects of our personal and
professional lives.

Hackers

Software vulnerabilities are e
equally ubiquitous, jeopardizing: e o
« personal identities '
* intellectual property
e consumer trust
* business services, operations, and continuity
» critical infrastructures & government

V Customers

-
Business to
Business

From Secure Coding to Secure Software
August 17, 2016

Software Engineering Institute ‘ Carnegie Mellon University D €z [y Ly 4

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Software Engineering Institute

&
Toyota Is Recalling Millions of Prius Hybrids
to Fix a Software Bug

Toyota is recalling 1.9 million Prius

to fix a serious bug in the engine control unit

which can cause transistors to overheat—and S ource: GlZ m 0, F e b 12’ 20 14

potentially cause the hybrid system to shut
down while driving.

February 25, 2014 7:27 pm

iPhone software security flaws exposed

By Tim Bradshaw and Hannah Kuchler in San Francisco

Apple is facing its biggest security scare in
years after flaws in its iPhone software
risked exposing its users’ communications.

Researchers at FireEye, a cyber security

§ firm, on Monday published a “proof of

Bl concept” surveillance app that would allow
B an attacker to capture every tap on the
iPhone’s screen or buttons. This came after Apple quietly released a software update
on Friday that fixed a serious weakness in its iOS software’s encryption technology,
which had existed for more than a year.

Source: Financial Times Limited, Feb 25, 2014

Software and security failures are rampant

Daily Report: Softwar

By THE NEW YORK TIMES

e Error Shakes Bitcoin Exchange

What was once the world’s largest

f Bitcoin exchange, Mt. Gox, appeared "
near collapse on Monday, the latest Dai Iy

d symbol of the woes facing early players Report

in the world of virtual currencies,

- Nathaniel Popper reports.

Mt. Gox, based in Tokyo, has had a
BUQ APES 7 rough ride lately. A few days after cutting off withdrawals for

S customers, Mt. Gox said on Monday that its problems were a result
of a more fundamental flaw in the computer program that underlies

GRAND

Bitcoin.

Carnegie Mellon University

Source: New York Times, Feb 11, 2014

eBay Suffers Massive Security
Breach, All Users Must Change
Their Passwords

eBay publicly admit[ed] hackers had stolen the names, email
and postal addresses, phone numbers and dates of birth of its
233 million users.

Sources: Forbes (online), May 21, 2014;
The Telegraph, May 22,2104

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Software and security failures are expensive

EARNINGS
BUSINESS DAY For Target, the Breach Numbers Grow b

Target Earnings Slide 46% After Data Breach

For Target, the Breach Numbers Grow Serst @eie W scommes [£ % Y 1A

By ELIZABETH A. HARRIS and NICOLE PERLROTH JAN. 10, 2014

@ ARTICLE FREE PASS 312'/,',, 12 Weeks suBscriBe Now

Enjoy your free sample of exclusive subscriber content

By PAUL ZIOBRO ' comnecr

Target on Friday raised its estimate of the number of customers whose credit and debit card data were stolen late in

2013.

Source: Wall Street Journal, Feb 26, 2014

Target on Friday revised the number of customers whose personal
G- information was stolen in a widespread data breach during the holiday
season, now reporting a range'g 70 TiTion to 110 miTon people. l A .
v g b h:
i The stunning figure represents about a third of all American adults at the Ve ra e C OSt I n a re a C *
low end, and is nearly three times as great as the company’s original .
ad estimate at the upper end. The theft is one of the largest ever of retail data. 1 5 8 pe r re C 0 rd (2 2 1 I n U S)
B

Source: Ponemon Institute, “2016 Cost of Data Breach

Source: New York Times, Jan 10, 2014 Study: Global Analysis”, June 2016

From Secure Coding to Secure Software
August 17, 2016

Software Engineering Institute | Carnegie Mellon University ©2016 Camegie Mellon Universty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Polling Question 1

What programming language are you most concerned about using securely?
* Ada
* Assembly
« C
o C++
+ C#
« Java
 Java-Script
» Objective-C
* Perl
* PHP
* Python
+ PL/SQL or SQL
* Ruby
o Swift
+ Visual Basic
Other
Little to none developed in-house

From Secure Coding to Secure Software
— August 17, 2016

Software Engineering Institute | Carnegie Mellon University & Bto Camge Melon Unhersty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

I

Engineering and Development

Sustainment

Engineering and Development

Requirements and Acquisition

Mission Threat Abuse Architecture Coding Testing, Monitoring Breach
Thread Analysis Cases : and Design Rules and Validation Awareness
: : Principles Guidelines and

: Verification

Deployment and Operations

From Secure Coding to Secure Software

= Software Engineering Institute | Carnegie Mellon University %51 Careoe

© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Most Vulnerabilities Are Caused by Programming Errors

64% of the vulnerabilities in the NIST National Vulnerability Database due
to programming errors

*51% of those were due to classic errors like buffer overflows, cross-site
scripting, injection flaws

Top vulnerabillities include
* Integer overflow
* Buffer overflow
* Uncontrolled Format String
» Missing authentication
* Missing or incorrect authorization
* Reliance on untrusted inputs (aka tainted inputs)

Sourcis: I-éef2fI81ngeunier: Can Source Code Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate Software Security?; cwe.mitre.org/top25
an 6,

— g 2016

August 17,
SOftware Englneerlng InStItUte Camegie Mellon UnjverSity Distribution Statement A] This material has been a\fpfm‘3 CirrnsiielicMr::f:seU::ersui:\)Ilimit

I

Secure Software Development

Secure software development starts with understanding insecure coding
practices, and how these may be exploited.

Insecure designs can lead to “intentional errors”, that is, the code is
correctly implemented but the resulting software contains a vulnerability.

Secure designs require an understanding of functional and non-functional
software requirements.

Secure coding requires an understanding of implementation specifics.

il

. August 17, € o
Software Engineering Institute ‘ Carnegie Mellon University ©2016 Cameglo Melon University 10
Distribution Statement A] This material has been ap lease and unlimit; istribution.

Sources of Software Insecurity

Absent or minimal consideration of security during all life cycle phases
Complexity, inadequacy, and change
Incorrect or changing assumptions
Not thinking like an attacker

Flawed specifications & designs
Poor implementation of software interfaces

o

|

| |

1]
=

Unintended, unexpected interactions
* with other components
* with the software’s execution environment

Inadequate knowledge of secure coding practices

From Secure Coding to Secure Software

. August 17, 201§ o
Software Engineering Institute ‘ Carnegie Mellon University ©2016 Camege Melon Unkersty 11

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Polling Question 2

Does your organization use a coding standard for security?
* Yes
* No
+ Maybe?

Software Engineering Institute | Carnegie Mellon University

I

[Distribution Statement A] This material has been a|

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

pproved for public release and unlimited distribution.

12

Coding rules — 2016 Edition

» Collected wisdom of programmers
and tools vendors

* Fed by community wiki started in

Tue CERT Spring 2006
O RACLE SEGURE « Over 1,500 registered

FOR JAVA contributors

« C Coding Standards
Available as downloadable report

http://cert.org/secure-coding/products-
services/secure-coding-download.cfm

« Java Coding Standards
Available as book

e C++, Perl, and “Current Standards”
Available on Secure Coding Wiki

https.//www.securecoding.cert.org/

SEI CERT
C Coding Standard

Rules for Developing Safe, Reliable, and Secure Systems

2016 Edition

From Secure Coding to Secure Software
August 17, 2016

= Software Engineering Institute | Carnegie Mellon University ©2016 Camego Nikon Unvarsty 13

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

CWE Guidance

» Common Weakness Enumeration

m

A Community-Developed Dictionary of Software Weakness Types

CWE List

Full Dictionary View
Development View
Research View

Fault Pattern View
Reports

Mapping & Navigation

Sources
Process
Documents
FAQs

Use & Citations
SwA On-Ramp
Discussion List
Discussion Archives
Contact Us
Prioritization
Cwss

CWRAF
CWE/SANS Top 25
Requirements
Coverage Claims
Representation
Compatible Products

Make a Declaration

News

Calendar
Free Nevsletter

Search the Site

Software Engineering Institute

Presentation Filter: --None-- v

CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow")

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
Weakness ID: 120 (Weskness 8ase)
V¥ Description

Status: Incomplete

Description Summary

The program copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the
size of the output buffer, leading to a buffer overflow.

V¥ Detection Methods

Automated Static Analysis
This weakness can often be detected using automated static analysis tools. Many modern tools use data flow analysis or
constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when reporting out-of-bounds
memory operations. This can make it difficult for users to determine which warnings should be investigated first. For
example, an analysis tool might report buffer overflows that originate from command line arguments in a program that is
not expected to run with setuid or other special privileges.
Effectiveness: High

Detection techniques for buffer-related errors are more mature than for most other weakness types.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software using large test suites
with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation
may slow down, but it should not become unstable, crash, or generate incorrect results.

Manual Analysis

Manual analysis can be useful for finding this weakness, but it might not achieve desired code coverage within limited
time constraints. This becomes difficult for weaknesses that must be considered for all inputs, since the attack surface
can be too large.

Automated Static Analysis - Bina Bytecode

According to SOAR, the following detection techniques may be useful:

Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

>

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

14

OWASP Guidance

Page Discussion

Buffer Overflows

Home
About OWASP . .
Acknowledgements General Prevention Techniques
Advertisi) i

B A number of general techniques to prevent buffer overflows include:
AppSec Events
Books « Code auditing (automated or manual)
2GR « Developer training — bounds checking, use of unsafe functions, and group standards
Chapters

’ « Non-executable stacks — many operating systems have at least some support for this

Donate to OWASP
Downloads « Compiler tools — StackShield, StackGuard, and Libsafe, among others
Funding « Safe functions — use strncat instead of strcat, strncpy instead of strcpy, efc
Governance « Patches — Be sure to keep your web and application servers fully patched, and be aware of bug reports relating to
nitiatives applications upon which your code is dependent.
Mailing Lists
Membership « Periodically scan your application with one or more of the commonly available scanners that look for buffer overflow flaws in
Merchandise your server products and your custom web applications.
News
Community portal
Presentations
Press
Projects
Video
Volunteer

From Secure Coding to Secure Software
August 17, 2016

Software Engineering Institute | Carnegie Mellon University A0 G [Livesy

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Buffer overflow has many causes

Buffer Overflow (BOF): The software can access through an array a memory location that is outside the

L) P T ". - i
array boundaries. Causes Attributes Consequences
e N) ¢ Information Exposure >
IputNot Access: [
_ _ *_Checked Properly ~ \ / Data Exceeds Array v Read #
; —] ——————_\ v Write /e
A C_Array Too Small > | Boundarv: /4 _Information Change/Loss >
AN e — a O / / T —
. ' . rd __ - . Y f’] ! Vi
Incorrect Calculation ¢ Too Much Da@m> / f,‘_BEEO“ [/ L
, — ~gohuch Al s Above / #_ Altered Control Flow
[~ Integer ™\ \ Location: Ly S T -
[/ Missing ™~ (% \ ~L - \ y I
) . Coercion .~ | B B / \ Heap I B N
[~._ Factor - — |\ —. v I /S g e
— ——————_ |/ (7 NoNULL ™~ \ Stac)/~ __=IncorrectResults
(" mieger Overflow 5 N\ Termination Y Magnitude: é-:_:_;_’ — e
\ >~ Wrap-around -~ | — 7 v Small N S [
~“Imeorrect N __— | N\ /' vModerate W\ . =(Program Crash).
\ L Argument -/ Integer &/ v Far I
N ~Underflow ~// Data Size: N T & AN
T v Little \ N = System Crash -
. __'x.}?_ﬂrHY Ll g . S | v Some AN T2y Denial Of
S —— “,~ Wrong Index / Pointer ./ i "N T
T~ OutofRange g '\ Resource Exhaustion > [27"
L e — = Reach: \ —_— ———
¢~ Incorrect ™. - v Continuous \ B B V4
. -) . N ./
~(onversion. v Discrete “CArbitrary Code Execution

Source: Bojanova, et al, “The Bugs Framework (BF): A Structured, Integrated Framework to Express Software Bugs”,2016, http://www.mys5.org/Proceedings/2016/Posters/2016-S5-Posters_Wu.pdf

From Secure Coding to Secure Software
— August 17, 2016 1 6

Software Engineering Institute | Carnegie Mellon University ©2016 Carnege Melon Uriversty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Learning from rules and recommendations

Rules and recommendations in the secure coding standards focus to improve behavior

The “Ah ha” moment:

Noncompliant code

examples or antipatternsin
a pink frame—do not copy
and paste into your code

Software Engineering Institute

Noncompliant Code Example

In this example, the =
From the documentation o

D n = FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS, @, GetlastError(),
LANG_USER_DEFAULT, (LPTSTR)8buf, 1024, ©);

if (n 1= 0) {
/* Format and display the error to the user */

GlobalFree(buf);

Compliant Solution

The compliant solution uses the proper deallocation function as described by the documentation

LPTSTR buf;

JHORD n = FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS, @, GetlastError(),
LANG_USER_DEFAULT, (LPTSTR)8buf, 1024,);

if (n 1= 0) {

/* Format and display the error to the use

LocalFree(buf);

¥

Carnegie Mellon University

Compliant solutions in a
blue frame that conform
with all rules and can be
reused in your code

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

17

An methodology for rule creation

Exploit language ambiguities
Analyze vulnerable programs
Systematically test the rules

And still consult with experts

I

Software Engineering Institute | Carnegie Mellon University

18

Examine language definitions and standards for
undefined, unspecified and implementation-defined
behavior

3.4.3

1 undefined behavior
behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

2 NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the

environment (with or without the issuance of a diagnostic message). to terminating a translation or
execution (with the 1ssuance of a diagnostic message).

3 EXAMPLE An example of undefined behavior 1s the behavior on integer overflow.
3.4.4

1 unspecified behavior
use of an unspecified value, or other behavior where this International Standard provides |
two or more possibilities and imposes no further requirements on which is chosen in any
instance

2 EXAMPLE An example of unspecified behavior 1s the order in which the arguments to a function are
evaluated.

Source: http://www.open-std.org/jtcl/sc22/wgl4/www/docs/n1124.pd (ISO 9899 - Programming Languages — C draft)

From Secure Coding to Secure Software
— August 17, 2016

Software Engineering Institute | Carnegie Mellon University & Bto Camge Melon Unhersty

S [Distribution Statement A] This material has been approved for public release and unlimited distribution.

I

19

Examine vulnerable code for patterns

‘ Malware repository with millions of unique, tagged artifacts ‘

‘ CERT Secure Coding Team has evaluated over 100M LOC ‘

= Software Engineering Institute

@ | :% Software Engineering Institute | Carnegie Mellon University

Vulnerability Notes Database

Advisory and mitigation information about software vulnerabilities

CERT Knowledgebase

The CERT Knowledgebase is a collection of internet security information related to incidents and
vulnerabilities. The CERT Knowledgebase houses the public Vulnerability Notes Database as well
as two restricted-access components:

= Vulnerability Card Catalog contains descriptive and referential information regarding thousands
of vulnerabilities reported to the CERT Coordination Center.

= Special Communications Database contains briefs that provide advance warning and important
information about vulnerabilities, intruder activity, or other critical security threats.

From Secure Coding to Secure Software
August 17, 2016

Carnegie Me]lon Ul’liVeI'Sity © 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

20

Implement candidate rules and run against sample code

* Focus rule when possible to
e maximize true positive of weakness (tag bad code)
* minimize false negative of weakness (don't tag good code)

* Write program to evaluate source code for particular rule

* Run program against collection of known bad source code and a
collection of other (suspected good) code to check sensitivity and
specificity of results

I

= =) . . . A i, 9
Software Engineering Institute | Carnegie Mellon University CRIDC DI SO

S [Distribution Statement A] This material has been approved for public release and unlimited distribution.

21

Experience with systematic testing

« Candidate rule typical evaluation

« 10 iterations of proposed rule and associated checker

7 internal evaluations
3 external evaluations

« Each evaluation iteration carried out against > 10M lines of representative code
« Variety of domains
« Variety of code quality

« As part of creating C++ standard, general methodology applied to generate 46

rules and corresponding Clang C++ checkers
19 by CERT researchers, 27 by others

From Secure Coding to Secure Software

August 17, 2016
© 2016 Carnegie Mellon University 22

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

I

Software Engineering Institute | Carnegie Mellon University

Tapping into expert knowledge for developing CERT
coding standards

Consensus

on
Tool vendor

vulnerability
and
mitigation

analysis

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

Software Engineering Institute | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

I

23

New Rule Example

EXP46-C — Do not use a bitwise operator with a Boolean-like operand

1f (! (getuid() & geteuid() == 0)) {
/*x .. *x/

}

1f (! (getuid() && geteuid() == 0)) {
VA

}

CWE-480, Use of incorrect operator

hW

Al f
Software Engineering Institute ‘ Carnegie Mellon University 026 Canege Mekn Urwesty
Distribution Statement A] This material has been apprt or public release and unlimited distribution.

24

Updated Rule Example

ARR38-C — Guarantee that library functions do not form invalid
pointers

if (1 + 2 + payload + 16 > s->s3->rrec.length)
return 0; /* Silently discard per RFC 6520 */

Heartbleed.com

CWE-119, Improper Restriction of Operations within the Bounds of a Memory Buffer
CWE-121, Stack-based Buffer Overflow

CWE-123, Write-what-where Condition

CWE-125, Out-of-bounds Read

CWE-805, Buffer Access with Incorrect Length Value

From Secure Coding to Secure Software
— August 17, 2016

Software Engineering Institute | Carnegie Mellon University RIDE DT Sl d 25

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Development and Verification

Sustainment

.
7 .

Architecture
: and Design
: Principles

Mission
Thread

Threat
Analysis

Abuse
Cases

Requirements and Acquisition

Software Engineering Institute | Carnegie Mellon University

Engineering and Development

£y £ (N ON
Y J I v

Coding

Testing, Monitoring Breach
Rules and Validation Awareness
Guidelines and

Verification

Deployment and Operations

\ }

From Secure Coding to Secure Software
August 17, 2016

© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

DISA STIG Requirements

Application Security STIG Requirements:

APP3550: CAT | — not vulnerable to integer arithmetic issues
APP3560: CAT | — does not contain format string vulnerabilities
APP3570: CAT | — does not allow command injection
APP3590.1: CAT | — does not have buffer overflows

APP3590.2: CAT | — does not use functions known to be vulnerable to buffer
overflows

APP2060.1: CAT Il — development team follows a set of coding standards

APP2060.2: CAT Il — development team creates a list of unsafe functions to
avoid and include in coding standards

APP2120.3: CAT Il — developers are provided with training on secure design
and coding practices on at least an annual basis

From Defense Information Systems Agency Application Security and Development Security Technical Implementation Guide, V3 R10 (2015)

'|\|\|\ﬂ|'|

. August 17, 201§ o
Software Engineering Institute ‘ Carnegie Mellon University CRIDC DI SO 27

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Adopting Secure Coding Practices

Secure Coding Infrastructure

* Defining Secure Coding Practices
* Influencing Language Standards
* Influencing Tool Vendors

Processes
« Coding Standards and Security Standards, Testing

Technology
* Tools: IDE’s and Analyzers
 Automated transformation and remediation

People
* Workforce Development

'|\|\|\ﬂ|'|

. August 17, € o
Software Engineering Institute ‘ Carnegie Mellon University CRIDC DI SO 28
Distribution Statement A] This material has been aj lea: unlimi ibution.

Risk Assessment

Risk assessment is performed using failure mode, effects, and criticality
analysis.

Value Meaning Examples of Vulnerability

1 low denial-of-service attack, abnormal
Severity—How serious are the consequences of termination
the rule being ignored? 2 medium | data integrity violation, uninten-

tional information disclosure

high run arbitrary code

Likelihood—How likely is it that a flaw introduced

by ignoring the rule can lead to an exploitable vul- L unlikely
nerability? 2 probable
3 likely

Meaning Detection Correction

1 high manual manual

Cost—The cost of mitigating the vulnerability.

medium

automatic | manual

low

automatic | automatic

I

Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

29

Priorities and Levels

Low severity, unlikely,
expensive to repair flaws

From Secure Coding to Secure Software
August 17, 2016

== Software Engineering Institute | Carnegie Mellon University 350 Careg Men Unhorsty 30

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Conformance Testing

The use of secure coding standards defines a proscriptive set of rules and
recommendations to which the source code can be evaluated for compliance.

For each secure coding standard, the source code is certified as provably
nonconforming, conforming, or provably conforming against each guideline in the
standard:

Provably The code is provably nonconforming if one or more violations of a rule
nonconforming are discovered for which no deviation has been allowed.

Conforming The code is conforming if no violations of a rule can be identified.
Provably Finally, the code is provably conforming if the code has been verified to
conforming adhere to the rule in all possible cases.

Evaluation violations of a particular rule ends when a “provably nonconforming”
violation is discovered.

From Secure Coding to Secure Software
August 17, 2016

Software Engineering Institute ‘ Carnegie Mellon University ©2016 Camegie Melon Universky 31

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

il

Polling Question 3

What testing does your organization perform on your software?

« Static Analysis
* Dynamic Analysis
* Both

* None

I

Software Engineering Institute

Carnegie Mellon University

[Distribution Statement A] This material has been a|

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

pproved for public release and unlimited distribution.

32

Tools encourage application of secure coding

PP i .2 Moving rules into IDEs improves application of
e * secure coding:

 Early feedback corrects errors on introduction.
« Exceptions are understood in context.

Adoption of secure coding IDEs
* help deploy tools
e training on tools
» extend tools to meet targeted needs

. August 17, € o
Software Engineering Institute | Carnegie Mellon University CRIDC DI SO 33

S [Distribution Statement A] This material has been approved for public release and unlimited distribution.

i

Static Testing — Source code analysis tools

Secure Code Analysis Laboratory
(SCALe)

«C, C++, Java, PERL, Python,
Android rule conformance
checking

* Thread safety analysis

* Information flows across Android
] applications
* Operating system call flows

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

Software Engineering Institute | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

SCALe Multitool evaluation

Build

Environment

Client

Code
p -

v

Confirmed Merged l .I,
violations [* flagged
o non- Flagged
= conformities € non-
Probable conformities
violations [€ _/’—
J_

I

Software Engineering Institute

Analysis Tool

SCALe
Analysis Tool

Analysis Tool

Secure Coding Filters J

Carnegie Mellon University

Improve expert review productivity
by focusing on high priority violations

Filter select secure coding rule
violations
* Eliminate irrelevant diagnostics

e Convert to common CERT Secure
Coding rule labeling

Single view into code and all
diagnostics

Maintain record of decisions

August 17, 2016
© 2016 Carnegie Mellon University 35

Polling Question 4

Do you use multiple static analysis tools?

* Yes, and we use a tool diagnostic aggregator

* Yes, but we review the tool diagnostics separately
* No, we just use one static analysis tool

* No, we don'’t use static analysis tools

I

Software Engineering Institute | Carnegie Mellon University

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

36

Select SCALe Assessments

Codebase Customer | Lang ksLOC Diags True Diag
/IKsLOC

A Gk Gov1 38.8 1,071 1,019 27.6
B iz Gov C 874 28 17,543 86 17457 200.7
B 013 Govz C 9585 18 289 159 130 0.03
B 62 Gz Jaa 427 18 345 117 228 80.8
B2 Gco2 Jaa 612 33 538 288 250 8.8
B 3 Govz Java 176 21 414 341 73 23.5
B 212 Govd Java 653 29 8526 64 8462 13.1
B 2 Govs Java 1.51 8 53 53 0 35.1
1 ECEE Java 403 27 3114 723 2,391 77
B Gov3 Perl 936 36 6925 357 6,568 74.0
B ¢ Gow Perl 102 10 133 84 49 13.0

From Secure Coding to Secure Software
August 17, 2016

—2% Software Engineering Institute | Carnegie Mellon University ©2016 Camegle Melon Uriversity

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Polling Question 5

Have you taken some training on secure coding practices?
* Yes, self-taught

* Yes, through an online-delivered program

* Yes, through an in-person delivered program

* Yes, through my academic education

* No

I

Software Engineering Institute | Carnegie Mellon University

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

38

Secure Coding Professional Certificates

/\ —%— Software Engineering Institute : 3 :
CERT Carnegic Mellon University CERT Secure Coding Professional Certificates

@ Secure Coding Professional Certificates

Our certificate programs will help developers to increase security
and reduce vulnerability within the programs they develop

Online Courses with Exam and Certificates for C/C++ and Java
2 Courses (Secure Software Concepts & Secure Coding) and Exam

Onsite, instructor-led courses available for groups

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

Software Engineering Institute | Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited distribution.

39

SEIl Secure Coding in C/C++ Training 1

The Secure Coding course is designed for C and C++ developers. It encourages
programmers to adopt security best practices and develop a security mindset that
can help protect software from tomorrow’s attacks, not just today’s.

Topics
« String management
« Dynamic memory management
* Integer security
* Formatted output
* File 1/0

http://www.sei.cmu.edu/training/p63.cfm

From Secure Coding to Secure Software

= = - - Qq A . August 17, 201§ o
Software Engineering Institute | Carnegie Mellon University ©2016 Camegio Melon Universty 40

S [Distribution Statement A] This material has been approved for public release and unlimited distribution.

I

SEI Secure Coding in C/C++ Training 2

Participants gain a working knowledge of common programming errors that lead to
software vulnerabilities, how these errors can be exploited, and mitigation strategies to
prevent their introduction.

Objectives

 Improve the overall security of any C or C++ application.

« Thwart buffer overflows and stack-smashing attacks that exploit insecure string manipulation
logic.

 Avoid vulnerabilities and security flaws resulting from incorrect use of dynamic memory
management functions.

 Eliminate integer-related problems: integer overflows, sign errors, and truncation errors.

 Correctly use formatted output functions without introducing format-string vulnerabilities.

 Avoid I/O vulnerabilities, including race conditions.

From Secure Coding to Secure Software
— August 17, 2016

Software Engineering Institute | Carnegie Mellon University &'Bto Cang o Urvorsy 41

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

I

Java Secure Coding Course

The Java Secure Coding Course is designed to improve the secure use of Java. Designed
primarily for Java SE 8 developers, the course is useful to developers using older versions of the
platform as well as Java EE and ME developers. Tailored to meet the needs of a development
team, the course can cover security aspects of

Trust and Security Policies
Validation and Sanitization
The Java Security Model
Declarations

Expressions

Object Orientation

Methods

Vulnerability Analysis Exercise
Numerical Types in Java
Exceptional Behavior

Input/Output

http://www.sei.cmu.edu/training/p118.cfm

'|\|\|W|'|

Software Engineering Institute ‘ Carnegie Mellon University

Serialization

The Runtime Environment
Introduction to Concurrency
in Java

Advanced Concurrency

Issues

August 17,
© 2016 Carnegie Mellon University

Polling Question 6

Are you more concerned about the secure code that you develop or acquire/procure?
» Software we develop

» Source code we acquire/procure

« Third-party libraries we acquire/procure

« Complete software we acquire/procure and integrate

* All of the above

From Secure Coding to Secure Software
August 17, 2016

Software Engineering Institute | Carnegie Mellon University & Bto Camge Melon Unhersty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

I

43

Evolution of software development

Custom development — context:

« Software was limited
= Size
= Function
= Audience
« Each organization employed developers

 Each organization created their own
software

Supply chain: practically none

Shared development — ISVs (COTS) —
context:

* Function largely understood
= Automating existing processes

« Grown beyond ability for using
organization to develop economically

« QOutside of core competitiveness by
acquirers

Supply chain: software supplier

I

Software Engineering Institute | Carnegie Mellon University

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

44

Development is now assembly

General
Ledger
[
‘ SQL Server WebSphere GIF library
[
‘ HTTP Oracle DB SIP servlet
server container
‘ XML Parser

Note: hypothetical application composition

Software Engineering Institute | Carnegie Mellon University

Collective development— context:

- Toolarge for single
organization

- Too much specialization

. Too littlevaluein individual
components

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

45

Software supply chain for assembled software

Expanding the scope and complexity of acquisition and deployment
Visibility and direct controls are limited (only in shaded area)

User
Organization

Purchasing
Organization

Supplier

Custom
| Acquire / w

Source: “Scope of Supplier Expansion and Foreign Involvement”
graphic in DACS www.softwaretechnews.com Secure Software
Engineering, July 2005 article “Software Development Security: A
Risk Management Perspective” synopsis of May 2004 GAO-04-678

report “Defense Acquisition: Knowledge of Software Suppliers
Needed to Manage Risks”

?
Reuse

?
Develop
In-house

Supplier

T

coTs Supplier

-~

Acquire / Outsource

Develop
In-house

(Reuse) (Open-Source)

Software Engineering Institute | Carnegie Mellon University

Reuse \
C

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

46

Substantial open source contained in supply chain

AN 'AH Distributed development —
J/r\’\, nE_ context:
DNV T

=EID AR Amortize expense

'(‘ ..

e Qutsource non-differential

features
* 90% of modern applications are . .
assembled from 3 party components Lower aCCIUISItIOH (CapEX)
At least 75% of organizations rely on opensource expense

as the foundation of their applications

* Most applications are now assembled
from hundreds of open source
components, often reflecting as much
as 90% of an application

Supply chain: opaque

Sources: Geer and Corman, “Almost Too Big To Fail,” ;login: (Usenix), Aug 2014; Sonatype, 2014 open source development and application security
survey

From Secure Coding to Secure Software
August 17, 2016

Software Engineering Institute | Carnegie Mellon University D €z [y Ly

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Open source supply chain has a long path

App server

HTTP server

XML Parser

C Libraries

C compiler

Generated
Parser

Parser
Generator

2" Compiler

From Secure Coding to Secure Software
August 17, 2016
©2016 Camegie Mellon University 48

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Corruption in the tool chain already exists

« XcodeGhost corrupted
Apple’s development
environment

Apple Lists Top 25 Apps Compromised by XcodeGhost Malware

Thursday September 24, 2015 5:00 am PDT by Joe Rossignol

[]
Apple has updated its XcodeGhost FAQ on its Chinese website with a list of the top 25 . M a O r ro ra m S affe Cted
most popular App Store apps that were compromised by the malware. The list includes
some notable apps such as WeChat, Heroes of Order & Chaos and a localized version of

Angry Birds 2.

- ¢ B8

Used Cars, Rent

s 8 B © * WeChat
« Badu Music
* Angry Birds 2

= - * Heroes of Order &
E‘ B & ® Chaos

« iOBD2

@g
@ %

2EF
@

Sources: http://www.macrumors.com/2015/09/24/xcodeghost-top-25-ap ps-ap ple-list/
http://www.itntoday.com/2015/09/the-85-i0s-apps-affected-by-xcodegho st.html

From Secure Coding to Secure Software
—_— August 17, 2016

%% Software Engineering Institute | Carnegie Mellon University ©2016 Carmede Melon Universty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Open source is not secure

Heartbleed and

Shellshock were fol - ¢ . _ ShellShock
by exploitation 1.8 billion vulnerable open e

source components
downloaded in 2015

gFry

r
&Y

—
=
Q“

Other open source 2p-and-Gripe 2: Larry Cashdollar*

software illustrates
vulnerabilities from cu 26% of the most common [ree

inspection open source components E’é‘iﬁ&?f“
have high risk vulnerabilities [c." Bocal I

2 waz

and injection

aCthers W aey

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck, https://media.blackhat.com/us-13/US-13-
Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf; Sonatype, Sonatype Open Source Development and Application Security Survey;
Sonatype, 2016 State of the Software Supply Chain; Aspect Software “The Unfortunate Reality of Insecure Libraries,” March 2012

From Secure Coding to Secure Software
— August 17, 2016

Software Engineering Institute | Carnegie Mellon University ©2016 Camege Melon Unversty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

i

Software supply chain risk for a
product needs to be reduced to

acceptable level

S upplier
Capability

Reducing software supply chain risk factors

Supplier follows
practices that
reduce supply
chain risks

Operational
Product Control

Software Engineering Institute

Product Product
Security Distribution
Delivered or Methods of

updated product
is acceptably
secure

transmitting the
product to the

purchaser guard
again tampering

Product is used in a
secure manner

Carnegie Mellon University

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University 51

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Supplier security commitment evidence

Supplier employees are educated as to security engineering practices

* Documentation for each engineer of training and when trained/retrained
* Revision dates for training materials

* Lists of acceptable credentials for instructors

* Names of instructors and their credentials

Supplier follows suitable security design practices
* Documented design guidelines

* Has analyzed attack patterns appropriate to the design such as those
that are included in Common Attack Pattern Enumeration and
Classification (CAPEC)

* Application of code signing techniques (interest in ISO 17960 — in early
draft)

I

. August 17, 201§ o
Software Engineering Institute | Carnegie Mellon University ©2016 Camegie Melon University 52

S [Distribution Statement A] This material has been approved for public release and unlimited distribution.

Evaluate a product’s threat resistance

What product characteristics minimize opportunities to enter and change the
product’s security characteristics?

« Attack surface evaluation: Exploitable features have been identified and
eliminated where possible

- Access controls
- Input/output channels
- Attack enabling applications — email, Web

* Design and coding weaknesses associated with exploitable features have been
identified and mitigated (CWE)

 Independent validation and verification of threat resistance
* Dynamic, Static, Interactive Application Security Testing (DAST, SAST, IAST)

* Delivery in or compatibility with Runtime Application Self Protection (RASP)
containers

I

. August 17, 201§ o
Software Engineering Institute | Carnegie Mellon University CRIDC DI SO 53

S [Distribution Statement A] This material has been approved for public release and unlimited distribution.

Establishing good product distribution practices

Recognize that supply chain risks are accumulated

» Subcontractor/COTS-product supply chain risk is inherited by those that
use that software, tool, system, etc.

Apply to the acquiring organizations and their suppliers
* Require good security practices by their suppliers
« Assess the security of delivered products

» Address the additional risks associated with using the product in their
context

|deally open source is built with a compiler you trust

From ure Coding to Secure Software
= - - . . . August 17, 2016 o
Software Engineering Institute ‘ Carnegie Mellon University 2016 Carnege Melln Uriversity 54
r public release and unlimited distribution.

'|\|\|\ﬂ|'|

Maintain operational attack resistance

Who assumes responsibility for preserving product attack resistance with product

deployment?
* Maintaining inventory of components
 Patching and version upgrades (component lifecycle management)
« Expanded distribution of usage
* Expanded integration

Usage changes the attack surface and potential attacks for the product
* Change in feature usage or risks
 Are supplier risk mitigations adequate for desired usage?
« Effects of vendor upgrades/patches and local configuration changes
« Effects of integration into operations (system of systems)

'|\|\|\ﬂ|'|

A t 17, 2016
Software Engineering Institute ‘ Carnegie Mellon University ©2016 Carge Hokon Unversty
Distribution Statement A] This material h approved for public release and unlimit

55

Where to start

Anywhere Plenty of models to choose from

BSIMM: Building Security in
No meaningful controls over what Maturity Model

"
components are applications CMMI: Capability Maturity Model
Integration for Acquisitions

No coordination of security

practices in various stages of the PRM: SWA Forum Processes and
development life cycle E

Practices Group Process
Reference Model

No acceptance tests for third-

party code RMM: CERT Resilience
Management Model

SAMM: OWASP Open Software
Assurance Maturity Model

Sources: Sonatype, 2014 Sonatype Open Source Development and Application Security Survey;
Forrester Consulting, “State of Application Security,” January 2011

From Secure Coding to Secure Software
— August 17, 2016

Software Engineering Institute | Carnegie Mellon University ©2016 Carnegie Mellon University

S [Distribution Statement A] This material has been approved for public release and unlimited distribution.

I

= ,.vx\\'\\\\\‘_‘;

i 1

o= ———

—_— = . . Yo, . 1 . ol © 2016 Carnegie Mellon University
p————t SOftware Englneerlng InStItUte ("al negle 1\/ [ellOIl Unlvel Slty [Distribution Statement A] This material has been approved for public

release and unlimited distribution.

Contact Information

Robert Schiela

Technical Manager, Secure Coding
Telephone: +1412.268.3736
Email: rschiela@cert.org

Web Resources
http://www.sei.cmu.edu/
http://www.cert.org/
http://www.cert.org/secure-coding/
http://securecoding.cert.org/

Software Engineering Institute | Carnegie Mellon University

Mark Sherman

Technical Director, Cyber Security Foundations

Telephone: +1412.268.9223
Email: mssherman@cert.orqg

[Distribution Statement A] This material has been a|

From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

pproved for public release and unlimited distribution.

58

