
1
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Carnegie Mellon University Notice
This video and all related information and materials (“materials”) are owned by Carnegie Mellon University.
These materials are provided on an “as-is” “as available” basis without any warranties and solely for your
personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of
viewing the video, or using referenced websites, and/or for any consequences or the use by you of such
materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read and
agree to our terms of use (www.sei.cmu.edu/legal/).

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

© 2016 Carnegie Mellon University.

2
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public
release and unlimited distribution.

From Secure Coding to
Secure Software
Robert Schiela
Mark Sherman

3
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Copyright 2016 Carnegie Mellon University
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the United States Department of Defense.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be directed
to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.
DM-0003927

4
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Why Software Security?

Developed nations’ economies and defense depend, in large part, on the
reliable execution of software
Software is ubiquitous, affecting all aspects of our personal and
professional lives.
Software vulnerabilities are
equally ubiquitous, jeopardizing:

• personal identities
• intellectual property
• consumer trust
• business services, operations, and continuity
• critical infrastructures & government

5
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Software and security failures are rampant

Source:	Gizmo,	Feb	12,	2014

Source:	New	York	Times,	Feb	11,	2014

Source:	Financial	Times	Limited,	 Feb	25,	2014
Sources:	Forbes	(online),	 May	21,	2014;
The	Telegraph,	 May	22,	2104

eBay	Suffers	Massive	Security	
Breach,	All	Users	Must	Change	
Their Passwords
eBay	publicly	 admit[ed]	hackers	had	stolen	the	names,	email	
and	postal	addresses,	phone	numbers	and	dates	of	birth	 of	its	
233	million	users.	

6
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Software and security failures are expensive

Source:	New	York	Times,	Jan	10,	2014

Average	cost	in	a	breach:
$158	per	record	($221	in	US)

Source:	Ponemon Institute,	 “2016	Cost	of	Data	Breach	
Study:	Global	Analysis”,	June	2016

Source:	Wall	Street	Journal,	 Feb	26,	2014

7
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Polling Question 1

What programming language are you most concerned about using securely?
• Ada
• Assembly
• C
• C++
• C#
• Java
• Java-Script
• Objective-C
• Perl
• PHP
• Python
• PL/SQL or SQL
• Ruby
• Swift
• Visual Basic
• Other
• Little to none developed in-house

8
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Engineering and Development

9
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Most Vulnerabilities Are Caused by Programming Errors

64% of the vulnerabilities in the NIST National Vulnerability Database due
to programming errors
• 51% of those were due to classic errors like buffer overflows, cross-site
scripting, injection flaws

Top vulnerabilities include
• Integer overflow
• Buffer overflow
• Uncontrolled Format String
• Missing authentication
• Missing or incorrect authorization
• Reliance on untrusted inputs (aka tainted inputs)

Sources: Heffley/Meunier: Can Source Code Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate Software Security?; cwe.mitre.org/top25
Jan 6, 2015

10
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Secure Software Development

Secure software development starts with understanding insecure coding
practices, and how these may be exploited.

Insecure designs can lead to “intentional errors”, that is, the code is
correctly implemented but the resulting software contains a vulnerability.

Secure designs require an understanding of functional and non-functional
software requirements.

Secure coding requires an understanding of implementation specifics.

11
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Sources of Software Insecurity

Absent or minimal consideration of security during all life cycle phases
Complexity, inadequacy, and change
Incorrect or changing assumptions
Not thinking like an attacker
Flawed specifications & designs
Poor implementation of software interfaces
Unintended, unexpected interactions
• with other components
• with the software’s execution environment

Inadequate knowledge of secure coding practices

12
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Polling Question 2

Does your organization use a coding standard for security?
• Yes
• No
• Maybe?

13
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Coding rules – 2016 Edition

• Collected wisdom of programmers
and tools vendors
• Fed by community wiki started in

Spring 2006
• Over 1,500 registered

contributors
• C Coding Standards

Available as downloadable report
http://cert.org/secure-coding/products-
services/secure-coding-download.cfm
• Java Coding Standards

Available as book
• C++, Perl, and “Current Standards”

Available on Secure Coding Wiki
https://www.securecoding.cert.org/

14
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

CWE Guidance

15
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

OWASP Guidance

16
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Buffer overflow has many causes

Source:	Bojanova,	et	al,	“The	Bugs	Framework	(BF):	A	Structured,	 Integrated	Framework	to	Express	Software	Bugs”,2016,	 	http://www.mys5.org/Proceedings/2016/Posters/2016-S5-Posters_Wu.pdf

17
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Learning from rules and recommendations
Rules and recommendations in the secure coding standards focus to improve behavior

The	“Ah	ha”	moment:	
Noncompliant	 code	
examples	or	antipatterns in	
a	pink	frame—do	not	copy	
and	paste	into	your	code

Compliant	 solutions	 in	a	
blue	frame	that	conform	
with	all	rules	and	can	be	
reused	in	your	code

18
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

An methodology for rule creation

Exploit language ambiguities

Analyze vulnerable programs

Systematically test the rules

And still consult with experts

19
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Examine language definitions and standards for
undefined, unspecified and implementation-defined
behavior

Source:	http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pd (ISO	9899	- Programming	Languages	– C		draft)

20
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Examine vulnerable code for patterns

Malware	repository	with	millions	of	unique,	tagged	artifacts

CERT	Secure	Coding	Team	has	evaluated	over	100M	LOC

21
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Implement candidate rules and run against sample code

• Focus rule when possible to
• maximize true positive of weakness (tag bad code)
• minimize false negative of weakness (don’t tag good code)

• Write program to evaluate source code for particular rule

• Run program against collection of known bad source code and a
collection of other (suspected good) code to check sensitivity and
specificity of results

22
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Experience with systematic testing

• Candidate rule typical evaluation
• 10 iterations of proposed rule and associated checker

• 7 internal evaluations
• 3 external evaluations

• Each evaluation iteration carried out against > 10M lines of representative code
• Variety of domains
• Variety of code quality

• As part of creating C++ standard, general methodology applied to generate 46
rules and corresponding Clang C++ checkers

• 19 by CERT researchers, 27 by others

23
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Tapping into expert knowledge for developing CERT
coding standards

Engage	
community

Tool	vendor	
analysis

Consensus	
on	

vulnerability	
and	

mitigation

24
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

New Rule Example

EXP46-C – Do not use a bitwise operator with a Boolean-like operand
if (!(getuid() & geteuid() == 0)) {

/* ... */

}

if (!(getuid() && geteuid() == 0)) {
/* ... */

}

CWE-480, Use of incorrect operator

25
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Updated Rule Example

ARR38-C – Guarantee that library functions do not form invalid
pointers

if (1 + 2 + payload + 16 > s->s3->rrec.length)

return 0; /* Silently discard per RFC 6520 */

CWE-119, Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE-121, Stack-based Buffer Overflow

CWE-123, Write-what-where Condition

CWE-125, Out-of-bounds Read

CWE-805, Buffer Access with Incorrect Length Value

Heartbleed.com

26
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Development and Verification

27
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

DISA STIG Requirements

Application Security STIG Requirements:
• APP3550: CAT I – not vulnerable to integer arithmetic issues
• APP3560: CAT I – does not contain format string vulnerabilities
• APP3570: CAT I – does not allow command injection
• APP3590.1: CAT I – does not have buffer overflows
• APP3590.2: CAT I – does not use functions known to be vulnerable to buffer

overflows
• APP2060.1: CAT II – development team follows a set of coding standards
• APP2060.2: CAT II – development team creates a list of unsafe functions to

avoid and include in coding standards
• APP2120.3: CAT II – developers are provided with training on secure design

and coding practices on at least an annual basis
From Defense Information Systems Agency Application Security and Development Security Technical Implementation Guide, V3 R10 (2015)

28
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Adopting Secure Coding Practices

Secure Coding Infrastructure
• Defining Secure Coding Practices
• Influencing Language Standards
• Influencing Tool Vendors

Processes
• Coding Standards and Security Standards, Testing

Technology
• Tools: IDE’s and Analyzers
• Automated transformation and remediation

People
• Workforce Development

29
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Risk Assessment

Risk assessment is performed using failure mode, effects, and criticality
analysis.

Severity—How serious are the consequences of
the rule being ignored?

Value Meaning Examples of Vulnerability

1 low denial-of-service attack, abnormal
termination

2 medium data integrity violation, uninten-
tional information disclosure

3 high run arbitrary code

Likelihood—How likely is it that a flaw introduced
by ignoring the rule can lead to an exploitable vul-
nerability?

Value Meaning
1 unlikely
2 probable
3 likely

Cost—The cost of mitigating the vulnerability.

Value Meaning Detection Correction

1 high manual manual
2 medium automatic manual
3 low automatic automatic

30
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Priorities and Levels

31
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Conformance Testing

The use of secure coding standards defines a proscriptive set of rules and
recommendations to which the source code can be evaluated for compliance.
For each secure coding standard, the source code is certified as provably
nonconforming, conforming, or provably conforming against each guideline in the
standard:

Evaluation violations of a particular rule ends when a “provably nonconforming”
violation is discovered.

Provably
nonconforming

The code is provably nonconforming if one or more violations of a rule
are discovered for which no deviation has been allowed.

Conforming The code is conforming if no violations of a rule can be identified.

Provably
conforming

Finally, the code is provably conforming if the code has been verified to
adhere to the rule in all possible cases.

32
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Polling Question 3

What testing does your organization perform on your software?

• Static Analysis

• Dynamic Analysis

• Both

• None

33
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Moving rules into IDEs improves application of
secure coding:
• Early feedback corrects errors on introduction.
• Exceptions are understood in context.

Adoption of secure coding IDEs
• help deploy tools
• training on tools
• extend tools to meet targeted needs

Tools encourage application of secure coding

34
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Static Testing – Source code analysis tools

Secure Code Analysis Laboratory
(SCALe)
• C, C++, Java, PERL, Python,
Android rule conformance
checking

• Thread safety analysis
• Information flows across Android
applications

• Operating system call flows

35
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

SCALe Multitool evaluation

Improve expert review productivity
by focusing on high priority violations
Filter select secure coding rule
violations
• Eliminate irrelevant diagnostics
• Convert to common CERT Secure
Coding rule labeling

Single view into code and all
diagnostics
Maintain record of decisions

36
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Polling Question 4

Do you use multiple static analysis tools?

• Yes, and we use a tool diagnostic aggregator

• Yes, but we review the tool diagnostics separately

• No, we just use one static analysis tool

• No, we don’t use static analysis tools

37
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Select SCALe Assessments
Codebase Date Customer Lang ksLOC Rules Diags True Suspect Diag

/KsLOC

A 6/12 Gov1 C++ 38.8 12 1,071 52 1,019 27.6

B 3/13 Gov1 C 87.4 28 17,543 86 17,457 200.7

C 10/13 Gov2 C 9,585 18 289 159 130 0.03

D 6/12 Gov3 Java 4.27 18 345 117 228 80.8

E 9/12 Gov2 Java 61.2 33 538 288 250 8.8

F 11/13 Gov2 Java 17.6 21 414 341 73 23.5

G 2/14 Gov4 Java 653 29 8,526 64 8,462 13.1

H 3/14 Gov5 Java 1.51 8 53 53 0 35.1

I 5/14 Mil1 Java 403 27 3114 723 2,391 7.7

J 1/11 Gov3 Perl 93.6 36 6,925 357 6,568 74.0

K 5/14 Gov3 Perl 10.2 10 133 84 49 13.0

38
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Polling Question 5

Have you taken some training on secure coding practices?

• Yes, self-taught

• Yes, through an online-delivered program

• Yes, through an in-person delivered program

• Yes, through my academic education

• No

39
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Secure Coding Professional Certificates

Online	Courses	with	Exam	and	Certificates	for	C/C++	and	Java
2	Courses	(Secure	Software	Concepts	&	Secure	Coding)	 and	Exam
Onsite,	instructor-led	courses	available	for	groups

40
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

SEI Secure Coding in C/C++ Training 1

The Secure Coding course is designed for C and C++ developers. It encourages
programmers to adopt security best practices and develop a security mindset that
can help protect software from tomorrow’s attacks, not just today’s.

Topics
• String management
• Dynamic memory management
• Integer security
• Formatted output
• File I/O

http://www.sei.cmu.edu/training/p63.cfm

41
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

SEI Secure Coding in C/C++ Training 2

Participants gain a working knowledge of common programming errors that lead to
software vulnerabilities, how these errors can be exploited, and mitigation strategies to
prevent their introduction.

Objectives
• Improve the overall security of any C or C++ application.
• Thwart buffer overflows and stack-smashing attacks that exploit insecure string manipulation

logic.
• Avoid vulnerabilities and security flaws resulting from incorrect use of dynamic memory

management functions.
• Eliminate integer-related problems: integer overflows, sign errors, and truncation errors.
• Correctly use formatted output functions without introducing format-string vulnerabilities.
• Avoid I/O vulnerabilities, including race conditions.

42
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Java Secure Coding Course

The Java Secure Coding Course is designed to improve the secure use of Java. Designed
primarily for Java SE 8 developers, the course is useful to developers using older versions of the
platform as well as Java EE and ME developers. Tailored to meet the needs of a development
team, the course can cover security aspects of

Trust and Security Policies

Validation and Sanitization

The Java Security Model

Declarations

Expressions

Object Orientation

Methods

Vulnerability Analysis Exercise

Numerical Types in Java

Exceptional Behavior

Input/Output

Serialization

The Runtime Environment

Introduction to Concurrency

in Java

Advanced Concurrency

Issues

http://www.sei.cmu.edu/training/p118.cfm

43
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Polling Question 6

Are you more concerned about the secure code that you develop or acquire/procure?

• Software we develop

• Source code we acquire/procure

• Third-party libraries we acquire/procure

• Complete software we acquire/procure and integrate

• All of the above

44
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Evolution of software development

Custom development – context:
• Software was limited

§ Size
§ Function
§ Audience

• Each organization employed developers
• Each organization created their own

software

Shared development – ISVs (COTS) –
context:
• Function largely understood

§ Automating existing processes

• Grown beyond ability for using
organization to develop economically

• Outside of core competitiveness by
acquirers

Supply	chain:	practically	none Supply	chain:	software	supplier

45
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Development is now assembly

General	
Ledger

SQL	Server WebSphere

HTTP	
server

XML	Parser

Oracle	DB SIP	servlet	
container

GIF	library

Note:	hypothetical	 application	 composition

Collective	development	– context:
• Too	large	for	single	

organization
• Too	much	specialization
• Too	little	value	in	individual	

components

Supply	chain:	long

46
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Software supply chain for assembled software

Expanding the scope and complexity of acquisition and deployment
Visibility and direct controls are limited (only in shaded area)

Source:	“Scope	 of	Supplier	Expansion	 and	Foreign	Involvement”	
graphic	in	DACS	www.softwaretechnews.com Secure	Software	
Engineering,	July	2005	article	“Software	Development	Security:	A	
Risk	Management	Perspective”	synopsis	of	May	2004	GAO-04-678	
report	“Defense	Acquisition:	 Knowledge	of	Software	Suppliers	
Needed	to	Manage	Risks”			

47
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Substantial open source contained in supply chain

• 90% of modern applications are
assembled from 3rd party components

• At least 75% of organizations rely on open source
as the foundation of their applications

• Most applications are now assembled
from hundreds of open source
components, often reflecting as much
as 90% of an application

Distributed development –
context:
• Amortize expense
• Outsource non-differential

features
• Lower acquisition (CapEx)

expense

Sources:	Geer	and	Corman,	 “Almost	Too	Big	To	Fail,”	;login:	(Usenix),	 Aug	2014;	Sonatype,	2014	open	source	 development	and	application	 security	
survey

Supply	chain:	opaque

48
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Open source supply chain has a long path

App	server

HTTP	server

XML	Parser

C		Libraries

C	compiler

Generated	
Parser

Parser	
Generator

2nd Compiler

49
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Corruption in the tool chain already exists

• XcodeGhost corrupted
Apple’s development
environment

• Major programs affected

• WeChat
• Badu Music
• Angry Birds 2
• Heroes of Order &

Chaos
• iOBD2

Sources:	http://www.macrumors.com/2015/09/24/xcodeghost-top-25-apps-apple-list/
http://www.itntoday.com/2015/09/the-85-ios-apps-affected-by-xcodeghost.html

50
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Open source is not secure

Heartbleed and
Shellshock were found
by exploitation

Other open source
software illustrates
vulnerabilities from cursory
inspection

Sources:	Steve	Christey (MITRE)	&	Brian	Martin	(OSF),	Buying	Into	the	Bias:	Why	Vulnerability	Statistics	Suck,	https://media.blackhat.com/us-13/US-13-
Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf;	 Sonatype,	Sonatype Open	Source	Development	and	Application	Security	Survey;	
Sonatype,	2016	State	of	the	Software	Supply	Chain;	Aspect	Software	“The	Unfortunate	Reality	of	Insecure	Libraries,”	March	2012

1.8	billion	vulnerable	open	
source	components	
downloaded	in	2015

26%	of	the	most	common	
open	source	components	

have	high	risk	vulnerabilities

51
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Reducing software supply chain risk factors

Software	supply	chain	risk	for	a	
product	needs	to	be	reduced	to	
acceptable	level

Supplier	 follows	
practices	that	
reduce	supply	
chain	risks

Delivered	or	
updated	product	
is	acceptably	
secure

Product	

Distribution

Operational
Product Control

Product	is	used	in	a	
secure	manner

Methods	of	
transmitting	the	
product	to	the	
purchaser	guard	
again	tampering

Product	
Security

Supplier
Capability

52
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Supplier security commitment evidence

Supplier employees are educated as to security engineering practices
• Documentation for each engineer of training and when trained/retrained
• Revision dates for training materials
• Lists of acceptable credentials for instructors
• Names of instructors and their credentials

Supplier follows suitable security design practices
• Documented design guidelines
• Has analyzed attack patterns appropriate to the design such as those
that are included in Common Attack Pattern Enumeration and
Classification (CAPEC)

• Application of code signing techniques (interest in ISO 17960 – in early
draft)

53
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Evaluate a product’s threat resistance

What product characteristics minimize opportunities to enter and change the
product’s security characteristics?

• Attack surface evaluation: Exploitable features have been identified and
eliminated where possible
- Access controls
- Input/output channels
- Attack enabling applications – email, Web

• Design and coding weaknesses associated with exploitable features have been
identified and mitigated (CWE)

• Independent validation and verification of threat resistance
• Dynamic, Static, Interactive Application Security Testing (DAST, SAST, IAST)
• Delivery in or compatibility with Runtime Application Self Protection (RASP)
containers

54
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Establishing good product distribution practices

Recognize that supply chain risks are accumulated
• Subcontractor/COTS-product supply chain risk is inherited by those that
use that software, tool, system, etc.

Apply to the acquiring organizations and their suppliers
• Require good security practices by their suppliers
• Assess the security of delivered products
• Address the additional risks associated with using the product in their
context

Ideally open source is built with a compiler you trust

55
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Maintain operational attack resistance

Who assumes responsibility for preserving product attack resistance with product
deployment?

• Maintaining inventory of components
• Patching and version upgrades (component lifecycle management)
• Expanded distribution of usage
• Expanded integration

Usage changes the attack surface and potential attacks for the product
• Change in feature usage or risks
• Are supplier risk mitigations adequate for desired usage?
• Effects of vendor upgrades/patches and local configuration changes
• Effects of integration into operations (system of systems)

56
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Where to start

Anywhere Plenty of models to choose from
BSIMM: Building Security in
Maturity Model
CMMI: Capability Maturity Model
Integration for Acquisitions
PRM: SwA Forum Processes and
Practices Group Process
Reference Model
RMM: CERT Resilience
Management Model
SAMM: OWASP Open Software
Assurance Maturity Model

Sources:	Sonatype,	2014	Sonatype Open	Source	Development	and	Application	 Security	Survey;	
Forrester	 Consulting,	 “State	of	Application	 Security,”	January	2011

No	meaningful	controls	over	what	
components	 are	applications

No	coordination	of	security	
practices	in	various	stages	of	the	
development	 life	cycle

No	acceptance	tests	for	third-
party	code

76%

81%

47%

57
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public
release and unlimited distribution.

58
From Secure Coding to Secure Software
August 17, 2016
© 2016 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Contact Information

Robert Schiela
Technical Manager, Secure Coding
Telephone: +1 412.268.3736
Email: rschiela@cert.org

Web Resources
http://www.sei.cmu.edu/
http://www.cert.org/
http://www.cert.org/secure-coding/
http://securecoding.cert.org/

Mark Sherman
Technical Director, Cyber Security Foundations
Telephone: +1 412.268.9223
Email: mssherman@cert.org

