
#SEIwebinar 1[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Carnegie Mellon University Notice

#SEIwebinar 2
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Carnegie Mellon University Notice
This video and all related information and materials (“materials”) are owned by Carnegie Mellon University.
These materials are provided on an “as-is” “as available” basis without any warranties and solely for your
personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of
viewing the video, or using referenced websites, and/or for any consequences or the use by you of such
materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read and
agree to our terms of use (www.sei.cmu.edu/legal/).

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

© 2016 Carnegie Mellon University.

http://www.sei.cmu.edu/legal/

#SEIwebinar 3
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Distribution Statements
Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering
Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute
at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0003519

#SEIwebinar 4

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

#SEIwebinar © 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.
]

Secure Coding Best
Practices
Robert Schiela

#SEIwebinar 5
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Why Software Security?

Developed nations’ economies and defense depend, in large part, on the
reliable execution of software
Software is ubiquitous, affecting all aspects of our personal and
professional lives.
Software vulnerabilities are
equally ubiquitous, jeopardizing:

• personal identities
• intellectual property
• consumer trust
• business services, operations, and continuity
• critical infrastructures & government

#SEIwebinar 6
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Most Vulnerabilities Are Caused by Programming Errors

64% of the vulnerabilities in the NIST National Vulnerability Database due
to programming errors
• 51% of those were due to classic errors like buffer overflows, cross-site
scripting, injection flaws

Top vulnerabilities include
• Integer overflow
• Buffer overflow
• Uncontrolled Format String
• Missing authentication
• Missing or incorrect authorization
• Reliance on untrusted inputs (aka tainted inputs)

Sources: Heffley/Meunier: Can Source Code Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate Software Security?; cwe.mitre.org/top25
Jan 6, 2015

#SEIwebinar 7
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Secure Software Development

Secure software development starts with understanding insecure coding
practices, and how these may be exploited.

Insecure designs can lead to “intentional errors”, that is, the code is
correctly implemented but the resulting software contains a vulnerability.

Secure designs require an understanding of functional and non-functional
software requirements.

Secure coding requires an understanding of implementation specifics.

#SEIwebinar 8
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Sources of Software Insecurity

Absent or minimal consideration of security during all life cycle phases
Complexity, inadequacy, and change
Incorrect or changing assumptions
Not thinking like an attacker
Flawed specifications & designs
Poor implementation of software interfaces
Unintended, unexpected interactions
• with other components
• with the software’s execution environment

Inadequate knowledge of secure coding practices

#SEIwebinar 9
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Unspecified and Undefined Behaviors

implementation-defined behavior - Unspecified behavior whereby each
implementation documents how the choice is made.
unspecified behavior - Behavior for which the standard provides two or
more possibilities and imposes no further requirements on which is chosen
in any instance.
undefined behavior - Behavior, upon use of a nonportable or erroneous
program construct or of erroneous data, for which the standard imposes no
requirements. An example of undefined behavior is the behavior on integer
overflow.

From ISO/IEC 9899-1999.

#SEIwebinar 10
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Polling Question

Does your organization use a coding standard for security?
• Yes
• No
• Maybe?

#SEIwebinar 11
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Polling Question

What programming language do you work with most in your organization?
• Assembly
• C
• C++
• C#
• Java
• Java-Script
• Objective-C
• Perl
• PHP
• Python
• PL/SQL or SQL
• Ruby
• Swift
• Visual Basic
• Other
• Little to none developed in-house

#SEIwebinar 12
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Adopting Secure Coding Practices

Secure Coding Infrastructure
• Defining Secure Coding Practices
• Influencing Language Standards
• Influencing Tool Vendors

People
• Training

Processes
• Coding Standards and Security Standards, Testing

Technology
• Tools: IDE’s and Analyzers
• Automated transformation and remediation

#SEIwebinar 13[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Moving rules into IDEs improves application of
secure coding:
• Early feedback corrects errors on introduction.
• Exceptions are understood in context.

Adoption of secure coding IDEs
• help deploy tools
• training on tools
• extend tools to meet targeted needs

Tools encourage application of secure coding

#SEIwebinar 14
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Conformance Testing

The use of secure coding standards defines a proscriptive set of rules and
recommendations to which the source code can be evaluated for compliance.
For each secure coding standard, the source code is certified as provably
nonconforming, conforming, or provably conforming against each guideline in the
standard:

Evaluation violations of a particular rule ends when a “provably nonconforming”
violation is discovered.

Provably
nonconforming

The code is provably nonconforming if one or more violations of a rule
are discovered for which no deviation has been allowed.

Conforming The code is conforming if no violations of a rule can be identified.

Provably
conforming

Finally, the code is provably conforming if the code has been verified to
adhere to the rule in all possible cases.

#SEIwebinar 15

Static Testing – Source code analysis tools

Secure Code Analysis Laboratory
(SCALe)
• C, C++, Java, PERL, Python,
Android rule conformance
checking

• Thread safety analysis
• Information flows across Android
applications

• Operating system call flows

#SEIwebinar 16

SCALe Multitool evaluation

Improve expert review productivity
by focusing on high priority violations
Filter select secure coding rule
violations
• Eliminate irrelevant diagnostics
• Convert to common CERT Secure
Coding rule labeling

Single view into code and all
diagnostics
Maintain record of decisions

#SEIwebinar 17
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Polling Question

What testing does your organization perform on your software?

• Static Analysis

• Dynamic Analysis

• Both

• None

#SEIwebinar 18
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Supply Chain Software

Install Security Updates.
Test Source Code.
Review vendors’ security and software assurance practices and results.
Request reports from their own testing or request independent security
reviews and testing.
Test Binaries.
Apply Defense in Depth – only enable features that are required, and
protect them.
Isolate critical and non-critical services and data.
Perform penetration testing.
Install an independent monitoring system.

#SEIwebinar 19
Lessons Learned from the Jeep Hack
April 11, 2016
© 2016 Carnegie Mellon University
[Distribution Statement A] This material has been approved for public release
and unlimited distribution. Please see Copyright notice for non-US Government
use and distribution.

Contact Information

Robert Schiela
Technical Manager, Secure Coding
Telephone: +1 412.268.3637
Email: rschiela@cert.org

Web Resources
http://www.sei.cmu.edu/
http://www.cert.org/
http://www.cert.org/secure-coding/
http://securecoding.cert.org/
(SEI CERT Secure Coding
Standards Wiki)

mailto:rschiela@cert.org
http://www.sei.cmu.edu/
http://www.cert.org/
http://www.cert.org/secure-coding/
http://securecoding.cert.org/

#SEIwebinar 20[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

	Carnegie Mellon University Notice
	Carnegie Mellon University Notice
	Distribution Statements
	Secure Coding Best Practices
	Why Software Security?
	Most Vulnerabilities Are Caused by Programming Errors
	Secure Software Development
	Sources of Software Insecurity
	Unspecified and Undefined Behaviors
	Polling Question �
	Polling Question �
	Adopting Secure Coding Practices
	Tools encourage application of secure coding
	Conformance Testing
	Static Testing – Source code analysis tools
	SCALe Multitool evaluation
	Polling Question �
	Supply Chain Software
	Contact Information
	Slide Number 20

