
Jeep Case Study and the Automotive Cybersecurity
Framework/Secure Software Development Landscape

Part 1

Table of Contents

SEI WEBINAR SERIES | Keeping you informed of the latest solutions .. 2

Carnegie Mellon University... 2

Copyright 2016 Carnegie Mellon University ... 3

Lessons Learned from the Jeep Hack: How to Reduce Software Vulnerabilities in Cyber-Physical
Systems ... 3

What Happened with the Jeep ... 7

Discussions .. 8

Lessons Learned from Jeep - Case Study Review ... 9

What did the Jeep experience illustrate ... 26

Catching software faults early saves money .. 30

Security is implemented across life cycle ... 31

Polling Question .. 32

Room for improvement .. 36

Cross life cycle issues .. 38

Q&A ... 40

SEI WEBINAR SERIES | Keeping you informed of the latest solutions .. 44

Page 1 of 44

SEI WEBINAR SERIES | Keeping you informed of the latest solutions

#SEIwebinar 1[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

SEI Webinar Series

Carnegie Mellon University

#SEIwebinar 2[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Carnegie Mellon University Notice

This video and all related information and materials (“materials”) are owned by Carnegie Mellon University.
These materials are provided on an “as-is” “as available” basis without any warranties and solely for your
personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of
viewing the video, or using referenced websites, and/or for any consequences or the use by you of such
materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read and
agree to our terms of use (www.sei.cmu.edu/legal/).

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

© 2016 Carnegie Mellon University.

Page 2 of 44

Copyright 2016 Carnegie Mellon University

#SEIwebinar 3[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US
Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0003493

Copyright 2016

Lessons Learned from the Jeep Hack: How to Reduce Software Vulnerabilities in
Cyber-Physical Systems

#SEIwebinar 4

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

#SEIwebinar © 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.
]

Lessons Learned from the
Jeep Hack: How to Reduce
Software Vulnerabilities in
Cyber-Physical Systems
Mark Sherman
Technical Director, CERT

**004 Presenter: And hello from
the campus of Carnegie Mellon
University in Pittsburgh,

Page 3 of 44

Pennsylvania. We welcome you to
Software Engineering Institute Virtual
Event, Lessons Learned from the
Jeep Hack: How to Reduce Software
Vulnerabilities in Cyber-Physical
Systems. Depending on your location,
we wish you a good morning, a good
afternoon, or good evening.

My name is Shane McGraw. I'll be
your moderator for today's
presentations. And I would like to
thank you for attending. We want to
make today as interactive as possible.
So, we will address questions throughout
each discussion and again at the end of
each discussion. You can submit any
questions you have through our
event staff at any time during each
presentation by using the questions
tab on your control panel.

We will also ask a few polling
questions throughout the
presentation. And the first one we'd
like to ask is, "How did you hear
about today's event?" And that will
appear as a pop-up on your screen.
Another three tabs I like to point out
are the download materials, Twitter,
and survey tabs. The download
materials tab has cybersecurity and
software development related work
and resources from the SEI that you
can download now. For those of you
using Twitter, you'll want to be sure
to follow @CERT_division. And use
the hashtag SEIwebinar. Once again,
it's CERT_division with a hashtag of
SEIwebinar.

And now, I would like to introduce
our presenters for today. Dr. Mark

Page 4 of 44

Sherman will serve as our facilitator,
and also as a presenter today. And
he's the technical director of the
cybersecurity foundations group at
CERT within CMU's SEI. His team
focuses on fundamental research, on
the lifecycle for building secure
software and on data driven analysis
of cybersecurity. Before joining CERT,
Dr. Sherman was at IBM and various
startups working on mobile systems,
integrated hardware/software
appliances, transition processing,
languages, and compilers. He's
published over fifty papers on various
topics in computer science.

I'd also like to introduce Mr. Chris
Valasek. Chris will give our keynote
talk today. And Chris is the security
lead at Uber's Advanced Technology
Center, which is in Pittsburgh. He's
regarded for his work in the
automotive security arena. And most
recently Chris was lauded for his
remote compromise of a 2014 Jeep
Cherokee, whereby he and his
research partner obtained physical
control of the vehicle. Valasek
specializes in reverse engineering and
exploitation research. And Chris has a
B.S. in computer science from the
University of Pittsburgh and is the
chairman of SummerCon, America's
longest running hacker conference.

And now, I'll turn it over to Mark
Sherman. Mark, Chris, welcome.
Thank you.

Presenter: Thank you Shane. And
welcome everybody to this webinar. I
appreciate you spending several

Page 5 of 44

hours of your day with us. And we're
going to talk about a very important
topic, about the risks that are
involved in or emerging on cyber-
physical systems. The attacks on IT
systems, whether they're the Target
system in retail, what happed to the
Office of Personnel Management in
the federal government, Anthem
Health in healthcare, Sony in
entertainment. These have all been
IT related that released information
that was harmful to the organization
and individuals.

What's happened now is that this is
moving into the cyber-physical space
as well. So, we've seen steel furnaces
in Germany attacked. We've seen
hotel locks being able to be disabled,
the electric grid in the Ukraine.
Insulin pumps have been disabled,
and of course the very popularized
Jeep remote control. But when these
kinds of events occur, we can get
physical damage that causes
problems to real people as much as
death in some cases like some of
these medical devices. So, it's
important for us to figure out how to
build systems that are more resilient
to attacks, to eliminate the
vulnerabilities, in order to have a
better environment. So, ultimately
what we are intending to do today--

Page 6 of 44

What Happened with the Jeep

#SEIwebinar 5
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Car off road

**005 Is basically not be the next
Jeep, that we have learned many
things from these various events.
And it turns out that many of what's
going on, the vulnerabilities that are
there, are well understood. And the
ways to avoid them are well
understood. That if we apply what
we already know about building
secure systems, we can make the
cyber-physical world a lot safer than
it is today.

In order to do that, were going to go
through--

Page 7 of 44

Discussions

#SEIwebinar 6
[Distribution Statement A] This material has been approved
for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and
distribution.

Discussions

Jeep Case Study Review
Secure Software Development Landscape
Secure Requirements Engineering
(Break)
Secure Coding Best Practices
Continuous Integration (Secure DevOps)
Coordinated Vulnerability Disclosure

**006 A range of topics that will
help understand better how to build
these kinds of systems. Of course
what one starts with is analyzing in a
little detail how some of the
vulnerabilities have already been
exploited. So, we'll start, with Chris's
help, on the Jeep case study. And we
will look at some of the details of
how the Jeep was able to be
controlled remotely. Then from that,
we'll take a look at how one builds
secure software and how that would
have better enabled the Jeep to be
resilient to this.

We'll give an overview of that and
then delve in a couple of the specific
topics. We'll focus a bit on
requirements. We'll discuss a bit
about how one actually does the
programming of these systems. We'll
talk about how one automates this

Page 8 of 44

whole process in order to rapidly
bring forth better software. And of
course, breaches will be inevitable
despite our best efforts. So, what is
the best way to handle those kinds of
events in order to minimize the
damage that might occur? So, to
start with, I'd like to turn to Chris and
have him discuss a little bit about
what happened with the Jeep.

Presenter: How's it going Mark?

Presenter: Good.

Presenter: Excellent. Well, I think
many people have seen the Wired
video and kind of saw us playing
around with Andy and thought that
was the extent of it.

Lessons Learned from Jeep - Case Study Review

#SEIwebinar 7

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

#SEIwebinar © 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.
]

Lessons Learned from Jeep -
Case Study Review
Chris Valasek, Security Lead – Uber ATC

**007 In reality, it was a year-long
effort of analyzing these systems.

Page 9 of 44

Additionally, we released a paper a
year prior that actually was a survey
of twenty-five different automobiles.
That paper was actually us looking
for our perfect car that we thought
we could compromise for physical
control remotely. And the Jeep stuck
out because it had a lot of external
communications such as Telematics,
and Bluetooth, and even in-car Wi-Fi.
Additionally, there was no apparent
separation between the systems that
control things like steering, and
braking, acceleration, and those
items that were communicated with
the outside world. So, we really did
this preliminary research to pick the
Jeep as our target.

That was our kind of first step in
doing all this. And that will show you
one portion of security that needs to
be considered when designing these
things. You need to understand that
if you're going to have it
communicate with the outside world,
what can it touch directly or
indirectly? Many times, people will
assume just because two systems are
on two physically separate circuit
boards that they are actually
separate when indeed they're not.
You could have a serial line, for
example, have these two things
communicate together. Even if
they're not made to communicate in
the fashion you've designed them for,
people like Charlie and I think about
things differently. So, we're using
those systems to perform physical
control when I think many times
people thought that wasn't the case.

Page 10 of 44

Presenter: I saw a presentation that came
from the Department of
Transportation in where they referenced
an analysis of how to get into
cars. And at one point,
the analysis counted up that
there were fifty different antennas.
They were a bit encompassing with
that inclusion. So, your phone that
you kept in your car they also
counted in that. But they also were
looking at that. Did you see that as a
major issue as to number of entry
points in?

Presenter: Yeah, absolutely. I mean
even things such as your tires have
radios in them because after a
certain year, it's mandated that you
have to have tire pressure monitoring
systems. So, there is communications
coming from all over. Luckily for us
as consumers, it's pretty transparent.
And I like that. I like the technology.
But you obviously need to be thinking
about security when you have
external communications.

A lot of these attacks were possible
because it was Internet connected
devices that were linked up with
other control devices that were, to be
honest with you, designed before
connectivity and security were even a
though. The CAN standard was
developed by Bosch in the late '70s
or early '80s. And they were for really
automated control systems that were
self-contained. And this was before
you were giving it a cellar modem or
Bluetooth connectivity. So, they're
not designed to be as resilient to
replay attacks or have any level of

Page 11 of 44

authentication built into them. This
gets problematic, as you can see,
when you have these Internet
connected devices touching these
things.

Presenter: So, can you tell me the
steps that you took in order to get
remote control of the Jeep?

Presenter: Yeah, there were a lot of
steps. And any one of them could
have, I don't want to say prevented
it, but would have made it much
more difficult. The first thing that we
really did was that we understood
Wi-Fi. Charlie and I were former pen
testers back in our day. So, we
figured if this car has Wi-Fi, we at
least know how to look at that. That's
normal to us. It's just computer
Internet connections.

So, lo and behold, we found that
indeed it actually had a lot of ports
open. And these ports were accepting
unauthenticated communications that
would pass user inputted data to
scripts that they use on the actual
head unit of the vehicle. It was
Harman Kardon produced this head
unit. It was interesting because we
didn't think there would be any open
ports because it should just be a
router. But needless to say, it was
our first choice of investigation.

At the same time, we were in parallel
looking at how we could do cyber-
physical controls of this vehicle. So,
when you have a car, you want to
look at the type of messages it sends
when it's parking itself, or when it's

Page 12 of 44

putting itself into a maintenance
mode for mechanics to bleed the
brakes, or things like that. So, we
were looking at these things in
parallel as time went on. And this did
take quite a bit of time to figure out.

Early on, we found that there were
some scripts that had things like
command injection, which is pretty
well known in web applications and
regular user applications. But it just
so happened that it was on an
infotainment system in the vehicle.
We realized even after looking farther
that we didn't need to actually exploit
one of these vulnerabilities with
command injection because there
was a script called execute. And it
ran as root on the infotainment
system, which permitted us to have
super user privileges on this
infotainment system. You can
imagine sitting down at your
Windows or Linux machine and you
have administrator or you have root
privileges. You can do anything you
want.

That being said, that didn't mean that
we could send messages out on the
CAN bus because it wasn't designed
to do that. There was actually a
separate microprocessor that was
used for that specific application. So,
our next portion, and the most time-
consuming of this was getting the
firmware off the chip that was doing
the CAN controller work and figuring
out what it did. This actually took us
several months to figure out because
it's basically just a binary blob that
you don't know anything about. And

Page 13 of 44

you have to figure out exactly what it
does.

So, we spent forever looking at this,
and we finally realized that hey this is
where they send messages. And
these are how messages are set up
in memory. If we could somehow
alter this a little bit, then we would
be able to reprogram the CAN
controller to have our own version of
this code on there. Remember, this is
all binary. You're literally looking at
hex bytes. It took a long time, but we
figured out we could actually do that.
But we had no way to actually get it
on the CAN controller because the
head unit was separate. They were
literally two different boards. There
was an actual air gap in between the
two.

Fortunately for us, unfortunately for
FCA, they were still connected via
serial line, communicated via SPI, S-
P-I. We found that there was no
concept of code signing on these
binaries that were getting flashed to
these systems that physically control
things. Right? So, we could alter the
code to do what we want. And then
actually re-flash the chip with a utility
from the head unit to the CAN
controller, which was discouraging to
see in something that should have
certain levels of guarantee of code
running it. They do a lot of testing in
vehicles to ensure things like your
safety belt works, and the airbag
deploys on time. But then there was
no checks to see if the code running
on that was actually their code. So,
that was the first concerning part.

Page 14 of 44

Even if we were able to do this,
which we were, there was no direct
method from the head unit to the
vehicle where you could say here's a
CAN message, send it out, any one
you wanted. You could do specific
ones, but they didn't do us really
much good. We figured out that we
altered the code on the CAN control a
little bit. So, we would send
messages on the serial line, and they
would be interpreted to be pushed
out to the car's CAN bus. And when
we talked about the architecture
before, it was that this infotainment
system was connected to everything
else. So, once we had the ability to
send arbitrary CAN messages, that
meant we could actually impersonate
any other piece of the vehicle that
was using those messages, whether
sending or receiving. So, at this
point, you have arbitrary access to
send any type of message. Needless
to say, we thought it was a bit
alarming.

But at the time, it was limited to Wi-
Fi because that's all we knew how to
do, which gave the range difference.
If I have to drive up next to your car,
follow you for some time, that's less
of a threat than if I can do anything
from say anywhere in the country.
We wanted to show that it wasn't a
matter of physical proximity but an
overall systemic issue. We went back
and revisited the code that listened
for the certain commands. And found
out that indeed it listened on cellular.
And the big issue with that is not only
the range, but with the Wi-Fi portion,
you had to pay. It was like thirty-five

Page 15 of 44

dollars a month or something.
Something that I wouldn't think most
normal people would do be because
that's a pretty high expense. And you
already have your phone. So, I
wouldn't think many people do that.
Maybe they do. Maybe they don't.

But we wanted it to be a kind of
mass scale type of thing. And we
realized that, indeed, even if you
didn't have this package, if you had
this specific head unit, it came with a
cellular modem that you may or may
not have known you had, but we
knew that you had. And again, that's
another, I guess, concerning part for
a consumer is they don't even
understand the technology that's in
their car.

Presenter: So, is your car constantly
connected to the cell towers
regardless whether you know it or
not?

Presenter: Yeah. Yeah, you can
communicate with it. And it makes
sense because they have an app for
the car that you can unlock the car
and start the car from cellphone. So,
you would figure there has to be
some level of connectivity. And it was
just that.

We were able to purchase what's
referred to as a burner phone, you
pay as you go phone, from Sprint,
and were able then to use that as our
entry point into the cellular network
that held all these cars, amongst
other things, whether vending
machines, or whatever is using the

Page 16 of 44

cellular technology. Again, this is
concerning because you would think
that cars would be separated out
from say your average twenty-dollar
burner phone that you buy at
Walmart. It wasn't. So, we were able
to get a phone, be it that you
couldn't the IP addresses from your
Internet, like your cable modem at
home. But if you used your phone as
the modem, then you could actually
touch all these things.

We proceeded to scan the IP
addresses that we knew cars were
using. For some time, it was really
slow because we had a tiny little
phone. And we thought there was
somewhere between three hundred
thousand and four hundred thousand
vehicles that may be affected out
there. We later found out that it was
much higher. And they ended up
recalling one point four million
vehicles. So, it was a number that
was far greater than we ever
expected.

From there, even without doing the
process as I previously described,
which is reprogramming, there were
simple mechanisms for getting the
GPS coordinates of a vehicle, getting
the VIN number of the vehicle. And
with those two pieces of information,
you could tell what make and model
the car was and where it was at any
point in time. Less of a physical
concern, but a lot of privacy issues
stem from being able to say where is
this car at and what kind of car is it.
So, that's essentially how we went
about doing this and researching it.

Page 17 of 44

The lessons that I like to kind of give
out the most is that it wasn't just one
party involved. This is an ecosystem.
FCA took basically all the blame
because they are a very highly, well
respected-- highly regarded, well
respected brand. But at the same,
time Harman provided code shipped
on an infotainment system that they
purchased. And that code was the
code that we used to initially get into
our vehicle.

Secondly, there was Sprint that let
just anyone on their network talk to
any other device. Eventually, they
blocked that port that we were using
to communicate. And that had the
highest impact because now we
couldn't do this at scale from our
house to anywhere in the country.
We'd have to actually get close to the
car.

And lastly, you have FCA that's doing
these types of updates. They're not
checking if code is signed by them.
Additionally, the biggest issue with
this whole research project from
FCA's perspective was they had a
machine that could communicate
over the airwave. But they didn't
have a way to update it. So, they had
to send out USB sticks and do a full
recall. So, I think this would have
been probably a different story if
they were able to say, "Oh, Chris and
Charlie have identified this issue. And
we can fix it today or tomorrow
without having everyone bring their
car in."

Page 18 of 44

Presenter: Although, wasn't one of
your ability to exploit was the fact
that there was this update capability
in those boards. If they hadn't put in
that additional wire in order to do a
firmware update, you wouldn't have
been able to get at that.

Presenter: Yeah, but they had no
access mechanism to do over the air
updates is what one of the biggest
problems was. They are still systemic
problems like not code signing that
still exist on the cars today. But they
stopped the external effort.

Presenter: Right and in other
industries like in aviation, the
software that goes into the sensors
of engines is signed for exactly that
kind of reason.

Presenter: Yes, exactly. You want to
verify that the party putting code on
here is actually indeed you. And it's
not an altered form of what you're
putting on there, which is exactly
what we did. We altered their code
slightly to do what we wanted. Yeah,
so code signing for these types of
applications is highly critical even for
your phone. I think Apple learned
that pretty quickly as signing all their
code. And not only signing their
code, they're signing their memory
regions. You don't want people
putting their own data on these
devices for safety reasons, and many
times for liability reasons.

Now, it does spring up kind of a
conundrum for people that like to
tinker with their things, as someone

Page 19 of 44

who enjoys that. But I think many
times, especially for this firmware
level access, that having verified and
cryptographically verified code on
them is the way to go.

Presenter: You mention that this
was sort of step two in this study.
Step one was doing a survey of the
various architectures. And then you
picked the Jeep as the one that
looked the most promising for
vulnerabilities. What would you say
were some of the better architectures
that you saw?

Presenter: Yeah, I mean
unfortunately we couldn't-- IOActive,
at the time, bought us the Jeep. And
apparently, they wouldn't buy us one
of every car in the planet,
unfortunately, even though we
wanted it that way. But yeah, the
architectures that we initially shied
away from had separation between
some kind of gateway unit between
things that communicated with the
outside world and things like engine
controllers. There were even more
sophisticated ones that steering was
on a different portion that was
separated by some kind of gateway
than braking and all that stuff. Not to
say that's perfect and it was worked
as designed, but needless to say, we
didn't want to try the hardest thing
first.

Yeah, so just like your computer
networks that you have in your
offices and corporations, you have
some level of separation. People from
finance shouldn't be accessing code

Page 20 of 44

repositories on different parts of the
network. Database servers that are
holding highly critical information
shouldn't be worldly accessible from
the outside. So, we're taking the
same kind of concepts because they
really do apply to these machines as
well.

One of the last, I guess, portions that
I do like to mention as well probably
just to save more face than anything,
I think a lot of people saw the video.
And it did prove our point that we
wanted this to be real. And I don't
think it would have resonated with as
many people if it wasn't real, if we
were doing it elsewhere. But we
worked with FCA for almost nine
months prior to this. So, this wasn't
us just dumping something on the
Internet one day. And we were
working with them. We explained to
them what we were doing. And we
told them that we were doing the
Wired piece and everything like that.

So, I do encourage researchers and
everyone alike to coordinate with
these people. You have to remember
that not everyone comes out of the
womb being a security expert, as you
obviously know. It takes time. And it
really takes buy in.

For example, prior to doing
automotive research, I was a
Windows hacker. And they really
didn't get serious about security until
Bill Gates' company-wide memo that
said, "Hey, we really need to take
this seriously if we're going to be in
this market." And I think some of the

Page 21 of 44

first big battles that will be fought on
these fronts, specifically with cyber-
physical-systems is buy in from the
top down, where this is a priority,
and important, and it needs to be
built in as they go along.

Presenter: Does the Wired author
still talk to you after being in the car?

Presenter: Yeah. Yeah, Greenberg
still talks to us. He's a really nice guy.
He asked if we're doing anything
new. We said he'd be the first we'd
call. I like Andy a lot. He's a great
journalist.

Presenter: Is FCA still talking to
you?

Presenter: We haven't talked to
them much since the events that
unfolded. But they were, and I'll
commend them on this, they were
really cool about it. There was never
any legal threatening. They asked us
to view things. We felt it would hurt
the integrity of the research. And we
didn't. And they didn't really have
problems with them. So, for all
intents and purposes, I'm sure they
may not like us. But they were very
respectful the whole time. And I think
we were, on the opposite side.

Presenter: You mentioned that you
did a fair amount of reverse
engineering, basically looking at
blobs to figure out what they meant.
Who would you say has access to
that information just as part of their
normal job?

Page 22 of 44

Presenter: What pieces of
information? You're talking like the
firmware code?

Presenter: The firmware code, or
the communication message formats,
or various other things.

Presenter: Yeah. So, those are
probably internal to the company. As
for the firmware, if you know the
microprocessor, you can open a thing
like IDA pro, which is a disassembly
tool. That's what we did and spent a
lot of time looking at that. As for the
messages the car sent, those are
internal to the company and not
published. So, that was us just
reverse engineering. A lot of times
making the car park itself, and we
wrote our own software to look at
the network communications and say
this looks like these bytes are
changing as the wheel is turning, or
this happens when I press the
brakes. So, we would spend a lot of
time out in the car.

Presenter: So, much of the systems
for things like cars have contractors.
Harman Kardon's just one of them.
In order for all of these various
companies to do their jobs if you
have all of these units throughout the
car, dozens and dozens of units, you
have to talk to each other. You have
to not step on each other.

Presenter: Yeah.

Presenter: How many people would
you sort of stick a finger in the air,
would have to know these various

Page 23 of 44

things in order to make sure that it
all works together.

Presenter: Yeah, I don't know, lots
of people though. There's, I would
assume, a lot of groups. I'm only a
hacker, so I only know how to break
it. But I'm sure building it is much
more complicated. Yeah so, there's a
lot of people involved in all these
steps.

Presenter: So, might a disgruntled
employee in any one of them be able
to do what you did a lot faster?

Presenter: I don't think so. We're
too good. No, I don't know. Yeah,
they would definitely have an
advantage to having information that
took us weeks to derive where they
would have an actual document
explaining what was happening for
sure. We originally, when we first
started doing automobile research
back in 2013, were trying to figure
out what the messages were like.
And we thought we could just buy
them. Apparently you can, but you
have to sign some paper. And it costs
an exorbitant sum of money to get
those type of databases that have
the messages. So, we just figure
we'd figure it out ourself. Save
ourself a lot of money.

Presenter: So, a well-funded
adversary might be--

Presenter: Yeah, right now for a lot
of these is well funded is a
prerequisite to the whole thing. Now,
we had the car because we weren't

Page 24 of 44

going to test against strangers. We
only were testing against our car.
Additionally, to figure out those
messages if you're not going to buy
them, you want to purchase a
vehicle. So, the barrier of entry to
this type of research is very high
right now because even that Jeep
with the technology packages was
somewhere in the realm of thirty plus
thousand dollars. So, this isn't a
weekend project that most people
pick up at home. You actually have to
have some funding to get involved in
it.

Fantastic. Well, do you have any
recommendations at a high level on
how you would go about securing
these types of systems?

Presenter: Well, just listening to
your discussion, and I have to admit
I've heard you give this a couple of
times already--

Page 25 of 44

What did the Jeep experience illustrate

#SEIwebinar 12[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Running out of date software
Wide attack surfaces
Not understanding or appreciating
interconnections
Components used in new operational situations
Assumed or misunderstood authentication and
authorization needs
Lost opportunity to mitigate damage through
disclosure
“Security through obscurity” is not enough

What did the Jeep experience illustrate

**012 There is a variety of things
that I think we saw illustrated by
your experience with the Jeep. A lot
of the software and some of the
components you're talking about
were out of date, and there were
known issues with those software,
and sometimes even fixes for those
software that were simply not
applied. We already talked about that
there's a wide attack surface, that by
design they created lots of ways in,
which may have been partitionable
that we saw in other kinds of
situations. Sort of a lack of either
understanding or appreciating all the
interconnections between the
system, the fact that the serial line
was placed between these two
boards meant it really wasn't air
gapped even though it may have
been described as an air gap.

Page 26 of 44

Something that you also mentioned,
which we actually have seen in the
research literature as well is that
when you use a software component
in a new operational situation, you
almost always find a vulnerability.
Here, as you said, the braking system
was never intended to be connected
to a front end that connected to the
web. When it did, all of a sudden the
path was there. The studies have
shown that in general when you
introduce a new piece of software
that the first defects you find are in
functions in the new code. But the
first security problems you find are
problems in the old code that's now
put in a new kind of environment.
And this just showed that in many
different ways.

Presenter: It gives the old code new
context, right?

Presenter: Yes, unexpected context
that whoever was building it never
thought that, which again led to--
there was sort of an assumed or
misunderstood need for
authentication and authorization.
There's no need for signing. Who's
going to do it? Only the mechanic,
we trust the mechanics. The CAN bus
never has to look at the messages,
never has to verify who's coming in
with the message because it's all
written internally. We know no one
from the outside's ever going to do
that. Well, someone from the outside
now did. And so, all those
assumptions have now been
changed.

Page 27 of 44

We also saw what I would say was
sort of a lost opportunity to mitigate
the damage. As you said, you were in
constant contact with FCA throughout
this process. But it appears from the
outside, because I'm not with them
either so I don't know, but from the
outside it appears that action was
only taken after this went public. And
so after the article came out, then
Sprint did something, then they
started to do something.

Presenter: We didn't release
anything until there was a patch
available. But after the Wired article
and our kind of media tour thereafter
is when Sprint took action. And it
really accelerated.

Presenter: So, that was something
that was also something we might
learn going forward. And I sort of
summarize it sort of with that last
comment, which is that security
through obscurity is not really the
answer. There seems to be a belief,
especially by people who are focusing
on feature function, that we don't
have to worry about this because this
is a very complex system. It's very
hard to use. You need to know a lot
of things. It's just not going to be
worth anyone's while in order to go
ahead and do this. Well, there are
just many examples of which this
being the last one and where you
just can't rely on the complexity of
what the environment is in order to
actually solve your security problem.

Presenter: Exactly. We weren't even
the first people to do this remotely if

Page 28 of 44

you'll believe that. Researchers from
the University of Washington and
University of California, San Diego did
this on a GM vehicle back in 2011,
kind of four years prior. So, even if
there was the thought process of this
may be impossible because it's super
hard, that should have been
shattered prior our work.

Presenter: Right. I think several
efforts that have done it through the
onboard diagnostic port as well. So,
again, lots of way in, and any one of
them gives you access. The
argument on that one however is if
you can get physically inside the car
to begin with, well all bets are off I
think as you know. Take the car
away from you.

Presenter: You can go traditional
kinetic attack if you have physical
access. It might be easier.

Presenter: But the reason why
we're here and why we're trying to
focus on this--

Page 29 of 44

Catching software faults early saves money

#SEIwebinar 13
[Distribution Statement A] This material has been approved
for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

Catching software faults early saves money
Faults accounts for 30‒50% percent of total software
project costs

Sources: Critical Code; NIST, NASA, INCOSE, and Aircraft Industry Studies

**013 Is that if you see these kinds
of things early, it's a whole lot
cheaper to fix. That just in general
sense, if it costs you a dollar to fix
something up front, it can cost you
up to a thousand dollars. And that's
ignoring any other kinds of
implications. So, like in the case of
Jeep, they spent hundreds of millions
of dollars in a quarter that they got
hit once this disclosure came out.
Although, not really a security related
event, but the Toyota event, which is
a software related event, depending
on who you're counting, it was
somewhere between one and four
billion dollars of impact. Yes, it might
take another developer. Yes, it might
take a couple-- a week impact to the
schedule, maybe take a little bit more
memory if you want to do some of
these things. But the flip side is the
cost of not doing it and coming up

Page 30 of 44

with it later is just staggeringly
enormous. And it seems to be
increasing.

And so, what we're going to do for
the rest of the seminar, the rest of
the webinar--

Security is implemented across life cycle

#SEIwebinar 14[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Security is implemented across life cycle

Mission thread
(Business process)

**014 Is really focus about how one
addresses these in the security life
cycle, in the software life cycle with
the key message being we know a lot
of things that can be fixed right now
that, as you mentioned, even in the
Jeep example that you gave, there
were lots of things that could have
been done better that would have
made this much, much harder. Not
impossible, but we can get a lot
better than we are right now. And to
do that, we're going to take a look at
both the beginning requirements
phase, understanding your threats,

Page 31 of 44

understanding the threat models just
like we did here with the attack
surfaces, the architecture and design
phase, looking how to separate
things, how you want to actually can
code, and then going into operations,
how to make sure what you have is
working, and when something goes
wrong, what to do about it rather
than saying oops.

Presenter: I think that's one of the
biggest issues that gets overlooked is
assuming that if you can make
security perfect. It's not something
you can make perfect. And you want
to be able to remediate when there is
an event.

Presenter: Yes. So, with that we've
come to our first question.

Polling Question

#SEIwebinar 15[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Security requirements management tool?

Source code analyzers?

Dynamic fuzz or penetration testing?

Others?

What tools do you use to support secure development?

Polling Question

**015 Presenter: So, like I

Page 32 of 44

mentioned in the intro folks, we'll ask
a number of polling questions
throughout each talk just to get an
idea of who the audience and how
we can tailor the talk. So, the
questions you're going to see
popping up now is, "What tools do
you use to support secure
development? Security requirements
management tool, source code
analyzers, dynamic fuzz or pen
testing, or others. If you use
multiple, feel free to type those into
the Q & A box as we go along. And
while we give you about fifteen or
twenty seconds to vote there, we had
some questions piling in for you guys.
So, maybe I'll address one to Chris
here from Brando asking, "In your
interaction with Jeep, did you ask if
they had done some type of security
assessment or threat modeling?"

Presenter: Yeah, I believe when we
talked to them, they actually were
aware of the vulnerability that we
found. And it was fixed in subsequent
iterations of those vehicles. It just so
happens that when you don't have
the ability to update over air, it's hard
to retroactively fix previous systems.
So, like I said, they weren't
completely blind. It's just starting a
security program takes time. And it's
going to be hard to fix everything
backwards.

Presenter: Okay, well this speaks
then to Brook's comment. First of all,
she says, "Hi, Chris." You must know
Brook, but she says, "It sounds like a
fairly complete failure to holistically
threat model."

Page 33 of 44

Presenter: Yeah, you have to realize
that these people are powerhouses in
engineering. And you get in a car,
and it turns on every time. And it
works. And you just have to change
the oil, and it will run forever. But
figuring out how to secure these
things is hard to do. And it's not an
area of expertise where there is as
plentiful of skilled people to do so.
So, while in retrospect, it seems like
it was a complete failure. I'm sure
they were trying. But it's hard
enough, I think as everyone knows,
to hire talented security people,
nonetheless talented engineers. So,
really, we're just hoping for the best,
and they can learn from it and move
forward.

Presenter: And we had a question
from Ed asking, "Any thoughts from
an approach to permit self-hacking or
extensions to firmware code?" Maybe
that's to both of you.

Presenter: I guess I don't
understand. Read it one more time.

Presenter: Any thoughts for an
approach to permit self-hacking or
extensions to firmware code?

Presenter: Oh, so I mean if you
want to hack the firmware and it's
signed, then you won't be able to
load it on the ECUs. Yeah, that's just
a trade-off between having verified
software and being able to tinker.

Presenter: That's where you have--
there's the classic tradeoff between
flexibility and security here. The

Page 34 of 44

ability to download your own code as
a module into a system is a favorite
way to extend the functionalities for
historically in the whole software
world. But with it comes a whole slew
of concerns about the things that we
talked about, that you're operating in
new environments, what kind of
authentication is necessary, what
authorization, how do you know what
it is worth, how do you back it out.
Most of the times in these kinds of
high-- if you have a system that's
high risk of causing physical damage,
you want to be really, really careful
about those kinds of things.

Presenter: Yeah, unfortunately I
think people forget how much testing
is done for the most minute code
changes on these cyber-physical
systems. So, just change itself might
have an adverse effect to something
else. That being said, I like doing it.
But I understand why you might not
want it to happen.

Presenter: Right. So, I'll just wrap
up the polling question real quick. We
had nineteen percent use a security
requirements management tool.
Forty-one percent used source code
analyzers, nineteen percent, dynamic
fuzz or pen testing, and other at
twenty-two percent.

Page 35 of 44

Room for improvement

#SEIwebinar 16[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Room for improvement

Mission thread
(Business process)

19% fail to carry out security
requirement definition

27% do not practice
secure design

72% do not use code or binary
analysis

47% do not perform acceptance
tests for third-party code

More than 81% do not coordinate their security practices in
various stages of the development life cycle.

Sources: Forrester Consulting, “State of Application Security,” January 2011; Wendy Nather, Research Director, 451 Research, “Dynamic testing: Why Tools Alone Aren't
Enough, March 25, 2015”

**016 Back to Mark. We've got
about ten minutes left of you guys.
So, we can--

Presenter: Sure, so just for what it's
worth, here's sort of some industry
studies that have been done on these
kinds of things. And it turns out that
about a fifth don't do any kind of
requirements analysis in the security
area. So, it sounds like that we may
be in the same kind of ballpark here.
A third really don't look to security
issues in doing design and
architecture. Surprisingly, nearly
three quarters don't do any testing of
security. Now, they do lots of other
testings, a lot of functional testing.
But actually doing static code
analysis, or fuzzing, or things of that
sort to see whether you have security
issues is not well practiced. And
especially in these kinds of systems

Page 36 of 44

where you have a lot of third party
components, nearly half don't
actually consider the security issues
of those components. And perhaps
more starkly, almost-- no, eighty
percent or more don't integrate
whatever these things are across. So,
even if you have someone looking at
the threats, that's not passed on to
the people doing the design. And as
a result, they're not designing against
those threats. So, you don't have--
you have a lack of communication,
which makes this very hard to
implement.

But again, we know better. And the
point is by having this knowledge
spread more broadly, we can make
these systems better without having
to do a lot of new invention.

Presenter: Especially too, since
sometimes implementing security
measures when designing and
developing for these things does
hinder the design and development,
code signing, for example, it's easy to
deploy unsigned code quickly. But to
deploy signed code, you have to have
some kind of key management and
self-signing service to make sure that
the developer's code can actually be
tested and run. So, it really does
bring up complications. And I
understand that. But at the same
time, you want to build these in to
your model instead of trying to bolt it
all on at the end.

Presenter: Right, so if you
understand up front that one of the
threats is someone changing code or

Page 37 of 44

having doctored code coming into the
system as one of the threats and one
of the requirements, then it starts
being taken into account all the way
down the stream. So, it's not, as you
said, an add-on at the end where
we're saying oops, we no longer
know how we can do testing. We no
longer have a way to have our field
service do updates. And you don't
know how to take away certificates
and all the other issues.

Cross life cycle issues

#SEIwebinar 17[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Cross life cycle issues

Mission thread
(Business process)

Acquisition (Supply chain)

Building skills (Workforce development)

Metrics, Models, and Measurement

Automation (DevOps)

**017 Now, there's some other
concerns that come about in
developing secure software that
really cross the whole lifecycle rather
than just focus on threats or design,
things like how you do automation.
And we've got a whole discussion of
that later on in the webinar. In
addition, we've mentioned a couple
of times the assembly of these

Page 38 of 44

systems from third-party
components. That's managing the
whole supply chain. Fiat was on the
front end. Well, in most cases, people
tend to think of that final integrator
as responsible for everything, even
though it may have been a Harman
issue.

The same thing with airplanes, it's
United Airlines that's on the front
end. And then it's Airbus. And then
it's whoever provided the stuff to
Airbus all the way back. But if a
United plane falls out of the sky, it's
United who's on the hook, not Boeing
as the first place that they go or
whoever. Sorry, I don't mean to say
nasty things about Boeing.

As you mentioned, there needs to be
education that people need to
understand what's going on. In some
cases, you can have a Bill Gates tell
the organization, "You shall do this."
But in many cases, this is more
ongoing professional development
throughout the whole development
process.

And you need to just keep track of
things. You actually need to measure
to see if you're getting any better.
And putting that in place so that you
can keep track of not just defects in
quality, which people have already
done, but security issues as well to
make sure that in fact you've got
something that's improving over
time.

Page 39 of 44

Q&A

#SEIwebinar 18[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Q&A

**018 So, with that, we can start to
move into the actual discussions on
some of the individual pieces that
you want to--

Presenter: Great. So, we're getting
some audience questions. We're
getting a number of questions asking
if an archive, or the slides are
available. Every presentation today is
being archived folks. It's the same
registration URL that you got to log in
today. You can access it. Most likely
the archive will be up by tomorrow.
And you can catch the archived
version. As for slides and materials, if
you look in the download materials
tab at the bottom of your console,
you'll see a link to walk away with
those slides now.

So, just a couple more-- a little bit
more time with Chris and Mark here.

Page 40 of 44

So, Mark, when you started at the
beginning you talked about a
Department of Transportation study.
Do you have a link that we can share
with the audience? Or can we send
that after the webinar?

Presenter: After the webinar-- I was
thinking about it. I heard-- this was
referred to me from the Department
of Transportation. I'm actually not
sure that they did the study as
opposed to referred to the study. But
I do have the link--

Presenter: Okay. So, we'll get that
out or we'll add it into the resource
sections. Brook wants to know, "Do
you know if they met MISRA in their
code?" And the comment says, "Not
that this would help design issues."

Presenter: Yeah, I have no clue. We
never actually saw source code other
than some scripts. The rest was just
binary format. So, we wouldn't be
able to say.

Presenter: Okay. From Brando
asking, "Can you address some of the
best practices to manage risk when
integrating that ecosystem you talked
about?" And we'll let both of you.

Presenter: So, actually there's-- the
reason why I'm hesitating, I'm trying
to figure out how much is going to be
discussed later. I know that some of
the other speakers are going to
address some of those issues. So,
there's a general methodology where
you look at the supplier, the product,
the distribution, and the operational

Page 41 of 44

environments in order to evaluate
third-party components. Supplier, are
they well equipped to build secure
software? Do they know things like a
secure software development
environment, do they do threat
analysis, things of that sort? The
product, is it signed. Is it built? Has
someone actually validated? Have
they done static testing on it? Have
they done penetration testing on it or
not? Distribution channels, do you
know that the code has reliably made
its way from the source to wherever
it's going to be installed? Do they
have an over the air kind of thing?
How quickly can things be
addressed? And the operational
environment, which is what
assumptions have been made. Am I
assuming that I'm not going to be
connected to the Internet? I only
have physical access. Or have I taken
into account that I'm going to be in
these open kind of an environment
and as thing changed. Those are sort
of the general kinds of thoughts one
does in general with third party
components.

When you get into open source,
there's more issues about provenance
and making sure that you have a
catalog of what components you're
using, and how to find them later
when you need to update them. So,
there's actually a lot of material that's
been written up about this.

Presenter: Terrific. And just the last
one in the queue here asking Mark, I
think you mentioned a figure of
hundreds of millions of dollars. Neil

Page 42 of 44

wants to know, "Where did the figure
hundreds of millions of dollars to
correct the issue come from?"

Presenter: So, in a hundred million
dollars that FCA was affected, that
they had to set aside in order to do
the recalls. And I have the-- I don't
recall whether it was in an SEC filing
or something of that sort. But I can
also give you the reference for that
as well later.

Presenter: Okay. So, the queue's
now empty. We're running a little bit
ahead of schedule. So, we're going to
prepare for our next talk. I just want
to thank Chris again for participation
today. Anything you want to say
about SummerCon? We know that's
your conference coming up. We'll
give you a quick plug there.

Presenter: Yeah, it will be in New
York in July. Go on there, fifteenth
and sixteenth, head on up. It's a
good time.

Presenter: Mark, thank you again.
Excellent presentation. Any closing
comments before we welcome in
Chris?

Presenter: Just a plug, if you like.

Presenter: Sure.

Presenter: We have put together a
white paper on cybersecurity for
these kinds of systems in the
automotive space.

Page 43 of 44

Presenter: And that is actually in
the download section--

Presenter: So, that's one of the
downloads. And I know that the
reference in particular for the
Chrysler comment is in that paper as well.

SEI WEBINAR SERIES | Keeping you informed of the latest solutions

#SEIwebinar 1[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

SEI Webinar Series

Page 44 of 44

	Jeep Case Study and the Automotive Cybersecurity Framework/Secure Software Development Landscape Part 1
	Table of Contents
	SEI WEBINAR SERIES | Keeping you informed of the latest solutions
	Carnegie Mellon University
	Copyright 2016 Carnegie Mellon University
	Lessons Learned from the Jeep Hack: How to Reduce Software Vulnerabilities in Cyber-Physical Systems
	What Happened with the Jeep
	Discussions
	Lessons Learned from Jeep - Case Study Review
	What did the Jeep experience illustrate
	Catching software faults early saves money
	Security is implemented across life cycle
	Polling Question
	Room for improvement
	Cross life cycle issues
	Q&A
	SEI WEBINAR SERIES | Keeping you informed of the latest solutions

